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Abstract Regular data classification techniques are based
mainly on two strong assumptions: (1) the existence of a
reasonably large labeled set of data to be used in training;
and (2) future input data instances conform to the distribu-
tion of the training set, i.e. data distribution is stationary
along time. However, in the case of data stream classifica-
tion, both of the aforementioned assumptions are difficult
to satisfy. In this paper, we present a graph-based semi-
supervised approach that extends the static classifier based
on the K-associated Optimal Graph to perform online semi-
supervised classification tasks. In order to learn from la-
beled and unlabeled patterns, here we adapt the optimal
graph construction to simultaneously spread the labels in the
training set. The sparse, disconnected nature of the proposed
graph structure gives flexibility to cope with non-stationary
classification. Experimental comparison between the pro-
posed method and three state-of-the-art ensemble classifica-
tion methods is provided and promising results have been
obtained.
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1 Introduction

Recently, graph-based (also referred to network-based) al-
gorithms applied to data mining tasks have attracted great
attention in both theoretical research and practical applica-
tions [5]. This growing interest is mostly justified due to the
advantages provided by graph representation, such as reveal-
ing topological structure of input data and the ability of iden-
tifying arbitrary shapes of data clusters [27]. In such graph-
based algorithms, each vertex of the graph represents a data
pattern (data instance) and the edges stand for some relation
of similarity between vertices. In order to reveal significant
relations within a data set, the following rule is usually con-
sidered for establishing connections between data patterns:
the higher the similarity among data, the higher the proba-
bility of connection [39]. Stated in this way, nearby patterns
tend to be heavily linked together while distant patterns may
form a sparse structure. This property has been extensively
explored using graph-based solutions, especially consider-
ing unsupervised tasks like clustering [32] and dimension-
ality reduction [1]. Only recently graph-based classification
has been addressed, usually by the wrap of semi-supervised
learning [38].

Semi-supervised learning methods concern the problem
of automatic classification considering data sets with a small
number of labeled data and a large amount of unlabeled
data [7]. Such approach relies on the fact that labeled data
are difficult to be gathered and often are associated with high
costs, while unlabeled data are abundant in most applica-
tions and generally easy to be collected. Moreover, the man-
ually labeling process is not always reliable or practicable.
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For example, consider obtaining enough labeled data to train
a classifier for a spam detection task (i.e. classifying spam
and valid email). Such application design (1) incurs cost in
paying an expert or a group of users to label what they call
spam from what they consider real email; (2) may result in
inconsistencies if we accept all human categorization. For
instance, an email message may be considered as a spam by
some people, but it may be considered as a valid email by
others; (3) not to mention the time required to manually label
enough data to train a regular supervised learning method.

A spam detection application is really a stream classifi-
cation problem, in the sense that the classifier needs to clas-
sify new patterns at the time they arrive [35]. In this kind of
applications, the underlying data distribution changes over
time, and such changes often make the model built on old
data inconsistent to the newly arrived data. This problem,
known as concept drift [34], requires frequent updating of
the model. Summarizing, we have a classification problem
which consists of a data stream where few instances are la-
beled and data distribution may change over time. This sce-
nario poses a challenging task for machine learning because
it presents too few labeled data along the stream to apply a
supervised incremental algorithm and the presence of con-
cept drift disables the use of static classifiers. In fact, only
recently such applications have been properly addressed due
to the concept of learning through both labeled and unla-
beled data and the development of semi-supervised learning
strategies.

In the development of semi-supervised learning algo-
rithms, many efforts have been made on the use of a clus-
tering algorithm to group the patterns and further spread
the labels. When considering this approach, the K-means
algorithm is a natural choice. Li et al. [20] proposed a tree-
based algorithm which uses the K-means to spread labels
at the leaves of a tree. Masud et al. [22] proposed an en-
semble of micro-clusters, obtained by using the K-means
algorithm, then instances are classified according to the K-
nearest neighbor rule. Ditzler and Polikar [11] proposed an
ensemble of classifiers, named WEA, which are trained with
labeled patterns only. Then, unlabeled data and the K-means
algorithm are used to generate a mixture of Gaussian mod-
els for further adjusting the weights of each classifier. Zhang
et al. [37] use the semi-supervised SVM [8] allied to a ver-
sion of the K-means, referred to as relational K-means, to
construct new features to the labeled examples by using in-
formation extracted from unlabeled instances. Some inves-
tigations have been made to tackle specific problems, e.g.
Erman et al. [12] proposed a method to perform traffic clas-
sification in computer networks with partially labeled data.
Their method uses a clustering algorithm, such as K-means,
to obtain the clusters and then, the labels are spread using
the maximum likelihood estimation. The clusters that re-
main unlabeled are likely to be an undefined group. Also

regarding computer network, Yu et al. [36] have considered
the problem of intrusion detection. They employ a strategy
similar to the K-means by grouping the labeled data and
then, the labels are spread to the whole data set according to
the distances from the clusters to unlabeled patterns. Finally,
a SVM is trained to detect intrusion.

To the best of our knowledge, graph-based approach has
not been considered to tackle streaming classification prob-
lems where data are partially labeled; although it is success-
fully applied to semi-supervised learning, especially to the
transduction problem [2, 6, 10, 25]. In view of the recent
developed graph-based nonparametric classification method
and its good performance on stationary data sets [4, 21]; we
had proposed a non-stationary version with initial results re-
ported in Ref. [3]. In this paper, we propose an extended
version to be applied in the context of non-stationary stream
of partially labeled data. The aforementioned graph-based
method is based on representing the training set as a special
graph, referred to as K-associated graph. The K-associated
graph is able to represent similarity relations among data in-
stances and the purity of a component (connected subgraph)
is able to represent the data topology. Purity characterizes
the degree in which instances of different classes are mixed
in a same region of the data space. In this work we propose
a new constructing procedure for the K-associated graph
that takes into account partially labeled sets. Also, this work
shows how the graph is updated along the time to allow data
stream processing.

