J Internet Serv Appl (2011) 2:47-65
DOI 10.1007/s13174-011-0020-4

ORIGINAL PAPER

Mitigating the linkability problem in anonymous reputation

management

M. Hussain - D.B. Skillicorn

Received: 6 January 2011 / Accepted: 20 April 2011 / Published online: 15 May 2011

© The Brazilian Computer Society 2011

Abstract Trust plays a key-role in enhancing user experi-
ence at service providers. Reputation management systems
are used to quantify trust, based on some reputation met-
rics. Anonymity is an important requirement in these sys-
tems, since most individuals expect that they will not be pro-
filed by participating in the feedback process. Anonymous
Reputation management (ARM) systems allow individuals
to submit their feedback anonymously. However, this solves
part of the problem. Anonymous ratings by one individual
can be linked to each other. This enables the system to eas-
ily build a profile of that individual. Data mining techniques
can use the profile to re-identify that individual. We call this
the linkability problem. This paper presents an anonymous
reputation management system that avoids the linkability
problem. This is achieved by constructing a system that em-
powers individuals to interact and rate service providers, se-
curely and anonymously.

Keywords Trust - Reputation management - Security -
Privacy - Anonymity
1 Introduction

Trust is a vital aspect in our daily life, especially for the
web. The higher trust a user has in a service provider, the

M. Hussain (X)

College of Computer and Information Technology,
Taif University, Taif, Saudi Arabia

e-mail: m.hussein@tu.edu.sa

D.B. Skillicorn

School of Computing, Queen’s University, Kingston, Canada,
K7L 1T2

e-mail: skill@cs.queensu.ca

more comfortable that user is in interacting with that ser-
vice. One way to quantify trust is based on reputation. The
reputation-based approach for establishing trust among en-
tities is a well-researched field [9, 20, 24, 27, 28]. The feed-
back of individuals regarding their interactions with others
is an important criterion when calculating reputations.

There is, however, a problem in reputation-based trust,
from an anonymity perspective. To accurately compute the
reputation of an entity, individuals should provide feedback
regarding their interactions with that entity, possibly, accom-
panied with transcripts. Alternatively, the individuals must
permit the entity to provide the interactions’ transcripts to
the reputation system. This is problematic, since in both
cases, it helps the system to profile the individuals. There is
another problem that limits the practicality of current work
on reputation management. The work fails to reward prod-
ucts and services that do not receive ratings, due to the low
participation of the individuals using them. For example, the
rating process may not by easy to use. In some cases, indi-
viduals may not even participate at all. Individuals may get
discouraged from rating certain products for sensitivity, re-
ligious, and political reasons. Anonymous reputation man-
agement (ARM) systems [10, 24, 28] permit the anonymous
rating of products and services; yet they fail to address the
following.

1.1 The linkability problem in ARM

While ARM systems provide anonymity, there is a prob-
lem that remains unresolved. All ratings by an individual are
linkable to each other, which may lead to profiling and re-
identifying that individual. This is easily done by the servers
managing the ratings, since ratings of an individual share the
same pseudonym/identifier. Ratings that share a pseudonym
form a profile of an anonymous individual. This profile may

@ Springer

mailto:m.hussein@tu.edu.sa
mailto:skill@cs.queensu.ca

48

J Internet Serv Appl (2011) 2:47-65

be linked to a real individual using another source of in-
formation, for example, the individual behavior at a public
forum.

Data-mining techniques enable one to link partial identi-
ties together. For example, Narayanan [25] show that anony-
mous ratings in movie-rating datasets can be traced back to
the actual individuals with the help of a very small amount
of auxiliary information. Malin [23] has linked the genomic
data of anonymized patients back to the actual patients. The
re-identification algorithm presented by Narayanan [26] can
link the accounts which belong to the same individual, at
different social networking sites. Further, k-anonymity [30]
suggests that the records of an individual must be indistin-
guishable from at least k — 1 records in a dataset, for that
individual to be k-anonymous. These results suggest that
anonymity is not enough. To protect an individual’s privacy,
the ratings submitted by that individual should be unlinkable
to each other.

One may think of a system where an individual have a
set of single-use identities that are replaced regularly. Such a
system achieves unlinkability of an individual ratings. How-
ever, this system is impractical as each individual requires a
new identity per transaction. We needed a system that allows
an individual to have one identity, which can be used across
different providers. The different showings of this identity
are not linkable to each other. In this way, an individual may
use and rate services, without service providers building a
profile of that individual.

1.2 Contribution

In a previous work, we presented a secure protocol that en-
ables individuals to interact with service providers, without
enabling these providers to link different interactions to the
same individual [16—18]. The protocol is based on empow-
ering individuals to securely use web services, without en-
abling service providers to profile those individuals.

This paper extends our work to address the linkability
problem. The contribution of this work is an anonymous
reputation management system that satisfies the following
properties.

— Avoids the linkability problem. The system prevents ser-
vice providers, as well as the servers responsible for man-
aging ratings, from profiling individuals.

— Enhances the fairness of ARM. Many individuals neglect
to rate service providers after they interact with these
providers. This causes the reputation system to be in fa-
vor of those providers who pressure their users to rate
them. The presented system does not suffer from this
issue. When individuals use services, the system gener-
ates proof of interaction. Service providers gain reputa-
tion by submitting the proofs of interaction to the system,
which computes reputation values that reflect the fact that

@ Springer

some individuals have used the services of these service
providers. The system ensures that service providers can-
not abuse this feature.

— Minimizes the effects of Sybil attacks. Service providers
may specify constraints on the rate that an individual
may rate a service, in a specific time interval. The system
prevents both users and SPs from creating Sybil attacks.
Though this does not fully address the issue of Sybil at-
tacks, it minimizes these attacks.

The next section studies reputation-based trust, and ex-
plains why the related work on anonymous reputation man-
agement [10, 24, 28] fails to protect individuals’ privacy.
The underlying methodology of this paper is discussed in
Sect. 3. Section 4 presents a reputation management system
that mitigates the privacy problems present in the current
work. The design and operations of the system are described
in Sect. 5. Section 6 analyzes the system. The paper is con-
cluded in Sect. 7.

2 Trust management

Grandison and Sloman [14] define the trust in an entity as
the belief in the competence of that entity to perform a task
in a dependable and reliable manner, in a specific context.
Research on trust is usually categorized into policy-based
[2, 19, 31] and reputation-based. In policy-based, an entity
establishes trust in another by examining the credentials the
former entity possesses. In reputation-based, the history of
the interactions that an entity had with others is used to eval-
uate the entity’s trustworthiness. One entity in a network
may trust another entity based on the recommendation of
other entities [1].

2.1 Reputation-based trust

There are many metrics for computing the reputation of an
entity, for example, the EigenTrust algorithm [20] computes
reputation scores of entities based on the PageRank [7] algo-
rithm. In the web of trust [13] approach, each entity assigns
reputation for its neighbors. To determine the level of trust
an entity A should have in an entity B, A uses a trust met-
ric which specifies how A should aggregate the reputation
values on the paths to B.

Such reputation management systems do not allow in-
dividuals to participate in the system anonymously. This
discourages individuals from participation, especially in the
context of evaluating the reputation of services and products
that are sensitive, religious, or political in nature. Anony-
mous reputation management (ARM) [10, 24, 28] tack-
les this problem by empowering individuals to participate
anonymously.

J Internet Serv Appl (2011) 2:47-65

49

In TrustMe [28], the reputation information of each peer
in a peer-to-peer network is collected, stored, and updated by
a randomly assigned set of peers, called the Trust-Holding
Agent (THA) peers. If peer i wishes to submit a reputation
value for peer j, peer i signs this value, encrypts it with the
keys of the THA responsible for peer j, and broadcasts it
over the network. The THA peers of peer j can read the value
and update its reputation.

SuperTrust [10] is another ARM system. Just like
TrustMe, SuperTrust assigns the management of the repu-
tation of a peer to a set of super peers. A unique feature of
SuperTrust is the use of a homomorphic encryption function.
The function allows a super peer to aggregate the encrypted
reputation values of its assigned peers, without decrypting
the values. Thus, super peers do not learn the reputation val-
ues.

The work of Muler et al. [24] presents an ARM that pro-
vides anonymity for users, while protecting against Sybil at-
tacks. In a Sybil attack [12], the attacker creates multiple
accounts to be used to submit good/bad reputation values to
gain some advantage.

3 Secure anonymous interactions with personas

A system that solves the linkability problem needs an under-
lying protocol that allows individuals to participate in un-
linkable interactions. In this section, such a protocol is pre-
sented. The protocol is based on using artificial identities,
called personas [17, 18, 29], that assure service providers
that there are organizations guaranteeing the individuals.

3.1 Personas: definitions and features

A persona is a set of statements, where each statement as-
serts the status of an attribute of an individual. The state-
ments of a persona can be self-issued, like preferences and
tastes, or certified by an organization, like credit cards.
A persona can be used to generate a set of unlinkable proofs
of ownership, called locked personas. The following lists the
properties of locked personas.

— A set of locked personas generated by a persona are not
linkable to each other. Thus, the interactions of an indi-
vidual cannot be profiled.

— A locked persona is a proof that an individual has inter-
acted with an organization. Usually, the interaction is in
the form of access request, from the individual’s side, and
access response, from the organization’s side.

— A locked persona may encode the interaction details. In
e-commerce settings, a locked persona may encode the
purchased goods and time of purchase.

— A locked persona can be traced, in case of conflict resolu-
tion, to the persona which generated that locked persona.
The tracing functionality is available only to trusted orga-
nizations responsible for law enforcement.

The properties help achieve privacy for individuals, while
guarantee for organizations that they are protected against
misuse. Note that personas are issued to individuals once,
and are used by individuals at several service providers, on
several occasions.

