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Abstract

A unified treatment of all currently available cumulant-based indexes of mul-
tivariate skewness and kurtosis is provided here, expressing them in terms of
the third and fourth-order cumulant vectors respectively. Such a treatment
helps reveal many subtle features and inter-connections among the existing
indexes as well as some deficiencies, which are hitherto unknown. Computa-
tional formulae for obtaining these measures are provided for spherical and
elliptically-symmetric, as well as skew-symmetric families of multivariate dis-
tributions, yielding several new results and a systematic exposition of many
known results.

AMS (2000) subject classification. 62H05, 60E05, 60E10.
Keywords and phrases. Multivariate skewness, Multivariate kurtosis, Cumu-
lant vectors, Interconnections between different measures, Symmetric and
skew multivariate distributions

1 Introduction

Using the standard normal distribution as the yardstick, statisticians
have defined notions of skewness (asymmetry) and kurtosis (peakedness) in
the univariate case. Since all the odd central moments (when they exist)
are zero for a symmetric distribution on the real line, a first attempt at
measuring asymmetry is to ask how different the 3rd central moment is from
zero, although in principle, one could use any other odd central moment, or
even a combination of them. Several alternate indexes of asymmetry, using
the mode or the quantiles are also available –see for instance (Arnold and
Groeneveld, 1995; Averous and Meste, 1997; Ekström and Jammalamadaka,
2012) for recent work and review. Similarly for kurtosis, taking again the
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standard normal distribution as the yardstick, a coefficient of kurtosis has
been developed using the 4th central moment.

When dealing with multivariate distributions, the notions of symmetry,
measurement of skewness, as well as of kurtosis, are not uniquely defined.
For example, the mode-based approach in Arnold and Groeneveld (1995),
although very popular, does not seem extendable to the multivariate case.
Also, in interpreting the cumulant-based measures of skewness and kurtosis,
one has to pause – especially for the kurtosis if there are multiple peaks.

Our focus in this paper is on multivariate distributions and one may re-
mark that the two fundamental papers by Rao (1948a, b) take us back to
the early days of such multivariate analysis. A good starting point is the
monograph by Fang et al. (2017) and a more recent review article by Serfling
(2004). We consider symmetry of a d-dimensional random vector X, around
a given point, which we will assume without loss of generality, to be the
origin. Such an X is said to be spherically symmetric or rotationally sym-
metric if for all (d× d) orthogonal matrices A, X has the same distribution
as AX. One may generalize this to elliptical or ellipsoidal symmetry in an
obvious way. A more common and practical notion of symmetry in multi-
dimensions, is the reflective or antipodal symmetry, and we say X has this
property if it has the same distribution as −X. For measuring departures
from such symmetry, various notions of skewness have been proposed by
different authors, and the list includes (Mardia, 1970; Malkovich and Afifi,
1973; Isogai, 1982; Srivastava, 1984; Song, 2001) and Móri et al. (1994); see
also Sumikawa et al. (2013) for an extension of Mardia’s multivariate skew-
ness index to the high-dimensional case. In a broad discussion and analysis
of multivariate cumulants, their properties and their use in inference, Jam-
malamadaka et al. (2006) proposed using the full vector of third and fourth
order cumulants, as vectorial measures for multivariate skewness and kurtosis
respectively. Such measures based on the cumulant vectors, were further dis-
cussed by Balakrishnan et al. (2007) and Kollo (2008). A systematic treat-
ment of asymptotic distributions of skewness and kurtosis indexes can be
found in Baringhaus and Henze (1991a, b, 1992), and Klar (2002).

In this paper, one of our primary goals is to look at these disparate look-
ing definitions of skewness and kurtosis based on cumulants which have been
proposed in the literature, and to assess, and relate them from a unified per-
spective in terms of the cumulant vectors discussed in Jammalamadaka et al.
(2006). Such a unified treatment helps reveal several relationships and fea-
tures of the many existing proposals. For example it will be shown: (i)
that Mardia (1970) and Malkovich and Afifi (1973) skewness measures can
be equivalent; (ii) that Balakrishnan et al. (2007) and Móri et al. (1994)
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skewness vectors are just proportional to each other; (iii) that Kollo (2008)
vectorial measure can be a null vector even for some asymmetric distribu-
tions, and (iv) that Srivastava (1984) index is not affine invariant.

In Section 4, we also introduce alternate measures for skewness and Kur-
tosis based just on the distinct cumulants, and evaluate their performance
with some examples in Section 7.

Another significant contribution of the paper is to provide clear and easy
formulae for computing cumulants up to the fourth order for spherically
symmetric, elliptically symmetric, and skew elliptical families along with
several specific examples. These, comprehensive and mostly new, results
allow for a straightforward computation of all the indexes of skewness and
kurtosis discussed here for several important multivariate distributions.

The analysis presented here is based on the cumulant vectors of the third
and fourth order, defined below. In our derivations we utilize an elegant
and powerful tool— the so-called T -derivative, which we now describe. Let
λ = (λ1, . . . , λd)

� be a d-dimensional vector of constants and let φ(λ) =
(φ1(λ), . . . , φm(λ))� denote a m-dimensional vector valued function (m ∈
N), which is differentiable in all its arguments. The Jacobian matrix of φ is
defined by

Dλφ(λ) =
∂φ(λ)

∂λ� =

[
∂φi(λ)

∂λj

]
i=1,...,m;j=1,...,d

.

Then the operator D⊗
λ , which we refer to as the T -derivative, is defined as

D⊗
λφ(λ) = vec

(
∂φ(λ)

∂λ�

)�
= φ(λ)⊗ ∂

∂λ
, (1.1)

where the symbol ⊗ here and everywhere else in the paper, denotes the
Kronecker (tensor) product. Assuming φ is k times differentiable, the k-th
T -derivative is given by

D⊗k
λ φ(λ) = D⊗

λ

(
D⊗k−1

λ φ(λ)
)
, (1.2)

which is a vector of order m×dk containing all possible partial derivatives of

entries of φ(λ) according to the tensor product
(

∂
∂λ1

, . . . , ∂
∂λd

)�⊗k
. Refer to

Jammalamadaka et al. (2006) for further details, properties, examples, and
applications of the operator D⊗

λ (see also Terdik 2002).
We note that if φX(λ) denotes the characteristic function of a d-dimensional

random vector X, then the operator D⊗k
λ applied to φ, and log φ will provide

the vector of moments of order k, and cumulants of order k respectively.
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One may also refer to MacRae (1974) for a similar definition of a matrix
derivative using the tensor product and a differential operator; indeed, the
T-derivative we obtain by vectorizing the transposed Jacobian (1.1), can be
seen as closely related to that. While these results can also be obtained by
using tensor-calculus, as is done in McCullagh (1987) and Speed (1990), our
approach is more straightforward and simpler, requiring only the knowledge
of calculus of several variables. We believe that using only the tensor prod-
ucts of vectors leads to an intuitive and natural way to deal with higher order
moments and cumulants for multivariate distributions, as it will be demon-
strated in the paper. Another comprehensive reference on matrix derivatives
is the book by Mathai (1997).

The paper is organized as follows: Sections 2 and 3 introduce respec-
tively the skewness and kurtosis vectors, and treat several existing measures
of skewness and kurtosis based on these cumulant vectors. Section 4 discusses
a linear transformation on the skewness and kurtosis vectors, which helps
remove from them redundant/duplicate information, and proposes skewness
and kurtosis indexes based on distinct elements of the corresponding vectors.
Sections 5 and 6 provide computational formulae for the skewness and kur-
tosis vectors for spherical, elliptical and asymmetric/skew multivariate dis-
tributions. Section 7 provides some examples while Section 8 provides some
final considerations. To improve readability of the paper, more technical
details and proofs are placed in an Appendix. A word about the notations:
bold uppercase letters are used for random vectors and matrices while bold
lowercase letters denote their specific values.

2 Multivariate Skewness

In this section and the next one, it will be shown that all cumulant-
based measures of skewness and kurtosis that appear in the literature can
be expressed in terms of the third and fourth cumulant vectors respectively.
Also, several hitherto unnoticed relationships between different indexes will
be brought out.

