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Abstract
We obtain rates of contraction of posterior distributions in inverse prob-
lems with discrete observations. In a general setting of smoothness scales
we derive abstract results for general priors, with contraction rates deter-
mined by discrete Galerkin approximation. The rate depends on the amount
of prior concentration near the true function and the prior mass of func-
tions with inferior Galerkin approximation. We apply the general result to
non-conjugate series priors, showing that these priors give near optimal and
adaptive recovery in some generality, Gaussian priors, and mixtures of Gaus-
sian priors, where the latter are also shown to be near optimal and adaptive.
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1 Introduction

In an inverse problem one observes a noisy version of a transformed signal
Af and wishes to recover the unknown signal f . The forward operator A
is assumed to be injective, but its inverse is discontinuous, so that a naive
inversion would amplify the noise. In this paper we study a Bayesian method
for regularising the inverse in a setting with discrete observations. We assume
that the transformed signal is a function Af : D → R on a bounded domain
D ⊂ R

d, and for given design points {x1, . . . , xn} ⊂ D, we observe Y n =
(Y1, . . . , Yn) defined by

Yi = Af(xi) + Zi, i = 1, · · · , n, (1)
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with Zi i.i.d. standard normal random variables. This regression model (1)
may be compared to its continuous version, the white noise model, in which
the observation is given by

Y (n) = Af +
1√
n

ξ, (2)

where ξ is Gaussian (white) noise. There is a rich literature on the continuous
problem, even though the regression problem is more realistic in practice.

The review papers Cavalier (2008), Stuart (2010) provide an overview
to the field of inverse problems up to the time around 2010. The former
paper focuses on frequentist studies, and the latter one concentrates on
Bayesian methods, as does the present paper. The book Nickl (2023) gives
a recent overview, including nonlinear problems. Bayesian methods for the
white noise problem (2) were studied in among others Agapiou et al. (2013),
Gugushvili et al. (2020), Knapik and Salomond (2018), Knapik et al. (2011,
2013), but the regression model is less explored, except in the case that A
is identity (e.g. Sniekers and van der Vaart (2020, 2015)). In Gugushvili
et al. (2018) Gaussian conjugacy was used to study a problem with one-
dimensional D.

The Bayesian approach consists of putting a prior probability measure
on f , and, after collecting the data, updating this to the posterior probability
measure. If y �→ p

(n)
f (y) denotes the (Gaussian) density of the data Y n =

(Y1, . . . , Yn), then this is the Borel measure on H, given, by Bayes’s formula,
as

Πn(f ∈ B | Y n) =

∫
B p

(n)
f (Y n) dΠn(f)

∫
p
(n)
f (Y n) dΠn(f)

. (3)

In the Bayesian paradigm the posterior distribution encompasses all the nec-
essary information for inference on f . An attractive feature of the Bayesian
approach is that it not only offers an estimation procedure, through a mea-
sure of ‘centre’ of the posterior distribution, but also provides a way to
conduct uncertainty quantification, through the spread of the posterior dis-
tribution.

If one thinks of the Bayesian approach as a method and not merely
as a philosophy, then one wants the posterior measure (3) to recover the
function f0 if in reality Y1, . . . , Yn are generated according to the model (1)
with f = f0 and n → ∞. We shall be interested in the rate of posterior
contraction. Following Ghosal et al. (2000), Ghosal and van der Vaart (2007,
2017), we say that a sequence εn ↓ 0 is a rate of posterior contraction to f0
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if, for a fixed sufficiently large constant M , and n → ∞,

Πn

(
f : ‖f − f0‖ > Mεn | Y n

) P
(n)
f0→ 0. (4)

We are interested in the fastest rate for which this is satisfied, and compare
this to the rate of estimation of non-Bayesian methods.

The paper is organised as follows. Section 2 introduces our setup along
with the assumptions, and introduces an interpolation device. Section 3
presents two general theorems, which are applied to two special cases, series
priors and (mixtures of) Gaussian priors, in Sections 4 and 5. Section 6
contains some of the proofs.

The paper extends results for the white noise model obtained in
Gugushvili et al. (2020) to the case of discrete observations. While we repeat
necessary definitions, we refer to the latter paper for further examples and
discussion.

1.1 Notation The symbols �, �, 
 mean ≤, ≥, = up to a positive
multiple independent of n, (or another asymptotic parameter). The constant
may be stated explicitly in subscripts, and e.g. �f means that it depends on
f .

2 Setup

In this section we formulate the assumptions on the operator A and present
the interpolation device to handle the discrete observational scheme. The
first part of the section borrows from Gugushvili et al. (2020).

2.1 Smoothing The function f in (1) is an element of a Hilbert space
(H, 〈·, ·〉). We embed this space as the space H = H0 in a ‘scale of smoothness
classes’, as is common in the literature on inverse problems, as follows.
Definition 2.1 (Smoothness scale). For every s ∈ R the space Hs is an
infinite-dimensional, separable Hilbert space, with inner product 〈·, ·〉s and
induced norm ‖ · ‖s. The spaces (Hs)s∈R satisfy the following conditions:

1. For s < t the space Ht is a dense subspace of Hs and ‖f‖s � ‖f‖t, for
f ∈ Ht.

2. For s ≥ 0 and f ∈ H0 viewed as element of H−s ⊃ H0,

‖f‖−s = sup
‖g‖s≤1

〈f, g〉, f ∈ H0. (5)
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Assumption 2.2 (Approximation). For every j ∈ N and s ∈ (0, S), for
some S > 0, there exists a (j − 1)-dimensional linear subspace Vj ⊂ H0 and
a number δ(j, s) such that δ(j, s) → 0 as j → ∞, and such that

inf
g∈Vj

‖f − g‖ � δ(j, s) ‖f‖s, (6)

‖g‖s � 1
δ(j, s)

‖g‖, ∀g ∈ Vj . (7)

The two inequalities (6) and (7) are known as inequalities of Jackson and
Bernstein type, respectively, see, e.g., Canuto et al. (2010). The approxima-
tion property (6) shows that ‘smooth elements’ f ∈ Hs are well approximated
in ‖ · ‖ by their projection onto a finite-dimensional space Vj , with approx-
imation error tending to zero as the dimension of Vj tends to infinity. We
shall focus on the case of polynomial dependence δ(j, s) 
 j−s/d, where d is
the dimension of the domain of the functions in H0.

The Sobolev spaces Hs(D) = W s,2(D) provide perhaps the most impor-
tant example of a smoothness scale (see e.g. Haroske and Triebel (2008),
Triebel (2008, 2010)), which can also be restricted by boundary conditions,
as common in the theory of differential equations. The following example
gives a smoothness scale described through basis functions. Because one can
always choose an appropriate basis, for our purposes not much is lost by
considering only this concrete example.
Example 2.3 (Sequence spaces). Suppose (φi)i∈N is a given orthonormal
sequence in the Hilbert H, and 1 ≤ bi ↑ ∞ is a given sequence of numbers.
For s ≥ 0, define Hs as the set of all elements f =

∑
i∈N

fiφi ∈ H with∑
i∈N

b2si f2
i < ∞, equipped with the norm

‖f‖s =
(∑

i∈N

b2si f2
i

)1/2
.