3.1.1 Encoding relations among individuals

Personas has the ability to encode relations among individu-
als, which allows access policies to be formulated based on
relations [17]. Although existing identity management sys-
tems (IMS) [2, 8] may encode relations as extra attributes,
this leads to a serious privacy violation. Consider the follow-
ing scenario, in which a student and her supervisor want to
prove, to a university web-service, the student/supervisor re-
lation. Identity providers, in existing IMS, may provide the
student and the supervisor with two certificates. Each cer-
tificate has an attribute stating part of the relation. But that
creates the problem of preventing other students from claim-
ing that they are supervised by that supervisor. The identity
provider may assign the attributes as supervisor_pseudonym
and student_pseudonym, where the pseudonym parts are
equal. This, however, makes the actions of the student and
supervisor linkable, since the pseudonyms remain fixed in
all their actions. Personas encode relations without creating
this form of linkability.

3.1.2 Symmetric interactions

There are many business-to-consumer (B2C) scenarios, in
which businesses need to interact anonymously with con-
sumers. For example, many hotel chains use arbitrageurs to
sell their room surplus at a lower price, but without necessar-
ily revealing their brand so as not to undercut their full-price
sales. To prove the quality of the services, these hotels must
prove their properties, for example, the star rating and the
presence of amenities, such as swimming pools.

Since hotels do not reveal their brand names, they rely
on arbitrageurs to prove hotels’ properties to customers.
Well-known arbitrageurs facilitating such transactions in-
clude Priceline, Hotwire, Travelocity, and Lastminute. Ar-
bitrageurs present individuals with offers and their proper-
ties, and reveal the hotel identities only after transactions
are complete. This leaves individuals, who wish to verify
available offers, with no option other than to trust the ar-
bitrageurs. Arbitrageurs charge the real suppliers not only
for providing a service, but also for acting as guarantors of
product attributes.

@ Springer

50

J Internet Serv Appl (2011) 2:47-65

Personas generalize the notion of anonymity to include
service providers. The goal is to make interactions between
service providers and individuals to be symmetric, where
each one proves to the other certain attributes, while both
remaining anonymous.

3.1.3 Constrained interactions

Apart from individuals’ identity attributes, service providers
may need to enforce additional constrains before an indi-
vidual may access a service. A provider may allow an in-
dividual to use a service n number of times per day. Per-
sonas permit the enforcement of such constraints using tick-
ets. A ticket contains the number of requests an individual
has made for a service, in a specific period of time. Such in-
formation helps organizations enforce constraints that con-
trol the rate by which individuals access services.

3.2 Tllustration and assumptions

There are four entities that comprise the system. Individuals
who use personas to protect their privacy. Persona providers
(PPs) who provide individuals with personas and act as
guarantors of these personas. Service providers (SPs) who
offer services to individuals; De-anonymization authorities
(DAs) who trace, with the help of PP, personas to their cor-
responding individuals.

Figure 1 shows an individual receiving a persona from a
government agency (PP). The persona is then used to gener-
ate a set of locked personas on-demand that can be used at
a phone store, a bank and an auction site (SPs). The locked
persona used at the bank cannot be linked to the locked per-
sona used at the phone store. Further, personas are collected
once, and can be used on-demand.

3.2.1 Anonymous channel

We assume that individuals access service providers through
anonymous channels, such as Tor [11]. This is needed since

Locked Government)\\

Persona

Auction

Government Persona .
4 Locked Government —

I LI II Il] R ' Persona -’ 53; 3]

Bank

Locked Government

Persona 0/

4

Phone Store

Fig. 1 Generating a set of locked personas

@ Springer

direct access lead to profiling through the IP addresses of
individuals. This assumption is shared with other systems
that enable individuals to have secure and private interac-
tions, such as the systems presented by Hansen et al. [15]
and Brands et al. [6].

3.2.2 Linking among personas

Linkability among personas of the same individual may hap-
pen if personas have a significant number of common at-
tributes. This is discouraged. Yet, this does not mean that
the individual need a lot of personas, since a small number
of personas can produce a large set of possibilities. Five per-
sonas produce a space of 16 possibilities. Further, for small
number of attributes, we may issue a persona per attribute.
This solves the problem of linkability among personas.

3.3 Persona system architecture

Persona providers generate personas as follows. An individ-
ual contacts a PP and claim a set of attributes. The PP vali-
dates the individual claims. The process of validating the in-
dividual claim is highly dependent on several issues, for ex-
ample, PP policies and the type of attributes claimed. Once
the claims are validated by the PP, the PP encode the individ-
ual’s claims. Then the encoded package is signed by the PP.
Finally, the signed package represents the persona, which is
sent back to the individual. Identity providers in our society
are of a number of different types. Governments guarantee
personal identities such as citizenship; schools and universi-
ties guarantee credentials such as degrees; supervisors guar-
antee character or performance by writing references; and
financial institutions guarantee financial worth.

Individuals receive personas from PPs, and store these
personas for later use at SPs. When an individual requests
a service from the SP, the SP replies with a list of required
attributes. The individual generates a locked persona from
the personas that attest that the individual possesses the re-
quired attributes. The individual sends the locked personas
to the SP. If the locked personas satisfy the SPs access policy
for the requested service, the individual gets access. Figure 2
shows an individual receiving personas from the government

Government Locked Government

Persona . Persona
—_— —_—
' L,
Bank Locked Bank
I’e]sy Persona
Bar Bank Locked Bank Q‘\
Persona Persona

DA

Fig. 2 The creation and usage of personas

J Internet Serv Appl (2011) 2:47-65

51

and a bank. The individual then generates locked personas
to be used at SPs. A locked government persona is used, at
auction site, to prove that she is over 18. She pays her phone
bills with a locked persona obtained from her bank.

Service providers can be any web service on the internet,
or indeed any real-world service provider. Each SP keeps a
list of PPs that it trusts. Individuals with personas from the
trusted PPs are allowed to use the services at the SP. For
example, Amazon accepts payments made using Visa and
Master credit cards. To verify a locked persona of an indi-
vidual, the SP determines which PP parameters to use. The
SP verifies whether the locked personas are valid and the
attributes satisfy the access policy of the requested service.
This is done without contacting the PP.

De-anonymization authorities are invoked when there is
a need to extract the persona used to generate a specific
locked persona. SPs send locked personas to DAs, while
DAs recover the personas. To prevent a DA from tracing
a locked persona directly to the corresponding individual,
a DA can only recover the persona. Only PPs can link a
persona back to an individual. PPs and DAs can be im-
plemented as separate components but might often be im-
plemented within the same system. Figure 2 shows a DA,
which receives a locked bank persona from a phone store.
The DA extracts the bank persona from the locked persona,
and sends it to the bank.

3.3.1 Enhanced persona distribution

Individuals request and receive personas from PPs. One is-
sue that need to be resolved is how can individuals know
which personas to request. A primitive approach is to let in-
dividuals contact SPs to be informed on which personas they
need. This is limits the usability of personas. A better and
more usable approach is that PPs suggest for individuals.
For example, if an individual requested persona A, the PP
may suggest, based on PP’s experience, that the individual
also applies for persona B. This is similar to how Amazon
and eBay recommend their products to customers.

Individuals may supply PPs with the domain (leisure, ed-
ucation, government services, etc.) at which their personas
will be used. PPs use this information to suggest relevant
personas that individuals should request.

PPs may also provide online portals for persona distri-
bution. For example, a university may create a web-service
that allows their students to get personas to be used to au-
thenticate at the online-library of that university.

4 Persona-based anonymous reputation management

A system that supports personas can be tweaked for reputa-
tion management. This section describes the usage of per-
sonas to construct an anonymous reputation management
system.

4.1 The persona approach for reputation management

Recall that a locked persona is considered as a proof of a ser-
vice request by an individual. Thus, an individuals’ locked
persona and an SP’s signed response are a proof of interac-
tion between that individual and that SP, in the form of re-
questing and providing a service. An individual can submit
a locked persona, along with a reputation value measuring
the satisfaction by the service, to a reputation management
component. The component updates the reputation score of
the SP’s service and the SP itself.

Thanks to the unlinkability property of locked personas,
individuals may submit all their locked personas to the
reputation-management component, without the fear of be-
ing profiled. This has two significant implications. First,
the reputation scores an individual submits are anonymous.
Second, the reputation scores are unlinkable to each other.
While current anonymous reputation management (ARM)
systems achieve the first, they fail from achieving the sec-
ond. Modeling reputation using personas are, therefore,
more privacy-preserving than previous ARM systems.

The unlinkability of reputation scores may enable some
individuals to launch Sybil attacks. That is, submitting large
number of low or high reputation scores for an SP. The pre-
sented system prevents such attacks by disallowing an in-
dividual from submitting more than one reputation score
for an SP, in a given time interval. This is achieved by the
constrained-interactions property of personas. For each rat-
ing, a valid response from the SP is needed, restricting the
ability of users to launch Sybil attacks. The system also pre-
vents SPs from creating Sybil attacks. For each rating, a
valid persona is needed, restricting the ability of the SP. Sec-
tion 4.2 presents the approach in more detail.

Another advantage that our approach has is the follow-
ing. An SP needs not to wait for individuals to submit
their reputation scores for that SP. The SP may simply
submit the locked personas it receives from individuals to
the reputation-management component. The component can
utilize the locked personas to give the SP partial reputation
reflecting the fact that the SP is trustworthy enough to moti-
vate individuals to request that SP’s service. Recall that the
well-known PageRank [7] algorithm works by counting the
number of links to a page, rather than whether the links have
good or bad connotation. EigenTrust [20] is a well-known
reputation management system that utilizes PageRank.

