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Abstract
A major problem faced by state of the art incident detection algorithms is their high false alert rates, which are caused in
part by failing to differentiate incidents from contexts. Contexts are referred to as external factors that could be expected to
influence traffic conditions, such as sporting events, public holidays and weather conditions. This paper presents RoadCast
Incident Detection (RCID), an algorithm that aims to make this differentiation by gaining a better understanding of
conditions that could be expected during contexts’ disruption. RCID was found to outperform RAID in terms of detection
rate and false alert rate, and had a 25% lower false alert rate when incorporating contextual data. This improvement
suggests that if RCID were to be implemented in a Traffic Management Centre, operators would be distracted by far
fewer false alerts from contexts than is currently the case with state of the art algorithms, and so could detect incidents
more effectively.
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1 Introduction

Road congestion places a burden on citizens worldwide. In
2016 alone, road congestion cost U.S. drivers more than
$295 billion, U.K. drivers £30 billion, and German drivers
€69 billion [1]. A major cause of this congestion is from
incidents [2]. Incident detection algorithms (IDAs) help
traffic management centres (TMCs) detect incidents more
quickly, allowing their disruption to be minimised by
responding more quickly and effectively.

The causes of disruption in traffic conditions can be
categorised into two main types, incidents and contexts.

Incidents are defined as unexpected events that disrupt traffic
conditions [3]. Examples include vehicle collisions, illegal
parking and unloading, vehicle breakdowns and emergency
roadworks. Contexts are referred to as external factors that are
planned in advance or predictable, and could be expected to
influence traffic conditions at a particular time in the future.
Examples include planned roadworks, sporting events, rush
hours, schools closing and weather conditions. The key dif-
ference is that contexts could be expected to occur, but inci-
dents are inherently unexpected.

High false alert rates have been found to be the ‘pri-
mary and most commonly cited’ deterrent of the deploy-
ment of IDAs in TMCs [4]. This limitation is often re-
ported to be caused by failing to differentiate between
disruption from contexts and incidents [5, 6]. High false
alert rates are a problem in practice because they distract
TMC operators, which has often led to IDAs being ig-
nored and discarded [4, 6].

Many IDAs have been presented in the literature.
Comparative IDAs detect incidents by comparing real-
time traffic data to fixed thresholds [7, 8]. Time-series
IDAs use models to forecast traffic variables in the near-
term future and look for differences to real-time traffic
variable values [9, 10]. Some IDAs have utilized machine
learning to understand the traffic conditions that can be
expected during incident and non-incident conditions,
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using various traffic and contextual variables as input, and
a binary incident/no-incident output variable [11, 12].
Video-image processing has been used to identify inci-
dents from frames of CCTV imagery [13, 14]. Social me-
dia data based IDAs have attempted to detect incidents
from posts made on social media, such as those submitted
by road users [15, 16]. Various in depth reviews of inci-
dent detection methodologies and performances have been
undertaken [6, 17].

Few IDAs presented in the literature have given focus to
the problem of differentiating incidents from contexts [6].
Of those IDAs that have, many different approaches have
been taken. Some assumed that incidents and contexts are
characteristically different in terms of traffic conditions,
and so attempted to ‘learn’ the conditions expected in both
situations from traffic data [8, 18]. But others have argued
that they are too similar to tell apart from traffic conditions
alone [19]. Some IDAs left the responsibility of differenti-
ation with the TMC operator, such as RAID [20].
However, this approach is unlikely to be suitable for
implementations in large networks with congestion occur-
ring frequently, because of the time required of the opera-
tor to filter out the false alerts [4].

Some IDAs have taken data from external sources to im-
prove the understanding of the prior likelihood of incidents
occurring [21]. Such sources include the weather, road geom-
etry and speed limits. In situations where an incident is
deemed more likely to have occurred, IDAs have been made
more sensitive to raising alerts, which has been found to im-
prove performance. Although this approach does not explicit-
ly tackle the problem of differentiating incidents from con-
texts, it does show that IDA performance can be improved
by incorporating external data sources. However, in real-
world implementations, the number of incidents that occur
in each scenario (e.g. weather condition, speed limit etc.) is
often very infrequent. This means that this approach would
either require vast amounts of data for training, or a very
limited understanding of the prior likelihood of an incident
would be gained.