Let X be a d−dimensional random vector whose first four moments exist.
We will denote EX = μ, with a positive-definite variance-covariance matrix
VarX = Σ . Consider the standardized vector

Y = Σ−1/2 (X− μ) (2.1)

with zero means and identity matrix for its variance-covariance. A complete
picture about the skewness, is contained in the “skewness vector” of X or
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Y, defined as κ3 = Cum3 (Y) . Since the third order cumulants are the same
as the third order central moments, we may write

κ3 = EY⊗3. (2.2)

Note that for a d-dimensional vector Y = (Y1, . . . , Yd)
�, κ3 has length d3

and it contains all terms of the form EY 3
r , EY 2

r Ys, EYrYsYt for 1 ≤ r, s, t ≤
d. Among these d3 elements, only d(d+1)(d+2)/6 are distinct elements, and
in Section 4 we discuss a linear transformation which allows one to get the
distinct elements of κ3. In the examples below, we denote the unit matrix
of dimension k by Ik, and the k-vector of ones by 1k.

The following 6 examples reveal several relationships among various in-
dexes of skewness which appear in the literature, and their connection to the
third-order cumulant vector κ3, which can actually be seen as the common
denominator.

Example 1. Mardia (1970) suggested the square norm of the vector κ3 as
a measure of departure from symmetry, viz.

κ3 = ‖κ3‖2 ,

which is denoted by β1,d. If Y1 and Y2 are two independent copies of Y,
then we may write

κ3 =
∥∥EY⊗3

∥∥2 = EY�⊗3
1 EY⊗3

2 = E
(
Y�

1 Y2

)3
.

Example 2. Móri et al. (1994), after observing that

(vec Id)
�Y⊗2 = Y�⊗2 vec Id = vecY�Y =

d∑
i=1

Y 2
i

define a “skewness vector”

s(Y) = E
(
Y�Y

)
Y =

(
(vec Id)

� ⊗ Id

)
EY⊗3 =

(
(vec Id)

� ⊗ Id

)
κ3.

(2.3)
Note that (vec Id)

� ⊗ Id is a matrix of dimension (d × d3) which contains
d unit values per-row whereas all the others are 0; as a consequence, this
measure does not take into account the contribution of cumulants of the type
E (YrYsYt), where (r, s, t) are all different.
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Example 3. Kollo (2008), noting the fact that not all third-order mixed
moments appear in s(Y), proposes an alternate skewness vector b (Y) which
can again be expressed in terms of κ3 as follows:

b (Y) = E
[
1�d2 (Y ⊗Y)

]
⊗Y =

(
1�d2 ⊗ Id

)
EY⊗3 =

(
1�d2 ⊗ Id

)
κ3. (2.4)

Comparing b (Y) in Eq. 2.4 to s(Y) in Eq. 2.3, we see that the difference
between the two expressions comes from the fact that b (Y) has the term 1�d2,

compared to (vec Id)
� in s(Y). This results in the Kollo measure summing

the elements of d consecutive groups of size d2 in κ3.
Following this line of reasoning, note that if d = 2 and κ3 = [1,−1,−1,

1,−1, 1, 1,−1], then b (Y) = 0 even for an asymmetric distribution, making
it not a valid measure of skewness. Section 7 gives specific examples where
this actually happens.

Example 4. Malkovich and Afifi (1973) (see also Balakrishnan and Scarpa
2012) consider the following approach to measuring skewness: let Sd−1 be
the (d− 1) dimensional unit sphere in R

d. First, for u ∈ Sd−1, note that

Cum3

(
u�Y

)
=

(
u�

)⊗3
Cum3 (Y) = u�⊗3 EY⊗3 = u�⊗3κ3. (2.5)

Malkovich–Afifi define their measure as

b∗1 (Y) = sup
u

((
u�⊗3κ3

)2
)
.

Consider

(
u�⊗3κ3

)2
=

∥∥u�⊗3
∥∥2 ‖κ3‖2 cos2

(
u�⊗3,κ3

)
,

where cos (a,b) indicates the cosine of the angle between the vectors a and
b; next note that

∥∥∥u�⊗3
∥∥∥2 = u�⊗3u⊗3 =

(
u�u

)⊗3
= 1,

and supu cos
(
u�⊗3,κ3

)
could be 1 when there would exist a u0 such that

u�⊗3
0 = κ3/ ‖κ3‖. This can happen only when the normed κ3/ ‖κ3‖ has the

same form as u�⊗3. It follows that

b∗1 (Y) ≤ ‖κ3‖2 .
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Example 5. Balakrishnan et al. (2007) discuss a multivariate extension
of Malkovich–Afifi measure. Denoting Ω(du) as the normalized Lebesgue
element of surface area on Sd−1, they suggest

T =

∫
Sd−1

u
(
u�⊗3κ3

)
Ω(du) =

∫
Sd−1

u⊗ u�⊗3Ω(du)κ3 (2.6)

and we see that this extension is a constant times (a matrix-multiple of) the
skewness vector κ3. Indeed, one can use Theorem 3.3 of Fang et al (1990)
(Fang et al., 2017) to show that this matrix-multiple reduces to∫

Sd−1

u⊗ u�⊗3Ω(du) =
3

d (d+ 2)

(
(vec Id)

� ⊗ Id

)
.

Therefore T defined in Eq. 2.6 becomes a scalar-multiple, 3/d (d+ 2) times
s (Y) defined in Eq. 2.3 by Móri, Székely and Rohatgi (1984). In particular
when d = 3, we have T = 3

15s (Y). It follows that, as in Móri et al. (1994),
the vector T does not take into account the contribution of cumulants of the
type E (YrYsYt), where r, s, t are all different.

Example 6. Srivastava (1984). If X is a d−dimensional random vector
with variance matrix Σ, then consider Γ�ΣΓ = Diag (λ1, . . . , λd) = Dλ,
with orthogonal matrix Γ. The skewness measure defined by Srivastava can
be written as

b21 (Y) =
1

d

d∑
j=1

(
E Ỹ 3

i

)2
.

where Ỹ = Dλ
−1Γ (X− EX). We have Ỹ = Dλ

−1ΓΣ1/2Y = Dλ
−1/2ΓY,

and the ith coordinate of Ỹ is Ỹi = e�i Ỹ, where ei is the ith coordinate axis.
Since

EỸ = 0, and Var
(
Ỹ
)
= D−1

λ , Srivastava measure can be re-expressed
as

E Ỹ 3
i = Cum3

(
Ỹi

)
= Cum3

(
e�i Dλ

−1/2ΓY
)
= e�⊗3

i

(
Dλ

−1/2
)⊗3

Γ⊗3κ3,

and

b21 (Y) =
1

d

d∑
j=1

(
e�⊗3
i

(
Dλ

−1/2
)⊗3

Γ⊗3κ3

)2

.

One notices that e�⊗3
i is a unit axis vector in the Euclidean space Rd3, so that

the measure b21 (Y) is the norm square of the projection of κ3 to the subspace
of Rd3 , and it does not contain all the information contained in the vector
κ3. Note that this index is NOT affine invariant (nor the corresponding
kurtosis index).
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3 Multivariate Kurtosis

The kurtosis of Y is measured by the 4th order cumulant vector denoted
by κ4, and is computed as

κ4 = Cum4 (Y) = EY⊗4 −K2,2Cum2 (Y)⊗2 = EY⊗4 −K2,2 [vec Id]
⊗2 ,
(3.1)

where K2,2 denotes the commutator matrix (1.2) (see Appendix 1 for de-
tails). Note that κ4 turns out to be the zero vector for multivariate Gaussian
distributions, and may be used as the “standard”.

This kurtosis vector κ4 forms the basis for all multivariate measures of
kurtosis proposed in the literature, as our next 6 examples demonstrate. For
instance, one may define its square norm as a scalar index of kurtosis, called
the total kurtosis defined by

κ4 = ||κ4||2 (3.2)

which is one of the measures. We now connect the kurtosis vector κ4 and
the total kurtosis κ4 to various other indexes discussed in the literature.

Example 7. Mardia (1970), defined an index of kurtosis as β2,d = E
(
Y�Y

)2
.

Note that

Evec
(
Y�Y

)2
= E [Y]�⊗2 [Y]⊗2 = E [Y]�⊗4 vec Id2

and this is related to the kurtosis vector κ4 as follows:

β2,d = (vec Id2)
� κ4 + (vec Id2)

�K2,2 [vec Id]
⊗2 .