The remainder of the paper is organized as follows: In
Sect. 2, we briefly describe the problem of concept drift and
also a toy example to illustrate a scenario where incremen-
tal learning is applicable. Section 3 presents the proposed
method for non-stationary partially labeled stream classifi-
cation. This section is further divided into four subsections,
where Sect. 3.1 first introduces the K-associated graphs
and the K-associated optimal graph. The new method for
constructing the aforementioned graphs from partially la-
beled data sets is described in Sect. 3.2. Moreover, Sect. 3.3
briefly treats the static KAOG classifier [4] and Sect. 3.4 de-
tails how the graph is updated over time. Section 4 presents
the experimental results concerning the performance com-
parison between the proposed algorithm and three well-
know fully supervised streaming ensemble classifiers on
non-stationary partially labeled benchmarks. Section 5 con-
cludes the paper and discusses some future works.

2 Background

The non-stationary nature of data streams cause a phe-
nomenon called concept drift (or also termed concept sub-
stitutions, revolutionary changes, population drift) [17, 24,
28, 34], in which concept refers to the data distribution in a
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Fig. 1 Frequent concept drift
characterizations, (a)–(d),
abrupt drifts with recurrence;
(e)–(g) gradual drift and
(h) example subjugated to the
velocity it is modified

given period of time. In the literature, however, the term con-
cept drift has been used in reference to different phenomena
relating to drop down the classifier accuracy performance
[31]. According to Kelly et al. [17], concept drift occurs due
to alterations on the following probabilities of data produc-
tion:

– A priori of classes P(ω1), . . . ,P (ωM), i.e. alteration on
the relative size of a given class or the appearance of new
classes.

– Conditional P(x | ωi), i.e., changing on class definition.
For example, changes in the shape of a class.

– Conditional a posteriori P(ωi | x), i.e., modification on
some of the attributes;

In general terms, concept drift can be characterized ac-
cording to the variation of the concepts mainly regarding
two features, velocity and recurrence along the time. Basi-
cally, in the former, a concept drift can be divided into grad-
ual drift and abrupt drift; while in the latter, a concept drift
is recurrent if past concept turns to be current concept. Both
kinds of concept drift are sketched in Fig. 1.

In Fig. 1, the (blue) rectangles represent the instances
that belong to class ω1 and the (red) circles represent the
instances belonging to class ω2. Consider Figs. 1(a)–(d) as a
sequence of data distributions of an application presented
in time, initiating at t0. The concept drifts that occur be-
tween distributions of Figs. 1(a) and 1(b), as well as be-
tween Figs. 1(b) and 1(c), are abrupt. Also notice that the
distribution shown by Fig. 1(c) is similar to that in Fig. 1(a),
which mean that the distribution at time t0 in Fig. 1(a) occurs
again at time tj+1, after experiencing a completely differ-
ent distribution (Fig. 1(b)). This phenomenon characterizes
a recurrent concept. As the time line shows, from Figs. 1(a)
and 1(d), each distribution can, eventually, remain static for

a given period of time, e.g., the initial distribution remains
static from t0 to ti . Nonetheless, on the next iteration ti+1,
the distribution can be totally altered, i.e. an abrupt drift oc-
curs. The drift between distributions in Figs. 1(c) and 1(d) is
also considered abrupt, in spite of being less severe than the
previous one. Consider now a situation where two groups
of data from different classes cross each other along time,
depicted in order in Figs. 1(e)–(g), from an initial distribu-
tion (Fig. 1(e)) to a final one (Fig. 1(g)) with Fig. 1(f) corre-
sponding to an intermediate distribution. In such a scenario,
the distribution varies smoothly throughout the time, which
characterizes a gradual drift. At last, let Fig. 1(h) represent
a distribution determined by a rotating hyperplane along the
time. If the hyperplane is rotated by π/4 regularly at a given
period of time, the drift is characterized as gradual and re-
current at every eight alterations of the hyperplane. How-
ever, if the angular velocity rate is increased, say to π , the
drift now can be considered abrupt. This demonstrates that
it is surprisingly difficult to accurately characterize concept
drifts considering only velocity and recurrence. In view of
this problem, many researchers have proposed different drift
categories; for a recent work, refer to Ref. [23].

In spite of characterizing concept drift, the main concern
is that, most of the time, the variation in the underlying data
distributions degenerates the performance of the classifier in
use. The need for replacing a classifier due to the drop in
accuracy, caused or not by a concept drift, is called virtual
concept drift [18]. The trivial way to treat virtual drift is to
replace the low accuracy classifier by a new one. However,
such strategy brings at least three prohibitive drawbacks,
(i) retraining new classifiers usually is computationally ex-
pensive; (ii) detecting when the current classifier is no longer
useful is quite challenging, mainly due to the natural fluctu-
ations in performance that can be confused with real concept
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Fig. 2 (a) Artificial data set
(Banana set) divided into
sequential groups for simulating
a non-stationary domain. The
highlighted examples represent
those chosen examples in a run.
(b) Cumulated accuracy for
static and incremental learning
using the KAOG classifier

drift; (iii) selecting what data should be used to train the new
classifier is also a hard task. Fortunately, incremental learn-
ing algorithms can be applied to provide practical solutions
to tackle classification problems on non-stationary domains.
Such an approach enables a classifier to acquire knowledge
during application phase, updating the model with new data,
and without explicitly retraining itself [14, 30].