For s < 0, equip the elements f =
∑∞

i=1 fiφi of H, where (fi) ∈ �2, with the
norm as in the display, which is now automatically finite, and next define
Hs as the completion of H under this norm.

It can be checked that these spaces form a smoothness scale as in
Definition 2.1 and that Assumption 2.2 is satisfied with the spaces Vj =
Span(φi : i < j), and the approximation numbers δ(j, s) = b−s

j .
The forward operator A in the model (1) is assumed to be a bounded

linear operator A : H → G between the separable Hilbert spaces H and G,
which is ‘smoothing’. The following assumption, which is standard in the
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literature (see Cohen et al. (2004), Goldenshluger and Pereverzev (2003),
Mathé and Pereverzev (2001), Natterer (1984)) makes this precise.
Assumption 2.4 (Smoothing property of A). For some γ > 0, the operator
A : H−γ → G is injective and bounded and, for every f ∈ H0,

‖Af‖ 
 ‖f‖−γ . (8)

While the preceding assumption is sufficient for our main results, a
stronger smoothing property is often satisfied and may be helpful when
analysing particular priors. We now assume that both H = H0 and G = G0

are embedded are embedded in smoothness scales (Hs)s∈R and (Gs)s∈R as
in Definition 2.1. Somewhat abusing notation, we write the norms of both
scales as ‖ · ‖s.
Assumption 2.5 (Strengthened smoothing property of A). For some γ > 0,
the operator A : Hs−γ → Gs is injective and bounded for every s ≥ 0, and,
for every f ∈ H0 ∩ Hs−γ,

‖Af‖s 
 ‖f‖s−γ . (9)

Example 2.6 (SVD). If the operator A : H → G is compact, then the pos-
itive self-adjoint operator A∗A : H → H possesses a countable orthonormal
basis of eigenfunctions φi, which can be arranged so that the correspond-
ing sequence of eigenvalues λi decreases to zero. If A is injective, then all
eigenvalues, whose roots are known as the singular values of A, are strictly
positive. Suppose that there exists γ > 0 such that they are of order

λi 
 i−2γ .

If we construct the smoothness classes (Hs)s∈R from the basis (φi)i∈N and
the numbers bi = i as in Example 2.3, then (8) is satisfied, since ‖Af‖2 =
〈AT Af, f〉 =

∑
i λ2

i f
2
i 
 ‖f‖2−γ.

If we also construct smoothness classes (Gs)s∈R from the orthonormal
sequence Uφi in G, where U : Range(A) → G is the partial isometry in the
polar decomposition Af = U(A∗A)1/2f of A, then (9) will also be satisfied,
for every s ≥ 0.
Concrete examples of operators A satisfying Assumptions 2.4 or 2.5 can be
found in Gugushvili et al. (2020).

2.2 Interpolation The sampling scheme (1) collects discrete data, but
the operator A acts on a continuous function, which we wish to estimate
on its full domain. In this section we describe an interpolation technique
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that maps discrete signals to the continuous domain. A similar technique
has been used in the context of proving asymptotic equivalence of the white
noise model and nonparametric regression; see Reiß (2008) and the references
therein. The assumptions are also inspired by the theory from the field of
numerical analysis, see Canuto et al. (2010).

The range space G of the operator A : H → G is a collection of functions
g : D → R, equipped with a pre-inner product 〈·, ·〉. The design points give
rise to a “discrete” semi-inner product and semi-norm on G given by

〈g, h〉n :=
1
n

n∑

i=1

g(xi)h(xi) ‖g‖n :=

√
√
√
√ 1

n

n∑

i=1

g2(xi).

(The notation ‖ · ‖n clashes with the notation ‖ · ‖s for the norms of the
smoothness scales, but this should not lead to confusion as n will never
appear as smoothness level.)

For every n ∈ N, we fix an n-dimensional subspace W̃n ⊂ G, and, for
g ∈ G, denote by Ing the element of W̃n that interpolates g at the design
points, i.e.

Ing(xi) = g(xi), i = 1, . . . , n.

This defines a map In : G → W̃n ⊂ G. Existence and uniqueness of this map
is addressed in Lemma 2.9 below. (In order that the point evaluations g(xi)
be well defined, the domain G may be restricted to continuous functions.)
Assumption 2.7 (Interpolation). For every n ∈ N and s ∈ (sd, Sd), for
some Sd > sd ≥ 0, there exist an n-dimensional subspace W̃n ⊂ G and a
number δd(n, s) such that

‖w‖n 
 ‖w‖, ∀w ∈ W̃n, (10)
‖Ing − g‖ � δd(n, s) ‖g‖s. (11)

In this assumption ‖ · ‖s are the norms of a smoothness scale (Gs)s∈R

as in Definition 2.1, in which the space G is embedded as G = G0 The
approximation numbers δd(n, s) will often be the same as the approximation
rates δ(n, s) in Assumption 2.2. However, the approximation (11) is typically
not true for every smoothness level s > 0, but only for s in a range (sd, Sd).
For instance, for Sobolev scales the lower bound sd is typically equal to d/2
for d the dimension of the domain D of the functions in G, and the upper
bound Sd is the regularity of the basis elements used to define the scale.
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Fix an arbitrary orthonormal basis e1,n, . . . , en,n of W̃n relative to the
discrete inner product 〈·, ·〉n, and given the discrete data (Y1, . . . , Yn) as in
(1), define

Y (n) =
n∑

i=1

1
n

n∑

j=1

Yjei,n(xj) ei,n. (12)

This embeds the discrete data as a ‘continuous signal’ into the space W̃n ⊂ G.
If the observations satisfy (1), then the continuous observation Y (n) can be
decomposed as

Y (n) =
n∑

i=1

〈Af, ei,n〉nei,n +
1
n

n∑

j=1

Zj

n∑

i=1

ei,n(xj) ei,n = InAf +
1√
n

ξ(n),

where ξ(n) is a Gaussian random variable with values in the space in W̃n.
Loosely speaking, as n → ∞ the operators In should tend to the identity
operator, and the mean of the signal Y (n) should become more representative
of the full signal Af . As shown in the following lemma, the noise ξ(n) tends
to white noise in the Hilbert space G.
Lemma 2.8 The variable ξ(n) defined in the preceding display is a Gaussian
random element in W̃n ⊂ G with mean zero. Under (10) its covariance
operator is up to multiplicative constants that do not depend on n bounded
below and above by the orthogonal projection Q̃n : G → W̃n relative to the
continuous inner product 〈·, ·〉.
Proof For g ∈ G, we can write 〈ξ(n), g〉=n−1/2

∑n
j=1 Zj

∑n
i=1 ei,n(xj)〈ei,n, g〉.

