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Abstract

Infectious or contagious diseases can be transmitted from one person to an-
other through social contact networks. In today’s interconnected global so-
ciety, such contagion processes can cause global public health hazards, as
exemplified by the ongoing Covid-19 pandemic. It is therefore of great prac-
tical relevance to investigate the network transmission of contagious diseases
from the perspective of statistical inference. An important and widely stud-
ied boundary condition for contagion processes over networks is the so-called
epidemic threshold. The epidemic threshold plays a key role in determining
whether a pathogen introduced into a social contact network will cause an
epidemic or die out. In this paper, we investigate epidemic thresholds from
the perspective of statistical network inference. We identify two major chal-
lenges that are caused by high computational and sampling complexity of
the epidemic threshold. We develop two statistically accurate and computa-
tionally efficient approximation techniques to address these issues under the
Chung-Lu modeling framework. The second approximation, which is based
on random walk sampling, further enjoys the advantage of requiring data on
a vanishingly small fraction of nodes. We establish theoretical guarantees for
both methods and demonstrate their empirical superiority.
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1 Introduction

Infectious diseases are caused by pathogens, such as bacteria, viruses,
fungi, and parasites. Many infectious diseases are also contagious, which
means the infection can be transmitted from one person to another when
there is some interaction (e.g., physical proximity) between them. Today, we
live in an interconnected world where such contagious diseases could spread
through social contact networks to become global public health hazards. A
recent example of this phenomenon is the Covid-19 outbreak caused by the
so-called novel coronavirus (SARS-CoV-2) that has spread to many coun-
tries (Huang et al., 2020; Zhu et al., 2020; Wang et al., 2020; Sun et al.,
2020). This recent global outbreak has caused serious social and economic
repercussions, such as massive restrictions on movement and share market
decline (Chinazzi et al., 2020). It is therefore of great practical relevance
to investigate the transmission of contagious diseases through social contact
networks from the perspective of statistical inference.

Consider an infection being transmitted through a population of n in-
dividuals. According to the susceptible-infected-recovered (SIR) model of
disease spread, the pathogen can be transmitted from an infected person (I)
to a susceptible person (S) with an infection rate given by [, and an infected
individual becomes recovered (R) with a recovery rate given by u. This can
be modeled as a Markov chain whose state at time ¢ is given by a vector
(Xt,..., X!), where X! denotes the state of the i" individual at time ¢, i.e.,
X! € {S,I,R}. For the population of n individuals, the state space of this
Markov chain becomes extremely large with 3" possible configurations, which
makes it impractical to study the exact system. This problem was addressed
in a series of three seminal papers by Kermack and McKendrick (1927, 1932,
1933). Instead of modeling the disease state of each individual at at a
given point of time, they proposed compartmental models, where the goal
is to model the number of individuals in a particular disease state (e.g., sus-
ceptible, infected, recovered) at a given point of time. Since their classical
papers, there has been a tremendous amount of work on compartmental
modeling of contagious diseases over the last ninety years (Hethcote, 2000;
Van den Driessche and Watmough, 2002; Brauer and Castillo-Chavez, 2012).

Compartmental models make the unrealistic assumption of homogeneity,
i.e., each individual is assumed to have the same probability of interacting
with any other individual. In reality, individuals interact with each other
in a highly heterogeneous manner, depending upon various factors such as
age, cultural norms, lifestyle, weather, etc. The contagion process can be
significantly impacted by heterogeneity of interactions (Meyers et al., 2005;
Rocha et al., 2011; Galvani and May, 2005; Woolhouse et al., 1997), and



SCALABLE ESTIMATION OF EPIDEMIC THRESHOLDS... 323

therefore compartmental modeling of contagious diseases can lead to sub-
stantial errors.

In recent years, contact networks have emerged as a preferred alterna-
tive to compartmental models (Keeling, 2005). Here, a node represents an
individual, and an edge between two nodes represent social contact between
them. An edge connecting an infected node and a susceptible node represents
a potential path for pathogen transmission. This framework can realistically
represent the heterogeneous nature of social contacts, and therefore provide
much more accurate modeling of the contagion process than compartmental
models. Notable examples where the use of contact networks have led to
improvements in prediction or understanding of infectious diseases include
Bengtsson et al. (2015) and Kramer et al. (2016).

