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Abstract

In this paper we derive a characterization of the distribution of the number
of exceedances among the components of a random vector in terms of order
statistics of generators of D-norms (GOD). The computation of the fragility
index is an immediate consequence.
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1 Introduction

Let X = (X1, . . . , Xd) be a random vector that realizes in R
d. We are

interested in the number of exceedances among the components X1, . . . , Xd

above high thresholds. Precisely, choose x=(x1, . . . , xd) ∈ R
d, k ∈ {1, . . . , d}

and put Nx :=
∑d

i=1 1(xi,∞)(Xi). We want to analyze in this paper the
probability

P (Xi > xifor at least k of the components i = 1, . . . , d) = P (Nx ≥ k)

for a large x, i.e., each component xi of x is large.
Suppose the vector x = (x, . . . , x) ∈ R

d has constant entry x ∈ R and
put Nx := N(x,...,x). The fragility index (FI) corresponding to X is the
asymptotic conditional expected number of exceedances, given that there is
at least one exceedance, i.e., FI = limx↗E(Nx | Nx > 0).

The FI was introduced by Geluk et al. (2007) to measure the stability of
the stochastic system {X1, . . . , Xd}. The system is called stable if FI = 1,
otherwise it is called fragile.

In Falk and Tichy (2012) the asymptotic conditional distribution pk :=
limx↗ P (Nx = k | Nx > 0) was investigated under the condition that the
components X1, . . . , Xd are identically distributed.
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It turned out that this asymptotic conditional distribution of exceedance
counts (ACDEC) exists, if the copula C, which corresponds to X by Sklar’s
theorem (c.f. Sklar (1959), Sklar (1996)), is in the max-domain of attraction
of a multivariate extreme value distribution (EVD) G. This means that, for
any x = (x1, . . . , xd) ≤ 0 ∈ R

d,

Cn
(
1 +

x1
n
, . . . , 1 +

xd
n

)
→n→∞ G(x), (1.1)

where G is a non degenerate distribution function (df) on R
d. This is quite

a mild condition, satisfied by almost every textbook copula C, c.f. Section
3.3 in Falk (2019).

Falk and Tichy (2011) investigated the ACDEC, dropping the assump-
tion that the margins X1, . . . , Xd are identically distributed.

Recent results on D-norms (Falk (2019), Falk and Fuller (2021)) enable
in the present paper the representation of the distribution of Nx in terms
of order statistics corresponding to the generator of a D-norm, introduced
below.

Let Z1, . . . , Zd be random variables with the properties

Zi ≥ 0, E(Zi) = 1, 1 ≤ i ≤ d.

Then

‖x‖D := E

(

max
1≤i≤d

(|xi|Zi)

)

, x = (x1, . . . , xd) ∈ R
d,

defines a norm on R
d, called D-norm, and Z = (Z1, . . . , Zd) is a generator

of the D-norm (GOD).
D-norms are the skeleton of multivariate extreme value theory (MEVT)

as elaborated in detail in Falk (2019). Suppose, for example, that the random
vector X = (X1, . . . , Xd) follows a standard multivariate Generalized Pareto
distribution (GPD). In this case there exists a D-norm ‖·‖D on R

d such that

P (X ≤ x) = 1− ‖x‖D ,

for all x in a left neighborhood of 0 = (0, . . . , 0) ∈ R
d, i.e., for all x ∈ [ε, 0]d

with some ε < 0. The characteristic property of a GPD is its excursion
stability or exceedance stability, see Proposition 3.1.2 and Remark 3.1.3 in
Falk (2019). This stability explains the crucial role of GPD in MEVT. In
what follows, all operations on vectors such as x ≤ y etc. are always meant
componentwise.
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According to equation (2.16) in Falk (2019), the survival function of a
standard GPD is given by

P (X > x) = P (X ≥ x) = �� x ��D := E

(

min
1≤i≤d

(|xi|Zi)

)

, x ∈ [ε, 0]d,

where ��x ��D is the dual D-norm function pertaining to ‖·‖D. Note that the
df of X is continuous on [ε, 0]d and, thus, P (X ≥ x) = P (X > x) for
x ∈ [ε, 0]d.

The generator Z of ‖·‖D is not uniquely determined. But we know from
Corollary 1.6.3 in Falk (2019) that the dual D-norm function �� x ��D, which
corresponds to ‖·‖D, is independent of the particular generator Z of ‖·‖D.