The expectation of this variable vanishes, while the variance is given by

var〈ξ(n), g〉=
1
n

n∑

j=1

( n∑

i=1

ei,n(xj)〈ei,n, g〉
)2

=
∥
∥
∥

n∑

i=1

〈ei,n, g〉ei,n

∥
∥
∥
2

n
=

n∑

i=1

〈ei,n, g〉2.

by the orthogonality of the basis.
The orthogonal projection Q̃ng of g onto W̃n relative to the continuous

inner product is equal to Q̃ng =
∑n

i=1 αiei,n, for α = (α1, . . . , αn)T = Σ−1
n β,

where β =
(〈ei,n, g〉)

i=1..n
and Σn is the Gram matrix

(〈ei,n, ej,n〉). Hence
‖Q̃ng‖2 = αT Σnα = βT Σ−1

n β. Because Σn is bounded above and below by
a multiple of the identity, by Lemma 2.9 below, it follows that ‖Q̃ng‖2 

βT β =

∑n
i=1〈ei,n, g〉2.
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Lemma 2.9 Suppose that W̃n ⊂ G is a finite-dimensional subspace so that
(10) holds. Then for every g ∈ G there exists a function Ing ∈ W̃n that
interpolates g at the points x1, . . . , xn and

• Ing is the orthogonal projection of g onto W̃n ⊂ G relative to 〈·, ·〉n.

• ‖g‖n 
 ‖Ing‖, for every g ∈ G.

Furthermore, for any orthonormal basis e1,n, . . . , en,n of W̃n relative to 〈·, ·〉n,
the Gram matrix

(〈ei,n, ej,n〉)i,j=1..n is bounded above and below by the iden-
tity matrix times a constant that does not depend on n.
Proof Under (10), the linear map R : W̃n ⊂ G → R

n given by (Rw)i = w(xi),
for i = 1, . . . , n, has kernel 0 and hence is a bijection. Thus there is a solution
w = Ing ∈ W̃n to Rw =

(
g(xi)

)
i=1..n

, for every g ∈ G, and this is unique.
The function Ing is contained in W̃n by definition, and satisfies 〈g −

Ing, h〉n = n−1
∑n

i=1 g(xi)h(xi) − n−1
∑n

i=1 Ing(xi)h(xi) = 0, for every h ∈
W̃n. Thus Ing is the orthogonal projection of g onto W̃n relative to 〈·, ·〉n.
Because the functions g and Ing coincide at the design points, we have
‖g‖n = ‖Ing‖n, which is equivalent to ‖Ing‖, by (10).

The final statement is the equivalence ‖∑n
i=1 αiei,n‖2 
 αT α, for α ∈

R
n. Now ‖∑n

i=1 αiei,n‖ 
 ‖∑n
i=1 αiei,n‖n, by (10), and this is equal to the

Euclidean norm of α if e1,n, . . . , en,n is orthonormal relative to 〈·, ·〉n.
The following two examples exhibit suitable discretisation spaces, both

with equidistant design points.
Example 2.10 (Trigonometric Polynomials). This example is adapted from
Section 2.3 in Reiß (2008). Let D = T

d = (0, 1]d, for d ∈ N, and consider
the set of n = md design points {k/m}k∈{1,··· ,m}d, for a given odd natural
number m. In this case, the Fourier system

ek(x) = ei2π〈k,x〉
Rd , k = (k1, · · · , kd) ∈ Z

d,

is not only orthonormal in the continuous space L2(Td), but (‘modulo m’)
also with respect to the discrete inner product 〈·, ·〉n, i.e.

〈ej , ek〉n =
{

1, if jl ≡ kl mod m, ∀l ∈ {1, · · · , d},
0, otherwise.

(13)

The scale of isotropic Sobolev spaces Hs(Td) is defined in terms of the Fourier
coefficients fk =

∫
Td f(x)ek(x) dx of functions f ∈ L2(Td), as (for |k| any
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norm on R
d)

Hs(Td) :=
{

f ∈ L2(Td) : ‖f‖2Hs
:=

∑

k∈Zd

(1 + |k|)2s|fk|2 < ∞
}

.

For smoothness levels s ∈ N, this norm is equivalent to the canonical Sobolev
norm

∑
|l|1≤s ‖Dlf‖L2(Td).

The spaces Vj obtained as the linear span of the basis elements, ordered
suitably, satisfy Assumption 2.2. Due to (13), the space W̃n = Span{ek :
|k|∞ ≤ (m − 1)/2} satisfies (10) with C1 = C2 = 1.

As noted in Reiß (2008), the following estimates hold for f ∈ Hs(TD),

‖f − Qnf‖L2 � n−s/d‖f‖Hs
,

‖Qnf − Inf‖ �d n−s/d‖f‖Hs
. if s > d/2.

Here Qn is the orthogonal projection on W̃n. Consequently (11) is fulfilled
for s > sd = d/2.
Example 2.11 (Wavelets). This example is adapted from Section 3.3 in
Reiß (2008). Let D = T

d = (0, 1]d, for d ∈ N, and consider the design points
{k2−j}k∈{1,··· ,2j}d, where n = 2jd for some j ∈ N. We consider a multi-
resolution analysis {Vj}j≥0 on L2(Td) obtained by periodisation and tensor
products. Let φ̃ be a standard orthonormal scaling function of an S-regular
multi-resolution analysis for L2(R), with compact support in [S − 1, S]. In
particular, the polynomial exactness condition is satisfied:

∑
k∈Z

kqφ̃(x−k)−
xq is a polynomial of maximal degree q − 1 for q ∈ [0, S − 1]. As shown in
Reiß (2008), the functions

ej,k(x1, . . . , xd) =
∑

m∈Zd

2jd/2
d∏

i=1

φ̃(2jxi − ki + 2jmi),

are well defined and form an orthonormal basis in L2(Td). Furthermore, for
W̃n := Vj = Span{ej,k | k ∈ {1, · · · , 2j}d} with n = 2jd ≥ 2S − 1, conditions
(10) is satisfied with constants C1, C2 that depend only on φ̃. Moreover, for
the functions ej,k belong to the Besov space Bs

2,2(T), for s < S, and, for
every f in this Besov space and d/2 < s < S,

‖f − Inf‖L2 � n−s/d‖f‖Bs
2,2

.
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Thus (11) is satisfied, with the smoothness scale (Hs)s∈R taken equal to the
canonical Sobolev spaces (i.e. Besov spaces Bs

2,2) on T
d.

Other examples of suitable discretisation spaces are provided by orthogo-
nal polynomials, for instance the systems of Legendre, Chebyshev, or Jacobi
polynomials, etc., for suitably chosen design points. Canonical Sobolev
spaces on T = (0, 1] are Hilbert scales, and Assumption 2.2 is satis-
fied by standard Sturm-Liouville theory (see 5.2 in Canuto et al. (2010)):
the polynomials form infinitely differentiable orthogonal bases in L2(T).
Assumption 2.7 is satisfied with Gaussian quadrature points as design points
(Section 5.3 in Canuto et al. (2010)). These results can be extended to mul-
tivariate domains by using tensor products.

3 General Contraction Rates

In this section we present two general theorems on posterior contraction,
which we apply to different priors in later sections. The theorems address
the situation of discrete observations. After making the appropriate mod-
ifications, their proofs borrow from the proofs for the continuous case in
Gugushvili et al. (2020).

We form the posterior distribution Πn(· | Y n) as in (3), given a prior Π on
the space H = H0 and an observation Y n = (Y1, . . . , Yn), whose conditional
distribution given f is determined by the model (1). We study this random
distribution under the assumption that Y n follows the model (1) for a given
‘true’ function f = f0, which we assume to be an element of Hβ in a given
smoothness scale (Hs)s∈R, as in Definition 2.1.