Now we turn to the method of querying, submitting, and
updating reputation scores of SPs. We introduce reputation-
management components (RMC) to the persona system.
These components respond to individuals when they query
for an SP reputation, collect reputation scores from individ-
uals, and update SPs reputation accordingly. Note that our
approach focus on facilitating the functionalities of an ARM
system, and thus the approach should work well with any

@ Springer

52

J Internet Serv Appl (2011) 2:47-65

reputation aggregation metrics. We also do not mandate a
specific method for choosing RMC locations in the network,
and the assignment of SPs to RMCs. Instead, this is left to
administrators.

The operations provided by RMCs are the following.

— Query for a reputation. An individual queries RMCs for
an SP’s reputation.

— Submit a reputation. An individual submits a reputation
message to an RMC.

— Update a reputation. An RMC updates the reputation
score of an SP, based on a reputation algorithm, e.g.,
EigenTrust [20].

Let an individual D wishes to submit a reputation score
for an SP to an RMC. D prepares a reputation message as

Reputation = {score, SP, locked persona, SP response} (1)

where SP is the identity of the SP, and SP response is the
signed message that D receives from SP as a response for
a service request. D then generates a new locked persona
to prove that D is the individual who used the service and
reported the score. Note that D makes the new locked per-
sona linkable to the original locked persona. D sends the
tuple (reputation message and the new locked persona) to an
RMC. We refer to the tuple as signed reputation. Finally, the
RMC verifies that the locked persona in the reputation mes-
sage and the locked persona generated based on the message
are valid and linkable to each other, that is, generated by D.

Figure 3 shows an individual using a government persona
to generate locked personas, to interact with an auction site
and a phone store. There are two scenarios present in the
figure. In the first, the individual submits a reputation for
the auction site to the RMC. In the second, the phone store
submits a locked persona to the RMC.

The second scenario is needed to allow SPs to gain rep-
utation, even if their customers did not submit reputation
scores for these SPs. The more locked personas are used at
a service provider (SP), the more reputation that SP should
have. The RMC assigns reputation values for the SP based
on the rate of the transactions made by their individuals at
that SP. Of course, the RMC can detect the case where both

Government 3
z N . Locked Government

! Persona Persona
’ ' ’
e e

—_— (S
- Locked Government
Signed Persona
Reputation
J
< Locked Government 0 i
RMC) Persona /

Fig. 3 The persona-based reputation approach

@ Springer

the individual and SP submit a reputation message and a
locked persona for the same interaction. This is because the
locked persona is equal in both cases.

Recall that locked personas encode the date of the inter-
action between individuals and SPs. This can be used by
RMCs to check the frequency an SP’s service or product
is used by individuals. RMCs may use this frequency as a
reputation metric, such that when the frequency consistently
incline or decline, the reputation is also updated accordingly.

4.2 Minimizing Sybil attacks

To minimize Sybil attacks, RMCs do not accept reputation
scores submitted by individuals unless they are accompa-
nied with tickets generated by persona providers. Recall that
a ticket contains information about the number of times an
individual used a service, during a given time interval. An
RMC can use this information to disallow an individual from
submitting more than one reputation score for a specific ser-
vice, in a given time interval.

If an individual wants to rate an SP, the RMC requests
the individual to submit a reputation message, as described
in Sect. 4.1. The individual also contacts her PP to receive a
ticket to rate the SP. The PP does not know the SP that the in-
dividual wishes to rate. Then, the individual sends the ticket
to an RMC. The RMC follows the steps of Appendix B.7
to verify the ticket. It should be noted that an individual
may not submit the same ticket more than once, since RMCs
check for ticket uniqueness. Similarly, SPs may not resend
the same locked persona to RMC to gain more reputation.

Restricting ratings to be fixed per a given time interval
minimizes Sybil attacks, but it does not solve it. Individuals
may have multiple identities at the same PP, or at multiple
PPs. Thus, some individuals may get multiple personas and
use them to rate an SP more than their allowed quota. This is
a weakness of this work, which constitutes an open problem
for future work.

4.3 Preprocessing reputation messages

RMCs preprocess reputation scores before using them to up-
date SPs’ reputations. The preprocessing step is needed for
practical issues, for example, avoiding malicious attacks and
smoothing the effect of outliers. Such step exists in other
reputation systems. For example, the trust values in Eigen-
Trust [20] are normalized to the interval [0, 1]. This disal-
lows individuals from providing arbitrary high or low scores.
Another useful preprocessing step is truncation to get rid of
outliers. That is, removing a fixed percentage of the reputa-
tion scores from both end of the spectrum. For example, one
may truncate 5% of the scores from both sides.

J Internet Serv Appl (2011) 2:47-65

53

4.4 Reputation for individuals

Personas may encode reputation for individuals. Assigning
reputation values for individuals is important. It helps ser-
vice providers to determine the trustworthiness of individu-
als; and it allows RMCs to give more weight for the repu-
tation scores submitted by reputable individuals. Reputation
should be assigned in a privacy-preserving manner. For ex-
ample, a PP assigns a reputation level for an individual based
on money spent, and time passed since registration.

A PP may encode reputation levels as attributes in per-
sonas. This is similar to information assurance in identity
management systems, where an identity provider comple-
ments identity assertions with assurance values. These val-
ues represent the level of certainty that the identity provider
has with respect to the assertions. Alternatively, the PP
may use different sets of parameters to generate personas,
whereas each set corresponds to a level of reputation. An
individual generates a locked persona and claims a level of
reputation. To verify the individual’s locked persona, a ser-
vice provider uses the PP’s parameters corresponding to the
reputation claimed.

5 System design and security
5.1 System operations through a sample scenario

This section presents the operations provided by the system.
To facilitate the description, we use a sample scenario. In
this scenario, Bob receives a persona from his university.
Bob uses the persona to access the university library, and
provide a rating.

Operations at PPs, University

SetupAtPP : initializations — PP pparam x PP prkey

PPs, like the university for Bob, use SefupAtPP to gen-
erate the public parameters (PP pparam) and their private
keys.

Wrap : attributes x proof x PP pparam

X PP prkey — persona

Wrap is executed by a PP to generate a persona for an
individual. The PP receives a set of claimed attributes from
the individual, along with the proof that the individual is
entitled to the attributes. The proof may take the form of a
locked persona or any other forms acceptable by the PP. The
PP returns a persona to that individual. In Bob’s scenario,
the university executes wrap to generate a persona for Bob.

Check_Wrap : persona x PP pparam — boolean

Check_Wrap is used by an individual or a PP to check
if a persona is valid. Bob invokes Check_Wrap to check his
university persona.

Generate_Ticket : tRequest x locked persona x PP pparam

X PP prkey — ticket

Generate_Ticket is executed by a PP to generate a ticket,
to be used by an individual to rate an SP. In Bob’s scenario,
the university generates a ticket, based on Bob’s ticket re-
quest. Bob needs a ticket whenever he wants to rate a ser-
vice.

Operations by individuals, Bob

Show : message x persona x PP pparam

x DA pparam — locked persona

Show is executed by an individual to generate a locked
persona, proving the ownership of her persona. The individ-
ual then sends the locked persona to the SP. The show op-
eration may also associate some meta-information with the
locked persona, for example, an action, message, and time-
stamp. That is, we can treat Show as a signature on a mes-
sage or an action. In Bob’s scenario, Bob executes Show to
generate a locked university persona.

Selective_Show : message x persona x PP pparam

x DA pparam — locked persona

An individual may use Selective_Show to show a subset of a
persona to an SP. For example, the university may distribute
Bob’s attributes across several personas. Bob then can use
each persona to prove a specific attribute.

Submit_Reputation : score X locked persona x SP
X SP response x PP pparam

x DA pparam — locked persona

Submit_Reputation is used for sending reputation mes-
sages to RMCs. Note that reputation messages take the form
of locked personas, so that RMC'’s verify them just like the
SPs verify locked personas.

Operations at SPs, University Library

Verify : message x locked persona x PP pparam

X DA pparam — boolean

A verifying entity V, receiving a locked persona, uses Verify
to check the validity of the received locked persona. If Ver-
ify is passed successfully, the SP knows two facts. First, the
individual is indeed certified by PP to use a persona. Sec-
ond, the locked_persona is a proof that the individual has

@ Springer

54

J Internet Serv Appl (2011) 2:47-65

requested a service from the SP. In Bob’s scenario, the uni-
versity library uses Verify to check that the locked persona
is valid with respect to the university.

VerifyRelation : locked personas x PP pparam

X DA pparam x relations — boolean

A verifying entity V, receiving a set of locked personas,
uses VerifyRelation to check the validity of not only the
locked personas, but also the relations between them. If Veri-
JfYRelation is passed successfully, V knows three facts. First,
the generating entities are indeed certified by a PP to use
these personas. Second, the locked personas form a proof
that these entities have participated in a transaction with V.
Third, the claimed relations among these individuals are
valid.

Operations at DAs

SetupAtDA : initializations — DA pparam x DA prkey

DAz, like the university in Bob’s scenario, use Setup At
DA to generate the public parameters DA pparam and their
private keys.

Trace : locked persona x DA public parameters
X DA prkey — persona

Trace is used by a DA to trace a locked persona back to a
persona. In Bob’s scenario, the university uses Trace to trace
Bob’s locked personas back to him.

Operations at RMCs
Update_Reputation : reputation x locked persona
X PP pparam — score

Update_Reputation is used by RMCs to update the rep-
utation scores of SPs, based on a specific algorithm. The
operation is invoked when a new reputation message arrives
from an individual. The operation takes the old score of an
SP and computes the new one.

Verify_Reputation : locked persona x PP pparam
X DA pparam — boolean
Verify_Reputation is used by RMCs to test locked per-

sonas, which encode reputation scores, submitted by indi-
viduals to rate SPs.

Verify_Ticket : ticket x tRequest — boolean

Verify_Ticket is used by RMC:s to validate the tickets sub-
mitted by individuals to RMCs.

@ Springer

5.2 Cryptographic constructs

Personas can be supported by cryptographic systems that are
capable of the following functionalities.