Presented is a novel IDA, RoadCast Incident Detection
(RCID), which is the first to be based on a traffic forecast
that incorporates contextual data. The approach is to raise
alerts when real-time traffic conditions differ from a
context-based traffic forecast. This approach attempts to
use contextual data to better understand the variation in
traffic conditions that can be expected from contexts,
allowing contexts to be better differentiated from incidents,
and hence reducing false alerts and improving detection
rates. RCID also has the advantage of only attempting un-
derstanding of conditions that could be expected to occur
in the case that no incident occurs, and so should require
comparatively less data for training. IDAs that attempt to
understand conditions expected in both incident and non-

incident scenarios often require far more training data be-
cause of the infrequency of incidents [22, 23]. The aim of
this research is to understand the extent to which the pro-
posed approach is able to differentiate incidents from con-
texts, and hence improve on the performance of state of the
art IDAs.

2 Methodology

The methodology of RCID can be described as two key
steps. Firstly, to create a forecast of a target traffic variable
(e.g. flow) for what would be expected if no incident were
to occur (herein ‘expected’). Then, to compare this forecast
to real-time values of the target variable, and to raise an
alert when a sufficient difference is observed. The sections
below describe the traffic forecasting algorithm, and the
incident detection logic.

2.1 Traffic Forecasting Algorithm

Integral to RCID is an accurate traffic forecasting algo-
rithm that forecasts expected traffic conditions. For RCID
to be able to differentiate incidents from contexts, the
algorithm needs to be able to accurately forecast the dis-
ruption from contexts, but be unable to accurately forecast
the disruption from incidents (which could be inferable if,
for example, recent traffic condition observations were
used as input).

A previously developed random forest algorithm,
RoadCast, was considered for use as the required traffic fore-
casting algorithm [24]. RoadCast was developed with the aim
to forecast traffic conditions at a horizon of up to 1 year. As
such, it used input features that would account for the medium
and long term variation in traffic conditions (such as the day of
the week), rather than being based on recent traffic observa-
tions. It also incorporated contextual data with the aim of
improving its accuracy.

RoadCast used one random forest algorithm for each
detector and each target variable being forecasted. A ran-
dom forest approach was chosen because it was most ac-
curate in preliminary tests relative to other machine learn-
ing and statistical approaches. It was also found to have
quick training and testing times relative to other complex
machine learning algorithms, which would be important
for the practicality of implementation in ITS applications.
Algorithm 2 describes the random forest algorithm used in
RoadCast, which is an ensemble method that uses a col-
lection of decision trees (algorithm 1) [25]. Provides de-
tail of the theory of the random forest algorithm. The
algorithm was developed using the Scikit-learn library in
Python [26].
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Algorithm 1. Decision tree algorithm.
Procedure: Training (set of training messages Ztr)

Create a node B0 and assign all training messages Ztr to it
While every leaf has more thanMmessages assigned to it:

Find the leaf node Bi with the most messages
From a random subset of size S, find the attribute a to
split Bi’s messages into two subsets such that the sum
of the variances of each subset’s target variables values
is minimized.
Create child nodes Bj and Bj + 1 from Bi

Assign Bi’s messages to Bj and Bj + 1 according to their
value of a

End procedure

Algorithm 2. Random forest algorithm.
Procedure: Training (set of training messages Ztr)

For a pre-defined number of trees K do:
Create a bootstrap random sampleZtr

r from Ztr of size |Ztr|
Create a decision tree Tr with Ztr

r using algorithm 1
End procedure
Procedure: Testing (set of testing messages Zts)

For each message x in Zts do:
Predict a value yi for message x using each of the
decision trees T1…Tk
Return the mean of the predicted values y