Consider the scenario where a pathogen is introduced into a social con-
tact network and it spreads according to an SIR model. It is of particular
interest to know whether the pathogen will die out or lead to an epidemic.
This is dictated by a set of boundary conditions known as the epidemic
threshold, which depends on the SIR parameters § and p as well as the net-
work structure itself. Above the epidemic threshold, the pathogen invades
and infects a finite fraction of the population. Below the epidemic threshold,
the prevalence (total number of infected individuals) remains infinitesimally
small in the limit of large networks (Pastor-Satorras et al., 2015). There
is growing evidence that such thresholds exist in real-world host-pathogen
systems, and intervention strategies are formulated and executed based on
estimates of the epidemic threshold. (Dallas et al., 2018; Shulgin et al.,
1998; Wallinga et al., 2005; Pourbohloul et al., 2005; Meyers et al., 2005).
Fittingly, the last two decades have seen a significant emphasis on study-
ing epidemic thresholds of contact networks from several disciplines, such
as computer science, physics, and epidemiology (Newman 2002; Wang et al.
2003; Colizza and Vespignani 2007; Chakrabarti et al. 2008; Gémez et al.
2010; Wang et al. 2016, 2017). See Leitch et al. (2019) for a complete survey
on the topic of epidemic thresholds.

Concurrently but separately, network data has rapidly emerged as a sig-
nificant area in statistics. Over the last two decades, a substantial amount
of methodological advancement has been accomplished in several topics in
this area, such as community detection (Bickel and Chen, 2009; Zhao et al.,
2012; Rohe et al., 2011; Sengupta and Chen, 2015), model fitting and model
selection (Hoff et al., 2002; Handcock et al., 2007; Krivitsky et al., 2009;
Wang and Bickel, 2017; Yan et al., 2014; Bickel and Sarkar, 2016; Sengupta
and Chen, 2018), hypothesis testing (Ghoshdastidar and von Luxburg 2018;
Tang et al. 2017a, b; Bhadra et al. 2019), and anomaly detection (Zhao
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et al., 2018; Sengupta, 2018; Komolafe et al., 2019), to name a few. The
state-of-the-art toolbox of statistical network inference includes a range of
random graph models and a suite of estimation and inference techniques.

However, there has not been any work at the intersection of these two
areas, in the sense that the problem of estimating epidemic thresholds has
not been investigated from the perspective of statistical network inference.
Furthermore, the task of computing the epidemic threshold based on exist-
ing results can be computationally infeasible for massive networks. In this
paper, we address these gaps by developing a novel sampling-based method
to estimate the epidemic threshold under the widely used Chung-Lu model
(Aiello et al., 2000), also known as the configuration model. We prove that
our proposed method has theoretical guarantees for both statistical accuracy
and computational efficiency. We also provide empirical results demonstrat-
ing our method on both synthetic and real-world networks.

The rest of the paper is organized as follows. In Section 2, we formally set
up the problem statement and formulate our proposed methods for approx-
imating the epidemic threshold. In Section 3, we describe the theoretical
properties of our estimators. In Section 4, we report numerical results from
synthetic as well as real-world networks. We conclude the paper with dis-
cussion and next steps in Section 5.

2 Epidemic Thresholds

Table 1 lists the common symbols used throughout the paper. Consider a
set of n individuals labelled as 1,...,n, and an undirected network (with no
self-loops) representing interactions between them. This can represented by

Table 1: Common symbols

Symbol Definition and description

A(A) Spectral radius of the matrix A

d; Degree of the node ¢ of the network

0; Expected degree of the node 7 of the network

S(t),1(t), R(t) Number of susceptible (), infected (I), and recovered/
removed (R) individuals in the population at time ¢

I3 Infection rate: probability of transmission of a pathogen
from an infected individual to a susceptible individual
per effective contact (e.g. contact per unit time in
continuous-time models, or per time step in discrete-
time models)

W Recovery rate: probability that an infected individual
will recover per unit time (in continuous-time models)
or per time step (in discrete-time models)
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an n-by-n symmetric adjacency matrix A, where A(é,j) = 1 if individuals
i and j interact and A(i,j) = 0 otherwise. Consider a pathogen spreading
through this contact network according to an SIR model. From existing work
(Chakrabarti et al. 2008; Gémez et al. 2010; Prakash et al. 2010; Wang et
al. 2016, 2017), we know that the boundary condition for the pathogen to
become an epidemic is given by
oL (2.1)
po A(A4)
where A(A) is the spectral radius of the adjacency matrix A.