The theorem is stated in terms of the Galerkin solution to the contin-
uous inverse problem, which is defined as follows. (See e.g., Kirsch (2011)
for a general introduction to the Galerkin method and Appendix A for the
two results needed in our proof.) Let Wj = AVj ⊂ G be the image under
the operator A of a finite-dimensional approximation space Vj linked to the
smoothness scale (Hs)s∈R as in Assumption 2.2, and let Qj : G → Wj be the
orthogonal projection onto Wj . The Galerkin solution to Af is the inverse
image f (j) ∈ Vj of QjAf . The idea is to simplify Af by projection before
inverting the map A. (A solution f (j) ∈ Vj to the equation Af (j) = QjAf
exists, under our assumption that A : H → G is injective, which implies that
A is a bijection between the finite-dimensional vector spaces Vj and Wj .)

In our current setting we have no access to the continuous function Af ,
but only to its values at the design points. We overcome this by using the
Galerkin solution f (j,n) = A−1QjAnf to the interpolation Anf of the dis-
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crete signal, where An = InA, for In the interpolation operator defined in
Section 2.2. This discrete Galerkin solution is illustrated in the following
diagram

H � f
An=InA−−−−→ Anf ∈ W̃n ⊂ G

Qj

⏐
⏐
⏐
⏐
�

H ⊃ Vj � f (j,n) A−1←−−−− QjAnf ∈ Wj ⊂ G

In this scheme the space W̃n, used to construct the continuous interpolation,
may or may not be equal to Wn = AVn. Setting it equal to Wn simplifies
the scheme, but then the interpolation properties in Assumption 2.7 must
be verified for AVn.
Theorem 3.1 For smoothness classes (Hs)s∈R as in Definition 2.1, assume
that ‖Af‖ 
 ‖f‖−γ, for some γ > 0. Let f (j,n) denote the discrete Galerkin
solution to Anf = InAf relative to linear subspaces Vj associated to (Hs)s∈R

as in Assumption 2.2 and interpolation spaces W̃n satisfying (10)-(11). Let
f0 ∈ Hβ and Af0 ∈ Gβ+γ for some β ∈ (sd − γ, Sd − γ), and for ηn ≥ εn ↓ 0
such that nε2n → ∞, and jn ∈ N such that jn → ∞, and some c > 0, assume

jn ≤ cnε2n, (14)

ηn ≥ εn

δ(jn, γ)
, (15)

ηn ≥ δ(jn, β) ∨ δd(n, β + γ)
δ(jn, γ)

. (16)

Consider prior probability distributions Π on H0 satisfying

Π
(
f ∈ H : ‖Af − Af0‖n < εn

) ≥ e−nε2
n , (17)

Π
(
f ∈ H : ‖f (jn,n) − f‖ > ηn

)
� e−4nε2

n . (18)

Then the posterior distribution in the model (1) contracts at the rate ηn

at f0, i.e. for a sufficiently large constant M we have Πn

(
f : ‖f − f0‖ >

Mηn | Y1, . . . , Yn

) → 0, in probability if Y1, . . . , Yn follow (1) with f = f0.

Proof Let p
(n)
f be the (multivariate-normal) density of Y n. The Kullback-

Leibler divergence P
(n)
f0

log(p(n)f0
/p

(n)
f ) and variation P

(n)
f0

(
log(p(n)f0

/p
(n)
f )

)
2 can

be computed to be n‖Af − Af0‖2n/2 and twice this quantity, respectively.
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Therefore, by (17) the set where these quantities are bounded above by nε2n
has prior probability at least e−nε2

n .
It follows by Lemma 8.2 of Ghosal and van der Vaart (2017) that the

events Bn := {∫ p
(n)
f /p

(n)
f0

(yn) dΠ(f) ≥ e−2nε2
n} satisfy P

(n)
f0

(Bn) → 1.
Furthermore, by (18) and Theorem 8.20 in the same reference, the poste-

rior probability Πn

(‖f (jn,n)−f‖ > ηn | Y n
)

tends to zero in P
(n)
f0

probability.
Let Fn = {f : ‖f − f0‖ > Mηn, ‖f (jn,n) − f‖ ≤ ηn}. We show below

that there exist tests τn such that P
(n)
f0

τn → 0 and P
(n)
f (1 − τn) ≤ e−4nε2

n ,
for every f ∈ Fn. Then to prove the assertion of the theorem, we bound
Πn

(
f : ‖f − f0‖ > Mηn | Y1, . . . , Yn

)
by

τn + 1Bc
n

+ Πn

(‖f (jn,n) − f‖ > ηn | Y n
)

+ Πn(Fn | Y n)1Bn
(1 − τn).

The expectations under P
(n)
f0

of the first three terms tend to zero by the
preceding. In the fourth term we bound the denominator in Bayes’s formula
(3) divided by the likelihood at f0 by e−2nε2

n , and next bound its expectation
by

e2nε2
nP

(n)
f0

∫

Fn

p
(n)
f

p
(n)
f0

dΠ(f)(1 − τn) ≤ e2nε2
n sup

f∈Fn

P
(n)
f (1 − τn) ≤ e−2nε2

n → 0.

This proof of the theorem can now be completed by constructing the tests
τn.

Define the operator Rj : G �→ Vj by Rj = A−1Qj , where Qj : G → Wj

is the orthogonal projection onto Wj = AVj and A−1 is the inverse of A
(restricted to Wj). Consider the tests defined by, for a given constant M0

determined later and Y (n) defined in (12),

τn = 1
{‖Rjn

Y (n) − f0‖ ≥ M0ηn

}
. (19)

Since by definition f (j,n) = RjAnf , we have

RjY
(n) = RjAnf +

1√
n

Rjξ
(n) = f (j,n) +

1√
n

Rjξ
(n). (20)
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The variable Rjξ
(n) = RjQjξ

(n) is a centred Gaussian random element in Vj

with strong and weak second moments

E
∥
∥Rjξ

(n)
∥
∥2 ≤ ‖Rj‖2E‖Qjξ

(n)‖2 � ‖Rj‖2j � j

δ(j, γ)2
,

sup
‖f‖≤1

E〈Rjξ
(n), f〉2 = sup

‖f‖≤1
E〈ξ(n), R∗

jf〉2G � sup
‖f‖≤1

‖R∗
jf‖2G ≤‖R∗

j‖2� 1
δ(j, γ)2

.

In both cases the inequality on ‖Rj‖ = ‖R∗
j‖ at the far right side follows

from (A3), and we also use that, by Lemma 2.8, the covariance operator of
ξ(n) is bounded above by a multiple of the projection onto W̃n, and hence
the identity, so that the covariance operator of Qjξ

(n) is bounded above by
a multiple of Qj .

The first inequality shows that the first moment E‖Rjξ
(n)‖ of the vari-

able ‖Rjξ
(n)‖ is bounded above by

√
j/δ(j, γ). By Borell’s inequality (e.g.

Lemma 3.1 in Ledoux and Talagrand (1991) and subsequent discussion),
applied to the Gaussian random variable Rjξ

(n) in H0, we see that, there
exist positive constants a and b such that, for every t > 0,

Pr
(
‖Rjξ

(n)‖ > t + a

√
j

δ(j, γ)

)
≤ e−bt2δ(j,γ)2 .