1. Unlinkability of interaction transcripts. When an individ-
ual uses a certificate repeatedly at SPs, possibly at the
same SP, the SPs cannot link the different usages of that
certificate. This functionality is needed to prevent SPs
from profiling individuals.

2. Encoding and verifying relations. Two or more individ-
uals with arbitrary relations may use their certificates at
SPs, possibly at the same SP, to prove these relations.

3. Supporting constrained interactions. Service providers
should be able to specify constraints on how often an in-
dividual may use a service, in a given time interval.

Idemix [8] achieves unlinkability of interaction transcripts;
however, it needs to be modified to accommodate for rela-
tionship verification and for constrained interactions.

To implement personas, we begin with the hidden ID-
based signature scheme [21], and extend it to support per-
sonas and the functionalities described above.

5.2.1 Hidden ID-based signatures (HIDS)

HIDS is an identity-based signature scheme from pairing.
The scheme has the following property: signed messages
are verifiable without the public key (identity) of the signer.
Only the public key of the identity provider is needed. The
scheme splits the role of the identity provider into: an iden-
tity provider and a de-anonymizing authority. The iden-
tity provider issues certificates to individuals, while the de-
anonymizing authority may open the signatures generated
from these certificates. Opening a signature refers to the pro-
cess of extracting the public key of the signer. The scheme
provides these four operations:

Setup. Initializes the public/private key pair of both Iden-
tity Provider (IDP) and De-anonymizing Authority (DA).
Register. The IDP registers an individual by issuing a
certificate, which is a signature on that individual identity,
produced by the IDP private key.

Check Reg. The individual checks whether the identity
and certificate pair are valid with respect to each other.
Sign. Signatures are generated as follows. The individual
commits the identity and the certificate. Then a X'-protocol
is used to prove the knowledge of the value of the committed
identity and certificate, and that the certificate is a signature
on that identity. The output of X'-protocol is hashed along
with the message to be signed. The committed identity and
certificate, the protocol output, the produced hash, and the
message comprise the signature.

Verify. The verifier uses the IDP public key to check the

J Internet Serv Appl (2011) 2:47-65

55

signature is valid and that the signer certificate and identity
are encrypted with the DA public key.

Open. The DA uses its private key to decrypt and extract the
signer’s committed identity from a valid signature.

The scheme provides the basic cryptographic support
for generating, verifying, and tracing signatures. We ex-
tend the scheme to provide the needed persona features,
such as showing attributes, proving relations, and en-
abling constrained interactions. An anonymous reputation-
management system can be constructed once the features
are implemented. Appendix A studies the HIDS operations,
while Appendix B presents our extension of HIDS. The cor-
rectness and security of the extension is provided in Ap-
pendix C.

6 Performance analysis

We have implemented and tested the cryptographic con-
structs with the help of the Pairing-based Cryptography
(PBC) library [22]. The machine used to test the operations
is a 2.6 GHz Pentium 4 machine. The PBC is a free library
written in C and it provides the necessary functions to write
programs that handle elliptic curve generation, elliptic curve
arithmetic, and pairing computation.

There are four factors that the analysis is based on: fea-
tures, messaging cost, management of cryptographic cre-
dentials, and response time. The following addresses each
factor in detail and compares it to two Anonymous Repu-
tation Management (ARM) systems, TrustMe [28] and Su-
perTrust [10].

6.1 Features

Current ARM systems offer anonymity and prevent an in-
dividual from submitting more than one reputation message
per interaction. However, none of the current systems of-
fer unlinkability of reputation messages. Our system allows
individuals to submit unlinkable reputation messages. Even
reputation management components (RMCs) cannot link the
reputation messages of one individual to each other or to
that individual. It also prevents an individual from submit-
ting more than one reputation message per one interaction.
Our system, therefore, has an advantage in terms of features.

6.2 Messaging cost

In a centralized approach, individuals directly communi-
cate with RMCs to receive and submit reputation values.
TrustMe and SuperTrust use a decentralized approach for
managing reputation values. A peer broadcasts queries for
the reputation of other peers; then it broadcasts a feedback
after interacting with those peers. The messaging cost grows

with the number of peers and it is greater than the cost
in a centralized approach. The overhead in TrustMe is 10%
messages per 18,000 transactions, while in SuperTrust it is
10% messages per 18,000 transactions, as shown in [10, 28].
The smaller overhead in SuperTrust is due to the Super-Peer
model, which organizes a peer-to-peer network into clusters
managed by special entities, called Super Peers.

The presented ARM in this paper neither mandates a spe-
cific protocol for communicating with RMCs, nor it requires
a specific arrangement for RMCs. The ARM can be im-
plemented using any approach. Thus, the messaging cost is
similar to current ARM systems.

6.3 Management of cryptographic credentials

ARM systems generate new public key credentials for indi-
viduals to be used for submitting their feedback. Individuals
have two sets of credentials, one to prove their attributes to
access services and interact with other individuals, and one
for reputation management. In the presented ARM, individ-
uals do not need new credentials for reputation management.
Individuals use their credentials to interact with other indi-
viduals, as well as to submit their feedback. This represents
one advantage of our system over other systems.

6.4 Response time

Generating a reputation message takes 200 milliseconds,
while verifying that reputation message takes 240 ms. The
total is 440 ms. Other ARM systems are based on public
cryptography like RSA. In these systems, generating and
verifying a reputation message require approximately 80 ms.
The reported times are based on the same machine used to
test our system. The Unlinkability of reputation messages,
however, justifies the increase in response time.

Table 1 summarizes the above analysis. The table com-
pares our work with two ARM systems, TrustMe and Su-
perTrust.

7 Conclusion

Trust is an important factor in the decision making process.
One way to quantify trust is through the calculation of rep-
utation scores, based on some reputation metrics. Reputa-
tion management systems facilitate such calculations, but do
not offer anonymity for individuals. Current work on anony-
mous reputation management (ARM) allows for anonymity,
but they fail to provide unlinkability of the anonymous rat-
ings. Linking anonymous ratings of an individual to each
other allows the system to build a profile of the individual,
which may result in re-identification of that individual by
data-mining techniques.

@ Springer

56

J Internet Serv Appl (2011) 2:47-65

Table 1 Comparison between the presented work and two ARM systems

Factors Personas TrustMe [28] SuperTrust [10]
Anonymity v v v

Duplicate prevention v v v
Unlinkability v

Messaging cost Depends on the model used
Additional credentials

Response time 440 ms

108 per 18,000 transactions 10% per 18,000 transactions
v v
Around 80 ms Around 80 ms

In this paper, an ARM system for web services is pre-
sented. The system is based on a protocol for secure and
anonymous interactions. The transcripts of the interactions
an individual has with a service provider are unlinkable.
These transcripts can be used to enable individuals to sub-
mit feedback, without the fear of being profiled by the sys-
tem. The presented ARM allow services to gain reputation,
even if their customers neglected rating them. The system
prevents Sybil attacks from degrading the quality of the rep-
utation scores.

Moreover, the current work on privacy does not address
trust management. Addressing privacy and trust by a sin-
gle framework is more efficient, since the two subjects are
related. In the Semantic Web [3] and the Semantic Social
Web, trust is an integral part for automatic service discovery
and invocation. Therefore, such a framework has a profound
application in the Semantic Web setting.

Appendix A: The HIDS operations
Setup:

Setup is used to generate the required public-private keys
for the IDP and DA. The keys are generated based on
Boneh and Boyen [4] signature scheme. Setup generates
(p, g, G, Gy, e), where G is a cyclic group of prime order p,
with a generater g, and e is a bilinear map, ¢ : G x G — G».
IDP public key is the pair (X = g*, Y = g”), where x and y
are random elements in Z,. IDP private key is the pair (x,
y). DA public key is given by (u, v, w), where w is a ran-
dom element in G and w = u® = v¢, b and d are random
elements in Z,,. DA private key is (b, d). The public param-
eters of the system are (p, g, G, Go,e, X, Y, u,v,w, h, H),
where / is a random element in G, and H is a hash function.
Register: certificate < Register(identifier)

When an individual requests a certificate from the IDP,
the IDP encodes that individual’s identity as an identifier,
say I. The mapping between the identifiers and the real iden-
tity of the individual is securely stored at the IDP. The IDP

@ Springer

{public parameters, IDP keys, DA keys} <— Setup.

issues a certificate C to that individual by signing I with its
private key. Note that 7 is a random element in Z,.

C = {S = gx+1+y ril . r} (2)

Check Reg: boolean <— Check Reg(identifier,

certificate)

An individual may check the validity of her certificate
by checking if the following condition holds: e(s, Xg'Y") =
e(g, 8-
Sign: signature < Sign(identifier, certificate, message)
This operation is used to generate signatures on mes-

sages. Signing a message M with a certificate C requires
these steps:

— The individual uses the encryption scheme of [5] to com-
mit / in (U, V, W).
U=d, v=20 — w=uwThg 3)
where [and k are random numbers in Z,.

— The individual commits C in (S, R), where S = g"'s, R =
g"”h"Y", and r and r, are random elements in Z,,.

— The individual uses a X'-protocol (described below) to
prove the knowledge of the committed values of C and
I, and that C is a valid signature on 1.

— The variables of the X'-protocol are hashed along with the
message to be signed.

— The committed values, hash, and M represents a HIDS
signature.