For clarifying the advantages of an incremental classi-
fier over a static one in non-stationary domains, consider the
following experiment with the artificial data set known as
banana set (see Fig. 2(a)). The experiment consists of com-
paring both approaches, static and incremental, of the clas-
sifier based on the K-associated graph. For doing so, in both
cases, the classifier is trained with a limited subset (set “s1”
in Fig. 2(a)). The rest of the set is divided into seven groups
and used as test sets that are sequentially presented to the
classifier. In Fig. 2(a) “s1” is the original training set and
the others correspond to the first, second, and seventh test
sets, respectively. The results are averaged over 10 runs, at
each run, an optimal graph is built considering 400 exam-
ples (200 of each class) randomly chosen from the train-
ing data group. After training, the test examples are chosen
obeying the group sequence, one-by-one, 200 examples are
randomly chosen from each group (100 for each class), then,
the next group takes place and so on.

Figure 2(b) shows the results of the comparison between
the K-associated static and incremental classifiers. The sig-
nificant difference between them is due to the fact that the
static classifier no longer learns with new instances, how-
ever the incremental classifier is able to learn during classi-
fication phase. The presented incremental learning process
is analogous to the linearization technique widely used to
study local properties of non-linear systems. Specifically,
linearization of a neighborhood of a certain point corre-
sponds to subset selection in incremental learning. Non-
linearity of the system corresponds to twisted shape of
classes and changing of data distribution over time. In a
non-linear systems, linearization usually can obtain good

approximation if the neighborhood under analysis is small.
For the same reason, we expect that good classification re-
sults can be obtained by updating the network with small
data subset each time.

3 The semi-supervised K-associated optimal graph

The semi-supervised K-associated graph, proposed here,
consists of a modification of the K-associated graph [4]
to deal with both labeled and unlabeled data during the
graph construction procedure. Therefore, in order to intro-
duce the semi-supervised version, a brief revision of the K-
associated graph is presented in Sect. 3.1. It is followed by
the semi-supervised K-associated graph construction pre-
sented in detail in Sect. 3.2. Both supervised and semi-
supervised K-associated optimal graphs can be seen as the
training process for the KAOG classifier which uses the
components of the graph and their purities to classify new
data instances, as will be exposed in Sect. 3.3.

3.1 The K-associated graph and the K-associated optimal
graph

A K-associated graph is constructed from a vector-based
data set X = {x1, . . . ,xN } by representing each data instance
xi = (xi1, xi2, . . . , xip, ci) as a vertex vi with its associated
class label ci , where ci ∈ Ω = {ω1,ω2, . . . ,ωM} and M

is the number of classes in the problem. The graph con-
struction resembles to a KNN graph, due to the use of a
predefined number of neighbors, K , that each vertex must
connect. Although the K-associated graph does differ from
the KNN approach by the fact that amongst the possible
K neighbors of a vertex vi , it can only be connected to
neighbors of the same class as vi . Hence, we consider the
label-independent and the label-dependent K-neighborhood
of vertex vi . The former is simply the set of vertices that
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represents the K nearest neighbors of the instance xi ac-
cording to a given measure and will be noted by Λvi,K .
The latter comprises only the vertices with the same class
as vi among its K nearest neighbors, and is defined as
Δvi,K = {vj | vj ∈ Λvi,K AND ci = cj }.

In a formal way, the K-associated graph is defined as a
directed graph G = (V ,E) which consists of a set of la-
beled vertices V and a set of edges E between them, where
an edge eij = (vi, vj ) connects vertex vi with vertex vj if
and only if vj ∈ Δvi,K . As a consequence, only vertices of
the same class can be connected. The resulting K-associated
graph can be viewed as a set of disjoint subgraphs or com-
ponents C = {C1, . . . ,Cα, . . . ,CR}. Each component Cα is
composed by vertices of a single class, thus each component
represents a single class, which we refer to the label of com-
ponent Cα as Ĉα . The number of components R varies ac-
cording to the magnitude of K , but always lies in the range
N ≥ R ≥ M , with N being the number of vertices in the
training set and M the number of classes. Higher values of
K induce fewer and larger components in the constructed
graph, while lower values lead to small sized ones. This wire
mechanism leads to a graph with some important features:
(i) By varying K , different graphs can be generated, and
as the value of K increases, the number of components de-
creases monotonically to the number of classes. (ii) The total
number of edges among the vertices of a component Cα is
proportional to K and can be at most equal to KNα , where
Nα is the number of vertices in component Cα . (iii) This
maximum value is only achieved if all vertices in the neigh-
borhood of any vertex of the component have the same class.
Likewise, nearby vertices of other classes decrease the num-
ber of connections of the given component. Thus, one can
define a measure of “purity” for components, as explained
ahead.

Let the degree di of a vertex vi be defined as the sum of
the connections it receives (in-degree) and the connections
it performs (out-degree) to other vertices, so di = d in

i +dout
i .