For t = 2
√

nηn/
√

b and ηn, εn and jn satisfying (14), (15) and (16) this
yields, for some a1 > 0,

Pr
(
‖Rjn

ξ(n)‖ > a1
√

nηn

)
≤ e−4nε2

n . (21)

We apply this to bound the two error probabilities of the tests τn.
Under f0 the decomposition (20) is valid with f = f0, and hence RjY

(n)−
f0 = n−1/2Rjξ

(n)+f
(j,n)
0 −f0. By the triangle inequality it follows that τn = 1

implies that n−1/2‖Rjn
ξ(n)‖ ≥ M0ηn−‖f

(j,n)
0 −f0‖. By the triangle inequality

followed by (A3) and (11), and (A5),

‖f
(j,n)
0 − f0‖ ≤ ‖Rj‖ ‖InAf0 − Af0‖ + ‖RjAf0 − f0‖

� δd(n, β + γ)
δ(jn, γ)

‖Af0‖β+γ + δ(jn, β)‖f0‖β ≤ M1ηn,
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by assumption (16). Hence the probability of an error of the first kind satisfies

P
(n)
f0

τn ≤ Pr
( 1√

n
‖Rjn

ξ(n)‖ ≥ (M0 − M1)ηn

)
,

For M0 − M1 > a1, the right side is bounded by e−4nε2
n , by (21).

Under f the decomposition (20) gives that RjY
(n) − f0 = n−1/2Rjξ

(n) +
f (j,n) − f0. By the triangle inequality τn = 0 implies that n−1/2‖Rjn

ξ(n)‖ ≥
‖f (jn,n)−f0‖−M0ηn. For f such that ‖f −f0‖ > Mηn and ‖f −f (jn,n)‖ ≤ ηn,
we have ‖f (jn,n) − f0‖ ≥ (M − 1)ηn. Hence the probability of an error of the
second kind satisfies

P
(n)
f (1 − τn) ≤ Pr

( 1√
n

‖Rjn
ξ(n)‖ ≥ (M − 1 − M0)ηn

)
,

For M − 1 − M0 > a1, this is bounded by e−4nε2
n , by (21).

We can first choose M0 large enough so that M0 −M1 > a1, and next M
large enough so that M − 1 − M0 > a1, to finish the proof.

Inequality (17) is the usual prior mass condition for the ‘direct problem’
of estimating Af at the design points (see Ghosal et al. (2000)). It determines
the rate of contraction εn of the posterior distribution of Af to Af0 relative
to the discrete seminorm ‖ · ‖n. The rate of contraction ηn of the posterior
distribution of f is slower due to the necessity of (implicitly) inverting the
operator A. The theorem shows that the rate ηn depends on the combination
of the prior, through (18), and the inverse problem, through the various
approximation rates.

The theorem has a similar form as the theorem obtained in Gugushvili
et al. (2020) in the case of observation of a continuous signal in white noise.
Presently the Galerkin projection f (j,n) in (18) incorporates the errors of
both inversion and discretisation. The factor δd(n, β + γ)/δ(jn, γ) in (16),
which arises from having discrete observations only, will typically be negli-
gible relative to δ(jn, β).

The following refinement of the preceding theorem is appropriate for
certain priors that are constructed to give an optimal contraction rate for
multiple values of the smoothness β of the true parameter simultaneously.
It considers a mixture prior of the form

Π =
∫

Πτ dQ(τ), (22)
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where Πτ is a prior on H, for every given ‘hyper-parameter’ τ running
through some measurable space, and Q is a prior on this hyper-parameter.
The idea is to adapt the prior to multiple smoothness levels through the
hyper-parameter τ . The proof is very similar to the proof of Theorem 3.3 in
Gugushvili et al. (2020) and is omitted.
Theorem 3.2 Consider the setup and assumptions of Theorem 3.1 with a
prior of the form (22). Assume that (14), (15), (16) and (17) hold, but
replace (18) by the pair of conditions, for numbers ηn,τ and C > 0 and every
τ ,

Πτ

(
f : ‖f (jn,n) − f‖ > ηn,τ

) ≤ e−4nε2
n , (23)

Πτ

(
f : ‖f − f0‖ < 2ηn,τ

) ≤ e−4nε2
n , ∀τ with ηn,τ ≥ Cηn. (24)

Then the posterior distribution in the model (1) contracts at the rate ηn

at f0, i.e. for a sufficiently large constant M we have Πn

(
f : ‖f − f0‖ >

Mηn | Y1, . . . , Yn

) → 0, in probability if Y1, . . . , Yn follow (1) with f = f0.

4 Random Series Priors

Suppose that {φi}i∈N is an orthonormal basis of H = H0 that gives optimal
approximation relative to the scale of smoothness classes (Hs)s∈R in the sense
that the linear spaces Vj = Span{φi}i<j satisfy Assumption 2.2. Consider a
prior defined as the law of the random series

f =
M∑

i=1

fiφi, (25)

where M is a random variable in N independent from the independent ran-
dom variables f1, f2, . . . in R.
Assumption 4.1 (Random series prior).

1. The probability density function pM of M satisfies, for some positive
constants b1, b2,

e−b1k � pM (k) � e−b2k, ∀k ∈ N.

2. The variable fi has density p(·/κi)/κi, for a given Lebesgue probability
density p on R and a positive constant κi such that, for some C > 0
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and 0 < v < w < ∞, β0 > 0 and α > 0,

e−C|x|w � p(x) � e−C|x|v , (26)
i−β0/d � κi � iα. (27)

Priors of this type were studied in Arbel et al. (2013), and applied to
inverse problems in the SVD framework in Ray (2013). The assumptions on
pM , p and the scale parameters κi are mild and satisfied by many examples.
For Gaussian variables fj and degenerate M , the series (25) is a Gaussian
process.

The basis functions are connected to the operator A, because they must
generate the smoothness scale such that Assumption 2.5 holds, but this
allows considerable freedom. For instance, a basis on wavelets may be appro-
priate for differential operators that are smoothing in the Sobolev scale.
Theorem 4.2 (Random Series Prior). Let (φi)i∈N be an orthonormal basis
of H0 such that the spaces Vj = Span{φi}i<j satisfy Assumption 2.2 with
δ(j, s) = j−s/d relative to smoothness classes (Hs)s∈R as in Definition 2.1.
Assume that Assumption 2.7 holds with δd(n, s) = n−s/d and sufficiently
large Sd. Suppose Assumption 2.5 holds for the operator A, and f0 ∈ Hβ for
some β ∈ (0, S] such that β+γ > sd∨d/2. Then, for the random series prior
defined in (25) and satisfying Assumption 4.1 with β0 ≤ β, and sufficiently
large M > 0, for τ = (β + γ)(1 + 2γ/d)/(2β + 2γ + d),

Πn

(
f : ‖f − f0‖ > Mn−β/(2β+2γ+d)(log n)τ | Y (n)

)
P
(n)
f0→ 0.