In particular for the standard Gaussian vector Y, we have κ4 = 0, so that

β2,d = E
(
Y�Y

)2
= d (d+ 2). As a consequence, for such a Y we have the

equation
(vec Id2)

�K2,2 [vec Id]
⊗2 = d (d+ 2) .

Note that vec Id2 contains only d2 ones and hence Mardia’s measure does not
take into account all the entries of κ4; it includes only some of the entries
of EY⊗4 namely

β2,d =
d∑

r=1

EY 4
r +

∑
r �=s

EY 2
r Y

2
s .

Example 8. Koziol (1989) considered the following index of kurtosis. Let
Ỹ be an independent copy of Y, then

E
(
Ỹ�Y

)4
= E Ỹ�⊗4Y⊗4 =

∥∥EY⊗4
∥∥2 ,
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is the next higher degree analogue of Mardia’s skewness index β1,d. Specifi-
cally

∥∥EY⊗4
∥∥2 =

∥∥∥κ4 +K2,2 [vec Id]
⊗2

∥∥∥2
= κ4 + 2κ�

4 K2,2 (vec Id)
⊗2 + d2

= κ4 + 6β2,d − d2

where β2,d is Mardia (1970) index of kurtosis.

Example 9. Móri et al. (1994) define kurtosis of Y as

K (Y) = E
(
YY�YY�

)
− (d+ 2) Id = E

(
Y�Y

)
YY� − (d+ 2) Id.

Then vecK (Y) =
(
Id2 ⊗ (vec Id)

�
)
EY⊗4 − (d+ 2) vec Id which can be ex-

pressed in terms of κ4 as vecK (Y) =
(
Id2 ⊗ (vec Id)

�
)
κ4.

As in the case of their skewness measure, this measure does not take into
account the contribution of cumulants of the type E (YrYsYtYu) where r, s, t, u
are all different.

Example 10. Malkovich and Afifi (1973). Similar to the discussion regard-
ing skewness, a measure proposed by Malkovich and Afifi simply provides a
different derivation of the total kurtosis in the form

b∗2 (Y) = sup
u

((
u�⊗4κ4

)2
)

≤ ‖κ4‖2 ,

because of the fact that

(
u�⊗4κ4

)2
=

∥∥∥u�⊗4
∥∥∥2 ‖κ4‖2 cos2

(
u�⊗4,κ4

)
= ‖κ4‖2 cos2

(
u�⊗4,κ4

)
.

Remark 1. It may be noted that the idea used in our (2.6), namely inte-
grating u

(
u�⊗4κY

)
over the unit sphere, will not work for the kurtosis since

it can be verified that this will result in a zero vector.

Example 11. Kollo (2008) introduces the kurtosis matrix B (Y) as

B (Y) =
d∑

i,j=1

EYiYjYY� = E
d∑

i,j=1

YiYjYY� = E

⎛
⎝ d∑

j=1

Yi

⎞
⎠

2

YY�

= E
[
1�d2 (Y ⊗Y)

]
YY�.
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Then vecB (Y) = E
(∑d

j=1 Yi

)2
(Y ⊗Y) , which can be written as

vecB (Y) = E
[
1�d2 (Y ⊗Y)

]
vecYY� = EY⊗2

[
1�d2 (Y ⊗Y)

]

=
(
Id2 ⊗ 1�d2

)
EY⊗4 =

(
Id2 ⊗ 1�d2

)(
κ4 +K2,2 (vec Id)

⊗2
)
.

4 Alternative Measures Based on Distinct Elements of the
Cumulant Vectors

The skewness κ3 and the kurtosis κ4 vectors contain d3 and d4 elements
respectively, which are not all distinct. Just as the covariance matrix of
a d-dimensional vector contains only d2 = d(d + 1)/2 distinct elements, a
simple computation shows that κ3 contains d3 = d(d + 1)(d + 2)/6 distinct
elements, while κ4 contains d4 = d(d+1)(d+2)(d+3)/24 distinct elements.

Similar to the fact that there are many applications as well as measures
which consider only the distinct elements of a covariance matrix, it is quite
sensible and reasonable to follow this approach and define skewness and
kurtosis measures based on just the distinct elements of the corresponding
cumulant vectors. For example, in estimating the “total skewness” index
‖κ3‖2 discussed in Mardia (1970), one may use the “elimination matrix”
since the terms in the summation are symmetric like in a covariance matrix.

Selection of the distinct elements from the vectors κ3 and κ4 can be ac-
complished via linear transformations. This approach can be traced back to
Magnus and Neudecker (1980) who introduce two transformation matrices,
L and D, which consist of zeros and ones. For any (n, n) arbitrary matrix
A, L eliminates from vec(A) the supra-diagonal elements of A, while D
performs the reverse transformation for a symmetric A.

In the case of a covariance matrixΣ of a vectorX, the elimination matrix
L above is a matrix acting on vec(Σ) and in the approach defined in this
paper it holds that vec(Σ) = Cum2 (X,X), i.e. the distinct elements of
vec(Σ) correspond to the distinct elements of a tensor product X ⊗ X. In
this way the elimination matrix L can be generalized to tensor products of
higher orders in a simple way.

We shall use elimination matrices G (3, d) and G (4, d), for shortening
the skewness and kurtosis vectors respectively and keeping just the distinct
entries in them. See Meijer (2005) for details where the notations T3

+ and
T4

+ are used respectively, which are actually the Moore–Penrose inverses
of triplication and quadruplication matrices. This gives cumulant vectors of
distinct elements as

κ3,D = G (3, d)κ3 and κ4,D = G (4, d)κ4.
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In such a case, the distinct element vector has dimension dim (κ3,D) =
d (d+ 1) (d+ 2) /6. For instance, when d = 2, dim (κ3,D) is 50% of the
dim (κ3), and in general, the percentage of distinct elements decreases in the
proportion (1 + 1/d) (1 + 2/d) /6, getting close to 1/6 for large d. Similarly,
the fraction of distinct elements in κ4,D relative to κ4 approaches 1/24 for
large d — a significant reduction.

Following the discussion of this section one could define indexes of total
skewness and total kurtosis exploiting the square norms of the skewness and
kurtosis vectors containing only the distinct elements, i.e.

κ3,D = ||κ3,D||2 = ||G (3, d)κ3||2 and κ4,D = ||κ4,D||2 = ||G (4, d)κ4||2.
(4.1)

In Section 7 some numerical evidence about the performance of these indexes,
which eliminate duplication of information, will be given.

5 Multivariate Symmetric Distributions

Two important classes of symmetric distributions are the spherically
symmetric distributions and the elliptically symmetric distributions. In this
section, we discuss them in turn and derive their cumulants. Some related
results and discussion may be found in Fang et al. (2017).

5.1. Multivariate Spherically Symmetric Distributions A d-vector W =
(W1, . . . ,Wd)

� has a spherically symmetric distribution if that distribution
is invariant under the group of rotations in R

d. This is equivalent to saying
that W has the stochastic representation

W = RU, (5.1)

where R is a non negative random variable, U = (U1, . . . , Ud)
� is uniform on

the sphere Sd−1, and R and U are independent (see e.g. Fang et al., 2017,
Theorem 2.5). The moments of the components of W, when they exist,
can be expressed in terms of a one-dimensional integral, Fang et al., (2017
Theorem 2.8, p. 34) and the characteristic function has the form

φW (λ) = g (λᵀλ) , (5.2)

where g is called the “characteristic generator” and R is the generating
variate, with say, a generating distribution F . The relationship between the
distribution F of R and g is given through the characteristic function of the
uniform distribution on the sphere (see Fang et al., 2017, p. 30).

617



S. Rao Jammalamadaka et al.

The marginal distributions of any such spherically or elliptically sym-
metric distributions have zero skewness, and the same kurtosis value given
by the “kurtosis parameter” of the form (see Muirhead, 2009, p. 41)

κ0 =
g′′ (0)− g′ (0)2

g′ (0)2
. (5.3)

The next lemma provides the moments of the uniform distribution on Sd−1,
and is proved in the Appendix.

Lemma 1. Let U be uniform on sphere Sd−1. Then

1. For odd-order moments

EU⊗(2k+1) = 0, Cum2k+1 (U) = 0,

while for even-order moments

E
d∏

i=1

U2ki
i =

1

(d/2)k

d∏
i=1

(2ki)!