End procedure

RoadCast was tested by forecasting messages of 5 minute
flows and average speeds from loop detectors in Southampton,
U.K., and was compared to a historical average, which is a
commonly used predictor in ITS applications [27, 28].
Contexts that could be expected to disrupt Southampton’s traf-
fic conditions were incorporated as input features in the algo-
rithm. Overall, RoadCast was found to be more accurate than
the historical average by 4.4% and 4.0%mean squared error for
flow and average speed respectively. It was also found to be
able to use contexts to improve its forecasts, which it did by
‘learning’ from the disruption caused by previous occurrences
of contexts in the training data. Comparing the flow forecasts of
RoadCast and the historical average, RoadCast was 32% more
accurate over the Christmas holiday, 27% more accurate over
Easter, and 7.3% more accurate on the day of a football match
(note that disruption could only be seen for a couple of hours of
the day). The benefit of using machine learning to incorporate
contexts was that it could automatically ‘learn’ how each con-
text, or combination of contexts, could be expected to affect
each detector at each time.

It was clear that the forecasts produced by RoadCast would
be unable to forecast the disruption from incidents, because
the horizon used was up to 1 year and incidents cannot be
predicted before they occur (incidents’ disruption rarely last
for multiple hours, so the disruption could not be forecast if a

horizon of multiple hours were used). RoadCast also demon-
strated the ability to accurately forecast traffic conditions, in-
cluding the disruption from contexts. Because of this, the
methodology of RoadCast was chosen to be developed for
use as the traffic forecasting algorithm within the incident
detection algorithm RCID.

A key consideration of RCID was the amount of man-
ual calibration required for implementation. The time, ex-
pertise and manual labour required to calibrate IDAs is
another common reason for lack of use in TMCs [4, 6].
Commonly required manual calibration requirements in-
clude the setting of algorithm parameters (often at each
detector individually), creating traffic simulations of the
road network for training, and the collection and pre-
processing of various datasets for training (traffic, con-
text, incidents etc.). Because of this, standard methods
to encode data into input features were developed, and a
previously developed automatic optimisation algorithm
was re-used to calibrate RoadCast [24].

The standard encoding methods can be seen in Table 1.
These methods were developed for the intention that they
could be re-used to encode different contextual features when
implementing RCID in new locations (e.g. St Andrew’s Day
in Scotland), ensuring accuracy while saving time and exper-
tise required for implementation. Note that a multiple day
event context (with reference) is an event which ends on a
different day than it starts, and has a particular time/day of
interest (i.e. the reference) during the event which can occur
at different times on different occurrences, such as Christmas
Day during the Christmas holiday (which can occur on differ-
ent days of the week, and different durations from the start of
the holiday). The use of this type of context would allow
RoadCast to differentiate between different important days
during the event. The modified day of week feature would
stop an issue that decision trees would often split the training
data based on the day of the week high up the tree, and hence
were unable to forecast using contexts that happened to occur
on different days of the week in the training data.

The optimisation algorithm can be seen in algorithm 3 be-
low. Its aim is to find the optimal contextual features and
random forest parameters at each detector, by running a grid
search method with cross-validated tests on the training data
with different combinations of contexts and random forest
parameters. It was found to result in accuracy improvements
because certain detectors were more suited to certain parame-
ter values (which appeared to be correlated to the amount of
noise at each detector), and because contexts that did not dis-
rupt a detector’s traffic conditions would at times result in
over-fitting, due to decision trees splitting on the contextual
feature unnecessarily. The optimisation algorithm did not re-
quire any manual calibration, but improved RoadCast’s accu-
racy by tailoring it to each detector. Further explanation of the
optimisation algorithm can be found in reference [24].
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Algorithm 3. Optimisation algorithm.
Procedure: Context inclusion (set of training messages Ztr, set

of contextual features A)
Shuffle the order of the messages
Set the benchmark score as the score on Ztr with ‘time of
day’ and ‘day of week’ features only
For each feature in A:

If the score does not improve when the feature is added:
Remove the feature from A

End if
End for
If a multiple day event (with reference) feature is included:

Replace the ‘day of week’ feature with ‘modified day
of week’

End if
End procedure
Procedure: Grid search parameter optimisation (set of training

messages Ztr, set of features included in the algorithm F)
For M in [2, 5, 10, 25, 100, 200]:

For S = 1 to ∣F∣:
Find the score with parameters M and S

End for
End for
Return the parameters that achieved the best score, M*
and S*
Retrain the algorithm on all available training data with
parameters M*, S* and K = 100

End procedure

The implementation procedure of RoadCast is to first iden-
tify contexts local to the network being implemented (e.g.
Southampton F.C. football matches in Southampton). Then,
historical traffic data and contextual data are collected over a
particular period for training. At least 1 year of historical data
is recommended, so that all annually occurring contexts can

be ‘learnt’ from in training. For the future time period to be
forecasted, data for RoadCast’s inputs must also be collected,
including contextual data (schedules of contexts) and infor-
mation on the time of day and day of week. Next, the contex-
tual data is encoded using the standard encoding methods in
Table 1. The optimisation algorithm is then run on the histor-
ical data. At this point, forecasts for the future time period are
ready to be made.

The RoadCast algorithm presented in reference [24] would
produce a prediction of a single value for each message,
representing the algorithm’s ‘best guess’. This prediction
would not suit the incident detection application because it
would not account for prediction uncertainty. Clearly, the un-
certainty of a forecasting algorithm’s prediction can vary
based on the message being forecast. For example, football
matches in Southampton appeared to have more variation in
disruption between occurrences than public holidays,
resulting in more uncertainty in future forecasts. As such,
RCID would improve its performance if it were less sensitive
to raising alerts when the forecast was less certain, and vice
versa. Hence, it would be more suitable for RCID to raise
alerts when real-time values of the traffic variable fell outside
a range of expected values, i.e. a prediction interval, rather
than a pre-set difference from a single value prediction. A
benefit of the random forest algorithm is that there exist
methods to produce prediction intervals [29]. As such,
RoadCast would be modified to produce prediction intervals,
which would be used as input to RCID.

A prediction interval is an estimate of an interval for which
future observations (of the target variable) will fall into with a
given probability. The method in reference [29] was imple-
mented to acquire these prediction intervals. A random for-
est’s forecast is the mean of each tree’s forecast, and each
tree’s forecast is the mean of the target variable values in the
tree’s predicted leaf. Instead of using this, prediction intervals

Table 1 Encoding methods and features used

Feature type Standard encoding method Features used in this study

Time of day Hour of day + (minutes/60) Time of day

Day of week Integer ranging from 0 to 6 based on the day of the week. Day of week

Modified day of week If during a multiple day event (with reference): 7. Else:
Integer ranging from 0 to 6 based on the day.

Modified day of week (used when a multiple
day event (with reference) is included).

Single day events If on the day of the event: The number of days +
hours/24 +minutes/1440 + until the start of the event.
Else: 100.

Football matches, half marathon event.

Multiple day events (without reference) If during the event: The number of days +
hours/24 +minutes/1440 + until the end of the event.

Else: 0.

Easter, other public holidays.

Multiple day events (with reference) If during the event: The number of days +
hours/24 +minutes/1440 + until the reference time.
Else: 100.

Christmas (defined as starting on the first
public holiday day before Christmas Day,
and ending on the first working day after
New Year’s Day).
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were created by taking the appropriate percentiles of all the
target variable values of the messages in every tree’s predicted
leaf. For example, a 95% interval is the range from the 2.5th
and 97.5th percentiles of the values. This means that real-time
traffic variable values should fall within the prediction interval
approximately 95% of the time.

2.2 Incident Detection Logic

This section describes RCID’s use of the traffic forecasting
algorithm’s prediction intervals, in order to raise incident
alerts in real-time. In a preliminary test on the training data,
RCIDwould simply raise an alert when real-time values of the
target variable fell outside of the prediction interval. However,
variation from noise in the traffic data would result in many
unnecessary false alerts. As such, a persistence test of three
messages was introduced. This would ensure that alerts would
only be raised when the underlying trend of the target variable
had truly deviated fromwhat the forecasting algorithm expect-
ed. This persistence test would improve RCID’s false alert and
detection rate, but would worsen its average time to detect.