The rate n−β/(2β+2γ+d) is known to be the minimax rate of estimation of
a β-regular function on a d-dimensional domain, in an inverse problem with
inverse parameter γ (see, e.g., Cohen et al. (2004)). The assumption that
δ(j, s) = j−s/d places the setup of the theorem in this setting, and hence
the rate of contraction obtained in the preceding theorem is the minimax
rate up to a logarithmic factor. The rate is adaptive to the regularity of β of
the true parameter, which is not used in the construction of the prior, apart
from the assumption that β ≥ β0. (See Ghosal et al. (2008) and Chapter 10
in Ghosal and van der Vaart (2017) for general discussion of adaptation in
the Bayesian sense.)

The proof of the theorem is deferred to Section 6; it will be based on
Theorem 3.1.
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5 Gaussian Priors and Gaussian Mixtures

If the function f in (1) is equipped with a Gaussian prior, then the corre-
sponding posterior distribution is Gaussian as well. The posterior mean is
then equal to the solution found by the method of Tikhonov-type regular-
ization (see e.g. Florens and Simoni (2016), Knapik et al. (2011), Stuart
(2010)). Because a Gaussian prior possesses a fixed smoothness level, it is
usually scaled with a hyper-parameter, leading to a mixture of Gaussian pri-
ors. In this section we derive a rate of contraction both for Gaussian priors
of fixed smoothness and for scaled Gaussian priors.

By definition a random variable F with values in a Hilbert space H0 is
Gaussian if 〈F, g〉 is normally distributed, for every g ∈ H0. It is centred if
these variables have zero means, and it has covariance operator C : H0 → H0

if E〈F, g〉2 = 〈Cg, g〉, for every g ∈ H0.
A Gaussian prior can also, and without loss of generality, be described

through a basis expansion. Given an orthonormal basis (φj)j∈N of H0 and
a sequence of independent variables Fj ∼ N(0, σ2

j ), for given σ2
j > 0 with

∑
j σ2

j < ∞, the variable F =
∑∞

j=1 Fjφj is Gaussian with covariance oper-
ator Cσg =

∑
j σ2

j gjφj if g =
∑

j gjφj .
It is customary to relate such a prior to the generator of a Hilbert scale

of spaces, as follows. We restrict to the case that σj is polynomial in 1/j.
We define spaces Hs as in Example 2.3, with bj = j1/d. The operator
Lg =

∑
j bjgjφj is an isometry L : Hs → Hs−1, for every s, and is said

to generate the Hilbert scale (Hs)s∈R. For α > d/2, the operator L−2α has
finite trace

∑
j j−2α/d and defines a Gaussian distribution on H0. Because

LsF has covariance operator L2s−2α, which has finite trace if s < α − d/2,
this variable is a proper Gaussian variable in H0, for every s < α − d/2.
Hence F is a proper Gaussian variable in Hs = L−sH0 for the same values
of s. We may describe this by saying that the prior with covariance operator
L−2α is ‘(nearly) of smoothness α − d/2’.

The following theorem gives a posterior contraction rate for this prior.
The proof is deferred to Section 6.

Theorem 5.1 (Gaussian Prior). Suppose Assumption 2.5 holds for the
operator A relative to the Hilbert scale (Hs)s∈R generated by the operator
L−1, as indicated. Assume that Assumption 2.7 holds with δd(n, s) = n−s/d

and sd = d/2. Assume f0 ∈ Hβ, for some β > 0 such that β + γ > d/2, and
let the prior be zero-mean Gaussian with covariance operator L−2α, for some
α > d/2 ∨ β such that α + γ > d. Then the posterior distribution satisfies,
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for sufficiently large M > 0,

Πn

(
f : ‖f − f0‖ > Mn−((α−d/2)∧β)/(2α+2γ) | Y (n)

)
P
(n)
f0→ 0.

The Gaussian prior in the preceding theorem has a fixed smoothness
α − d/2, which results in a contraction rate that depends on both the prior
smoothness and the smoothness β of the true function. This rate is equal
to the minimax rate n−β/(2β+2γ+d) (see Cohen et al. (2004)) only when α −
d/2 = β, i.e., when the prior smoothness α−d/2 matches the true smoothness
β. By mixing over Gaussian priors of varying smoothness, the minimax rate
can often be obtained simultaneously for a range of values β (cf. Knapik
et al. (2016), van der Vaart (2010), Szabó et al. (2013)).

In the following theorem we consider mixtures of the mean-zero Gaus-
sian priors with covariance operators τ2L−2α over the ‘hyper-parameter’ τ .
Thus the prior Π is the distribution of τF , where F is a zero-mean Gaussian
variable in H0 with covariance operator L−2α as before, and τ is an indepen-
dent scale parameter. The variable 1/τa may be taken to possess a Gamma
distribution for some given 0 < a ≤ 2, or, more generally, should satisfy the
following mild condition.

Assumption 5.2 The distribution Q of τ has support [0, ∞) and satisfies

{− log Q
(
(t, 2t)

)
� t−2, as t ↓ 0,

− log Q
(
(t, 2t)

)
� td/(α−d/2), as t → ∞.

Theorem 5.3 (Gaussian mixture prior). Suppose Assumption 2.5 holds for
the operator A relative to the Hilbert scale (Hs)s∈R generated by the operator
L−1, as indicated. Assume that Assumption 2.7 holds with δd(n, s) = n−s/d

and sd = d/2. Assume that f0 ∈ Hβ, for some β > 0 such that β + γ >
d/2, and let the prior be a mixture of the zero-mean Gaussian τ2L−2α over
the parameters τ equipped with a prior satisfying Assumption 5.2, for some
α > d/2 such that α + γ > d. Then the posterior distribution satisfies, for
sufficiently large M > 0,

Πn

(
f : ‖f − f0‖ > Mn−β/(2β+2γ+d) | Y (n)

)
P
(n)
f0→ 0.

The proof of the theorem is deferred to Section 6.



Bayesian Linear Inverse Problems in...

6 Proofs

6.1 Proof of Theorem 4.2 The theorem is a corollary to Theorem 3.1.
We shall verify the conditions with

εn 
 (log n/n)(β+γ)/(2β+2γ+d), jn 
 nd/(2β+2γ+d)(log n)(2β+2γ)/(2β+2γ+d).

Let Pj be the orthogonal projection of H on the linear span of the first j −1
basis elements φj , and define an additional sequence of integers by

in 
 (n/ log n)d/(2β+2γ+d).

By the orthogonality of the basis (φi), the function φj is orthogonal to the
space Vj spanned by (φi)i<j . Hence Pjφj = 0, so that ‖φj‖−s ≤ δ(j, s)‖φj‖ �
j−s/d, for every j and s ≥ 0, by (A1). The same estimate is also true for
negative smoothness levels s such that 0 < −s < S, directly by assumption
(7). Therefore, by the triangle inequality, we have

‖f‖s �
∑

j

|fj |js/d, if f =
∑

j

fjφj .

Furthermore, since f0 ∈ Hβ by assumption, the norm duality (5) gives that
|f0,i| = |〈f0, φi〉| ≤ ‖f0‖β‖φi‖−β � i−β/d.