So far we have considered the maximum max1≤i≤d(|xi|Zi) and the mini-
mum min1≤i≤d(|xi|Zi), leading to the D-norm ‖x‖D and dual D-norm ��x ��D
by taking expectations. But we can clearly order the set {|x1|Z1, . . . , |xd|Zd}
completely

min
1≤i≤d

(|xi|Zi) ≤ 2nd smallest value among {|x1|Z1, . . . , |xd|Zd}

≤ 3rd smallest value among {|x1|Z1, . . . , |xd|Zd}
...

≤ max
1≤i≤d

(|xi|Zi)

and put, for k = 1, . . . , d,

‖x‖D,(k) := E (k-th smallest value among {|x1|Z1, . . . , |xd|Zd}) .

We call this sequence ‖x‖D,(1) ≤ ‖x‖D,(2) ≤ · · · ≤ ‖x‖D,(d) of increasing
functions ordered D-norms. In particular

‖x‖D,(1) = �� x ��D

is the dual D-norm function, and

‖x‖D,(d) = ‖x‖D
is the D-norm. Note that only ‖x‖D,(k) with k = d is actually a norm.

We have, for each k = 1, . . . , d,

‖tx‖D,(k) = t ‖x‖D,(k) , t ≥ 0, x ∈ R
d,

i.e., ‖·‖D,(k) is homogeneous of order 1, and it is a continuous function on R
d,

with ‖0‖D,(k) = 0 for each k = 1, . . . , d. The following result is, therefore,
an immediate consequence of Theorem 3.5 in Falk and Fuller (2021).
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Lemma 1.1. For each k = 1, . . . , d, the value ‖x‖D,(k) does not depend
on the choice of the particular generator Z of ‖·‖D.

For a vector with constant entry x = (x, . . . , x) ∈ R
d we obtain

‖x‖D,(k) = |x|E(k-th smallest value among {Z1, . . . , Zd})
= |x|E (Zk:d) ,

where Z1:d ≤ · · · ≤ Zd:d denote the ordered values of Z1, . . . , Zd, i.e., the
corresponding usual order statistics. This links the analysis of multivariate
exceedances with the theory of univariate order statistics.

Though it has received much attention in the literature, the computation
of the exact value E(Zk:d) of an arbitrary order statistic is by no means
obvious, even if Z1, . . . , Zd are independent and identically distributed. The
exact value is known only in a few cases. Put, for instance, Zi := 2Ui,
1 ≤ i ≤ d, where U1, . . . , Ud are independent random variables with common
uniform distribution on (0, 1). In this case we have E(Zk:d) = 2k/(d + 1),
see equation (1.7.3) in Reiss (1989).

In the general case, where Z1, . . . , Zd are not necessarily independent and
identically distributed, the exact value E(Zk:d) is in general inaccessible. But
a Monte-Carlo simulation would provide an obvious and easy to implement
approximation.

The main result in Section 2 is Theorem 2.1, where we establish, for each
1 ≤ k ≤ d, the equation

P (Xi > xi for at least k of the components 1 ≤ i ≤ d) = ‖x‖D,(d−k+1)

for x in a left neighborhood of 0 ∈ R
d, if X = (X1, . . . , Xd) follows a stan-

dard GPD. From this result we can establish in Eq. 2.1 the exact distribution
of the number Nx of exceedances. For x = (x, . . . , x) with constant entry x,
we obtain in Eq. 2.3 the corresponding FI.

In Section 3 we extend the results of Section 2 to a random vector X,
whose copula is in a proper neighborhood of a shifted GPD, see Eq. 3.1.
The main result is Theorem 3.1. It leads to the representation (3.5) of the
probability that Xi > xi for at least k components under the mild condition
that that the copula corresponding to the random vector X = (X1, . . . , Xd)
is in the max-domain of attraction of a multivariate max-stable df G. Note
that this condition does not require an absolutely continuously distributed
random vector X.
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2 Main Result for Standard GPD

The following result reveals the particular significance of ordered D-
norms concerning multivariate exceedances of standard GPD.

Theorem 2.1. Suppose the random vector X = (X1, . . . , Xd) follows a
standard GPD with corresponding D-norm ‖·‖D on R

d. Then we have

P (Xi > xi for at least k of the components 1 ≤ i ≤ d)

= P (Nx ≥ k)

= ‖x‖D,(d−k+1) ,

for any x = (x1, . . . , xd) in a left neighborhood of 0 ∈ R
d.