Also, consider the average degree taken for component Cα

be defined by Dα = 1/Nα

∑
vi∈Cα

di . According to the way
that the K-associated graph is constructed, a vertex can per-
form at most K connections, thus, the maximal total out-
degree of component Cα is KNα ; symmetrically, the total
in-degree is also KNα , resulting in average degree being
equal to 2K . Hence, a key idea is to use the ratio defined in
Eq. (1) as a measure of “purity” for component Cα , because
it quantifies how intertwined a component is with vertices of
other classes,

Φα = Dα

2K
(1)

In this way, Φα = 1, if and only if, for every vi in the
component Cα , all the K neighbors have the same class label
of vi . On the other hand, if there exists noise or two or more
classes are mixed together, vertices in this region are unable

to make their K connections due to the existence of vertices
of other classes in the neighborhood of some vertices. In the
latter case, the more mixing the components are, the lower
their average degrees Dα and consequently their respective
purities Φα are.

Clearly, the structure of a K-associated graph depends
on the value of K and on the nature of the input data set.
Also, K-associated graphs formed with different K will
present different components with different purity values.
Bearing this in mind, a suggestive idea is to obtain a graph
with the best organization of components without using a
unique value of K , i.e., each component has its own opti-
mal value of K , denoted as Kα for component Cα . There-
fore, the rationale for obtaining the optimal graph is to con-
struct K = 1, . . . ,Kmax associated graphs while keeping the
best components found at each K throughout this process.
Let β also be an index of component, therefore, a com-
ponent C

(K+z)
β from the (K + z)-associated graph will re-

place all components from the K-associated graph that sat-
isfy Eq. (2), for some integer z ≥ 1 and (z + K) ≤ Kmax,

Φ
(K+z)
β ≥ Φ(K)

α for all C(K)
α ⊆ C

(K+z)
β (2)

The optimal graph improves the representation of the
training set and provides the best configuration of compo-
nents according to their purities. It corresponds to the best
graph organization regarding the purity measure.

3.2 The semi-supervised K-associated optimal graph

Consider now obtaining the optimal graph from a partially
labeled set X. It is easy to see that it is not possible to ob-
tain the aforementioned graph through the previous descrip-
tion due to the presence of unlabeled patterns. Therefore,
we propose here the semi-supervised construction of the K-
associated optimal graph.

The problem addressed here regards the absence of
enough labeled data in a given data set to employ a regular
supervised method. Therefore, it is necessary to consider a
semi-supervised method in order to induce a classifier from
both labeled and unlabeled patterns. Hence, consider the
data set X = {(x1, c1), . . . , (xl , cl),xl+1, . . . ,xN } with l la-
beled patterns (xi , ci) and N − l unlabeled patterns x (or
(xj ,∅)). As its supervised counterpart, the semi-supervised
K-associated optimal graph construction involves creat-
ing a sequence of semi-supervised K-associated graphs.
The main difference between the supervised and semi-
supervised K-associated graphs can be stated in relation to
the set of neighbors, to which each vertex connects. Instead
of considering only the label-dependent set (Δvy,K ), here,
each vertex vi connects to all vertices in the set Γvi,K =
{vj | vj ∈ Λvi,K AND (cj = ci OR ci = ∅ OR cj = ∅)}.
This set encompasses the K nearest neighbors of vi whose
classes are not different from the class of vi . This means that,
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among its K nearest neighbors, vi connects to those vertices
which belong to the same class of vi or to those with no la-
bel. If vi itself does not have a class label, it connects to all
the K nearest neighbors without considering their classes.

As a consequence of connecting unlabeled vertices to la-
beled vertices regardless to their classes, components with
more than one class may be formed. However, having com-
ponents with more than one class precludes the classifier
to make decisions. In other words, each component must
be formed by vertices belonging to a single class and dif-
ferent from null. Thus, to overcome this problem, we pro-
pose splitting those components with vertices associated to
two or more classes. For splitting a component, the ratio-
nale is to cut a few edges in order to end up with separated
well-connected clusters of vertices. In other words, this is a
min-cut problem, which can be resolved, for example, by the
Ford–Fulkerson algorithm [9] for the two-class case. How-
ever, as we consider multi-class classification, there exists
the problem that a component might be composed by ver-
tices from more than two classes. For this reason, we pro-
pose cutting the component based on the purity of vertex, de-
fined as di/2K , where di stands for the degree of vi . Again,
consider Wi,j the distance, used to construct the graph, be-
tween patterns xi and xj . Thus the proposed separation ap-
proach consists of successive removing the edge with mini-
mum value of cut from the component, as defined in Eq. (3).
Otherwise stated, the next edge to be removed (va, vb) ∈ Cα

must satisfy cuta,b = min(cuti,j ) ∀(vi, vj ) ∈ Cα .

cuti,j = min

(
di

2K
,

dj

2K

)
1

Wi,j

(3)

The cutting process in the component Cα finishes until
it is separated into single class components. The rationale
behind the criterion is that by cutting the edges that con-
nects low purity vertices and whose respective patterns are
distant from each other, it is more likely to obtain separated
well-connected components. In fact, low purity vertices are
usually found in boundary regions between components of
different classes in supervised tasks. However, in the semi-
supervised scenario, purity itself can be a misleading mea-
sure due to high connection probability of the unlabeled ver-
tices. Therefore the distance weight in Eq. (3) favors cutting
the edges with highest distance in the component.