First we verify the prior condition (17) of the direct problem. By Lemma
2.9, ‖Af − Af0‖n 
 ‖In(Af − Af0)‖. By several applications of the triangle
inequality, since β + γ ∈ (sd, Sd), ‖Af‖β+γ 
 ‖f‖β and ‖Af − Af0‖ 

‖f − f0‖−γ ,

‖In(Af− Af0)‖ ≤ ‖InAf − Af‖ + ‖InAf0 − Af0‖ + ‖Af − Af0‖
� δd(n, β + γ)

(‖f‖β + ‖f0‖β

)
+ ‖f − Pin

f0‖−γ + ‖f0 − Pin
f0‖−γ

� δd(n, β + γ)‖f − Pin
f0‖β + ‖f − Pin

f0‖−γ

+δd(n, β + γ)
(‖Pin

f0‖β + ‖f0‖β

)
+ δ(in, γ)δ(in, β)‖f0‖β,

by (A1). The last term is of the order δ(in, γ)δ(in, β) = i
−(γ+β)/d
n 
 εn,

while the second last term is bounded above by δd(n, β + γ)
(‖f0‖/δ(in, β) +

‖f0‖β

) � εn, if (β + γ)2 > βd/2. For f =
∑in−1

i=1 fiφi ∈ Vin
, the sum of the

first two terms on the right is bounded above by

δd(n, β + γ)
in−1∑

i=1

|fi − f0,i|iβ/d +
in−1∑

i=1

|fi − f0,i|i−γ/d �
in−1∑

i=1

|fi − f0,i|i−γ/d.
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By arguments as in Ray (2013), it is shown in Section 8.1 of Gugushvili et al.
(2020) that the right side of this equation is bounded above by εn with prior
probability at least e−nε2

n/2. Since also Π(M = in − 1) ≥ e−b1in ≥ e−nε2
n/2, it

follows that (17) is satisfied.
Next we verify (18). Since Π(M ≥ jn) ≤ e−b′

2jn ≤ e−4nε2
n , by

Assumption 4.1, we may intersect the event in (18) with the event M < jn.
For M < j the random series f =

∑M
i=1 fiφi is contained in Vj and the

Galerkin approximation RjAf of f is exact. Since f (j,n) = RjInAf , the
triangle inequality followed by (A3) and (11) give, for s + γ ∈ (sd, Sd) and
f ∈ Vj , in view of (7),

‖f (j,n) − f‖ ≤ ‖RjInAf − RjAf‖ + ‖RjAf − f‖
≤ δd(n, s + γ)

δ(j, γ)
‖f‖s + 0 ≤ δd(n, s + γ)

δ(j, γ)δ(j, s)
‖f‖.

We conclude that it suffices to prove that

Π
(jn−1∑

i=1

f2
i > η2n

( n

jn

)(2γ+2s)/d) ≤ e−4nε2
n . (28)

By Assumption 4.1 we have that

E
jn−1∑

i=1

f2
i 


jn−1∑

i=1

κ2
i � j2α+1

n .

E
∣
∣
∣
jn−1∑

i=1

(f2
i − Ef2

i )
∣
∣
∣ �

√
√
√
√

jn−1∑

i=1

κ4
i � j2α+1/2

n .

Furthermore, by the tail bound on the density p we further have that the
ψv/2 Orlicz norm of f2

i is bounded above by κ2
i . Therefore, (see e.g. Propo-

sition A.1.6 in van der Vaart and Wellner (1996)), for q conjugate to v/2,

∥
∥
∥

jn−1∑

i=1

(f2
i − Ef2

i )
∥
∥
∥

ψv/2

�
{

j
2α+1/2
n + (log jn)2/v maxi<jn

κ2
i , if v ≤ 2,

j
2α+1/2
n + (

∑
i<jn

κ2q
i )1/q, if 2 < v ≤ 4,

In both cases the first term j
2α+1/2
n dominates. Provided

η2n(n/jn)(2γ+2s)/d = n(4(s+γ)(β+γ)/d−2β)/(2β+2γ+d)(log n)a � j2α+1
n ,
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we can first centre
∑jn−1

i=1 f2
i at mean zero, and next bound the tail of the

centred variable with the help of the Orlicz norm. This will give a bound on
the left side of (28) of the type

1
ψv/2

(n(4(s+γ)(β+γ)/d−2β)/(2β+2γ+d)(log n)a

j
2α+1/2
n

)
.

For sufficiently large s the argument is an arbitrarily large power of n times
a logarithmic factor and hence this is easily smaller than e−4nε2

n . Thus con-
dition (18) holds provided s, which was required to belong to (sd−γ, Sd−γ),
can be chosen sufficiently large. This can be worked out to lead to the require-
ment that 2(β + γ)(Sd + γ) > d2(v−1 ∨ (α + 1/2)) + βd.

6.2 Proof of Theorem 5.1 The theorem is a corollary to Theorem 3.1
with

εn 
 n−(β∧(α−d/2)+γ)/(2α+2γ). (29)

We verify that εn satisfies the prior mass condition (17) of the direct problem,
and next identify ηn from the other prior mass condition (18).

In both cases we reduce the problem to the case of continuous observa-
tions by estimating the interpolation error, using the following lemma.
Lemma 6.1 Under the assumptions of Theorem 5.1, there exists a constant
c > 0 so that for s < α − d/2 with s + γ ∈ (sd, Sd) and any t > 0,

Π
(‖InAf − Af‖ > t

)
� e−ct2n(2s+2γ)/d

.

Proof Since the prior of f is a centred Gaussian distribution with covariance
operator L−2α, we have that f ∈ Hs, almost surely, for s < α − d/2, and
consequently, Af ∈ Gs+γ almost surely. Assumptions (11) and (9) give

‖InAf −Af‖ � δd(n, s+γ)‖Af‖s+γ 
 δd(n, s+γ)‖f‖s = δd(n, s+γ)‖Lsf‖.

The variable LsF , for F ∼ Π, possesses a centred Gaussian distribution in
H0 with covariance operator L−2(α−s), which is finite trace since α−s > d/2.
Therefore, Borell’s inequality gives Π

(‖LsF‖ > t
) ≤ e−ct2 , for every t > 0

and a suitable constant c > 0. Together with the preceding display, this
implies the lemma.

For the proof of (17), we first note that ‖Af −Af0‖n 
 ‖In(Af −Af0)‖,
by Lemma 2.9. Next, by the triangle inequality,

‖In(Af − Af0)‖ ≤ ‖InAf − Af‖ + ‖InAf0 − Af0‖ + ‖Af − Af0‖. (30)
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Since Af0 ∈ Gβ+γ and β +γ > d/2 = sd, the middle term satisfies ‖InAf0 −
Af0‖ ≤ δd(n, β+γ)‖Af0‖β+γ 
 n−(β+γ)/d � n−(β+γ)/(2α+2γ) ≤ εn, if α+γ >
d/2, and hence is negligible in the context of (17).