22kiki!
. (5.4)

For T -products we have

EU⊗4 =
1

d (d+ 2)

(
3e

(
d3, d

)
+ e

(
d4
))

, (5.5)

where zero-one vectors e
(
d3, d

)
and e

(
d4
)
are given by Eq. 1.8 and

1.9 respectively, more over the sum of the entries is

∑
EU⊗4 =

3d

d+ 2
.

2. The odd moments of the modulus

E
d∏

i=1

|Ui|ki =
√

1

πd1

1

Gk

d1∏
i=1

Γ ((ki + 1) /2) (5.6)

where k =
∑

ki,see Eq. 6.3 for Gk, and d1 is the number of nonzero
ki, in particular

E |Ui|2k+1 =

√
1

π

k!

G2k+1
.

For T -products we have

E |U|⊗2 =
1

d
vec Id +

1

π

1

G2
(1d2 − vec Id)
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and

E |U|⊗3 =

√
1

π

1

G3

(
1d3 (3) +

1

2
1d3 (1, 2) +

1

π
1d3 (1, 1, 1)

)
,

where the zero-one vectors are given in Eq. 1.10 and

E |U|⊗4 =
3

d (d+ 2)
1d4 (4) +

1

4G4
1d4 (2, 2)

+
1

π

1

G4

(
1d4 (1, 3) +

√
1

π
1d4 (2, 1, 1) +

1

π
1d4 (1, 1, 1, 1)

)

where the zero-one vectors are given in Eq. 1.11.

Remark 2. Observe that there are only three distinct elements of the third
order moments, and four distinct elements of the fourth order moments!

The next lemma provides the cumulants of W (proof in the Appendix).

Lemma 2. Let W be spherically symmetric with the representation W =
RU and characteristic generator g having second derivative at 0; then Cum1

(W) = Cum3 (W) = 0, Cum2 (W) = −2g′ (0) vec Id, and

Cum4 (W) = 4
(
g′′ (0)− g′ (0)2

)
K2,2 (vec Id)

⊗2 .

In terms of kurtosis parameter κ0, we have κ4 = 3d(d+2)κ20, κ4,D = κ20(9d+
d(d− 1)/2) and Mardia’s β2,d = d(d+ 2)(κ0 + 1).

From the representation of W given in Eq. 5.1, it is easy to see that
Cum2�+1 (W) = 0, � = 0, 1 . . . , while the second and fourth order cumu-
lants are calculated directly using the Lemmas 1 and 2 above, so that we
have the following

Theorem 1. If W is spherically distributed with the representation W =
RU and E(R4) < ∞, then Cum2�+1 (W) = 0, Cum2 (W) = ER2

d vec Id and

Cum4 (W) = ER4 EU⊗4 − 3

(
ER2

d

)2

(vec Id)
⊗2 .

In terms of these moments, the kurtosis parameter becomes

κ0 =

(
d

d+ 2

ER4

(ER2)2
− 1

)
.
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5.2. Multivariate elliptically symmetric distributions A d-vector X has
an elliptically symmetric distribution if it has the representation

X = μ+Σ1/2W

where μ ∈ R
d, Σ is a variance-covariance matrix and W is spherically

distributed. Hence the cumulants of X are just constant times the cumulants
of W except for the mean i.e.

Cumm (X) =
(
Σ1/2

)⊗m
Cumm (W) ,

from which one gets Cum1 (X) = μ, Cum2�+1 (X) = 0, � = 1, . . . and

Cum2� (X) =
(
Σ1/2

)⊗2�
Cum2� (W) .

Moments of elliptically symmetric distributions have also been discussed by
Berkane and Bentler (1986). As a special case, we now discuss

5.2.1. Multivariate t-distribution. Multivariate t-distribution is spheri-
cally symmetric (see Example 2.5 Fang et al., 2017, p.32). Consult also the
monograph by Kotz and Nadarajah (2004) for further details. Let

W =

√
m

S2
Z

where Z ∈ Nd (0, Id) standard normal, and S2 is χ2 distributed with m
degrees of freedom.W ∈ Mtd (m, 0, Id), we have

W =
√
m
‖Z‖
S

Z/ ‖Z‖ = R∗U, (5.7)

where R∗ =
√
m ‖Z‖ /S, and R∗2/d has an F-distribution with d and m de-

grees of freedom. Let μ ∈ R
d, and A is an d× d matrix and X = μ+A�W

then X ∈ Mtd (m,μ,Σ), where Σ = A�A, hence X is an elliptically sym-
metric random variable. Since the characteristic function is quite compli-
cated (see Fang et al., 2017 Section 3.3.6 p. 85), we utilize the stochastic
representation given in Eq. 5.7 for deriving the kurtosis (note that the skew-
ness is zero). The proof of the next Lemma is in the Appendix.

Lemma 3. Let W be a multivariate t-vector with dimension d and degrees
of freedom m, with m > 4, then EW = 0, Cum2 (W) = m

m−2 vec Id and
Cum3 (W) = 0. From Theorem 1, the kurtosis parameter in Eq. 5.3 becomes
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κ0 = 2
m−4 , and the kurtosis κ4 = 3d2κ0. Moreover, if X ∈ Mtd (m,μ,Σ),

where Σ = A�A, then EX = μ,

Cum2 (X) =
m

m− 2
vecΣ, Cum3 (X) = 0,

and kurtosis parameter κ0 and kurtosis κ4 are the same as for W .

6. Multivariate Skew Distributions

Starting with Azzalini and Dalla Valle (1996) who suggest methods for
obtaining multivariate skew-normal distributions, several authors discuss dif-
ferent approaches for obtaining asymmetric multivariate distributions, by
skewing a spherically or an elliptically symmetric distribution. We mention
here (Branco and Dey, 2001) who extend the work in Azzalini and Dalla
Valle (1996) to multivariate skew-elliptical distribution, Arnold and Beaver
(2002) who use a conditioning approach on a d-dimensional random vector
to an elliptically contoured distribution (although this conditioning is not
strictly necessary), Sahu et al. (2003) who use transformation and condi-
tioning techniques, Dey and Liu (2005) who discuss an approach based on
linear constraints, Genton and Loperfido (2005) who introduce a general
class of multivariate skew-elliptical distributions– the so-called multivariate
generalized skew-elliptical (GSE) distribution. See also Genton (2004) and
the references therein.

Here we provide a systematic treatment of several skew-multivariate dis-
tributions by providing general formulae for cumulant vectors up to the
fourth order, which are needed in deriving the corresponding skewness and
kurtosis measures discussed in Sections 2 and 3.

6.1. Multivariate skew spherical distributions Let Z =
[
Z�
1 ,Z

�
2

]�
be

spherically symmetric distributed in dimension (m+d). Define the canonical
fundamental skew-spherical (CFSS) distribution (Arellano-Valle and Genton
2005, Prop. 3.3) by

X = Δ |Z1|+
(
Id −ΔΔ�

)1/2
Z2, (6.1)

where the modulus is taken element-wise, and Δ is the d × m skewness
matrix, and let R be the generating variate. A simple construction of Δ

is given by Δ = Λ
(
Im +Λ�Λ

)−1/2
with some real matrix Λ of dimension

d × m. If Z = RU, then Z1 = p1RU1 ∈ R
m and Z2 = p2RU2 ∈ R

d, then
p21 is Beta(m/2, d/2), p22 = 1 − p21, which is Beta(d/2,m/2). The variables
R, p21, U1 and U2 are independent by Theorem 2.6 in Fang et al. (2017).
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Then we have EZ = 0 and Cov (Z) = ER2I/d. Introduce the function

G�1,�2 (m, d) =
B (m/2 + �1, d/2 + �2)

B (m/2, d/2)
. (6.2)

and,

Gk(d) =
Γ ((d+ k) /2)

Γ (d/2)
(6.3)

written as Gk for short. We may express the joint moments of p1, p2 as

E p�11 p�22 =
1

B (m/2, d/2)

∫ 1

0
xm/2+�1−1 (1− x)d/2+�2−1 dx = G�1,�2 (m, d) .

(6.4)
In particular E p1 = G1,0 (m, d) , E p1p2 = G1,1 (m, d). The cumulants of
X can be obtained from these moments. Using Eq. 6.4 above, and Lemma
(1) for the moments of pk and |Uj |, we obtain the following result (see the
Appendix for the proof).