The assertion is obvious for k = d, because ‖·‖D,(1) = �� · ��D. For k = 1
we obtain

P (Xi > xi for at least one of the components 1 ≤ i ≤ d)

= 1− P (X ≤ x) = ‖x‖D = ‖x‖D,(d) ,

for x in a left neighborhood of 0 ∈ R
d.

Proof of Theorem 2.1. According to equation (2.14) in Falk (2019),
we can suppose the representation

X = −U

(
1

Z1
, . . . ,

1

Zd

)

,

where the random variable U is on (0, 1) uniformly distributed and indepen-
dent of Z. We can also suppose by Theorem 1.7.1 in Falk (2019) that the
generator Z is bounded.

Conditioning on U = u, we obtain for x ≤ 0 ∈ R
d close enough to 0, by

the boundedness of Z,

P (Xi > xi for at least k of the components 1 ≤ i ≤ d)

= P (U < |xi|Zi for at least k of the components 1 ≤ i ≤ d)

=

∫ 1

0
P (u < |xi|Zi for at least k of the components 1 ≤ i ≤ d) du

=

∫ 1

0
P
(
(d− k + 1)-th smallest value among {|x1|Z1, . . . , |xd|Zd} ≥ u

)
du

=

∫ ∞

0
P
(
(d−k+1)-th smallest value among {|x1|Z1, . . . , |xd|Zd} ≥ u

)
du

= E((d− k + 1)-th smallest value among {|x1|Z1, . . . , |xd|Zd})
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= ‖x‖D,(d−k+1) ,

using the general equation E(Y ) =
∫∞
0 P (Y > u) du with a random variable

Y ≥ 0.

We obtain from the previous result the exact distribution of the number
of exceedances for x in a left neighborhood of 0 ∈ R

d if X = (X1, . . . , Xd)
follows a standard GPD:

P (Nx = k) = P (Nx ≥ k)− P (Nx ≥ k − 1)

=

{
‖x‖D,(d−k+1) − ‖x‖D,(d−k) , k = 1, . . . , d− 1,

‖x‖D,(1) = �� x ��D, k = d,

=: px,D(k). (2.1)

With

px,D(0) := P (Nx = 0) = P (Xi ≤ xi for 1 ≤ i ≤ d) = 1− ‖x‖D ,

the numbers px,D(k), k = 0, . . . , d, define the distribution of the exceedance
counts Nx on {0, 1, . . . , d}.

In case of a vector x = (x, . . . , x) ∈ R
d with constant entries, we obtain,

with Z0:d := 0,

px,D(k) := p(x,...,x),D(k)

=

{
|x|

(
E(Zd−k+1:d)− E(Zd−k:d)

)
, 1 ≤ k ≤ d,

1− |x|E(Zd:d), k = 0,
. (2.2)

This reveals a crucial role of the spacings Zd−k+1:d − Zk−d:d in the analysis
of multivariate exceedances.

The expectation of Nx is by Eq. 2.2

E(Nx) =
d∑

k=1

kpx,D(k)

= |x|
d∑

k=1

k
(
E(Zd−k+1:d)− E(Zd−k:d)

)

= |x|
d∑

k=1

E(Zd−(k−1):d)

= |x|E
(

d∑

k=1

Zd−(k−1):d

)
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= |x|E
(

d∑

k=1

Zk

)

= d |x|

by the fact that E(Zk) = 1, 1 ≤ k ≤ d. The fragility index is, therefore,
with x < 0 close enough to zero,

FI = E(Nx | Nx > 0)

=
E(Nx)

1− P (Nx = 0)

=
d |x|

1− px,D(0)

=
d

E (Zd:d)
=

d

‖1‖D
. (2.3)

Note that in this case of a standard GPD, the number E(Nx | Nx > 0) does
not depend on x, i.e., the FI does not require a limit. The number ‖1‖D is
known as the extremal coefficient, introduced by Smith (1990). It measures
the tail dependence of the components X1, . . . , Xd by just one number. If
we have ‖1‖D = d, then there is tail independence, and in case ‖1‖D = 1 we
have complete dependence, see Falk (2019), equation (2.28).