Algorithm 1 details the construction of the semi-super-
vised K-associated optimal graph. The function
findComponents() determines the graph components by im-
plementing a breadth-first search [9]. Then, the components
having vertices belonging to more than one class are sep-
arated by the function splitNonSingleClassComponents().
This function implements the cutting procedure described
earlier and returns two or more single class components,
which can include components without a class label. The
next step consists of spreading the labels within every com-
ponent by calling the function spreadLabel(). After this

Algorithm 1 Semi-supervised K-associated Optimal Graph
construction from partially labeled set—KAOGSS
Input: X = {(x1, c1), . . . , (xl , cl),xl+1, . . . ,xN }
Symbols: G

(K)
s —K-associated Graph built from labeled and unla-

beled patterns
G

(opt)
s —K-associated Optimal Graph built from labeled and unla-

beled patterns
Γvi ,K —set of K nearest neighbors of vi within the same label or
no label
R—number of components in the current K-associated graph
G

(K)
s

M—the number of classes in X

1: K ⇐ 1
2: repeat
3: C ⇐ ∅
4: G

(K)
s ⇐ ∅

5: for all vi ∈ V do
6: Γvi ,K ⇐ {vj | vj ∈ Λvi ,K and (cj = ci or ci = ∅ or

cj = ∅)}
7: E ⇐ E ∪ {eij | vj ∈ Γvi ,K }
8: end for
9: C ⇐ findComponents(V ,E)

10: C ⇐ splitNonSingleClassComponents(C)

11: for all Cα ∈ C do
12: Cα ⇐ spreadLabel(Cα)

13: Φα ⇐ purity(Cα)

14: G
(K)
s ⇐ G

(K)
s ∪ {(Cα(V ′,E′);Φα)}

15: end for
16: if K = 1 then
17: G

(opt)
s ⇐ G

(K)
s

18: else
19: for all C

(K)
β ⊂ G

(K)
s do

20: for all C
(opt)
α ⊆ C

(K)
β do

21: if (Φ
(K)
β ≥ Φ

(opt)
α or Ĉ

(opt)
α = ∅) then

22: G
(opt)
s ⇐ G

(opt)
s −

⋃

C
(opt)
α ⊆C

(K)
β

C
(opt)
α

23: G
(opt)
s ⇐ G

(opt)
s ∪ {

C
(K)
β

}

24: end if
25: end for
26: end for
27: end if
28: K ⇐ K + 1
29: until R = M

30: Output: The K-associated optimal graph within all vertices with
labels G(opt) = {C(opt)

1 , . . . ,C
(opt)
α , . . . ,C

(opt)
R } where component

C
(opt)
α = (G′(V ′,E′);Φα,Kα)

stage, all vertices in any given component are labeled with
a single class label or are unlabeled. To finish the K-
associated graph construction, the purity measure is calcu-
lated through the function purity() for all components. At
the end of this process, if K = 1, then the graph generated
so far is the optimal graph and it is assigned to G

(opt)
s . Oth-

erwise, each component of the current K-associated graph,
G

(K)
s , is compared to the components in the graph, G

(opt)
s ,

having the same vertices (condition in line 20). The new
component will substitute the corresponding old ones if the
purity is increased or maintained for the labeled compo-
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nents. The process goes on by increasing K and generating
a new K-associated graph until the number of components
in this new graph matches the number of classes in the prob-
lem (R = M).

In summary, the main modifications in the original K-
associated optimal graph construction algorithm [4] include
connecting each vertex to all its neighbors with the same
class or without a class label (line 6) and merging every
component with empty class (in the Algorithm 1, Ĉα stands
for the class of a component) to another component, inde-
pendent of purity. Notice that the present algorithm not only
can construct the K-associated optimal graph, but also, by
doing so, can spread the labels throughout the whole train-
ing set. Therefore, the KAOGSS algorithm is a transductive
method.

3.3 The KAOG classifier

This section presents the nonparametric classifier that uses
the K-associated optimal graph structure to infer the class
of new patterns, for more details, please refer to Ref. [4].
In order to present how a new pattern is classified, consider
again a training pattern xi represented by xi = (xi1, xi2, . . . ,

xip, ci), which xi represents the ith training pattern with ci

its associated class label, in a M-class problem ci ∈ Ω =
{ω1,ω2, . . . ,ωM}. In the same way, a new pattern is de-
fined as y = (y1, y2, . . . , yp), excepted that now its class la-
bel must be estimated. Consider also the set of components
of the optimal graph C = {C1, . . . ,Cα, . . . ,CR}, where R is
the number of components and R ≥ M . In order to clas-
sify the new pattern y, we must firstly transform it to a
vertex, noted by vy , then connect it into the graph as ex-
plained ahead. Consider KL the largest value of K in the K-
associated optimal graph, or equivalently the K value from
the last obtained component. For every new pattern y, we
do:

1. Calculate the distances between the new pattern y and all
elements xi in the training set

2. Find the KL nearest neighbors of y; noted in ascending
order as Λ̄vy,KL

= {x(1),x(2), . . . ,x(k), . . . ,x(KL)}
3. For k = 1 to KL

Locate the vertex (and component) that represents
x(k), say vj ∈ Cα

If k ≤ Kα then
Connect vy to vj

Once the new vertex vy is connected to the K-associated
graph, its class label is estimated using the Bayes the-
ory [15]. The connection established during classification
are temporary, i.e. they will not be incorporated into the
graph structure. The posterior probability of a new ver-
tex vy to belong to component Cα given the set of label-

independent neighbors of vy , noted by Λvy , is defined by
Eq. (4),

P(vy ∈ Cα | Λvy ) = P(Λvy | vy ∈ Cα)P (vy ∈ Cα)

P (Λvy )
(4)

Knowing that each component Cα has been formed in a
particular K-associated graph among the various generated
graphs, we must consider the particular value of K in which
Cα was formed, noted by Kα . Let Λvy,Kα represent the set
of Kα nearest neighbors of vy . Thus, in order to estimate the
probability P(Λvy | vy ∈ Cα), one must consider the frac-
tion among the connections made with component Cα over
all possible Kα connections, as shown in Eq. (5),