The left hand side of Eq. 2.1 is the ratio of the infection rate to the
recovery rate, which is purely a function of the pathogen and independent
of the network. As this ratio grows larger, an epidemic becomes more likely,
as new infections outpace recoveries. The right hand side of Eq. 2.1 is the
spectral radius of the adjacency matrix, which is purely a function of the
network and independent of the pathogen. Larger the spectral radius, the
more connected the network, and therefore an epidemic becomes more likely.
Thus, the boundary condition in Eq. 2.1 connects the two aspects of the
contagion process, the pathogen transmissibility which is quantified by 8/,
and the social contact network which is quantified by the spectral radius. If
% < ﬁf}), the pathogen dies out, and if % > ﬁ, the pathogen becomes an
epidemic.

Given a social contact network, the inverse of the spectral radius of its
adjacency matrix represents the epidemic threshold for the network. Any
pathogen whose transmissiblity ratio is greater than this threshold is going
to cause an epidemic, whereas any pathogen whose transmissiblity ratio is
less than this threshold is going to die out. Therefore, a key problem in
network epidemiology is to compute the spectral radius of the social contact
network.

2.1. Problem Statement and Heuristics Realistic urban social networks
that are used in modeling contagion processes have millions of nodes (Eubank
et al., 2004; Barrett et al., 2008). To compute the epidemic threshold of such
networks, we need to find the largest (in absolute value) eigenvalue of the
adjacency matrix A. This is challenging because of two reasons.

1. First, from a computational perspective, eigenvalue algorithms have
computational complexity of Q(n?) or higher. For massive social con-
tact networks with millions of nodes, this can become too burdensome.

2. Second, from a statistical perspective, eigenvalue algorithms require
the entire adjacency matrix for the full network of n individuals. It can
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be challenging or expensive to collect interaction data of n individuals
of a massive population (e.g., an urban metropolis). Furthermore,
eigenvalue algorithms typically require the full matrix to be stored in
the random-access memory of the computer, which can be infeasible
for massive social contact networks which are too large to be stored.

The first issue could be resolved if we could compute the epidemic threshold
in a computationally efficient manner. The second issue could be resolved if
we could compute the epidemic threshold only using data on a small subset
of the population. In this paper, we aim to resolve both issues by developing
two approximation methods for computing the spectral radius.

To address these problems, let us look at the spectral radius, A(A), from
the perspective of random graph models. The statistical model is given by
A ~ P, which is short-hand for A(7, j) ~ Bernoulli(P(i, 7)) for 1 <i < j < n.
Then A(A) converges to A(P) in probability under some mild conditions
(Chung and Radcliffe, 2011; Benaych-Georges et al., 2019; Bordenave et al.,
2020). To make a formal statement regarding this convergence, we repro-
duce below a slightly paraphrased version (for notational consistency) of an
existing result in this context.

LEMMA 1 (Theorem 1 of Chung and Radcliffe (2011)). Let

n

A= max 1P(m)
J:

be the mazimum expected degree, and suppose that for some € > 0,
4
A > 9 log(2n/e)

for sufficiently large n. Then with probability at least 1 — €, for sufficiently

large n,
IA(A) = A(P)| < 2¢/Alog(2n/e).

To make note of a somewhat subtle point: from an inferential perspective
it is tempting to view the above result as a consistency result, where \(P)
is the population quantity or parameter of interest and A(A) is its estima-
tor. However, in the context of epidemic thresholds, we are interested in the
random variable A(A) itself, as we want to study the contagion spread con-
ditional on a given social contact network. Therefore, in the present context,
the above result should not be interpreted as a consistency result.

Rather, we can use the convergence result in a different way. For massive
networks, the random variable A(A), which we wish to compute but find it
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infeasible to do so, is close to the parameter A\(P). Suppose we can find a
random variable T'(A) which also converges in probability to A(P), and is
computationally efficient since T'(A) and A(A) both converge in probability
to A(P), we can use T'(A) as an accurate proxy for A(A). This would address
the first of the two issues described at the beginning of this subsection.
Furthermore, if T(A) can be computed from a small subset of the data, that
would also solve the second issue. This is our central heuristic, which we are
going to formalize next.