The X -protocol

The individual uses the protocol to prove the knowledge
of C and I committed in S and R and that C is a valid signa-
ture on /. Compute o1 =r1k, ap =ril, a3 =rir, a4 = rlz,
as =rir. Choose 0y, Nk, N1, Nrs Nrys> Mrys Neys Naz> Nz > Nag»
and 74 randomly from Z,,.
Bz = w—(nk+m)g—n1’

By =u"", By=v",

By=g MmpT Iy, Bs=U""Ty",

J Internet Serv Appl (2011) 2:47-65

57

B6 — V_77r| vrlaz , B7 — R gnog BTy ylas ,
By =e(g, X W R)""1e(S, w)**e(g, w) e Hlea)

x e(S,g)"e(g,g) "e(S,h)e(g, h) "

c=HM | SIRIUNVIWIBiI---I Bs), @
Ar=ny+cl, Ar =1 +cr,
)Lrl :nrl ‘I-Cl"],)‘-}’2:77}‘2 +Cr27

Ak =1k + ck, AM=mn+cl,

Aoy = Ny +cy, Ay = Ny + CQ2,

)"Dt3 = Nas + cas,)"Dt4 = Nay + cay,
)Va5 = Nas + cas

The tuple 0 = {S, R, U, V., W, ¢, Ar, Ary, Apys Ak A, AT,
Aaps Aays Aass Ay, Aas) s the HIDS signature on M.

Verify: boolean < Verify(signature, message)

The operation checks whether a received (signature, mes-
sage) pair represents a valid HIDS signature. The verifier
uses the following condition to check that o is a valid signa-
ture on M.

c=HM|SIRIUIV WU U™ | v ™
x || WEw ™3t gt
X REgTmp My T | U e || VTt
X || R ghes ihea yhes |
x e(g. XWR) 1 e(S, w) M+ e(g, w)™ e The)
x e(S,g)2e(g, g)
X e(S. 1) eg. 1) (e(g. 9)/e(S, XWR)) (5)

Open: identifier < Open(signature)

The private key of the DA (b, d) is used to extract g/
from the commitment (U, V, W) and send it to the IDP
(g = U~V ~4W). The IDP maps the identifier back to the
real identity by looking up the values of g/ from a table.

Appendix B: The extended HIDS scheme

The HIDS scheme cannot be used as is to implement the
needed system operations. The signer can prove the pos-
session of a certificate from the IDP, but nothing beyond
that. The scheme, therefore, needs modification to allow in-
dividuals to show attributes, prove relations, or rate service
providers. We extend the scheme by modifying each opera-
tion. The modified system is called the extended HIDS for
abbreviation.

B.1 Extended HIDS operations

A subscript e is appended to the names of the extended
HIDS operations to distinguish them from the HIDS ones.

Setup, : {public parameters, PP keys, DA keys}

< Setup,.

Setup is not changed. The PP plays the role of the IDP.

Register,: ({persona, secret} < Register,(identifier)

The PP uses HIDS’s Register operation to issue certifi-
cates to individuals. When an individual requests a certifi-
cate, the PP generates two identifiers (Ipase, and Igy1). The
difference to the HIDS identifiers is that these identifiers
are composed of two parts: a pseudonym part, which is a
random number to distinguish between individuals, and an
attributes part, which encodes the attributes of the individ-
ual. The pseudonym part of Ipaee and Iy are equal. The at-
tributes part of Iy is assigned to 0, i.e., no attributes, while
the attributes part of I is assigned to the encoding of the
attributes that the individual is entitled to. For simplicity, as-
sume that i bits of the identifier encodes the pseudonym,
while the remaining j bits encodes the attributes.

The PP invokes the HIDS’s Register operation twice,
once per identifier. The PP sends the two identifiers and the
certificate on them to the individual. The identifiers (/pase,
Ity1) constitute the persona, while the certificates (Chase,
Cra1) are the secret.

Chase < Register(Ipase), Crun < Register(Isun) (6)

persona = {Ipase, Itun}, secret = {Cpase, Crull} @)

Check Reg.: boolean <— Check Reg(persona, secret)
An individual may check the validity of her (persona, se-
cret) pair by checking if the following condition holds:

true = Check Reg(Ipase, Chase) && true
= Check Reg(Itun, Crun) ®)

Sign,: locked persona

<« Sign,(persona, secret, message, attributes)

This operation is used to generate locked personas.
This is achieved by generating HIDS signatures on mes-
sages. Signatures are the implementation of locked per-
sonas, where each (signature, message) pair represents a
locked persona. Sign, can be used to sign messages, with
or without showing attributes. For example, an individual
affiliated with a university authenticates to the ACM Digital

@ Springer

58

J Internet Serv Appl (2011) 2:47-65

Library, which requires nothing more than that the individ-
ual is affiliated with that university. In this case, the individ-
ual uses the Ip,se to sign a message M, which produces opase
(9). The pair (M, opase) is a locked persona.

Obase < Sign(M, Ipase, Chase) 9

The individual sends the signature and the message to the
verifying entity.

If the individual needs to show attributes to the verifying
entity, both identifiers are needed. Sign, invokes two in-
stances of the HIDS’s Sign operation, once per each (identi-
fier, certificate) pair. Locked personas generated by this type
of Sign, contains attributes as well (11). A locked persona
is the tuple (signature, message, attribute).

Obase <— Sign(M, Ivase, Coase),
otunl < Sign(M, I, Crunt)

(10)
Obase = {Sbasev Rbases Ubases Voase> Whases - - '}7

otall = {Stuit, Reatt, Usutt, Veurt, Wrut, - - .}

Note that the same message M is used in both instances.
Further, both instances of Sign should use the same values
for the random variables / and & in (3). The individual sends
the signatures, the message, and the attributes to the verify-
ing entity.

Verify,: boolean

<« Verify,(locked persona, message, attribute)

The Verify, operation has two flavors: one to deal with
signatures generated by (9), and another to deal with sig-
natures of (11). If (9) is used to generate a signature, then
the HIDS’s Verify operation is supplied with the (message,
signature) pair. If Verify returns true, then opase is a valid
signature on M.

true = Verify(M, opase) (1

If (11) is used to generate signatures, the verification pro-
ceeds as follows (this is the case where an individual needs
to prove attributes to the verifying entity). First, the HIDS’s
Verify operation is invoked twice to check the validity of
both signatures (12). If (12) holds, then both signatures are
valid.

true = Verify(M, ovase) && true = Verify(M, og1) (12)

Second, the attributes that the individual is claiming are
checked. Recall that the difference between I,qe and Iy is
that Is,) encodes the individual’s attributes, while I, does
not. That is, attributes = Iy — Ipase. Recall also that opgge

@ Springer

contains the commitment of /y,se, While ogy contains the
commitment of Iy (13).

I+k _Ihas I+k It
Whase = w + 8 base Wean = w + 8 ful (13)

To check whether the attributes that the individual is
claiming are the same attributes encoded in the identi-
fiers supplied to her by the PP, the verifying entity checks
whether (14) holds:

Whase g 1P = Wy (14)

Open: persona < Open(locked persona)

The HIDS Open operation is used to extract g/bse and
gt from the commitments (15). The identifiers are then
sent to the PP. The PP maps the identifiers back to the real
identity by looking up the values of the identifiers from a
table.

Ipase = Open(Obase), Itun = Open(ofun) (15)

B.2 Linkable signatures

The sign operation of the extended HIDS generates two
HIDS signatures, opase and ogyr, that are linkable to each
other. The signatures serve two purposes: proving that the
individual has a persona from a PP, and proving that the in-
dividual is entitled to the attributes inferred from the two
signatures. Each time Sign, is invoked, it generates a new
pair of two signatures that are linkable to each other, but are
unlinkable to other pairs. In some cases, however, an indi-
vidual may need to produce a pair of signatures that is link-
able to a previous one. To generate a new pair that is linkable
to a previous pair, the individual must use the same message
and the same values for the random variables / and k, when
generating the new one.

B.3 Selective release of attributes

Instead of having two identifiers: Iyyge and Iy, the PP can
provide an individual with many identifiers. Selective re-
lease of attributes is achieved by providing an individual
with an identifier per attribute or a set of attributes. Let /e
be of the same bit-length as Iy, and the pseudonym bits
be equal. However, all the attributes bits are Os except for
the bits encoding the age. An individual with I, certified
by PP can use the Sign operation of the extended HIDS to
show the age only as follows:

Obase < Sign(M, Ipase, Coase),
Oage < Sign(M, Lage, Cage)

(16)
Obase = {Sbase, Rbases Ubases Voase> Whases - - '}1

Oage = {Sage, Rage’ Uage, Vagea Wagca o)

J Internet Serv Appl (2011) 2:47-65

59

Recall that Wyge = w!T* glaee If (17) holds, then the in-
dividual is certified by the PP to have that age attribute.

true = Verify(M, opase) && true
= Verify(M, 0age) && "Vbaseg[age = Wage (I7)

B.4 Encoding and verifying relations

Similar to the way personas prove attributes, personas may
prove the existence of relations among individuals. An iden-
tifier is composed of a pseudonym part and an attribute part.
To encode relations, a third part is added, called a relation.
An identifier becomes the composition of a pseudonym part,
a relation part, and an attribute part.

identifier = pseudonym || relation || attributes

Let I; and I, be two base identifiers issued by a PP for
individuals D and D», respectively. Let the pseudonym bits
of both identifiers be equal, and there be a relation between
D and D», for example, D is the boss of D;. PP encodes
that relation by giving D; and D, different values for the
relation bits as follows. The relation bits of D; and D, are
set to rej and rep, respectively, such that relation = re; —
rej. Note that the attribute bits are assigned to 0 in both
identifiers. The identifiers for D and D, become

Iy = pseudonym || rey || O
(18)
I, = pseudonym || re; || 0

The PP then register the identifiers, as in (7), to generate
a persona and a secret pair for each individual, (P;, S1) and
(P2, $2).

{P1, S1} < Register,(I1), {P2, S2} < Register,(I2),

19)

When D; and D; want to prove their relation to a veri-
fying entity V, both use Sign, to sign a message and pro-
duces two locked personas (LP; and LP;). Then they send
the locked personas and relation to V. Note that relation is
appended-to bits of Os of length a (the attribute bit size).