Because α + γ > d by assumption, we have d/2 − γ < α − d/2. For
s in the interval (d/2 − γ, < α − d/2), we have s + γ > d/2 = sd and
hence Lemma 6.1 gives that Π

(‖InAf − Af‖ > dεn

)
is bounded above by

e−c1ε2
nn(2s+2γ)/d � e−nε2

n , since s + γ > d/2.
Using the inequality Pr(X + Y < ε) ≥ Pr(X < ε/2) − Pr(Y > ε/2),

for any random variables X, Y , and (30), we see the validity of (17) if
Π

(‖Af − Af0‖ < εn

) ≥ e−nε2
n . This prior estimate is the same as the prior

mass condition for the white noise model, which was studied in Gugushvili
et al. (2020). The prior estimate follows from the following lemma, which is
Lemma 9.2 from the latter paper.
Lemma 6.2 Under the assumptions of Theorem 5.1, for f0 ∈ Hβ, as ε ↓ 0,

− log Π
(
f : ‖Af − Af0‖ < ε

)
�

{
ε−d/(α+γ−d/2), if d/2 < α ≤ β + d/2,

ε−(2α−2β)/(β+γ), if α > β + d/2.

The next step of the proof is to bound the prior probability in (18),
which involves the discrete Galerkin approximation f (j,n) = RjInAf , where
Rj = A−1Qj . By the triangle inequality,

‖f (j,n) − f‖ ≤ ‖RjAf − f‖ + ‖RjInAf − RjAf‖
≤ ‖f (j) − f‖ +

1
δ(j, γ)

‖InAf − Af‖, (31)

by (A3) and the definition of f (j) = RjAf . The contribution of the second
term on the right to (18) can be bounded by Π

(‖InAf−Af‖ > δ(jn, γ)ηn

) ≤
Π

(‖InAf−Af‖ > εn

)
, because δ(jn, γ)ηn ≥ εn, by (15). The last probability

was seen to be o(e−nε2
n) in the preceding. It follows that in the verification of

(18) the discrete Galerkin solution f (jn,n) may be replaced by the continuous
Galerkin solution f (jn). The prior estimates for this continuous case are given
by the following lemma, which is Lemma 9.3 in Gugushvili et al. (2020). (In
its proof ‖(RjA − I)L−αφ‖0 should be bounded by ‖L−αφ0‖0 ≤ δ(i, α).)
Lemma 6.3 Under the assumptions of Theorem 5.1, there exist a, b > 0,
such that for every j ∈ N and t > 0,

Π
(
f : ‖f (j) − f‖ > t + aj1/2−α/d

) ≤ e−bt2j2α/d

.
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For t2 = nε2n/(4bj
2α/d
n ) the bound in the preceding lemma becomes

e−4nε2
n . Hence (18) is satisfied for

ηn �
√

nεn/jα/d
n + j1/2−α/d

n .

Here we choose εn the minimal solution that satisfies the direct prior mass
condition (17), given in (29). Next we solve for ηn under the constraints,
(15) and (16). The first of these constraints, jn ≤ nε2n, shows that the first
term on the right side of the preceding display always dominates the second
term. Therefore, we obtain the requirements jn ≤ nε2n and

ηn ≥ √
n n−(β∧(α−d/2)+γ)/(2α+2γ),

ηn ≥ n−(β∧(α−d/2)+γ)/(2α+2γ)jγ/d
n ,

ηn ≥ j−β/d
n .

Depending on the relation between α and β + d/2, two situations arise:

1. α < β + d/2. We choose jn 
 nd/(2α+2γ) = nε2n and then see that
the first two requirements in the preceding display both reduce to
ηn ≥ n−(α−d/2)/(2α+2γ), while the third becomes ηn ≥ n−β/(2α+2γ) and
becomes inactive.

2. α > β + d/2. We choose jn 
 nd/(2α+2γ) ≤ nε2n, and then see that all
three requirements reduce to ηn ≥ n−β/(2α+2γ).

6.3 Proof of Theorem 5.3 Theorem 5.3 is a corollary of Theorem 3.2,
with the choices

ηn 
 n−β/(2β+2γ+d), εn 
 n−(β+γ)/(2β+2γ+d),

jn 
 nε2n = nd/(2β+2γ+d), ηn,τ 
 τ n(d/2−α)/(2β+2γ+d).

Conditions (14), (15), and (16) are satisfied for these choices. Condition (24)
is exactly the same as in the continuous observation scheme and is verified
in Gugushvili et al. (2020). It remains to verify (17) and (23).

For (17), we use that ‖Af −Af0‖n 
 ‖In(Af −Af0)‖ and next (30). The
middle term on the right is o(εn). Therefore, it suffices to show, for some τn,

∫ 2τn

τn

Πτ

(‖InAf − Af‖ + ‖Af − Af0‖ < εn

)
dQ(τ) ≥ e−nε2

n .
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In Gugushvili et al. (2020) this inequality is shown to be true without the
term ‖InAf−Af‖, for τn = n−(α−d/2−β)/(2β+2γ+d), and where we can replace
εn by εn/2. Thus it suffices to show that

sup
τn<τ<2τn

Πτ

(‖InAf − Af‖ > εn/2
)

= o(e−nε2
n).

Because Πτ is a scaling of Π = Π1, the left side is bounded above
by Π

(‖InAf − Af‖ > εn/(2τn)
)
. By Lemma 6.1 this is o(e−nε2

n) if
(εn/τn)2n(2s+2γ)/d � nε2n, where s < α − d/2 can be chosen arbitrarily
close to α−d/2. (As noted in the preceding section, it can be chosen so that
s + γ > d/2, since α + γ > d, by assumption.) This leads to the inequality
α + γ > (d/2)(2β + γ + d)/(2β + 2γ), which is implied by the assumptions
α + γ > d and β + γ > d/2.

For the proof of (23), we employ (31). As the continuous time equivalent
that replaces f (j,n) by f (j), is shown to be true in Gugushvili et al. (2020),
it suffices to show that, for every τ ,

Πτ

( 1
δ(jn, γ)

‖InAf − Af‖ > ηn,τ

)
≤ e−4nε2

n .

By Lemma 6.1 this true if (ηn,τ/τ)2j−2γ/d
n n(2s+2γ)/d � nε2n. Since (ηn,τ/τ)

j
−γ/d
n 
 εn/τn, this reduces to the same inequality as in the preceding para-

graph.
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Appendix A Galerkin Projection

In this section we state for easy reference two results on the Galerkin method.
Proofs may be found in the literature, or exactly in the present form in
Gugushvili et al. (2020).
Lemma 6.4 If Vj is a finite-dimensional space as in Assumption 2.2 such
that (6) and (7) hold, then, for Pj : H0 → Vj the orthogonal projection onto
Vj, and 0 ≤ s, t < S,

‖f − Pjf‖−t � δ(j, t)δ(j, s)‖f‖s, f ∈ H0, (A1)

‖g‖s � 1
δ(j, s)δ(j, t)

‖g‖−t, g ∈ Vj . (A2)

Lemma 6.5 If Vj is a finite-dimensional space as in Assumption 2.2 such
that (6) and (7) hold, and A : H0 → G is a bounded linear operator satisfying
‖Af‖ 
 ‖f‖−γ for every f ∈ H0, then the norms of the operators Rj : G →
H0 and RjA : H0 → H0 satisfy

‖Rj‖ �A
1

δ(j, γ)
, (A3)

‖RjA‖ �A 1. (A4)

Furthermore, for f ∈ Hs the Galerkin solution f (j) ∈ Vj to Af satisfies

‖f (j) − f‖ �A δ(j, s) ‖f‖s. (A5)
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