Example 2.1. Take, for example, the Dirichlet D-norm ‖·‖D(α) with pa-
rameter α = 1, see Example 1.7.4 in Falk (2019). Its generator is Z =
(Z1, . . . , Zd), where Z1, . . . , Zd are independent and identically standard ex-
ponential distributed random variable. We have

E (Zk:d) =
d∑

j=d−k+1

1

j
, 1 ≤ k ≤ d,

see equation (1.7.7) in Reiss (1989) and, thus, we obtain for a vector with
constant entry x = (x, . . . , x) ∈ R

d

px,D(k) =

{ |x|
k , 1 ≤ k ≤ d

1− |x|
∑d

k=1
1
k , k = 0.

Recall that the previous considerations require that the vector x is in a left
neighborhood of 0 ∈ R

d. Otherwise, with arbitrary x �= 0, the preceding
equation could not be true.

The fragility index is consequently,

FI =
d

E(Zd:d)
=

d
∑d

k=1
1
k

1657



M. Falk

with the extremal coefficient

‖1‖D =
d∑

k=1

1

k
.

Example 2.2. Let U1, . . . , Ud be independent and on (0, 1) uniformly
distributed random variables, i.e., P (Ui ≤ u) = u, u ∈ [0, 1], 1 ≤ i ≤ d.
Then Z = (Z1, . . . , Zd) := 2(U1, . . . , Ud) is a generator of a D-norm ‖·‖D.
From the fact that E(Uk:d) = k/(d + 1), 1 ≤ k ≤ d, see equation (1.7.3) in
Reiss (1989), we obtain E(Zk:d) = 2k/(d+ 1) and, thus, by Eq. 2.2,

px,D(k) =

{
2|x|
d+1 , 1 ≤ k ≤ d,

1− 2 |x| d
d+1 , k = 0.

In this case, the conditional probability that we have exactly k exceedances
above x among X1, . . . , Xd, given that there is at least one, is by Eq. 2.1,

P (Nx = k | Nx ≥ 1) =
P (Nx = k)

P (Nx ≥ 1)

=
px,D(k)

1− px,D(0)
=

1

d
, 1 ≤ k ≤ d,

which is the uniform distribution on the set of integers {1, . . . , d}. The
fragility index is FI = (d + 1)/2 and the extremal coefficient is ‖1‖D =
1/E(Zd:d) = (d+ 1)/2d →d→∞ 1/2.

Suppose that the copula C of the random vector Y = (Y1, . . . , Yd) is
a generalized Pareto copula (GPC), i.e., there exists a D-norm ‖·‖D on R

d

such that
C(u) = 1− ‖1− u‖D , u0 ≤ u ≤ 1 ∈ R

d,

for some u0 < 1 ∈ R
d, see Section 3.1 in Falk (2019). Then we have equality

in distribution
Y =D

(
F−1
1 (U1), . . . , F

−1
d (Ud)

)
,

where Fi is the df of Yi, 1 ≤ i ≤ d, and the random vector U = (U1, . . . , Ud)
follows the GPC C. Note that the random vector X := U − 1 then follows
a GPD with D-norm ‖·‖D.

From the general equivalence F−1(q) > t ⇐⇒ q > F (t), valid for
q ∈ (0, 1), t ∈ R and an arbitrary univariate df F , we obtain

P (Yi > yi for at least k of the components 1 ≤ i ≤ d)

= P (Ui > Fi(yi) for at least k of the components 1 ≤ i ≤ d)

1658



Exceedance counts...

= P (Ui − 1 > Fi(yi)− 1 for at least k of the components 1 ≤ i ≤ d)

= P (Xi > Fi(yi)− 1 for at least k of the components 1 ≤ i ≤ d)

= ‖(1− F1(y1), . . . , 1− Fd(yd))‖D,(d−k+1) ,

for y large enough.

3 Extension to Multivariate Max-Domain of Attraction

In the next step we extend the considerations in the previous section to
a copula C, which satisfies the max-domain of attraction condition (1.1). In
this case there exists a D-norm ‖·‖D on R

d with

lim
t↓0

1− C(1 + tx)

t
= ‖x‖D , x ≤ 0 ∈ R

d, (3.1)

and the EVD G is given by

G(x) = exp (−‖x‖D) , x ≤ 0 ∈ R
d,

see Corollary 3.1.6 in Falk (2019).