Theorem 2. Let the d-vector X have a CFSS distribution as defined in

Eq. 6.1 and denote by V2 =
(
I−ΔΔ�)1/2 Z2 for ease of notation, with

EV⊗2
2 =

1

d

(
vec Id −Δ⊗2 vec Im

)
.

The moments of X, assuming E(R4) < ∞, are given by:

EX = ΔE p1 ER1m,

EX⊗2 = E p21 ER2Δ⊗2 E |U1|⊗2 + E(p2R)2 EV⊗2
2 ,

EX⊗3 = E p31 ER3 E |U1|⊗3 + E p1p
2
2 ER3K2,1 (Id2 ⊗Δ)

(
EV⊗2

2 ⊗ E |U1|
)
,

EX⊗4 = E p41 ER4Δ⊗4 E |U1|⊗4 + E p21p
2
2 ER4K2,1,1

(
Δ⊗2 ⊗ Im2

)
×

×
(
E |U1|⊗2 ⊗ EV⊗2

2

)
+
(
E p42 ER4

)
Δ⊗4

1 EU⊗4
2 ,

where Δ1 =
(
Id −ΔΔ�)1/2, with the commutators as given in Eqs. 1.1 and

1.2. The cumulants of X are obtained by using the relations in Section 1.2.

Remark 3. It can be seen that the cumulants depend on Δ, and the mo-
ments of the generating variate R. For instance

Cum2 (X) = ER2D2 (m, d,Δ)− (ER)2 (E p1)
2 (E |U1|)⊗2

622



On Multivariate Skewness and Kurtosis

where

D2 (m, d,Δ) =
G2,0

m
Δ⊗2

(
vec Im +

1

π

1

G2 (m)
(1m2 − vec Im)

)

+
G0,2

d

(
Id2 −Δ⊗2

)
vec Im.

6.2. Multivariate Skew-t Distribution This distribution goes back to
Azzalini and Capitanio (2003); consult also Kim and Mallick (2003) for a
derivation of moments up to the 4th order and moments of quadratic forms of
the multivariate skew t-distribution. Let X be a d-dimensional vector having
multivariate skew-normal distribution, SNd (0,Ω,α) (see Section 6.3 below
for details), and S2 be a random variable which follows a χ2 distribution
with m degrees of freedom. Then the random vector

V = μ+

√
m

S
X

has a multivariate skew t-distribution denoted by Std (μ,Ω,α,m). Deriva-
tion of the cumulants of V up to the 4th order are provided in the next
theorem, with detailed proof given in the Appendix.

Theorem 3. Let V ∈ Std (μ,Ω,α,m) with m > 4, then its first four cu-
mulants are:

Cum1 (V) = EV = μ+G1 (m)

√
m

π
δ,

Cum2 (V) =
m

m− 2
vecΩ− m

π
(G1 (m))2 δ⊗2,

Cum3 (V) =

√
2

π

(m
2

)3/2
G1 (m)×((

4

π
G1 (m)2 − 2

m− 3

)
δ⊗3 +

2

(m− 3) (m− 2)
K2,1 (vecΩ⊗ δ)

)
,

Cum4 (V) =
4

π

(m
2

)2
G−1 (m)2

(
4

m− 3
− 6

π
G−1 (m)2

)
δ⊗4

+
(m
2

)2 8

(m− 4) (m− 2)2
K2,2

(
(vecΩ)⊗2

)

− 8

π

(m
2

)2
G−1 (m)2

1

(m− 3) (m− 2)
K2,1,1

(
vecΩ⊗ δ⊗2

)
.
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From Theorem 3 the skewness and kurtosis vectors are κ3 =
(
Σ

−1/2
V

)⊗3

Cum3 (V) , and κ4 =
(
Σ

−1/2
V

)⊗4
Cum4 (V), where

ΣV = VarV =
m

m− 2
Ω− m

π
(G1 (m))2 δδ�.

6.3. Multivariate Skew-Normal Distribution Consider the multivariate
skew-normal distribution introduced by Azzalini and Dalla Valle (1996),
whose marginal densities are scalar skew-normals. A d-dimensional random
vectorX is said to have a multivariate skew-normal distribution, SNd (μ,Ω,α)
with shape parameter α if it has the density function

2ϕ (X;μ,Ω) Φ
(
α� (X− μ)

)
, X ∈ R

d.

where ϕ (X;μ,Ω) is the d-dimensional normal density with mean μ and
correlation matrix Ω; here ϕ and Φ denote the univariate standard nor-
mal density and the cdf. The cumulant function of SNd (0,Ω,α) is given
by

CX (λ) = log 2− 1

2
λ�Ωλ+ logΦ

(
iδ�λ

)
,

where

δ =
1

(1 +α�Σα)
1/2

Ωα and α =
1(

1− δ�Σ−1δ
)1/2Ω−1δ. (6.5)

Note that the cumulants of order higher than 2 do not depend on Ω but
only on δ. Here we use the approach discussed in this paper to get explicit
expressions for the cumulants of the multivariate SN distribution. See also
Genton et al. (2001) and Kollo et al. (2018) for moments of SN and its
quadratic forms. The proof of the next Lemma is similar to that of Lemma 5
that is coming later, and is omitted.

Lemma 4. The cumulants of the multivariate skew-normal distribution,
SNd (μ,Ω,α) are the following:

Cum1 (X) = EX =

√
2

π
δ, and Cum2 (X) = vecΩ− 2

π
δ⊗2,

624



On Multivariate Skewness and Kurtosis

while for k = 3, 4 . . ., Cumk (X) = ckδ
⊗k. In particular

c3 = 2

(√
2

π

)3

−
√

2

π
, c4 = −6

(√
2

π

)4

+ 4

(√
2

π

)2

,

c5 = 24

(√
2

π

)5

− 20

(√
2

π

)3

+ 3

√
2

π
.

From this Lemma one observes that δ =
√
π/2μX, from which Cum3

(X) =
(
2− π

2

)
μ⊗3
X . Hence Mardia’s skewness measure becomes

β1,d =

(
4− π

2

)2 ∥∥∥μ⊗3
X

∥∥∥2 =
(
4− π

2

)2

‖μX‖6

and the kurtosis measure β2,d = (2π − 6)2 (vec Id2)
� μ⊗4

X + d(d+ 2).
6.4. Canonical Fundamental Skew-Normal (CFUSN) Distribution
Arellano-Valle and Genton (2005) introduced the CFUSN distribution

(cf. their Proposition 2.3), to include all existing definitions of SN dis-
tributions. The marginal stochastic representation of X with distribution
CFUSNd,m (Δ) is given by

X = Δ |Z1|+
(
Id −ΔΔ�

)1/2
Z2 (6.6)

where Δ, is the d×m skewness matrix such that ‖Δa‖ < 1, for all ‖a‖ = 1,
and Z1 ∈ N (0, Im) and Z2 ∈ N (0, Id) are independent (Proposition 2.2.
(Arellano-Valle and Genton, 2005)). A simple construction of Δ is Δ =

Λ
(
Im+Λ�Λ

)−1/2
with some real matrix Λ with d × m. The CFUSNd,m

(μ,Σ,Δ) can be defined via the linear transformation μ+Σ1/2X. We then
have the following

EX = ΔE |Z1| =
√

2

π
Δ1m,

VarX = ΔVar |Z1|Δ� +
(
Id −ΔΔ�

)1/2 (
Id −ΔΔ�

)1/2
,

Var |Z1| = Im − 2

π
Im, VarX = Id −

2

π
ΔΔ�.

The cumulant function of a CFUSNd,m (0,Σ,Δ) is

CX (λ) = m log 2− 1

2
λ�Σλ+ logΦm (iΔᵀλ) ,
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Figure 1: Contour plots of the densities of CFUSN2,2(0, I2,Δ) distribution with
generating Λ as indicated above

where Φm denotes the standard normal distribution function of dimension
m. Note again that the cumulants of order higher than 2 do not depend on
Σ but just on Δ. The proof of the next Lemma is given in the Appendix.