LP; < Sign,(M, Py, S}),

LP; < Sign,(M, P>, $)
(20)
LP; ={op, ={S1, R, U1, V1, Wy, ...}, M},

LP; ={op, ={S2, Ry, Uz, V2, W2, ...}, M}
The verifying entity uses VerifyRelation to verify

the relation. The two locked personas must be linkable, Ap-
pendix B.2, for the verification to be possible.

VerifyRelation, : boolean < VerifyRelation,
(locked persona,
locked persona,

relation)

This operation takes two locked personas, which represent
signatures on a message, and a relation. The operation ver-
ifies each locked persona alone as in the Verify, opera-
tion; then (21) is used to verify the relation. W; and W, are
computed as W is computed for the case of one individual;
see (3).

W] gre]ation — W2 (21)

In the same manner, we can specify relations that involve
several individuals. In other words, personas can model
graphs, where the nodes are individuals and the edges are
their relations. We achieve this by computing an adjacency
matrix for the required graph. Each cell encodes the relation
between two individuals: the individual corresponding to the
column of the cell, and the individual corresponding to the
row. Thus, each row encodes the set of relations between an
individual and the remaining individuals.

Now, we explain in details how a PP provides a set of in-
dividuals D with a set of personas P and the corresponding
secrets S, allowing them to prove a set of relations R. Let D;
denotes the ith individual, R; denotes the set of relations of
the ith individual, Rl.] denotes the cell at row i and column
J,and S; denotes the ith persona.

Algorithm 1 takes R as input and produces P and S as
output. From R we compute R, which combines the set R;
into a single value. The relation part of the identifier of P; is
set to R, Then all P; and S; are generated to get P and S.

Input: R

Output: S

R =0

foreach R; in R, i #1do
temp = \/(R,.‘)Z +(RY 4+ (RM?
Ié,‘ =temp + Iéi_l

end

pseudonym = random

attribute =0

foreach P; in P do
relation = éi
identifier = pseudonym || relation || attribute
secret = Register,,(identifier)
P; = identifier, S; = secret

end

Algorithm 1: Generating personas based on an adja-
cency matrix

@ Springer

60

J Internet Serv Appl (2011) 2:47-65

Input: R, LP
Output: accept, reject
foreach LP; in LP do

relation = \/(R})z + (R 4+ (RM?
if VerifyRelation,(LP;11, LP;, relation) = reject
then

‘ output reject

hault
end

end

output accept
Algorithm 2: Verifying locked personas against an ad-
jacency matrix

Note that the artribute part is O for all P;, and that all P;
have the same value for pseudonym. The || symbol refers to
concatenation. The algorithm above encodes the relations of
D;, 1 <i <n — 1. The relations of D,, can be inferred from
other relations (undirected graphs). For directed graphs, a
new persona P,y is needed to compensate. P;y1 is com-
puted as other P; in the algorithm. The PP finally sends
P and S to D, where each D; receives a pair (P;, S;). In
case of directed graphs, D, receives two pairs (P,, S,) and
(Pn+l’ Sn+1)~

Now we turn to how the individuals prove R to an entity
V, using P and S. Each D; signs the same message M us-
ing P; and S; and send the resulted locked persona LP; to
V, LP; < Sign,(M, P;, S;) Let LP denotes the set of the
locked personas. The individuals also send R to V. The en-
tity V runs Algorithm 2. It is clear from Algorithm 1 that the
relations of the ith individual can be recovered from the Iéi
and Ié,-+1. The algorithm uses LP;;1, LP;, and A; as input
to VerifyRelation,. If any instance of VerifyRelation, does
not pass, the algorithm outputs reject. Otherwise, it outputs
accept.

B.5 Reputation management

Reputation management requires five operations: submit
reputation, verify reputation, update reputation, generate
ticket, and verify ticket. Individuals submit reputation scores,
along with tickets generated by PPs, whereas RMCs update
reputation scores, after verifying the tickets. Tickets genera-
tion and verification are described in Appendix B.6.

SubmitReputation:
locked persona <— SubmitReputation(peronsa, secret,

reputation message)

Let an individual D wish to rate an SP. The operation takes
from D a reputation score sc and a proof of interaction with

@ Springer

SP. The proof consists of a locked persona /p from D’s side,
and an SP’s signed response sr from SP’s side. A reputa-
tion message m is constructed as m = {sc, SP, lp, sr}. Sub-
mitReputation then executes Sign.(m) to generate a
locked persona Ip, where Ip = {o,m} Further, [p and Ip
must be linkable. The individual sends L to the RMC as
a reputation score for SP, by D. The individual should also
submit a ticket to the RMC, see Appendix B.6.

VerifyReputation:

boolean < VerifyReputation(locked persona)

VerifyReputation receives a locked persona Ip,
which includes a reputation message m. The RMC extracts
SP, sr, Ip, sc from m and uses Verify, to check whether
Ip and Ip are valid locked personas and linkable to each
other. The RMC also checks whether sr is a valid SP re-
sponse. If all tests passed, the RMC executes UpdateRep-
utation.

UpdateReputation. The RMC updates the reputa-
tion score of SP, based on sc. Choosing which score aggre-
gation algorithm to use and updating SP’s reputation is left
for system administrators.

B.6 Ticket management

The following describes the generation and verification of
tickets.

GenerateTicket:

ticket <— GenerateTicket(ticket request)

An individual contacts her PP to generate a ticket to be
used at an SP. The individual prepares a ticket request mj
and sends it to her PP.

my = {hy, ha}, h1 = H(IPersona),

- (22)
hy =H(i, PP, SP)

where H is collision-resistant hash function, i is the time in-
terval from the SP perspective, and [Persona is the locked
persona used to interact with SP. Since h; and h, are
hash values, the PP cannot determine SP’s identity. That
is, the PP does not know for which SP the ticket is gener-
ated.

The PP records the total number of times /4, has been
submitted by the same individual, in the current interval
ipp, which may or may not be the same as the interval i.
The total n is incremented and appended to m to get mpp.
The PP generates a ticket ¢ by signing mpp with PP’s key
PP_key (any public cryptography algorithm, for example,
RSA, should work fine).

J Internet Serv Appl (2011) 2:47-65

61

t ={mpp, s}, mpp ={h1, ha,n,ipp},

(23)
s = Spp_key(mpp)

where S generates signatures based on the key PP_key. The
PP sends ¢ to the individual as a ticket.

VerifyTicket: boolean < VerifyTicket(ticket)

The individual forwards h1, h», i, [Persona, SP, PP, and
t to the SP. The SP verifies and evaluates ¢ against the con-
straint attached to the service requested by the individual.
If the following equality holds, the SP is ensured that ¢ is
indeed generated by PP.

hy = ﬁ(lPersona) && hy
= H(i, PP, SP) && true
= VPP_key(s, mpp) 24

where V verifies signatures based on the key PP_key.

Finally, the SP checks whether n < threshold, where
threshold is the limit set by the SP per individual, in the
interval i.

The described algorithm enables SPs to put additional
constraints on the rate or way individuals access services,
while it prevents PP from knowing which SPs are being
used. Appendix B.7 applies the notion of constrained inter-
actions in the area of anonymous reputation management.
The application limits the effects of Sybil attacks.

PPs may compute s, for commonly used services and
products; and use such values to query individuals’ requests
to determine which individuals have used these products.
We assume that PPs do not carry out such attacks. Note that
one may use a non-collision resistant hash function, but this
leads to collisions. In this case, SPs may deny individuals
from receiving legitimate access to services, but this should
not be a serious problem, since it happens rarely and at ran-
dom.

B.7 Ticket application: prevention of Sybil attacks

The individual prepares a ticket request m, as in (23), where
SP is the SP the individual wishes to rate. The individual
sends m; to her PP. The PP generates a ticket ¢, as in (24),
and sends it back to the individual. The individual sends m;
and ¢ to the RMC. The RMC uses (24) to verify z. Recall
that ¢ includes n, which represents the number of times that
the individual has requested a ticket for the same SP, in a
given time interval. Finally, the RMC allows the individual
to rate the SP only if n = 1, that is, this the first time a ticket
is generated on behalf of the individual for the specified SP.

Note that the RMC should make sure that the locked per-
sona in the ticket is the same locked persona that the indi-
vidual submits in the reputation message.

The described algorithm limits the ability of an individual
to rate an SP to once per time interval, while it prevents PP
from knowing which SPs are being rated.

B.8 System operations: mapping the constructs

The building blocks of the system are now ready and
given by Table 2. The table shows each operation/concept
in our system and its equivalent construction that uses
and extends the hidden ID-based signatures. Show and
Verify allows for anonymity and unlinkability of in-
teractions. Selective release of attributes is achieved by
SelectiveShow, whereas encoding and verifying re-
lations is achieved by VerifyRelation. Trace im-
plements persona traceability. SubmitReputation and
UpdateReputation allow for anonymous reputation
management. VerifyTicket and GenerateTicket
permit ticket management.

The HIDS Sign operation can be optimized to gener-
ate a HIDS signature with two pairing operations and 14
exponentiations. The HIDS Verify operation can be opti-
mized to verify a HIDS signature with two pairing opera-
tions and 10 exponentiations [21]. Therefore, generating a
locked persona that does not show any attribute requires the
same number of parings and exponentiations to generate one
HIDS signature. Verifying that locked persona requires the
same number of parings and exponentiations to verify one
HIDS signature. To generate a locked persona that shows
attributes, one need double the operations for generating a

Table 2 Mapping cryptographic constructs to the system operations

Concepts and operations The extended HIDS

PP — IDP

DA — DA

persona — Identifier

secret — Certificate

attribute — Attributes part of an identifier
locked persona — (HIDS signature, message)
ticket — Tickets as in Appendix B.6
Wrap — Register,
Check_Wrap — Check Reg,

Show — Signe

Verify — Verify,

Trace — Open,

SelectiveShow — Appendix B.3
VerifyRelation — Appendix B.4
SubmitReputation — Appendix B.5
VerifyReputation — Appendix B.5
UpdateReputation — Appendix B.5
GenerateTicket — Appendix B.6
VerifyTicket — Appendix B.6

@ Springer

62

J Internet Serv Appl (2011) 2:47-65

HIDS signature, that is, four pairings and 28 exponentia-
tions. Verifying that locked persona requires four pairings
and 20 exponentiations.