Example 3.1. Take an arbitrary Archimedean copula on R
d

Cϕ(u) = ϕ−1
(
ϕ(u1) + · · ·+ ϕ(ud)

)
, u = (u1, . . . , ud) ∈ (0, 1)d,

where ϕ is a continuous and strictly increasing function from (0, 1] to [0,∞)
with ϕ(1) = 0, see, for example, McNeil and Nešlehová (2009), Theorem 2.2.
Suppose that

p := −lim
s↓0

sϕ′(1− s)

ϕ(1− s)

exists in [1,∞]. Then Cϕ satisfies condition (3.1) with the D-norm ‖·‖D
being the logistic one ‖x‖D = ‖x‖p = (

∑p
i=1 |xi|

p)
1/p

, with parameter p ∈
[1,∞] and the convention ‖x‖∞ = max1≤i≤d |xi|, see Corollary 3.1.15 in Falk
(2019).

Theorem 3.1. Suppose that the random vector U = (U1, . . . , Ud) follows
a copula C, which satisfies Eq. 3.1. Then we have, for each k = 1, . . . , d,

P
(
Ui > 1 + txi for at least k of the components 1 ≤ i ≤ d

)

= t ‖x‖D,(d−k+1) + o(t)

as t ↓ 0, for each x = (x1, . . . , xd) ≤ 0 ∈ R
d.
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The preceding result implies for a random vector U , whose copula satis-
fies Eq. 3.1,

P
(
Ui > 1 + xi for at least k of the components 1 ≤ i ≤ d

)

= ‖x‖
∥
∥
∥
∥

x

‖x‖

∥
∥
∥
∥
D,(d−k+1)

+ o(‖x‖), (3.2)

x ≤ 0 ∈ R
d, x �= 0, as ‖x‖ → 0, with an arbitrary norm ‖·‖ on R

d.
By repeating the arguments in Section 2, we obtain for the FI correspond-

ing to Ntx =
∑d

i=1 1(1+tx,1](Ui), x < 0, if the copula C of U = (U1, . . . , Ud)
satisfies condition (3.1),

FI = lim
t↓0

E(Ntx)

1− P (Ntx = 0)
=

d

‖1‖d
. (3.3)

This was already observed in Falk and Tichy (2012), Theorem 4.1.
The following representation of ‖x‖D,(d−k+1) will be a crucial tool in

the derivation of Theorem 3.1. We briefly explain its notation. By ei =
(0, . . . , 0, 1, 0, . . . , 0) ∈ R

d we denote the i-th unit vector in R
d, i = 1, . . . , d.

Any x = (x1, . . . , xd) ∈ R
d can be represented as x =

∑d
i=1 xiei. Choose a

subset A ⊂ {1, . . . , d}. Then we set

xA :=
∑

i∈A
xiei ∈ R

d,

with the convention x∅ = 0 ∈ R
d. By |A| we denote the number of elements

in a set A.

Lemma 3.1. We have for any D-norm ‖·‖D on R
d and each k = 1, . . . , d

‖x‖D,(d−k+1)

=
d∑

m=k

∑

T⊂{1,...,d}, |T |=m

∑

S⊂T

(−1)|S|−1
∥
∥xS∪T �

∥
∥
D
, x ∈ R

d. (3.4)

The preceding probabilistic result entails the following non probabilistic
representation of the (d− k + 1)-th smallest value among arbitrary nonneg-
ative numbers x1, . . . , xd in terms of maxima of subsets of {x1, . . . , xd}.

Choosing the particular D-norm ‖·‖D = ‖·‖∞, with constant generator
Z = (1, . . . , 1), Lemma 3.1 implies, with x = (x1, . . . , xd) ≥ 0 ∈ R

d,

the (d− k + 1)-th smallest value among x1, . . . , xd
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=
d∑

m=k

∑

T⊂{1,...,d}, |T |=m

∑

S⊂T

(−1)|S|−1max
S∪T �

xi, k = 1, . . . , d.

In particular for k = d we obtain

min
1≤i≤d

xi =
∑

S⊂{1,...,d}
(−1)|S|−1max

i∈S
xi,

which is a well known representation of a minimum of nonnegative numbers
in terms of maxima, c.f. Lemma 1.6.1 in Falk (2019).

Proof of Lemma 3.1. We present a probabilistic proof of Lemma 3.1.
Let X = (X1, . . . , Xd) follow a standard GPD with D-norm ‖·‖D, i.e.,

P (X ≤ x) = 1− ‖x‖D
for all x ∈ [ε, 0]d, with some ε < 0. For such x = (x1, . . . , xd) we obtain
from Theorem 2.1, with k ∈ {1, . . . , d} ,

‖x‖D,(d−k+1) = P

(
d∑

i=1

1(xi,0](Xi) ≥ k

)

=
d∑

m=k

P

(
d∑

i=1

1(xi,0](Xi) = m

)

=
d∑

m=1

∑

T⊂{1,...,d} |T |=m

P
(
Xi > xi, i ∈ T ; Xj ≤ xj , j ∈ T �

)
.