P(Λvy | vy ∈ Cα) = |{Λvy,Kα }|
Kα

(5)

The prior probabilities P(vy ∈ Cα) are defined as the
normalized purities among the components to which vy

is connected as P(vy ∈ Cα) = Φα/
∑

Nvy ,Cβ
�=0 Φβ , where

Nvy,Cβ represents the number of connections vy has to com-
ponent Cβ . Accordingly, the normalizing term is given by
Eq. (6),

P(Λvy ) =
∑

Nvy ,Cβ
�=0

P(Λvy | vy ∈ Cβ)P (vy ∈ Cβ) (6)

In many cases, there are more components than number
of classes, according to Bayes optimal classifier, it is nec-
essary to sum the posterior probabilities of all components
corresponding to the same class. Finally the largest value
among the found posterior probabilities reflects the most
probable class for the new pattern, according to Eq. (7),
where ϕ(y) stands for the class attributed for instance y,

ϕ(y) = arg max
{
P(y | ω1), . . . ,P (y | ωM)

}
(7)

3.4 Classifying partially labeled data stream

This section exposes how the proposed graph-based struc-
ture copes with non-stationary classification. Consider a
stream S = {X1, Y1, . . . ,XT ,YT }, where Xt = {(x1, c1), . . . ,

(xl , cl),xl+1, . . . ,xN } contains labeled and unlabeled pat-
terns; while Yt = {y1, . . . ,yM} is formed with unlabeled
patterns only. Such streams may present concept drift at any
time. Therefore, an online classifier should have the abil-
ity to evolve by adding new knowledge along time without
being retrained. In the proposed approach, this dynamical
evolution is done by considering a dynamic graph, named
principal graph, which grows with the frequent addition of
components provided by the K-associated optimal graph
formation (Algorithm 1) along the data stream processing.
Algorithm 2 details the proposed approach.

Algorithm 2 presents the KAOGINCSSL algorithm,
which processes a data stream S composed of partially la-
beled and unlabeled data sets. The function nextChunk(S)
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Algorithm 2 Incremental Algorithm KAOGINCSSL
Input: S = {X1, Y1, . . . ,XT ,YT } {Data stream}

Xt = {(x1, c1), . . . , (xl , cl),xl+1, . . . ,xN } {Partially labeled set}
Yt = {y1, . . . ,yM } {Unlabeled set}
τ {Forgetting parameter—set by user}

Symbols: Z—variable used to represent the next set to be processed,
which may be partially labeled or unlabeled
GP {Principal graph};
KAOGSS() {Semi-supervised K-associated optimal graph
builder};
Classifier() {Sect. 3.3}

1: GP ⇐ ∅
2: repeat
3: Z ⇐ nextChunk(S)

4: if isPartiallyLabeled(Z) then
5: GP ⇐ GP ∪ KAOGSS(Z)

6: else
7: for all yj ∈ Z do
8: ϕ(yj ) ⇐ Classifier(GP ,yj )

9: end for
10: for all Cα ⊂ GP do
11: if tα > τ then
12: GP ⇐ GP − Cα

13: end if
14: end for
15: end if
16: until S = ∅
17: Output: ϕ(yj )—Estimated label for all unlabeled test pattern

yj ∈ Yt , t = 1, . . . , T .

removes the next set from stream S and put it into the vari-
able Z used to represent a chunk of data. After assigning the
next set to the variable Z, the algorithm determines if the
set is partially labeled to be considered for training/updating
(i.e. if the set has enough labeled patterns, e.g., at least 5 %)
through the function isPartiallyLabeled(Z) which returns
“true” if Z is partially labeled and “false” otherwise.

Therefore, the tasks of the algorithm are twofold, (i) in-
corporate new knowledge from both labeled and unlabeled
patterns to subdue concept drift and (ii) predict the label
for the unlabeled patterns presented in unlabeled sets. In
the former task, the objective is to incorporate new knowl-
edge from the recent obtained partially labeled set, thus
a semi-supervised K-associated optimal graph is derived
using Algorithm 1 (KAOGSS). As explained in Sect. 3.2,
the KAOGSS algorithm generates the K-associated opti-
mal graph spreading the labels to all vertices and the re-
sulting graph is composed of several disjoint components.
These new components are then merged to the principal
graph (GP ), which is composed of independent compo-
nents. However, the addition of new components increases
the size of the principal graph, which may increment clas-
sification error and time. To avoid this problem, the princi-
pal graph should not grow unlimitedly, thus, old and unused
components should be removed.

The task of classifying new patterns takes place if the
set at hand is unlabeled, and it is resolved by simply apply-
ing the KAOG classifier using the principal graph to classify

unlabeled vertices, as presented in Sect. 3.3. Component re-
moval takes place during classification phase by applying a
method named disuse rule. This rule establishes a maximum
number of consecutive classifications in which a component
is allowed to be unused (i.e. do not receive any connections
during classification). The maximum value accepted is set
by the parameter τ . When a component remains out of use
after τ patterns are classified, it is removed from the prin-
cipal graph. The algorithm finishes when the whole stream
has been processed, i.e. S = ∅.

An important feature of stream classification algorithms
is its ability to process data in a reasonable time, which in-
cludes the tasks of training, updating and classifying. The
proposed algorithm consists of the following phases of data
processing: (i) training or updating the principal graph,
(ii) classifying new data and, (iii) removing unused com-
ponents.