3 Data

3.1 Traffic Data

Southampton City Council provided the traffic data for this
study. Figure 1 shows the location of the 109 single inductive
loop detectors used. Seven hundred twenty-six days worth of
data was collected from 16th March 2015 to 16th March 2017
(5 days of data were missing). The first year of data was used
for training, and the period between 14th December 2016 and
16th March 2017 was used for testing. Flow values from detec-
tors’ messages, i.e. the number of vehicles in each 5 minute
period (over the lane of the detector) were used as the target
variable in this study. RoadCast would be implemented on each
detector separately. At times, some detectors would return mes-
sages with zero flow due to detector system fault. As such, all
messages of zero flow (plus one message before and after-
wards) were removed. Although this method would remove
some representative messages (e.g. during the night), it would
ensure that none of the unrepresentative messages would be
considered in the training or evaluation of RCID.

3.2 Contextual Data

In a previous study, the disruptive contexts in Southampton
were identified. The methods employed to identify these con-
texts can be found in reference [24]. In this study, these dis-
ruptive contexts were again used as inputs to RoadCast.
Table 1 shows each of the features used in this study, along-
side the method used to encode each feature.

A caveat of this study was that the contextual data used to
create RoadCast’s forecasts was collected after the contexts
took place. If RoadCast were to make forecasts into the future,
it would need to use schedules of these contexts, which may
change before the event (such as rescheduled football
matches). If contexts were rescheduled, RoadCast could ac-
count for this if it re-made its forecasts with updated contex-
tual features, albeit at a shorter forecasting horizon.

3.3 Incident Data

Incident data was collected from a Twitter feed provided by
Southampton City Council and Balfour Beatty [30]. The feed
takes incident logs created by operators at the Council’s TMC,
and disseminates incident information to the public via ‘tweets’.
The tweets covered the testing period of 14th December 2016
to 16th March 2017. By comparing this dataset with the avail-
able loop detector data and cross-referencing with other online
sources, including the STATS19 crash dataset [31], this Twitter
feed was judged to have sufficient coverage and reporting qual-
ity to evaluate RCID.

However, not all of the tweets on the feed were suitable
for the evaluation of RCID. Firstly, many described disrup-
tion from contexts rather than incidents. As such, only
tweets with a description of an incident were considered.
RCID could not be reasonably expected to detect incidents
that did not cause any disruption to a detector’s traffic
conditions. Hence, to ascertain which detectors were af-
fected by which incidents, each tweet of an incident was
investigated by manually observing nearby loop detectors’
traffic data and historical average values. Only tweets of
incidents which visibly disrupted at least one detector’s
traffic conditions (of any of its variables) were considered.
After completing this process, 28 cases of an incident
disrupting a detector’s traffic conditions were identified.

4 Results

Using the described methodology, RCID was implemented on
the study’s traffic flow, context and incident datasets. Figure 2
shows how often the optimisation algorithm included each
context (out of a possible 109 detectors). It can be seen that
holiday features were used most often, and that the football
feature was used more often than the half marathon feature
due to the greater travel demand created. It could be seen that
holiday features affected detectors throughout the city, but
event contexts were only included at detectors on routes into
and out of the event location.

The following sections evaluate the performance of RCID,
and make comparisons to an existing IDA, RAID.
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4.1 IDA Comparison

RCID would be compared to a state of the art IDA, RAID
[20]. RAID used average loop-occupancy time per vehicle
(ALOTPV) and average time-gap between vehicles
(ATGBV) to detect incidents. ALOTPV is the average time
period that each vehicle spends occupying the road space
above a loop detector, and ATGBV is the average time pe-
riod in-between each vehicle occupying a detector. Each
variable was calculated directly from the ‘occupied’ or
‘non-occupied’ states of the loop detectors which were sam-
pled every 0.25 s. The IDAwould judge a message as being
representative of an incident if it was above the 85th per-
centile of the training data ALOTPV values, and below the
15th percentile of ATGBV values in the given peak or off-
peak period. Peak periods were defined as being 07:00–

09:30 and 16:00–19:00. If the values broke these thresholds
for three consecutive messages during the off-peak period,
or four consecutive messages during the peak period, an
incident alert would be raised. This alert would then stop
when either of the thresholds was not met. Although RAID
was originally developed for use on 30 s values of
ALOTPV and ATGBV, it is thought that the logic would
transfer across to the 5 minute values used in this study.