The Inclusion-Exclusion Principle (see Corollary 1.6.2 in Falk (2019)) implies

P
(
Xi > xi, i ∈ T ; Xj ≤ xj , j ∈ T �

)

= P
(
Xi > xi, i ∈ T | Xj ≤ xj , j ∈ T �

)
P
(
Xj ≤ xj , j ∈ T �

)

=

(

1− P

(
⋃

i∈T
{Xi ≤ xi}

∣
∣
∣Xj ≤ xj , j ∈ T �

))

P
(
Xj ≤ xj , j ∈ T �

)

=

⎛

⎝1−
∑

∅�=S⊂T

(−1)|S|−1P
(
Xi ≤ xi, i ∈ S | Xj ≤ xj , j ∈ T �

)
⎞

⎠

×P
(
Xj ≤ xj , j ∈ T �

)

= P
(
Xj≤xj , j∈T �

)
−

∑

∅�=S⊂T

(−1)|S|−1P
(
Xi≤xi, i ∈ S; Xj≤xj , j ∈ T �

)
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=
∑

S⊂T

(−1)|S|P
(
Xi ≤ xi, i ∈ S; Xj ≤ xj , j ∈ T �

)

=
∑

S⊂T

(−1)|S|
(
1−

∥
∥xS∪T �

∥
∥
D

)

=
∑

S⊂T

(−1)|S|−1
∥
∥xS∪T �

∥
∥
D
,

where the final equation is due to the fact that
∑

S⊂T (−1)|S| = 0, see equa-
tion (1.10) in Falk (2019).

Altogether we have shown that, for x ∈ [ε, 0]d,

‖x‖D,(d−k+1)

=
d∑

m=k

∑

T⊂{1,...,d}, |T |=m

∑

S⊂T

(−1)|S|−1
∥
∥xS∪T �

∥
∥
D
, x ∈ R

d.

The fact that ‖tx‖D,(d−k+1) = t ‖x‖D,(d−k+1) and
∥
∥txS∪T �

∥
∥
D
= t

∥
∥xS∪T �

∥
∥
D

for t ≥ 0 implies that the above equation is true for each x ∈ R
d.

Now we can prove Theorem 3.1 in a straightforward way.
Proof of Theorem 3.1. Let the random vector U = (U1, . . . , Ud)

follow a copula C, which satisfies Eq. 3.1. Choose k ∈ {1, . . . , d} and x =
(x1, . . . , xd) ≤ 0 ∈ R

d. By repeating arguments in the proof of Lemma 3.1
we obtain

P

(
d∑

i=1

1(1+txi,1](Ui) ≥ k

)

=
d∑

m=k

P

(
d∑

i=1

1(1+txi,1](Ui) = m

)

=
d∑

m=k

∑

T⊂{1,...,d},|T |=m

P
(
Ui > 1 + txi, i ∈ T ; Uj ≤ 1 + txj , j ∈ T �

)

=
d∑

m=k

∑

T⊂{1,...,d},|T |=m

{
P
(
Uj ≤ 1 + txj , j ∈ T �

)

−
∑

∅�=S⊂T

(−1)|S|−1P
(
Ui ≤ 1 + txi, i ∈ S; Uj ≤ 1 + txj , j ∈ T �

)}

=
d∑

m=k

∑

T⊂{1,...,d},|T |=m

{
1− t

∥
∥xT �

∥
∥
D
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−
∑

∅�=S⊂T

(−1)|S|−1
(
1− t

∥
∥xS∪T �

∥
∥
D

)}
+ o(t)

=
d∑

m=k

∑

T⊂{1,...,d},|T |=m

{
1−

∑

∅�=S⊂T

(−1)|S|−1

+t
∑

S⊂T

(−1)|S|−1
∥
∥xS∪T �

∥
∥
D

}
+ o(t)

= t

d∑

m=k

∑

T⊂{1,...,d},|T |=m

∑

S⊂T

(−1)|S|−1
∥
∥xS∪T �

∥
∥
D

}
+ o(t)

= t ‖x‖D,(d−k+1) + o(t)

by Lemma 3.1. This completes the proof of Theorem 3.1.