Appendix C: Correctness and security analysis
C.1 Threat model

The threat model is illustrated in Fig. 4. The figure shows
the attacks that can be launched against the system. The ad-
versaries are represented as red circles and labeled Aj to Ay.
The following describes each attack:

— Forging personas. A1 issues a persona that is valid with
respect to a persona provider.

— Forging locked personas. A, generates a verifiable locked
persona that corresponds to a valid persona, which A,
does not posses.

— Forging attributes. A has a valid persona and uses it to
generate verifiable locked personas that contain attributes
that the persona provider did not include in the corre-
sponding persona.

— Linking locked personas. A4 determines whether two
locked personas have been generated by the same persona
or not.

— De-anonymizing locked personas. Az traces a locked per-
sona to the persona used to generate that locked persona.

The described threat model suggests several attacks:
forging a persona, forging a locked persona, forging an
attribute, linking locked personas, and de-anonymizing a
locked persona. Below is the list of the attacks and their pre-
requisites.

— Forging personas. Forging personas can be achieved if the
Wrap operation is insecure. Rational. If Wrap is not se-
cure, an attacker may issue personas valid with respect to
a PP, without having the private key of the PP.

— Forging locked personas or attributes. Forging locked
personas or attributes can be achieved if the Wrap or the
Show operations are insecure. Rational. If Wrap is not se-
cure, an attacker may issue personas, and thus, may gen-

- —
' " m
locked
persona

{true, false}

{locked, locked
persona persona}

attributes persona

locked
persona

Fig. 4 The threat model

persona

@ Springer

erate valid locked personas. If Show is not secure, an at-
tacker may use a valid persona to generate locked per-
sonas with attributes that the attacker is not entitled to.

— Linking or de-anonymizing locked personas. Linking or
de-anonymizing locked personas can be achieved if the
Trace operation is insecure. Rational. If Trace is not se-
cure, an attacker may de-anonymize a set of locked per-
sonas and link those which belongs to the same persona
to each other.

To protect the system against the attacks described in the
threat model, we need to make sure that the operations that
manage personas are correct, as well as, secure. The follow-
ing sections prove the correctness and security of the opera-
tions.

The operations provided by the system can be cate-
gorized into: secure interaction operations and reputation
management operations. The first category includes: Wrap,
Show, Verify, Trace, SelectiveShow, and VerifyRelation. The
second includes: SubmitReputation, VerifyReputation, Up-
dateReputation, GenerateTicket, and VerifyTicket. The cor-
rectness and security analysis is structured according to the
categories.

C.2 Correctness of secure interaction operations

The correctness and security of the secure interaction op-
erations is mainly drawn from the correctness and security
of the underlying hidden ID-based signatures. Wrap, Show,
Verify, and Trace are the operations in which other secure in-
teraction operations are built on-top. Proving the correctness
and security of Wrap, Show, Verify, and Trace operations im-
plies the security and correctness of the remaining ones. The
operations are correct if the following three conditions hold.
Check_Wrap always succeed when executed on a valid (per-
sona, secret) pair.

Probability[(persona, secret)
<« Wrap(attributes, proof , PP pparam, PP prkey)
true <— Check_Wrap(persona, secret, PP pparam)] =1

Verify always succeed when executed on a valid locked
persona Ipersona.

Probability[
(persona, secret) <— Wrap(attributes, proof,
PP pparam, PP prkey)
true <— Check_Wrap(persona, secret, PP pparam)
Ipersona < Show(persona, secret, PP pparam,
DA pparam)
true < Verify(Ilpersona, PP pparam, DA pparam)] =1

J Internet Serv Appl (2011) 2:47-65

63

Trace always extracts the persona used by the show op-
eration to generate a locked persona verifiable by the verify
operation.

Probability[(persona, secret)
<« Wrap(attributes, proof , PP pparam, PP prkey)
true < Check_Wrap(persona, secret, PP pparam)
Ipersona <— Show(persona, secret, PP pparam,
DA pparam)
true < Verify(Ilpersona, PP pparam, DA pparam)
persona <— Trace(lpersona, DA pparam, DA prkey)] =1

The proof of correctness of the hidden ID-based signature
scheme is presented in [21]. Wrap is implemented by Regis-
ter,, which is a composition of two instances of Register in
HIDS. Show is implemented by Show,, which is a composi-
tion of two instances of Sign in HIDS. Verify is implemented
by Verify., which is a composition of two instances of Verify
in HIDS. Trace is implemented by Open,, which is a com-
position of two instances of Open in HIDS. Therefore, the
three conditions described above hold. Wrap, Show, Verify,
and Trace are correct, based on the correctness of the oper-
ations in the HIDS scheme.

SelectiveShow is a composition of n instances of Sign,,
where n is the number of different sets of attributes the in-
dividual wishes to prove. VerifyRelation is a composition of
two instances of Verify., plus an additional check for the re-
lation (W, g™ation — w,): where Wi = w!tk g/t and W, =
w!tk g2 Clearly, the check holds only if relation = I — I.

Recall that when a PP validates the relation between two
individuals D; and Dj, the PP makes the pseudonym part
of their identifiers to be equal. The PP also makes the differ-
ence between relation part of their identifiers to be relation.
Thus, relation is equal to I, — I1, only if the PP did certify
the relation between Dy and D5.

Therefore, SelectiveShow and VerifyRelation are correct
based on the correction of Wrap, Show, Verify, and Trace.

C.3 Correctness of reputation management operations

SubmitReputation and VerifyReputation are correct if the
following condition holds. Verify_Reputation always suc-
ceed when executed on a valid reputation message. Since
the implementation of UpdateReputation varies from one
domain into another, and is based on system administrators,
the correctness of the operation not discussed.

Probabiliry[lpersonai
<« Show(persona, secret, PP pparam, DA pparam)

true < Verify(Ipersona;, PP pparam, DA pparam)

reputation, Iperonsa, <— SubmitReputation(score,
Iperonsa;, persona, secret, DA pparam,

PP pparam, SP, response)
true < Verify_Reputation(reputation, Ipersona,.,

DA pparam, PP pparam)] =1

SubmitReputation generates a locked persona on a rep-
utation message. SubmitReputation uses Show to generate
the locked persona. VerifyReputation verifies the locked per-
sona contained in the reputation message Ipersona;, and
the locked persona generated on the reputation message
Ipersona, . VerifyReputation uses Verify to verify the locked
personas. VerifyReputation uses the RSA public key of SP to
validate the SP’s response contained in the reputation mes-
sage, and to make sure that the individual had an interaction
with the SP being rated.

Since Show and Verify are proven to be correct, and the
RSA public cryptography is correct, then the above condi-
tion holds. SubmitReputation and VerifyReputation are cor-
rect, based on the correctness of Show, Verify and RSA.

GenerateTicket and VerifyTicket are correct if the follow-
ing condition holds.

Probability[
ticket <— GenerateTicket(tRequest, PP prkey,
PP pparam, response)

true <— Verify_Ticket(ticket, tRequest, PP pparam)] =1

Recall that a ticket request fRequest consists of two
hashed strings, generated by a hash function. GenerateTicket
sign ticket requests to generate tickets. Tickets are RSA sig-
natures on a ticket request. VerifyTicket uses signature verifi-
cation of RSA to verify tickets against ticket requests. Since
RSA signatures generated by RSA signing keys are verified
by the corresponding RSA verification keys, the above con-
dition holds. Therefore, GenerateTicket and VerifyTicket are
correct, based on the correctness of RSA public cryptogra-

phy.
C.4 Security of secure interaction operations

Wrap, Show, Verify, and Trace are secure against misidenti-
fication attacks, if the probability of an adversary succeed-
ing in the following game is negligible. In this game, the
adversary has access to Wrap_Oracle, which executes Wrap
and returns the resultant (persona, secret) pair. The adver-
sary has access to Show_Oracle, which executes Show and
returns the resultant locked persona. The adversary wins the
game if it produces a valid locked persona that is either not
traceable to a persona, or is traceable but the adversary has

@ Springer

64

J Internet Serv Appl (2011) 2:47-65

not used Wrap_Oracle to receive that persona and she did
not use Show_Oracle to produce that locked persona.

Wrap_Oracle(attributes)
(persona, secret) <— Wrap(attributes, proof , PP pparam,
PP prkey)
Personas < {persona} U Personas
return (persona, secret)
Show_Oracle(persona)
Ipersona <— Show(persona, secret, PP pparam,
DA pparam)
Lpersona < {lpersona} U Lpersonas
return Ipersona
Misidentification_Game()
Ipersona < Adversary(Wrap_Oracle, Show_Oracle)
if(true < Verify(Ilpersona, PP pparam, DA pparam)
AND @ <« Trace(lpersona, DA pparam, DA prkey)
Adversary wins
elseif(true < Verify(Ipersona, PP pparam, DA pparam)
AND
persona < Trace(lpersona, DA pparam, DA prkey))
AND
persona ¢ Personas AND Ipersona ¢ Lpersonas)
Adversary wins

else Adversary loses

Wrap, Show, Verify, and Trace is secure against adap-
tive chosen-cyphertext attacks (CCA2), if the probabil-
ity of an adversary succeeding in following two game is
0.5 4 €, where € is negligible. The adversary has access to
Trace_Oracle, which reveals the persona used to generate
a locked persona. The adversary is presented with a locked
persona and two personas, in which one of personas was
used to generate the locked persona. The adversary wins
the game if it guesses the right persona. Of course, the ad-
versary is constrained from using Trace_Oracle on the pre-
sented locked persona. Trace_Oracle, refers to that con-
straint.