In the first phase, training or updating the principal graph
is required whenever a partially labeled set X is presented.
Let there be N instances in the set X; training (or updat-
ing) corresponds to build a semi-supervised K-associated
optimal graph (Algorithm 1). As estimated in Ref. [4], the
complexity order to build a supervised K-associated optimal
graph is about O(N2)—due to distance matrix calculation.
Also, it has been shown that the K-associated optimal graph
construction scales better than the C4.5 and the Gibbs Sam-
pling algorithms. Taking into account that the only addition
in processing time in the semi-supervised version is the need
to verify whether a component presents more than one class
and, in this case, the algorithm cuts out some edges to divide
it into some single class components. Knowing that the pro-
cess of finding and cutting a component by using the pro-
posed technique depends on the number of edges and ver-
tices in the component (O(Nα + Eα)), where Nα and Eα

are the number of vertices and edges in the component Cα ,
respectively. Since K-associated graphs are sparse, thus, Nα

or Eα is much smaller than the number of vertices in the
whole graph. Allied to the fact that few components need to
be partitioned (those components, which are composed of
vertices from more than one class), it can be verified that the
computational order of this phase remains O(N2).

Now we consider the second phase, the order of classi-
fying a new pattern has also been estimated in the afore-
mentioned work as O(Np), due to the distance calculation
among the new vertex and the Np vertices in the princi-
pal graph. Here, it is important to mention that there exist
strategies for lowering the order, for example locating the
nearest components firstly, instead of actually searching for
the vertices neighbors. Such strategy decreases the computa-
tional cost to O(Ncp), with Ncp being the number of compo-
nents in the principal graph, and Ncp  Np . At last, compo-
nent removal can be done by the disuse rule, which is done
by simply checking the time parameter of each component,
therefore, it has the order of O(Ncp).
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4 Experimental results

The experimental results are obtained considering five non-
stationary data sets, with three of them generated artificially,
SEA [29], Sine and Circles [13] and the other two are real
data, Spam and Elec2 [16]. For all the experiments, Algo-
rithm 1 is used to spread the label to all the training sets.

In order to simulate a stream of partially labeled data and
qualify how the algorithms react with different amount of la-
beled patterns, we have generated nine experiments for each
domain, differing from each other regarding to the percent-
age of labeled patterns in the training sets. With the percent-
ages of labeled patterns lying in the set {90 %, 80 %, 70 %,
60 %, 50 %, 40 %, 30 %, 20 %, 10 %}. Each stream is pre-
sented as a sequence of chunks of data, alternating between
a partially labeled set and a fully unlabeled set. The partially
labeled sets are used for training (or updating) the classi-
fiers, while the fully unlabeled sets are used as test sets to
estimate the classification accuracy of the algorithms. Here,
we use the real labels of the test sets to estimate the classi-
fier accuracy. Among the artificially generated stream data,
the SEA domain is presented along 500 realizations of train-
ing sets with 60 patterns and tests set with 40 patterns. The
other two streams, Circle and Sine, are presented along 200
realizations of alternating training and test sets, each of them
with 25 patterns. Regarding the two real data sets, we con-
sider a real situation where there are not enough data to use
for testing. Therefore the same set is firstly used for testing
and then for training. The Elec2 domain represents the elec-
tricity price fluctuation gathered during a given period (for
details, please refer to Ref. [13]). The domain is composed
of 45,312 patterns, which can be divided into 134 chunks of
336 patterns (except for the first set with 288), representing a
week of price variation. The spam base is composed of 4601
patterns representing spam and real mail, the chunks, in this
case, are defined with 45 patterns except for the initial with
101, and the stream is presented along 100 realizations.

Regarding the algorithms under comparison, three of
them are ensemble algorithms chosen due to their high
adaptability. The SEA ensemble [29] consists of a pool of
C4.5 classifiers [26] and works by evaluating each of the
decision trees, whose output is used to decide the ensem-
ble output by a simple majority voting scheme. Every time
a training batch arrives, a new decision tree is trained and it
replaces the tree in the ensemble with the major number of
mistakes up to that point. Another algorithm implemented
for comparison is the DWM [19], which consists of an en-
semble method that virtually can be composed by any clas-
sifiers. Briefly, the DWM algorithm adds a new incremental
classifier to the ensemble every time an error is committed
by the ensemble. Each single classifier has a weight that is
decreased by a determined factor β every time it commits
an error. For controlling the size of the ensemble, at every p

iteration, those classifiers whose weight is less than a prede-
fined threshold θ are removed. As recommended by the au-
thors, the incremental Naive Bayes (see Ref. [19] for details
and references) has been used as base classifier, therefore we
note DWM-NB hereafter. The third algorithm, proposed by
Wang et al. [33], is also an ensemble that uses a decision tree
as base algorithm, similar to SEA, but with weighted clas-
sifiers. The weight of each base classifier is estimated by its
classification accuracy in a test set. Therefore, the weight
of base classifier hk is given by wk = MSEr − MSEi , where
MSEi corresponds to the generalization error and can be ob-
tained through a cross-validation process; while MSEr is the
estimated error given the new data set, and can be calculated
as MSEr = ∑

ωj ∈Ω p(ωj )(1 − p(ωj )), with p(ωj ) the per-
centage of instances belonging to class ωj .

Figure 3(a) shows the accuracy for the tested algorithms
on the nine different experiments regarding the percentage
of labeled pattern in the training sets for the SEA domain.
Each experiment result shows the classification accuracy on
a test set averaged by 20 runs. Figures 3(b)–(d) show the
results for the experiment with data sets with 20 % of labeled
patterns. The results consist of the classification error rates
for every presented test set, also averaged by 20 runs. The
results of each algorithm under comparison (red curves) and
the results of the proposed algorithm (blue curves) are put
together and shown in Figs. 3(b)–(d).