RCID would also be tested multiple times with different
prediction intervals in order to understand the trade-off be-
tween different performance metrics. With a greater prediction
interval, RCID would be less sensitive to raising alerts, mean-
ing that a relatively better false alert rate but worse detection
rate would be expected. The prediction intervals used were
90%, 93%, 95%, 97% and 99%. To understand whether the
incorporation of contexts can improve IDAs’ performance,

Fig. 1 Locations of the detectors
used in this study. This image was
created with Google Earth
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RCID would also be tested with and without contextual data.
That is, RCID (with context) would use a version of RoadCast
with access to all the available input features (described in
Table 1), and RCID (without context) would use a version
of RoadCast that only used the input features ‘time of day’
and ‘day of week’.

4.2 Performance Metrics

The most commonly used performance measures of IDAs are
detection rate (DR), false alert rate (FAR) and average time to
detect. Unfortunately, the exact time of incidents was not stat-
ed in the incident tweets. Because there would be a variable
delay between incidents occurring, operators detecting them,
and tweets being posted, the time-stamp of tweets would also
be unsuitable for evaluating RCID’s average time to detect. As
such, only the detection and false alert rate were used as per-
formance metrics.

RCID would be judged to have correctly detected an
incident if an alert was raised while an incident was
disrupting the detector’s traffic conditions (this period
was ascertained by comparing the detector’s traffic data
with a historical average). DR was defined as the number
of correctly detected incidents divided by the total number
of incidents (from the Twitter dataset). FAR was defined
as the number of messages where an alert was raised
incorrectly, divided by the total number of messages
where an incident was not occurring. Another metric,
FARpdpd, was also used to give a more clear understand-
ing of the number of false alerts that TMC operators could
expect when implemented. FARpdpd was defined as the
number of false alerts raised per detector per day. Note
that an incident alert could span multiple consecutive
messages.

4.3 Performance

RCID was found to outperform RAID in terms of detection
rate and false alert rate (with a 95% and 97% prediction

interval). RCID was also found to be able to reduce its false
alert rate by at least 25% by incorporating contextual data (at
least 25% at every prediction interval used). Such improve-
ments could be seen to be because of an increased ability to
forecast the disruption caused by contexts, and hence differ-
entiate contexts from incidents more effectively.

As expected, there is a trade-off to be made between detec-
tion and false alert rate. Figure 3 shows that with a low per-
centage prediction interval, RCID (with context) had a better
DR and worse FAR than RAID, and vice versa for higher
percentage intervals. However, for 95% and 97% intervals,
RCID (with context) had a better DR and FAR than RAID.
Comparing RAID to RCID (with context) with a 97% predic-
tion interval, RCID had a 27% higher detection rate (68%
against 41%) and a 0.29% lower false alert rate (0.49% against
0.78%). At this prediction interval, it was also found to im-
prove its false alert rate from 0.77% to 0.49% by using
contexts.

A survey of TMC operators found that acceptable IDA
performance boundaries would be at least 88.3% detection
rate, and at most 1.8% false alert rate [32]. With a 90%
prediction interval, RCID (with context), met these bound-
aries, with a 90.9% DR and 1.31% FAR. However, RCID
(without context) and RAID did not meet these boundaries.
This suggests that if RCID (with context) were to be imple-
mented in a TMC, operators may find the performance ac-
ceptable enough to detect incidents effectively, unlike pre-
vious IDAs.

4.4 Analysis

Figure 4 shows how RCID used the football context to
‘learn’ what disruption could be expected, resulting in it
not raising a false alert before the match. RCID (without
context) raised a false alert because it did not accurately
forecast the context’s disruption. In general, RCID (with
context) was able to ‘learn’ what disruption could be ex-
pected from each of the contexts used, and so was better

Fig. 2 Bar chart showing the
number of times each context was
chosen for use by the optimisation
algorithm
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at differentiating incidents from contexts, and hence had a
lower false alert rate.