Lemma 5. The cumulants of CFUSNd,m (0,Σ,Δ) are given by

Cum1 (X) = EX =

√
2

π
Δ1m, (6.7)

Cum2 (X) = vecΣ− 2

π
Δ⊗2 vec Im, (6.8)

Table 1: Skewness and kurtosis measures for the bivariate CFUSN distribu-
tion of Fig. 1

Figure 1a Figure 1b Figure 1c Figure 1d
Skew κ3 - Mardia 1.45 0.84 0.84 0.46

κ3,D 1.45 0.42 0.42 0.23
MSR 0.85 0.85 0.65 −0.65 0.65 0.65 0.48 0.48
Kollo 0.85 0.85 0.00 0.00 1.30 1.30 0.96 0.96

Kurt κ4 0.99 0.61 0.61 0.17
κ4,D 0.99 0.19 0.19 0.05
Mardia 9.41 8.78 8.78 8.41
Koziol 15.8 14.2 14.2 13.0
MSR 0.71 0.00 0.39 −0.39 0.39 0.39 0.21 0.21
Kollo 4.71 2.00 4.00 2.00 4.78 2.78 4.41 2.41
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and for k = 3, 4 . . .

Cumk (X) = ckΔ
⊗k vec

[
e⊗k−1
p

]
p=1:m

. (6.9)

where ek denotes the kth unit vector in R
m. Expressions for ck are provided

in Lemma 4.

7 Some Illustrative Examples

Figure 1 provides the contour plots of the density of a CFUSN2,2(0, I2,Δ)
for selected choices of the generating Λ as described under each figure.

Table 1 reports the values of skewness and kurtosis indexes computed
with the help of Lemma 5. These results have been further verified by sim-
ulations. The index of Malkovich and Afifi and that of Balakrishnan et al.
are not reported as they are equivalent to Mardia and MSR measures re-
spectively.

Among the skewness indexes, note that Kollo’s vector measure is not
able to capture the presence of skewness (although it is quite strong) in
case b). As far as the kurtosis indexes are concerned, note that the total
kurtosis κ4 and κ4,D are quite effective in showing differences among the four
cases.

Figure 2 reports the contour plots of the density of St2(0, I2,α, 10) for
some choices of α as given under the figure. Table 2 reports the correspond-
ing values of skewness and kurtosis measures

Figure 2: Contour plots of the densities of Skew t distribution with unit
covariance matrix and α as indicated above
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8 Concluding Remarks

In this paper we have taken a vectorial approach to express informa-
tion about skewness and kurtosis of multivariate distributions. This can
be achieved by applying a vector derivative operator that we call the T-
derivative, to the cumulant generating function. Although some of our
methods may appear as similar to some existing results, we demonstrate
that they lead to a direct and natural way of expressing higher order cu-
mulants and moments in the multivariate case. This approach can also
be easily extended to obtain moments and cumulants beyond the fourth
order.

Our careful analysis of existing measures of skewness and kurtosis via
the third and fourth order cumulant vectors, reveals some hidden features
and relationships among them.

Explicit formulae for cumulant vectors for several distributions have been
obtained. Several results are new, such as those in Lemmas 1 and 3, while
others complement and complete existing results available in the literature.

The availability of explicit formulae for κ3 and κ4 together with avail-
able computing formulae for commutators provides a systematic treatment
of higher order moments and cumulants for general classes of symmetric and
asymmetric multivariate distributions, which are needed in applications, es-
timation and testing.
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Appendix

1.1. * Commutation matrices
In order to define the skewness and kurtosis in terms of the moments,

some preliminary discussion of what are known as “commutation matrices”
is helpful. We use the notation 1 : d to denote 1, 2, . . . , d and Ei,j to represent
the (d× d) elementary matrix, i.e. one whose entries are all zero except for
just the i, jth element which is 1.

Note that the vector vecEᵀ
i,j = vecEj,i, is the ((i− 1) d+ j)th, i = 1 : d,

j = 1 : d, unit vector of the identity matrix Id2 . We now define the matrix
K(1,2) by stacking these column vectors vecEᵀ

i,j into a matrix according to
the order defined by the operator vec, i.e. we follow the column-wise ordering
of entries vecEᵀ

1,1 followed by vecEᵀ
1,2 etc. into a matrix of dimension d2×d2,

(cf. Graham 2081). Then

K(1,2) (a1 ⊗ a2) = a2 ⊗ a1,

which is the reason why it is called a commutation matrix (see e.g. Graham
2081, Magnus and Neudecker 1999). By changing the neighboring elements
of a tensor product, we can reach any permutation of them. For instance,
if p =(i1, i2, i3, i4) is a permutation of the numbers 1,2,3,4, we can intro-
duce the commutator matrix Kp for changing the order of a tensor product,
namely

Kp (a1 ⊗ a2 ⊗ a3 ⊗ a4) = ai1 ⊗ ai2 ⊗ ai3 ⊗ ai4 .

In particular if we set p1=(1, 3, 2, 4)

Kp1 (a1 ⊗ a2 ⊗ a3 ⊗ a4)

=
(
Id1 ⊗K(1,2) ⊗ Id4

)
(a1 ⊗ a2 ⊗ a3 ⊗ a4) = a1 ⊗ a3 ⊗ a2 ⊗ a4.

It is worth noting that K(1,2), and in general each commutator matrix, de-
pends on the dimensions of the vectors under consideration. In our example,
the dimension of K(1,2) is d

2 × d2, while the dimension of Kp1 is d4 × d4.
Commutator matrices are very useful for expressing the formulae for mo-

ments in terms of cumulants and vice versa, as shown in the next Section 1.2.
1.2. * Conversion of moments and cumulants
Since we will be dealing with the cumulants of different variables, from

now on, we will index the cumulants by the variable as well and write κX,k =
Cumk (X). In terms of the commutator matrices, we can write

EX⊗3 = κX,3 +K2,1

(
κX,2 ⊗ κX,1

)
+ κ⊗3

X,1,

where
K2,1 = Id3 +K−1

(1,3,2) (d1:3) +K−1
(3,1,2) (d1:3) , (1.1)
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while

EX⊗4 = κX,4+K3,1

(
κX,3 ⊗ κX,1

)
+K2,2κ

⊗2
X,2+K2,1,1

(
κX,2 ⊗ κ⊗2

X,1

)
+κ⊗4

X,1,

where

K3,1 = Id4+K−1
(1,2,4,3) +K−1

(1,4,2,3)+K−1
(4,1,2,3), (1.2)

K2,2 = Id4 +K−1
(1,3,2,4) +K−1

(1,4,2,3),

K2,1,1 = Id4+K−1
(1,3,2,4) +K−1

(3,1,2,4) +K−1
(3,1,4,2) +K−1

(1,3,4,2) +K−1
(3,4,1,2).

For cumulants we have (see e.g. Jammalamadaka et al., 2006)

κX,2 = EX⊗2 − (EX)⊗2 ,

κX,3 = EX⊗3 −K2,1

(
EX⊗2 ⊗ EX

)
+ (EX)⊗3 ,

κX,4 = EX⊗4 −K3,1

(
EX⊗3 ⊗ EX

)
−K2,2

(
EX⊗2

)⊗2
+

2K2,1,1

(
EX⊗2 ⊗ (EX)⊗2

)
− 6 (EX)⊗4

where the commutators are as defined in Eqs. 1.1 and 1.2.
1.3. * Proofs
We start with the proof of Theorem 3, which is one of the central results

of the paper. Proofs of the remaining results follow.
Proof of Theorem 3. In order to derive the cumulants of V, set

Sm =
√
m
S and let

W =

√
m

S
X = SmX.

Note that the cumulants of W are the same as those of V except for the
mean, and that (cf. Johnson et al., 1994, p. 452)

E
(√

S2/m
)−k

= ESk
m = (m/2)k/2Γ((m−k)/2)

Γ(m/2) , (1.3)

= μk (Sm) =
(
m
2

)k/2
G−k (m)

where Gk(m) is as given in Eq. 6.3. We have

G−2 (m) =
2

m− 2
, G−3 (m) =

2

m− 3
G−1 (m) , G−4 (m) =

4

(m− 4) (m− 2)
.

Consider first the computation of mean and variance.