2.2.  The Chung-Lu Model So far, we have not made any structural
assumptions on P, we have simply considered the generic inhomogeneous
random graph model. Under such a general model, it is very difficult to for-
mulate a statistic 7'(A) which is cheap to compute and converges to A(P).
Therefore, we now introduce a structural assumption on P, in the form
of the well-known Chung-Lu model that was introduced by Aiello et al.
(2000) and subsequently studied in many papers (Chung and Lu, 2002;
Chung et al., 2003; Decreusefond et al., 2012; Pinar et al., 2012; Zhang
et al., 2017). For a network with n nodes, let § = (d1,...,d,) be the vector
of expected degrees. Then under the Chung-Lu model,

o 00,
P(i,7) ST o (2.2)
This formulation preserves E[d;] = §;, where d; is the degree of the i node,
and is very flexible with respect to degree heterogeneity.
Under model Eq. 2.2, note that rank(P) = 1, and we have

1

P=—"6
Zi:l(si
1 Sor 62
= PS=——6§6=izlig
Zi:15i Zizﬁsi
n 2

>im10i

Recall that we are looking for some computationally efficient 7'(A) which
converges in probability to A\(P). We now know that under the Chung-Lu
model, A(P) is equal to the ratio of the second moment to the first moment
of the degree distribution. Therefore, a simple estimator of A(P) is given by
the sample analogue of this ratio, i.e.,

Ti(A) = M (2.3)
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We now want to demonstrate that approximating A\(A) by 77 (A) provides
us with very substantial computational savings with little loss of accuracy.
The approximation error can be quantified as

T1(A)
A(A)

el(A) = ‘ -1 5 (2'4)

and our goal is to show that e;(A) — 0 in probability, while the computa-
tional cost of T71(A) is much smaller than that of A(A). We will show this
both from a theoretical perspective and an empirical perspective. We next
describe the empirical results from a simulation study, and we postpone the
theoretical discussion to Section 3 for organizational clarity.

We used n = 5000, and constructed a Chung-Lu random graph model
where P(i,j) = 6;0;. The model parameters 61, ...,60, determine the ex-
pected degrees. We used two models for generating 6;. In the Uniform
model, 0; were uniformly sampled from (0,0.25). In the PowerLaw model,
0; were uniformly sampled from the PowerLaw distribution with parame-
ters Tmin = 0.01, 8 = 3. Note that the second model leads to heavy-tailed
distribution.

Then, we randomly generated 20 networks from the model, and computed
A(A) and T1(A). The results are reported in Table 2. We observe that
the runtimes for T7(A) are orders of magnitude faster than computing the
eigenvalue. The average error for T7(A) is small, and so is the standard
deviation (SD) of errors. Thus, even for moderately sized networks, using
T1(A) as a proxy for A(A) can reduce the computational cost to a great
extent, without much loss in accuracy. For massive networks where n is in
millions, this advantage of T1(A) over A(A) is even greater; however, the
computational burden for A\(A) becomes so large that this case is difficult to
illustrate using standard computing equipment.

Thus, T1(A) provides us with a computationally efficient and statistically
accurate method for finding the epidemic threshold.

Comparing the results from Uniform and PowerLaw, we observe that
errors are higher for the PowerLaw model. A likely explanation for this is
that since the distribution is heavy tailed, the moment based estimator is less
accurate. This is particularly true for larger n, since the impact of extreme
values can shift the estimator heavily.

2.8.  Sampling Based Approximation The first approximation, T7(A),
provides us with a computationally efficient method for finding the epidemic
threshold. This addresses the first issue pointed out at the beginning of
Section 2.1. However, computing 77 (A) requires data on the degree of all n
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Table 2: Computational efficiency and statistical accuracy of T4 (A)

Model Mean time A(A) Mean time 773(A) Mean error  SD error
Uniform 35.62 s 0.04 s 0.11% 0.03%
PowerLaw  33.45 s 0.04 s 3.66% 3.91%

nodes of the network. Therefore, this does not solve the second issue pointed
out at the beginning of Section 2.1. We now propose a second alternative, 75,
to address the second issue. The idea behind this approximation is based on
the same heuristic that was laid out in Section 2.2. Since A\(P) is a function
of degree moments, we can estimate these moments using observed node
degrees. In defining T (A), we used observed degrees of all n nodes in the
network. However, we can also estimate the degree moments by considering
a small sample of nodes, based on random walk sampling. The algorithm
for computing 75 is given in Algorithm 1.

Algorithm 1 RandomWalkEstimate.
procedure ESTIMATE(G, r, t¥)

T <+ 1.
while ¢t < t* do

1:

2

3

4 x + random neighbor of x, chosen uniformly.
5: v+ 0.

6 while ¢ < r do

7 v=10v4d,

8 x < random neighbor of x, chosen uniformly.
9

return Tp = v /7.