At the typical time of day and day of the week of a
context’s disruption, RCID (without context) would often
create prediction intervals wide enough to cover the con-
text’s disruption, both when the context occurred and
when it didn’t. This occurred more often and to a greater
extent when higher percentage prediction intervals were
used. Figure 5 shows a wide prediction interval caused by
the disruption from occasional weekday evening football
matches. This may have caused the incident to go unde-
tected if it occurred an hour later. In general, RCID was
seen to be less effective at detecting incidents when not
using contexts (particularly with high percentage predic-
tion intervals), because it would produce more naive and
uncertain prediction intervals. In this study, RCID’s detec-
tion rate was (largely) the same with and without context
because contexts (coincidentally) did not disrupt any of

the 28 incidents in the test dataset, but this may not be the
case for repeated tests on different datasets. Figure 5 also
shows RAID failing to detect an incident because
ALOTPV and ATGBV values were not disrupted suffi-
ciently. In general, RAID was found to be somewhat ef-
fective at detecting congestion, but performed worse than
RCID because it would raise false alerts during context
caused disruption, and it would fail to detect incidents that
didn’t cause congestion.

RCID (without context) often raised false alerts when
contexts caused disruption (as can be seen in Fig. 4).
However, in some cases it would not raise false alerts
for contexts, particularly for contexts that occurred fre-
quently at a particular time or day of the week, such as
football matches at 3 pm on Saturdays. As can be seen in
Fig. 6, at times the prediction interval was wide enough to
cover the context’s disruption, because the messages in
the predicted leaves were from both times when a match

Fig. 3 IDAs’ performance. (a)
Detection rates (b) False alert
rates
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was occurring and when it wasn’t. With a 95% prediction
interval, one could assume that if a context caused disrup-
tion at a particular time and day of the week on less than
2.5% of occasions in the training period, RCID (without
context) could be susceptible to raising false alerts on
these occasions in the testing period. However, such wide
prediction intervals made RCID more susceptible to fail-
ing to detect incidents at times when the particular context
does not occur. In general, RCID produced more naive
and uncertain prediction intervals when contexts weren’t
incorporated, and hence was less effective at detecting
incidents.

In general, RAID was found to be able to detect con-
gestion, but performed worse than RCID (with context)
due to an inability to differentiate contexts’ disruption
from incidents. Its performance was limited in two ways,

it would raise false alerts during context caused conges-
tion, and it would fail to detect incidents that didn’t cause
congestion. Also, at times, the pre-defined on and off
peak thresholds did not meet their objective of capturing
the time of day variance in ALOTPV and ATGBV (see
that the on-peak ALOPTV threshold is lower than the off-
peak threshold in Fig. 5c). These thresholds appeared not
to capture the variation in the study’s traffic data because
different detectors had different peak times, and peak
times differed for different days of the week.

For all of the IDAs tested, many of the false alerts
came from a few detectors which were particularly noisy
or appeared to have a step change in values. For exam-
ple, the detector which produced the most false alerts for
RCID appeared to have visibly higher flow values (and
hence false alerts) after 22nd August 2016. The cause of

Fig. 4 RCID’s prediction
intervals and alerts (with and
without context) on the day of a
Premier League Football match
against Leicester F.C., which
kicked off at 12:00 at St Mary’s
Stadium. No incident occurred.
Sunday 22nd January 2017, at
detector B. RCID used a 90%
prediction interval. (a) RCID
(without context) (b) RCID (with
context)
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this step change could not be found, but could have been
caused by a change in nearby road capacity or travel

demand, such as a new road lane or nearby shopping
mall being built. This is an issue for which all IDAs that

Fig. 5 RCID (with and without
context) and RAID’s alerts at a
time where an emergency
roadworks incident caused one
lane of a nearby roundabout to be
closed, causing disruption
between 6 pm and 11 pm.
Thursday 15th December, at
detector A. A 93% prediction
interval was used. (a) RCID
(without context) (b) RCID (with
context) (c) RAID
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attempt to understand the expected traffic conditions
could be expected to suffer from. However, if this issue
was identified by an operator in a TMC, this issue could
easily be rectified by retraining the algorithm on data in
the time period since the step change. Another limitation
of each of the IDAs may have been the average time to
detect. Unfortunately, this couldn’t be evaluated in this
study because the exact time of incidents occurrence was
unknown. However, based on the persistence test used, it
could be expected to be at least 15 min, which is higher
than the reported value of many IDAs presented in the
literature. This issue stemmed from the IDAs using mes-
sages over long time periods (i.e. 5 min messages). If
30 s messages were used instead of 5 min messages,
the IDAs could have used a persistence test over a
shorter time period, and hence detected incidents more
quickly.