κV,1 = EV = μ+G−1 (m)

√
m

π
δ,
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with δ as also α given in Eq. 6.5. From the formula for cumulants of products
(see Terdik 2002) we need to compute:

κW,2 = Cum2 (SmX)

= C2 (Sm)κX,2 + C2 (Sm)κ⊗2
X,1 + C1 (Sm)2 κX,2,

where, from Lemma 4,

κX,1 = EX =

√
2

π
δ,κX,2 = vecΣ− 2

π
δ⊗2,

and

C1 (Sm) = E
(√

S2/m
)−1

=

√
m

2
G−1 (m) ,

C2 (Sm) =
m

2

(
G−2 (m)− (G−1 (m))2

)
=

m

2

(
2

m− 2
− (G−1 (m))2

)
.

For m > 2, using the results above

κW,2 =

(
m

m− 2
− m

2
(G−1 (m))2

)(
vecΣ− 2

π
δ⊗2 +

2

π
δ⊗2

)

+
m

2
(G−1 (m))2

(
vecΣ− 2

π
δ⊗2

)

=
m

m− 2
vecΣ− m

π
(G−1 (m))2 δ⊗2.

We note that Sahu et al., (2003, p.137) provide a different approach and
expression for the second cumulant. Consider now the third order cumulant.
Again, from the formula for cumulants of products (see Terdik 2002) we need
to compute:

κW,3 = C3 (Sm)
(
κX,3 +K2,1 (κX,2 ⊗ κX,1) + κ⊗3

X,1

)
+C1 (Sm)C2 (Sm) (3κX,3 + 2K2,1 (κX,2 ⊗ κX,1))

+C1 (Sm)3 κX,3. (1.4)
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Notice thatW is a scalar multiple of a vector valued variate, making the gen-
eral formula for vector valued case somewhat simplified. Now, we consider
separately the terms in Eq. 1.4: first those depending on X, namely

κX,3 +K2,1 (κX,2 ⊗ κX,1) + κ⊗3
X,1

=

⎛
⎝2

(√
2

π

)3

−
√

2

π

⎞
⎠ δ⊗3 +

√
2

π
K2,1 (vecΣ⊗ δ)

−3

(√
2

π

)3

δ⊗3 +

(√
2

π

)3

δ⊗3

= −
√

2

π
δ⊗3 +

√
2

π
K2,1 (vecΣ⊗ δ) .

Here, as well as in the next set of calculations, we use Lemma 4 which
expresses the cumulants of a multivariate skew normal variable in terms of
its parameters. As a side result we have

EX⊗3 = −
√

2

π
δ⊗3 +

√
2

π
K2,1 (vecΣ⊗ δ) , (1.5)

since the third moment

EX⊗3 = κX,3 +K2,1κX,2 ⊗ κX,1 + κX,1
⊗3,

cf. Genton et al. (2001) where the mean is zero. The next term in Eq. 1.4
contains

3κX,3 + 2K2,1 (κX,1 ⊗ κX,2) =

⎛
⎝6

(√
2

π

)3

− 3

√
2

π

⎞
⎠ δ⊗3

+2

√
2

π
K2,1 (vecΣ⊗ δ)− 6

(√
2

π

)3

δ⊗3

= −3

√
2

π
δ⊗3 + 2

√
2

π
K2,1 (vecΣ⊗ δ) .
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Plugging these results into Eq. 1.4, we obtain

κW,3 = C3 (Sm)

(
−
√

2

π
δ⊗3 +

√
2

π
(3 vecΣ⊗ δ)

)
(1.6)

+C1 (Sm)C2 (Sm)

(
−3

√
2

π
δ⊗3 + 2

√
2

π
K2,1 (vecΣ⊗ δ)

)

+C1 (Sm)3

⎛
⎝2

(√
2

π

)3

−
√

2

π

⎞
⎠ δ⊗3.

The cumulants of Sm that are needed, come from the expressions for cu-
mulants in terms of moments and the moment formula (1.3). They are as
follows

C3 (Sm) = μ3 (Sm)− 3μ1 (Sm)μ2 (Sm) + 2μ1 (Sm)3

=
(m
2

)3/2
G−1 (m)

(
− 4m− 14

(m− 3) (m− 2)
+ 2 (G−1 (m))2

)

and

C1 (Sm)C2 (Sm) = μ1 (Sm)μ2 (Sm)− μ1 (Sm)3

=
(m
2

)3/2
G−1 (m)

(
2

m− 2
−G−1 (m)2

)

C1 (Sm)3 is simply the third power of the expected value. Finally we collect
the coefficients in Eq. 1.6 of different terms. Starting withK2,1 (κX,2 ⊗ κX,1),
we have

√
2

π

(m
2

)3/2
G−1 (m)

(
− 4m− 14

(m− 3) (m− 2)
+ 2 (G−1 (m))2

)

+2

√
2

π

(m
2

)3/2
G−1 (m)

(
2

m− 2
−G−1 (m)2

)

=

√
2

π

(m
2

)3/2
G−1 (m)

2

(m− 3) (m− 2)
.
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Then collecting the coefficients of δ⊗3 gives

−
√

2

π

(m
2

)3/2
G−1 (m)

(
− 4m− 14

(m− 3) (m− 2)
+ 2 (G−1 (m))2

)

−3

√
2

π

(m
2

)3/2
G−1 (m)

(
2

m− 2
−G−1 (m)2

)

+
(m
2

)3/2
G−1 (m)3

⎛
⎝2

(√
2

π

)3

−
√

2

π

⎞
⎠

= −
√

2

π

(m
2

)3/2
G−1 (m)

(
2

m− 3
− 4

π
G−1 (m)2

)
.

Putting these results together, we obtain

κW,3 = −
√

2

π

(m
2

)3/2
G−1 (m)

(
2

m− 3
− 4

π
G1 (m)2

)
δ⊗3

+
2

(m− 3) (m− 2)

√
2

π

(m
2

)3/2
G−1 (m)K2,1 (δ ⊗ vecΣ) .

For the fourth cumulant (k = 4), again expressing the cumulant of prod-
uct in terms of product of cumulants (see Terdik et al., 2002), and writing
Ck (Sm) = Cumk (Sm) for short, we have

κW,4 = C4 (Sm)
(
κX,4+K3,1

(
κX,3 ⊗ κX,1

)
+K2,2κ

⊗2
X,2+K2,1,1

(
κX,2 ⊗ κ⊗2

X,1

)
+ κ⊗4

X,1

)
(1.7)

+C3(Sm)C1(Sm)
(
4κX,4+3K3,1

(
κX,3 ⊗ κX,1

)
+4K2,2κ

⊗2
X,2+2K2,1,1

(
κX,2 ⊗ κ⊗2

X,1

))

+C2 (Sm)2
(
3κX,4 + 3K3,1

(
κX,3 ⊗ κX,1

)
+ 2K2,2κ

⊗2
X,2 + 2K2,1,1

(
κX,2 ⊗ κ⊗2

X,1

))

+C2 (Sm)C1 (Sm)2
(
6κX,4 + 3K3,1

(
κX,3 ⊗ κX,1

)
+ 4K2,2κ

⊗2
X,2

)
+ C1 (Sm)4 κX,4.

Remark 4. In the most general case when one considers cumulants of prod-
ucts such as

Cum4 (X1Y1, X2Y2, X3Y3, X4Y4) in terms of products of cumulants; there
are 2465 terms according to the indecomposable partitions with respect to
partition L = {(1, 2) , (3, 4) , (5, 6) , (7, 8)} of 8 elements. In our case it sim-
plifies because we consider four products of the same independent variables
Cum4 (XY ). One can also check these formulae by expressing the 4th order
cumulant in terms of expected values and using independence.

In doing so, one should pay attention to the fact that the first order
cumulants are not zero.
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The cumulants contained in this expression are considered in Lemma 4.
The cumulants of X, except the second order one, depend on constant
times tensor powers δ⊗k, thus making the use of commutator matrices un-
necessary. The products including κX,2 = vecΣ − 2/πδ⊗2, needs to be
considered

K2,2κ
⊗2
X,2 = K2,2

((
vecΩ− 2

π
δ⊗2

)
⊗
(
vecΩ− 2

π
δ⊗2

))

= K2,2 (vecΩ)⊗2 − 2

π
K2,2

(
vecΩ⊗ δ⊗2 + δ⊗2 ⊗ vecΩ

)

+3

(
2

π

)2

δ⊗4.