Note that we only use (¢* + r) randomly sampled nodes for computing
T5, which implies that we do not need to collect or store data on the n
individuals. Therefore this method overcomes the second issue pointed out
at the beginning of Section 2.1. The approximation error arising from this
method can be defined as

—1, (2.5)

and we want to show that e2(A) — 0 in probability, while the data-collection
cost of T5(A) is much less than that of 771(A). In the next section, we are
going to formalize this.
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3 Theoretical Results on Approximation Errors

In this section, we are going to establish that the approximation errors
e1(A) and ex(A), defined in Egs. 2.4 and 2.5, converge to zero in probability.
From Theorem 2.1 of Chung et al. (2003), we know that when

2507
Z 3 > log(n) /112%%1& (3.1)

holds, then for any € > 0,
A(4)
Pll—=—1
{ A(P)

>€:|*>O.

Therefore, under Eq. 3.1, it suffices to show that, for any € > 0,

o[5e -1l 3P

-1

el — 0, andP[

>e]—>0.

To interpret the condition given in Eq. 3.1, suppose that the expected
degrees are all of the same order, ie., §; = O(n®) for some a € (0,1).
Then, the left hand side of Eq. 3.1 is O(n®), and the right hand side is
log(n)O(n®/?), which means the condition is satisfied for any o > 0.

2

3.1.  Convergence of T1(A) First, consider T1(A) = %ln > and recall
that A(P) = %;11 L. For notational convenience, define m; = > | d;, mg =
S A2 = lel Siyp2 = Yo, 62, We would like to show that, under
reasonable conditions, for any € > 0,

P [ mal 1‘ > e] 0. (3.2)
mi o

Next, we state the theorem which will establish a sufficient condition for this
to hold. Please see Appendix for a proof of the theorem.

THEOREM 2. If the average of the expected degrees goes to infinity, i.e.,

2
15,8 — 00, and the spectral radius dominates log?(n), i.e., %1‘21 = w(log?n),
then for any € > 0,
P[ml—l'>e] -0, andP[mz—l‘>e} 0.
H1 K2

Thus, we have established that the approximation error for T7(A) goes
to zero in probability. We have already observed in Section 2.2 that the
runtime for T3 (A) is orders of magnitude faster that the runtime for A\(A).
Therefore, T1(A) is both computationally efficient and statistically accurate
as an approximation of the epidemic threshold.
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3.2.  Convergence of To(A) Next, consider Algorithm 1. Let 7 denote
the stationary distribution of the simple random walk on the given graph.
Suppose the number of edges in the given graph is m. Recall that, 7 is

given by m, = Zd” T for all v. For brevity, we define the mixing time of the

graph A, denoted as tmix(A), to mean the number of steps required by the
simple random walk to reach a distribution # such that || — 7[|; = o(5).
Let T5(A) be the estimate returned by the Algorithm 1. We first show an
easy lemma that characterizes the bias of the estimator T5(A). Please see
Appendix for a proof.

LEMMA 3. If z is a node that is randomly sampled from w, and d, is its
2
degree, then E[dy] = %. Consequently if & is such that |m — 7|1 = o(n™1)
2
and x is sampled from 7, then E[d,] = (1 £ 0(1))%? Z? .

Next, we show that the estimator vgw is actually concentrated around
its expectation.

THEOREM 4 (Lezaud (1998)). Let (X,,) be a irreducible and reversible
Markov Chain on a finite set V. with Q being the transition matriz. Let
7 be the stationary distribution. Let f : V. — R be such that E;[f] = 0,
Iflle <1 and 0 < E;[f?] < b®. Then, for any initial distribution q, any
positive integer v and all 0 < v <1,

r|r- - , —e(Q)/ xp | — ) >
g [7“ 1;f(xl)ﬂl SRS p( W (L+h(57/0%)) )

where €(Q) = 1 — X2(Q), X2(Q) being the second largest eigenvalue of @,
Sq = |lg/7||2 (in the ly(m) norm), and

h(z) = ;m — (1 —x/2)).

If y < b? and (Q) < 1, then the upper bound becomes

m*e(Q) > ‘

(14 0(1))S,exp <_41)2(1+0(1))

Using the above result, we bound the sample complexity of our estimator.
We first quote the following result that we use to bound Ay of the transition
matrix. Please see Appendix for a proof.
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THEOREM 5. Let Q = D7 'A. Let ¢,6 € (0,1). Algorithm 1, using
= a(Q)163/2 X 1(2275'1172“%3)" log(1/§) and t* > tnix(G) returns an estimate vrw
that satisfies, with probability 1 — 6,

2 2
(1—6%232 < Ty(A) < (1+e)§zjz.

The number of nodes that are touched by algorithm is O(t* + r).

Note that Q = D~ 'A has the same set of eigenvalues as the matrix
D='24D=1/2. For the Chung-Lu model, the eigenvalues of the matrix L =
I —D~Y24D~1/2 can be bounded by the following result from Chung et al.
(2003).