Trace_Oracle(lpersona)
persona < Trace(lpersona, DA pparam, DA prkey)

return persona

@ Springer

CCA2_Game()
(personayj, secret]) < Wrap(attributes;, proofy,
PP pparam, PP prkey)
(personay, secrety) <— Wrap(attributesy, proof2,
PP pparam, PP prkey)
r <—random from {1,2}
Ipersona <— Show(persona,, secret,, PP pparam,
DA pparam)
challenge < {lpersona, personaj, personay}
guess < Adversary(trace_oracley, challenge)
if (guess = persona,)

Adversary wins

else Adversary loses

Let an adversary A has the ability to launch successful
misidentification and or CCA2 attacks on Wrap, Show, Ver-
ify, and Trace. Those operations are implemented by Regis-
tere, Sign,, Verify., and Open, in extended HIDS, respec-
tively, whereas Register,, Sign., Verify., and Open, are in-
stances of HIDS operations. Therefore, A can launch suc-
cessful misidentification and or CCA2 attacks on the HIDS
operations.

The HIDS scheme is proven to be secure against misiden-
tification and CCA2 attacks under the Strong Deffie—
Helman (SDH) [4] and Decisional Linear Deffie-Helman
(DLDH) [5] assumptions in the random oracle model. The
security proof is presented in [21]. Since HIDS operations
are proven to be secure, then Wrap, Show, Verify, and Trace
are also secure against misidentification and or CCA2 un-
der the SDH and DLDH assumptions in the random oracle
model. The security of SelectiveShow VerifyRelation follows
from the security of Wrap, Show, Verify, and Trace.

C.5 Security of reputation management operations

Since Show and Verify are secure, and RSA public cryptog-
raphy is secure, then SubmitReputation and VerifyReputa-
tion are secure. The security of GenerateTicket and VerifyT-
icket follows from the security of the RSA public cryptogra-

phy.

References

1. Artz D, Gil Y (2007) A survey of trust in computer science and
the semantic web. J Web Semant 5(2):58-71

2. Becker M, Sewell P (2004) Cassandra: distributed access control
policies with tunable expressiveness. In: Proceedings of the fifth
IEEE international workshop on policies for distributed systems

J Internet Serv Appl (2011) 2:47-65

65

11.

12.

13.

16.

and networks. IEEE Computer Society, Los Alamitos, pp 159—
168

Berners-Lee T, Hendler J, Lassila O (2001) The semantic
web, May 2001. Scientific American Magazine. Retrieved from
http://www.sciam.com/article.cfm?id=the-semantic-web, on Jan
2011

Boneh D, Boyen X (2004) Short signatures without random or-
acles. In: Proceedings of the 24th international conference on
the theory and applications of cryptographic techniques. Springer,
Berlin, pp 56-73

Boneh D, Boyen X, Shacham H (2004) Short group signatures. In:
Proceedings of the 24th international conference on the theory and
applications of cryptographic techniques. Springer, Berlin, pp 41—
55

Brands S (2000) Rethinking public key infrastructures and digital
certificates: building in privacy. MIT Press, Cambridge

Brin S, Page L (1998) The anatomy of a large-scale hypertextual
web search engine. Comput Netw ISDN Syst 30(1-7):107-117
Camenisch J, Herreweghen EV (2002) Design and implementa-
tion of the idemix anonymous credential system. In: Proceedings
of the ACM conference on computer and communications secu-
rity. ACM Press, New York, pp 21-30

Damiani E, Vimercati DCD, Paraboschi S, Samarati P, Violante
F (2002) A reputation-based approach for choosing reliable re-
sources in peer-to-peer networks. In: Proceedings of the ACM
conference on computer and communications security. ACM
Press, New York, pp 207-216

Dimitriou T, Karame G, Christou I (2007) SuperTrust: a se-
cure and efficient framework for handling trust in super-peer net-
works. In: Proceedings of the twenty-sixth annual ACM sympo-
sium on principles of distributed computing. ACM Press, New
York, pp 374-375

Dingledine R, Mathewson N, Syverson P (2004) Tor: the second-
generation onion router. In: Proceedings of the 13th USENIX se-
curity symposium. USENIX Association, Berkeley, p 21

Douceur J (2002) The sybil attack. In: Proceedings of the first in-
ternational workshop on peer-to-peer systems, IPTPS, Cambridge,
MA, USA, pp 251-260

Golbeck J, Hendler J (2004) Accuracy of metrics for inferring
trust and reputation in semantic web-based social networks. In:
Proceedings of the international conference on knowledge engi-
neering and knowledge management, pp 116-131

Grandison T, Sloman M (2000) A survey of trust in internet appli-
cations. IEEE Commun Surv Tutor 3(4):2-16

. Hansen M, Berlich P, Camenisch J, Clauss S, Pfitzmann A, Waid-

ner M (2004) Privacy-enhancing identity management. Inf Secur
Tech Rep 9(1):35-44

Hussain M, Skillicorn DB (2008) Persona-based identity manage-
ment: a novel approach to privacy protection. In: Proceedings of
the 13th Nordic workshop on secure it systems. Technical Univer-
sity of Denmark, pp 201-212

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Hussain M, Skillicorn DB (2009) Guarantee-based access control.
In: Proceedings of the IEEE international conference on computa-
tional science and engineering. IEEE Comput Soc, Los Alamitos,
pp 201-206

Hussain M, Skillicorn DB (2010) The case for service provider
anonymity. In: Proceedings of the IEEE international symposium
on signal processing and information technology. IEEE Comput
Soc, Los Alamitos, pp 114-119

Kagal L, Finin T, Joshi A (2002) Developing secure agent sys-
tems using delegation based trust management. In: Proceedings of
security of mobile multiagent systems held at autonomous agents
and multiagent systems, pp 27-34

Kamvar S, Schlosser M, Garcia-Molina H (2003) The eigentrust
algorithm for reputation management in p2p networks. In: Pro-
ceedings of the 12th international conference on World Wide Web.
ACM Press, New York, pp 640-651

Kiayias A, Zhou H-S (2008) Hidden identity-based signatures. In:
Proceedings of the 11th international conference on financial cryp-
tography and data security. Springer, Berlin, pp 134-147

Lynn B (2011) Pairing-based cryptography library. Retrieved from
http://crypto.stanford.edu/pbc, on Jan 2011

Malin B, Sweeney L (2004) How (not) to protect genomic data pri-
vacy in a distributed network: using trail re-identification to eval-
uate and design anonymity protection systems. J Biomed Inform
37(3):179-192

Miiller W, Pl6tz H, Redlich J-P, Shiraki T (2008) Sybil proof
anonymous reputation management. In: Proceedings of the 4th in-
ternational conference on security and privacy in communication
networks. ACM Press, New York, pp 1-10

Narayanan A, Shmatikov V (2008) Robust de-anonymization of
large sparse datasets. In: Proceedings of the IEEE symposium on
security and privacy. IEEE Comput Soc, Los Alamitos, pp 111—
125

Narayanan A, Shmatikov V (2009) De-anonymizing social net-
works. In: Proceedings of the IEEE symposium on security and
privacy. IEEE Computer Society, Los Alamitos (in press)

Rezgui A, Bouguettaya A, Malik Z (2003) A reputation-based ap-
proach to preserving privacy in web services. In: Lecture notes in
computer science, vol 2819, pp 91-103

Singh A, Liu L (2003) TrustMe: anonymous management of trust
relationships in decentralized P2P systems. In: Proceedings of the
third conference on peer-to-peer computing, pp 142-149
Skillicorn DB, Hussain M (2009) Personas: beyond identity
protection by information control. Technical report, School
of Computing, Queen’s University, Kingston, ON, Canada,
March 2009. Retrieved from http://research.cs.queensu.ca/home/
skill/opccreport.pdf, on Jan 2011

Sweeney L (2002) k-Anonymity: a model for protecting privacy.
Int J Uncertain Fuzziness Knowl-Based Syst 10(5):557-570

Yu T, Winslett M, Seamons K (2003) Supporting structured cre-
dentials and sensitive policies through interoperable strategies for
automated trust negotiation. ACM Trans Inf Syst Secur 6(1):1-42

@ Springer

http://www.sciam.com/article.cfm?id=the-semantic-web
http://crypto.stanford.edu/pbc
http://research.cs.queensu.ca/home/skill/opccreport.pdf
http://research.cs.queensu.ca/home/skill/opccreport.pdf

	Mitigating the linkability problem in anonymous reputation management
	Abstract
	Introduction
	The linkability problem in ARM
	Contribution

	Trust management
	Reputation-based trust

	Secure anonymous interactions with personas
	Personas: definitions and features
	Encoding relations among individuals
	Symmetric interactions
	Constrained interactions

	Illustration and assumptions
	Anonymous channel
	Linking among personas

	Persona system architecture
	Enhanced persona distribution

	Persona-based anonymous reputation management
	The persona approach for reputation management
	Minimizing Sybil attacks
	Preprocessing reputation messages
	Reputation for individuals

	System design and security
	System operations through a sample scenario
	Cryptographic constructs
	Hidden ID-based signatures (HIDS)

	Performance analysis
	Features
	Messaging cost
	Management of cryptographic credentials
	Response time

	Conclusion
	Appendix A: The HIDS operations
	Appendix B: The extended HIDS scheme
	Extended HIDS operations
	Linkable signatures
	Selective release of attributes
	Encoding and verifying relations
	Reputation management
	Ticket management
	Ticket application: prevention of Sybil attacks
	System operations: mapping the constructs

	Appendix C: Correctness and security analysis
	Threat model
	Correctness of secure interaction operations
	Correctness of reputation management operations
	Security of secure interaction operations
	Security of reputation management operations

	References