4.5 Limitations

RCID (with context)‘s false alert rate was most limited by
occasional inaccurate predictions by RoadCast, caused by
variations in the traffic data that were not accounted for.
Some causes of variation may have been missed, and others
may not have been suitable for incorporation, such as noise
or disruption during particularly busy shopping days,
which could be identified (and verified by Southampton
City Council tweets), but not predicted beforehand.
Another cause of false alerts were from contexts that oc-
curred rarely during the training data, and had an incident
causing disruption throughout. For example, if roadworks
disrupted traffic at a detector throughout Christmas in
2015, then RoadCast would learn to forecast roadwork
disrupted traffic conditions in the future. This would lead

to RCID producing false alerts if RoadCast produced fore-
casts of roadwork disrupted conditions in 2016, which
would be unrepresentative of conditions that could be ex-
pected during Easter. A number of false alerts from RCID
were thought to come through happenstance, depending on
the prediction interval used. Even if the prediction intervals
produced by RCID perfectly represented the distribution of
flow values that could be expected, a number of false alerts
would still be raised by chance. Taking a 90% prediction
interval as an example, then with perfectly representative
prediction intervals, actual flow values would fall outside
this interval 10% of the time. With the persistence test of
three consecutive messages, this means that any sequence
of three consecutive messages has a 0.1% chance of raising
an alert.

The detection rate was most limited by failing to detect
incidents that caused minor amounts of disruption. In
these cases, the prediction intervals were too wide be-
cause of RoadCast’s forecasting uncertainty, which
stemmed from the unaccounted causes of variation in
the data.

5 Conclusions

This paper aimed to tackle the problem of state of the art
IDAs creating unnecessary false alerts by failing to differ-
entiate incidents from contexts. Such false alerts distract
operators, and had led to many IDAs being disabled or
simply ignored. This paper presented and evaluated
RCID, a novel random forest incident detection algorithm
which aimed to use contextual data to better differentiate
incidents from contexts, and hence improve on the perfor-
mance of state of the art IDAs. RCID was evaluated on

Fig. 6 RCID (without context)
with a 95% prediction interval, on
a day when no incident occurred.
Saturday, 4th February 2017, at
detector B. Premier League
football match against West Ham
F.C. kicked off at 15:00 at St
Mary’s Stadium
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loop detector flow data and TMC incident logs from
Southampton, U.K. Comparisons were made with and
without context, and to a state of the art IDA, RAID.

RCIDwas found to outperform RAID in terms of detection
rate and false alert rate. RCID was also found to reduce its
false alert rate by at least 25% when incorporating contextual
data (at least 25% at every prediction interval used). This
improvement came from RCID’s ability to differentiate inci-
dents from contexts by ‘learning’ how contexts could be ex-
pected to disrupt traffic conditions. This improvement sug-
gests that if RCID were to be implemented in a Traffic
Management Centre, operators would be distracted by far
fewer false alerts from contexts than is currently the case with
state of the art algorithms. This would enable operators to
detect incidents more effectively, and hence respond more
effectively in order to minimise the disruption caused.

A benefit of the random forest algorithm used is that
methods exist to interpret its forecasts [33]. Hence, with
further work, it may be possible for RCID to provide
information on its reasoning and decision making process,
rather than simply raising alerts. Such information could
be a message to operators of ‘no incident present, disrup-
tion caused by Southampton F.C. football match’, or ‘in-
cident present, disruption also caused by Southampton
marathon’. This information has not been supplied to op-
erators of an IDA previously. Doing so could improve
TMC operators’ trust and effectiveness of using IDAs,
and could provide information that would be useful for
operators’ in responding to incidents.
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