THEOREM 6. Let L = I — D~Y2AD~1/2 denote the normalized Lapla-
cian. Let A be a random graph generated from the given expected degrees
model, with expected degrees {6;}, if the minimum expected degree dyin Satis-
fies dmin > In(n), then with probability at least 1 —1/n =1 — o(1), we have
that for all eigenvalues \i,(L) > Amin(L) of the Laplacian of G,

r

61n(2n)

5min

1 — (L) <2 =o(1).

It follows above that £(Q) = 1 — X\ (Q) = 1 — \o(D~Y24D1/2) =
A_1(I — D"Y2AD=1/2) = 1 — o(1). Putting these together, we get the
following corollary on the total number of node queries.

COROLLARY 6.1. For a graph generated from the expected degrees model,
with probability 1 — 1/n, Algorithm 1, needs to query

1 6(21} dv)dmax

() + 35 X TS, @)

nodes in order to get a (1= ¢€) estimate of Y, d2/2m.

Note 6(2(%6[”;5;“” < 622?7 but this is a loose bound, better bounds can
be derived for 1i)ovwer law degree distributions, for instance.

Thus, we have proved that the approximation error for T5(A) goes to zero
in probability. In addition, Corollary 6.1 shows that the number of nodes
that we need to query in order to have an accurate approximation is much
smaller than n. Furthermore, computing 75 only requires node sampling and
counting degrees, and therefore the runtime is much smaller than eigenvalue
algorithms. Therefore, T5(A) is a computationally efficient and statistically
accurate approximation of the epidemic threshold, while also requiring a
much smaller data budget compared to 77(A).

log(1/9)
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4 Numerical Results

In this section, we characterize the empirical performance of our sam-
pling algorithm on two synthetic networks, one generated from the Chung-
Lu model and the second generated from the preferential attachment model
of Barabési and Albert (1999).

4.1.  Data Our first dataset is a graph generated from the Chung-Lu
model of expected degrees. We generated a powerlaw sequence (i.e. fraction
of nodes with degree d is proportion to d=?) with exponent 8 = 2.5 and
then generated a graph with this sequence as the expected degrees. Table 3
notes that, as expected, the first eigenvalue \;(A) is close to %”733.

The second dataset is generated from the preferential attachment model
(Barabési and Albert, 1999), where each incoming node adds 5 edges to
the existing nodes, the probability of choosing a specific node as neighbor
being proportional to the current degree of that node. While the preferential
attachment model naturally gives rise to a directed graph, we convert the
graph to an undirected one before running our algorithm. It is interesting
to note that even in this case the Chung-Lu model does not hold, our first
approximation, 77 (A), is close to A(A).

4.2.  Implementation Details In each of the networks, the random walk
algorithm presented in Algorithm 1 was used for sampling. The random walk
was started from an arbitrary node and every 10" node was sampled (to ac-
count for the mixing time) from the walk. These samples were then used to
calculate T5(A). This experiment was repeated 10 times. These gave esti-

mates T217 .. ,T210. We then calculate two relative errors Vi € {1,2,...,10},
s _ =T o [T M)
‘ (A T A(A)

We also note the following relation between the two error metrics.

P A | D 0 S0 O A S| B 0 el B W O A N S A WY
e N W U S A A
=1+ 6)‘*T1)61-T1_T2 + T
Table 3: Statistics of the two synthetic datasets used
Data Nodes Edges A(A) T1(A) T4
Chung Lu (8 = 2.5) 50k 72k 1383 4833 0.102
Chung-Lu (uniform) 50k 130k 67.60 67.46 0.002

Pref-Attach 50k 250k 37 32.8 0.128
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We denote the averages of {e;-rl_TQ} and {ef‘_TQ} as €12 and {12}
respectively. It is easy to observe that the above relation holds between the
two average quantities too.

We plot the averages €/1772 and =72, along with the error-bars that
reflect the standard deviation, against the actual number of nodes seen by
the random walk. Note that the x-axis accurately reflect how many times the
algorithm actually queried the network, not just the number of samples used.
Measuring the cost of uniform node sampling in this setting, for instance,
would need to keep track of how many nodes are touched by a Metropolis-
Hastings walk that implements the uniform distribution.