Considering the experimental results displayed in
Fig. 3(a), as expected, all the algorithms tend to degener-
ate their performance as the labeling percentage provided
in the training sets decays. Notice that the proposed algo-
rithm KAOGINCSSL and the DWM-NB algorithm have
performed similarly throughout all the different label per-
centages domains, with exception to the experiment with
10 % of labeled patterns where the KAOGINCSSL algo-
rithm presented a better performance. In fact, even when
only 20 % of the training patterns are labeled, KAOGINC-
SSL and DWM-NB present similar performance, differ-
entiating by the fact that the proposed algorithm is much
more stable, presenting the smallest variance. Regarding the
WCEA algorithm, from Fig. 3(a), we see that it is the algo-
rithm that suffers the most as the amount of labeled patterns
decreases. Again, when considering 20 % labeled set, in
spite of presenting very close result for the average error
percentage to the SEA algorithm performance, the WCEA
algorithm presents a larger variation on error rate along the
stream processing, as can be seem in Figs. 3(b)–(c). The
SEA ensemble has the worst performance in this domain.

Now, consider the experiments on the other two artificial
domains (Sine and Circle) and the two real domains (Elec2
and Spam), again, each with nine different realizations and
classification results taken as the mean over all presented
test sets averaged by 20 runs. Figure 4 presents the results.

As can be seen in Figs. 4(a)–(b), the proposed algorithm
presents a large advantage on accuracy performance over
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Fig. 3 Experiments with the
SEA domain, (a) average
accuracy for nine experiments
with different percentages of
labeled patterns, from 10 % to
90 %; and performance
comparison through the SEA
presentation with 20 % labeled
patterns, between the
KAOGINCSSL and (b) SEA,
(c) WCEA and (d) DWM-NB

Fig. 4 Experiments with nine
different percentages of labeled
patterns in each data set for the
domains Sine, Circle, Elec2 and
Spam

the other algorithms, considering all the experiment config-
urations. This advantage, though, seems to decrease when
real data sets are considered, which may be due to the fact
that artificial domains are constructed in a controlled manner

and therefore present some desired characteristics. On the
other hand, real data sets present an unorganized scenario,
e.g. concept drifts are not well-defined as in the artificial
domains. Bearing this in mind, the advantage presented by
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Fig. 5 Standard deviations for
the four compared algorithms
when processing the real
domains (Elec2 and Spam)
within the nine different
percentage of labeled patterns in
each data set

the proposed algorithm in the artificial domains can be par-
tially explained due to the KAOGINCSSL ability to get rid
of past concepts much faster than the ensemble algorithms
used for comparison. Now, for better analyzing the real do-
mains, consider also the standard deviation among the pre-
sented test sets and taken from a single run to best represent
a real situation. Figure 5 presents the standard deviation for
the nine considered experiments and the four compared al-
gorithms when processing the real domains Elec2 and Spam.

In real applications, low variance or standard deviation
is a desirable feature for a classifier, precisely the lower the
standard deviation the more reliable is the classifier perfor-
mance. Therefore, considering the results for the electricity
domain presented in Fig. 4(c); except for the WCEA algo-
rithm, all the others have presented a similar performance, in
special for low levels of labeling (<40 %). Here, again the
proposed algorithm obtained the best performances for the
experiments with more than 50 % of labeled data. Analyzing
the standard deviation in Fig. 5(a), it is easy to verify that the
proposed algorithm presents the most reliable performance.
The DWM-NB algorithm presents too higher values of stan-
dard deviation indicating high fluctuation in classification
performance, in spite of presenting good average accuracy.
The SEA ensemble has good accuracy results and low vari-
ance.

Regarding the results of the KAOGINCSSL algorithm in
the Spam base shown in Fig. 4(d), at a first glance, almost the
same trend as in the Elec2 domain can be observed. Because
it has presented best average accuracy performance for ex-
periments with more than 50 % labeled patterns and average
performance for the rest. In spite of that, the KAOGINC-
SSL algorithm shows again the most regular performance as
depicted in Fig. 5(b). The DWM-NB algorithm has also per-
forms well, particularly up to the point where labeled data
instances fall off from least than 40 %, but with higher stan-
dard deviation than the KAOGINCSSL. Thus, we can say
that both KAOGINCSSL and DWM-NB algorithms perform
similarly. The SEA ensemble presents the lowest average

accuracy but small standard deviation, while the WCEA in-
stead of presenting near average mean accuracy also shows
too high standard deviation, which discourages both to be
used in this domain.

It is also important to notice that all the algorithms, which
have used the KAOGSS as transduction algorithm, present
good results, especially in the real domains. Therefore, we
verify that the proposed transduction algorithm KAOGSS,
not only can be used in association to the KAOGINCSSL
algorithm, but also can be successfully used in other algo-
rithms as well.

5 Conclusions

This paper has introduced a semi-supervised graph-based
algorithm suitable for non-stationary streaming application,
particularly when only a small portion of the acquired data
presents label. Comparative results on artificial and real data
sets performed on the proposed method against three well-
know ensemble methods show that the proposed algorithm
outperformed the compared algorithms in most of the exper-
iments. Moreover, the results show that the present spread-
ing label technique can be used successfully in other super-
vised learning algorithms to support semi-supervised clas-
sification. Future work includes testing the proposed algo-
rithm with more data sets and comparing to other algorithms
with their own spreading label method, as well as comparing
the accuracy of the optimal graph as a transductive method
against other transductive ones.
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