Consider next a random vector X = (X1, . . . , Xd) that is in the max-
domain of attraction of a multivariate max-stable df G. This is equivalent
with the condition that the copula C corresponding to X satisfies Eq. 3.1,
together with the condition that, for each i = 1, . . . , d, the (univariate) df Fi

of Xi is in the max-domain of attraction of a univariate max-stable df Gi;
see, e.g. Proposition 3.1.10 in Falk (2019).

Then we obtain from Eq. 3.2, with U = (U1, . . . , Ud) following the copula
C, so that X = (X1, . . . , Xd) =D

(
F−1
1 (U1), . . . , F

−1
d (Ud)

)

P (Xi > yi for at least k of the components i = 1, . . . , d)

= P (Ui > 1 + (Fi(yi)− 1) for at least k of the components i = 1, . . . , d)

=
∥
∥
∥(1− Fi(yi))

d
i=1

∥
∥
∥×

∥
∥
∥
∥
∥
∥

(1− Fi(yi))
d
i=1∥

∥
∥(1− Fi(yi))

d
i=1

∥
∥
∥

∥
∥
∥
∥
∥
∥
D,(d−k+1)

+o
(∥
∥
∥(1− Fi(yi))

d
i=1

∥
∥
∥
)
, y = (y1, . . . , yd) ∈ R

d, (3.5)

with an arbitrary norm ‖·‖ on R
d. Note that we actually do not have to

require in Eq. 3.5 that each univariate margin Fi is in the max-domain of
attraction of a univariate max-stable df. The preceding equation is, there-
fore, true if the copula C corresponding to X satisfies condition (3.1). Note
that this condition on the copula of X does not require that X is absolutely
continuous, i.e., Eq. 3.5 is true for arbitrary univariate df F1, . . . , Fd, not
necesscarily continuous ones.
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But, if each Fi is in the max-domain of attraction of a max-stable df Gi,
then there exist constants ait > 0, bit ∈ R for t > 0, with

t
(
1− Fi(aity + bit)

)
→t→∞ − log(Gi(y)), y ∈ R;

see, for example, Falk (2019), equation (2.3). As a consequence we obtain
from Eq. 3.5

P (Xi > aityi + bit for at least k of the components i = 1, . . . , d)

=
1

t

∥
∥
∥t (1− Fi(aityi + bit))

d
i=1

∥
∥
∥
D,(d−k+1)

+ o

(
1

t

)

=
1

t

∥
∥
∥
(
log(Gi(yi))

)d
i=1

∥
∥
∥
D,(d−k+1)

+ o

(
1

t

)

if Gi(yi) ∈ (0, 1], 1 ≤ i ≤ d.
Suppose identical distributions of the components of X, i.e., F1 = · · · =

Fd =: F and identical entries of y, i.e., y1 = · · · = yd =: y. Then we can
repeat the arguments in Section 2, with x := (F (y)− 1, . . . , F (y)− 1), and
obtain, with Ny :=

∑d
i=1 1(y,∞)(Xi),

py,D(k) = P (Ny = k)

=

{
(1− F (y))

(
E(Zd−k+1:d)− E(Zd−k:d)

)
, 1 ≤ k ≤ d,

1− (1− F (y))E(Zd:d)

+o(1− F (y))

as y ↑ ω(F ) := sup {t ∈ R : F (t) < 1}.
In particular we obtain for the FI

FI = lim
y↑ω(F )

E(Ny | Ny > 0)

=
E(Ny)

1− P (Ny = 0)
=

d

‖1‖D
,

as already observed in (Falk and Tichy, 2012, Theorem 5.1).
If, for example, the underlying D-norm is a logistic one, ‖x‖D = ‖x‖p :=

(∑d
i=1 |xi|

p
)1/p

, with parameter p ∈ [1,∞], and the convention ‖x‖∞ =

max1≤i≤d |xi|, then the FI is

FI =
d

‖1‖p
=

⎧
⎪⎨

⎪⎩

1, if p = 1,

d
1− 1

p , if p ∈ (1,∞)

d, if p = ∞.
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If p = 1, the components X1, . . . , Xd are tail independent with FI = 1, i.e.,
the system {X1, . . . , Xd} is stable. If p = ∞, the components X1, . . . , Xd are
completely tail dependent and FI = d, i.e., the system is extremely fragile.
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