4.8. Results In Fig. 1 We plot the two results for mean relative error,
measure by e;\_TQ and e;TFl_TQ.

For the two Chung-Lu networks, the algorithm is able to get a 10% ap-
proximation to the statistic 77(A) by exploring at most 10% of the network.
With more samples from the random walk, the mean relative errors settle
to around 4-5%. However, once we measure the mean relative errors with
respect to A\(A), it becomes clearer that the estimator 7T5(A) does better
when the graph is closer to the assumed (i.e. Chung-Lu) model. For the
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Chung-Lu graph, the mean error € essentially is very similar to e’
which is to be expected. For the preferential attachment graph too, it is
clear that the estimate T3 is able to achieve a better than 10% relative error
approximation of A(A).

Note that, if we were instead counting only the nodes whose degrees were
actually used for estimation, the fraction of network used would be roughly
1-2% in all the cases, the majority of the node query cost actually goes
in making the random walk mix, by using an initial burn-in period and by
maintaining certain number of steps between subsequent samples.

5 Discussion

In this work, we investigated the problem of computing SIR epidemic
thresholds of social contact networks from the perspective of statistical in-
ference. We considered the two challenges that arise in this context, due
to high computational and data-collection complexity of the spectral radius.
For the Chung-Lu network generative model, the spectral radius can be char-
acterized in terms of the degree moments. We utilized this fact to develop
two approximations of the spectral radius. The first approximation is compu-
tationally efficient and statistically accurate, but requires data on observed
degrees of all nodes. The second approximation retains the computationally
efficiency and statistically accuracy of the first approximation, while also
reducing the number of queries or the sample size quite substantially. The
results seem very promising for networks arising from the Chung-Lu and
preferential attachment generative models.

There are several interesting and important future directions. The meth-
ods proposed in this paper have provable guarantees only under the Chung-
Lu model, although it works very well under the preferential attachment
model. This seems to indicate that the degree based approximation might
be applicable to a wider class of models. On the other hand, this leaves open
the question of developing a better “model-free” estimator, as well as asking
similar questions about other network features.

In this work we only considered the problem of accurate approximation
of the epidemic threshold. From a statistical as well as a real-world perspec-
tive, there are several related inference questions. These include uncertainty
quantification, confidence intervals, one-sample and two-sample testing, etc.

Social interaction patterns vary dynamically over time, and such network
dynamics can have significant impacts on the contagion process Leitch et al.
(2019). In this paper we only considered static social contact networks, and
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in future we hope to study epidemic thresholds for time-varying or dynamic
networks.

Finally, we note that the formulation in Eq. 2.1 is an approximation of
the true epidemic threshold under the so-called quenched-mean-field approx-
imation (Pastor-Satorras et al., 2015; Karrer et al., 2014). In recent work
Castellano and Pastor-Satorras (2020), it has been shown that the SIS epi-
demic transition occurs at some point that is intermediate between A\(A) and
T1(A). In future work, we plan to extend our results to these more accurate
expressions for the epidemic threshold.

Appendix A. Technical Proofs
A.1 Proof of Theorem 2
We will show that for any ¢ > 0,

P[ml—l‘x’]—>0,P[m2—1‘>e’]—>0. (A1)
M1 K2
We first prove that Eq. A.1 implies Eq. 3.2. Equation A.1 implies that

ol oo 4]

Now, consider the event {’% — 1‘ < El}ﬂ{‘% — 1‘ < e’}. Note that ma/m;
is a strictly increasing function of mo and a strictly decreasing function of
my1. Therefore, for outcomes belonging to the above event,

o /
pe loe me _pp 1te

i 14+€¢ —myp T o 1—¢€°

Note that

1—-¢€ 2¢’ , 1+¢€ 2¢’ ,
—71+€/—71+€/<26, and71_61—1—1_6/<4e,

given that ¢ < 1/2. Now, fix € > 0 and let ¢ = ¢/4. Then,

Eq. :P[m”“ —1' >4e’] 0= Eq.
m o
Thus, proving Eq. A.1 is sufficient for proving Eq. 3.2.

PrROOF OF THEOREM 2. We will use Hoeffding’s inequality (Hoeffding,
1994) for the first part, and we begin by stating the inequality for the sum
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of Bernoulli random variables. Let By, ..., By, be m independent (but not
necessarily identically distributed) Bernoulli random variables, and S, =
>, B;. Then for any t > 0,

o2
PlISm — B[Sl = 1] < aexp< = ) .

In our case,
mi=Y di=Y Y A@i,j) =23 Alij),
i=1 i=1 j=1 i<j

and we know that {A(i,j) : 1 < i < j < n} are independent Bernoulli
random variables. Fix e > 0 and note that E[}_, ; A(i, j)] = Tu1. Using

Hoeffding’s inequality with S,,, = m1/2, m = (g), and ¢t = 51, we get
2
mp pa| € 2 M
P[———’ S| < 2exp (—EHo ]
ST R Ik R
Since %Zl d; — oo, the right hand side goes to zero. Therefore,

P[m1—1’>e]—>0.
M1

For the second part, we can characterize mo as following.
E[mg] =F

)

Z d?] = Z(E[dz])Q +war(d;) = ps + var(d;),

and hence,
Ima — pa| < [ma — E[ma]| + |E[me] — pal.

We show that, under the given assumptions, with probability 1—o(1), |mg—
E[ms]| = o(pz2). Furthermore, |E[ma] — pa| = o(p2).

As noted before, each d; is a sum of binomial random variables. By apply-
ing Chernoff-Hoeffding bound, and union bounding over all i € {1,...,n},
we can get, with probability 1 — o(1), and for any fixed € € (0, 1),

Vie{l,...,n}, d; <0; +max{ed;, O(log(n))}.
Let the above event be called the event A. If the event A happens, then,

my = Z 2 < Z 62 + 20; max(ed;, O(log(n))) + max(e262, O(log? n))
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< p2+2 Z 6i(ed; + O(log(n))) + (€262 + O(log®n))

%

< po+ 3epp + (n+ Z 6;)O(log? n)
i
ma
— =1 < 3e+(n+ i) lo n
o ‘ Z g’ n)/pa-
Note that uﬂ = ﬁ — 0 under the given assumption. Furthermore,

(32:6:)O(log? n)
207

Putting these together, and using ¢ = 3¢ we have the given claim.

=o(1) = 0.

A.2 Proof of Theorem 5
Proor orF LEMMA 3. It is easy to see that

t?l\D

Eyrldy] Zd xwv—g”g.

v=1 v

<

We show the second claim as follows:
n
|Eznr[ds] — Eprr| Z vl — 7| < nflm = 7|1 = o(1).
PROOF OF THEOREM 5. In our setting the set V is the set of vertices.
Define the function f(X;) as

Amax X f(XZ) = dXi - Eﬂ'[dXz]

f(-) clearly satisfies E;[f] = 0 and that ||f||cc < 1. We can bound E,[f?] as

d2 x d,
E7T [fz] < dmzx [d2] = dmix Z Z = dmzx Z

Using the first ¢* steps, we reach the distribution 7 that satisfies || —
7|1 = o(n~1). Hence,

H7AT/7TH§ = Zﬂv(ﬁv/ﬂ'v Zﬂ'v/ﬂ'v—zﬂv (7o _7711)) /T

Zd
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= Z(ﬂ'v + 2(ﬁv - 7Tv) + (ﬁv - WU)Z/WU)

v

= 142x (1 =1+ (f —m)*/my < 1+ |7 — 7|5/ min(m,)
v

L+ [lr — ﬁ”% (Z dv) /dmin =1+ o(1),

IN

where the last step follows as |7 — 7[|1 = o(n™2).

, 3 , d
We use b? = d2, >, Zil,v 7 and v = edt. x %Z v

<N

. Hence

<

Y e (o, d
e i B SHHT) SN

Hence,

d2 1/2 d2
h(5’y/b2) — (1+5fdmaxzv v) —1+5€dmaxh

Z'U d/Lg) 2 Z'U d/lg)
SN AR >, &
< (5edmax ZU B + 2.5€edmax ZU B
1/2 Z'u d12)
< ©e / dmaxzv d%

Plugging this, we get that

2 22 2\ —1
ry7e(Q) 2 (> d3) < 1/2 > dv)
> < L+ 66/ “dmax &*
w1 = O s, T e
| QRS )
T 60, du)dmax
Setting r = 6(@)163/2 X 6(2(%?3;)‘““ log(1/4), and using Theorem 4, we can

claim that, with probability 1 — 4,

2 2
Th(A) € ((1 —e)%jz,(1+e)§vjz> .

The bound on the number of nodes touched /queried by the algorithm follows
naturally.
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Disclaimer with Respect to Current Pandemic

We do realize that in the face of the current pandemic, while it is impor-
tant to pursue research relevant to it, it is also important to be responsible
in following the proper scientific process. We would like to state that in
this work, the question of epidemic threshold estimation has been formal-
ized from a theoretical viewpoint in a much used, but simple, random graph
model. We are not yet at a position to give any guarantees about the perfor-
mance of our estimator in real social networks. We do hope, however, that
the techniques developed here can be further refined to work to give reliable
estimators in practical settings.
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