The term with vecΩ and δ⊗2 becomes

K2,2

(
vecΩ⊗ δ⊗2 + δ⊗2 ⊗ vecΩ

)
= K2,1,1

(
vecΩ⊗ δ⊗2

)
.

Calculations for kurtosis are similar to those that have been used for
skewness. The expression (1.7) contains five groups of cumulants, which are
as follows:

1. It follows from Section 1.2

κX,4 +K3,1 (κX,3 ⊗ κX,1) +K2,2κ
⊗2
X,2 +K2,1,1

(
κX,2 ⊗ κ⊗2

X,1

)
+ κ⊗4

X,1 = EX⊗4

(cf. Genton et al., 2001). Observe that the coefficient of δ⊗4 is 0.

2.

4κX,4+3K3,1(κX,3 ⊗ κX,1)+4K2,2κ
⊗2
X,2 + 2K2,1,1

(
κX,2 ⊗ κ⊗2

X,1

)

= 4
2

π
δ⊗4 + 4K2,2 (vecΣ)⊗2 − 2

2

π
K2,1,1

(
vecΣ⊗ δ⊗2

)

and the coefficient of δ⊗4 is 4 2
π .

3.

3κX,4 + 3K3,1 (κX,3 ⊗ κX,1) + 2K2,2κ
⊗2
X,2 + 2K2,1,1κX,2 ⊗ κ⊗2

X,1

= 2
(
K2,2 (vecΣ)⊗2

)

and the coefficient of δ⊗4 is 0.
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4.

6κX,4 + 3K3,1 (κX,3 ⊗ κX,1) + 4K2,2κ
⊗2
X,2

= 12
2

π
δ⊗4 + 4K2,2 (vecΣ)⊗2 − 4

2

π
K2,1,1

((
vecΣ⊗ δ⊗2

))

and the coefficient of δ⊗4 is 12 2
π

5. κX,4 =
(
−6

(
2
π

)2
+ 4 2

π

)
δ⊗4,

Now we collect the coefficients for δ⊗4

(
−6

(
2

π

)2

+ 4
2

π

)
C1(Sm)4+12

2

π
C2 (Sm)C1(Sm)2+4

2

π
C3 (Sm)C1 (Sm)

= 2
(m
2

)2 2

π
G−1 (m)2

(
4

m− 3
− 3

2

π
G−1 (m)2

)
,

and for K2,2 (vecΣ)⊗2

C4 (Sm) + 4C3 (Sm)C1 (Sm) + 2C2 (Sm)2 + 4C2 (Sm)C1 (Sm)2

=
(m
2

)2 8

(m− 4) (m− 2)2
,

and for K2,1,1

(
vecΣ⊗ δ⊗2

)

−4
2

π
C2 (Sm)C1 (Sm)2 − 2

2

π
C3 (Sm)C1 (Sm)

= − 2

π

(m
2

)2 4

(m− 3) (m− 2)
G−1 (m)2 .

Combining these five groups, one arrives at the proof of the Theorem.

Proof of Lemma 1. This Lemma can be obtained essentially from
the results in Fang et al. (2017), by rearranging them into a vector form,
and using our notations.

Writing d1 =
(
d3 − 1

)
/ (d− 1), and defining the matrix I

(
d3, d

)
=

Id3 (:, [1, 1 + d1, . . . , 1 + (d− 1)d1]) , (i.e. d columns of the unit matrix Id3),
we will denote

e
(
d3, d

)
= vec I

(
d3, d

)
. (1.8)
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Also let

e
(
d2, d

)
=

d−1∑
k=1

d−k∑
m=1

(Id2 (:, (k − 1) d+ k +m)⊗ Id2 (:, (k − 1 +m) d+ k)

+Id2 (:, (k − 1 +m) d+ k)⊗ Id2 (:, (k − 1) d+ k +m)) ,

e
(
d4
)
= vec (Id ⊗ Id) + (vec Id)

⊗2 + e
(
d2, d

)
− 2e

(
d3, d

)
. (1.9)

Note that the number of ones in e
(
d3, d

)
and e

(
d2, d

)
are d and (d− 1) d

respectively. Let Id = [ek]k=1:d, i.e. ek is a unit vector in R
d. The lemma

follows with the following additional notations

1d3 (3) =
d∑

k=1

e⊗3
k ,

1d3 (2, 1) = K2,1

∑
k �=j

e⊗2
k ⊗ ej , (1.10)

1d3 (1, 1, 1) =
∑

j �=k �=�

ej ⊗ ek ⊗ e�,

and

1d4 (4) =
d∑

k=1

e⊗4
k , (1.11)

1d4 (3, 1) = K3,1

∑
j �=k

e⊗3
k ⊗ ej ,

1d4 (2, 2) = K2,2

∑
j �=k

e⊗2
j ⊗ e⊗2

k ,

1d4 (2, 1, 1) = K2,1,1

∑
j �=k �=�

e⊗2
j ⊗ ek ⊗ e�,

1d4 (1, 1, 1, 1) =
∑

j �=k �=��=n

ej ⊗ ek ⊗ e� ⊗ en.

Proof of Lemma 2. Recall φW (λ) defined in Eq. 5.2. Applying D⊗
λ

to the cumulant generator ψW (λ) = log φW (λ) , we have

Cumn (W) = (−i)nD⊗n
λ ψW (λ)

∣∣
λ=0

.
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Writing f (λᵀλ) = g′ (λᵀλ) /g (λᵀλ), we have

D⊗
λψW (λ) =

2g′ (λᵀλ)

g (λᵀλ)
λ = 2f (λᵀλ)λ,

D⊗2
λ ψW (λ) = 4f ′ (λᵀλ)λ⊗2 + 2f (λᵀλ) vec Id,

D⊗3
λ ψW (λ) = 8f ′′ (λᵀλ)λ⊗3 + 4f ′ (λᵀλ) (2Id3 +Kz ⊗ Id) (λ⊗ vec Id) ,

from which we obtain Cum1 (W) = 0, Cum2 (W) = −2g′ (0) vec Id, and
Cum3 (W) = 0. For Cum4 (W) we have

D⊗4
λ ψW (λ)

∣∣
λ=0

= 4
(
g′′ (0)− g′ (0)2

)(
Id4+K(3,1,2,4)+K(1,3,2,4)

)
(vec Id)

⊗2 .

Mardia’s measure can now be obtained by noting that

(vec Id2)
�
(
Σ

−1/2
W

)⊗4
Cum4 (W)

= 4
g′′ (0)− g′ (0)2

4g′ (0)2
(vec Id2)

� (
Id4 +K(3,1,2,4) +K(1,3,2,4)

)
(vec Id)

⊗2

= d (d+ 2)κ0.

Proof of Lemma 3. Since R∗2/d has an F-distribution with d and m
degrees of freedom, we have for m > 4,

ER∗2 =
dm

m− 2
, ER∗4 = d2

(m
d

)2 d (d+ 2)

(m− 2) (m− 4)
,

ER∗4

(ER∗2)2
=

d+ 2

d

m− 2

m− 4
,

and using Theorem 1. One may use Fang et al., (2017 p. 88) to obtain
formulae for the moments of components of W, and get

EW 2
1 =

m

m− 2

EW 4
1 = m2Γ (m/2− 2)

22Γ (m/2)

4!

222!
=

3m2

(m− 2) (m− 4)
,

hence Cum4 (W1/σW1) = 3
(
m−2
m−4 − 1

)
; Theorem 1 can be used to get κ0.
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Proof of Theorem 2. Recall (6.4) and Lemma 1 for the moments

of pk and |Uj |. Set V1 = Δ |Z1|, V2 =
(
I−ΔΔ�)1/2 Z2 for simplifying

notations. The commutation matrices are given in Eqs. 1.1 and 1.2.

EX = Δ

√
1

π

G1,0

G1 (m)
ER1m,

EX⊗2 = EV⊗2
1 + EV⊗2

2

= E p21 ER2Δ⊗2 E |U1|⊗2 + E p22 ER2 EV⊗2
2 ,

EX⊗3 = E(V1 +V2)
⊗3 = EV⊗3

1 +K2,1

(
EV⊗2

2 ⊗V1

)
.

where EV⊗3
1 = Δ⊗3 E |Z1|⊗3 = E p31 ER3 E |U1|⊗3 and

K2,1 EV⊗2
2 ⊗V1 = E p1p

2
2 ER3K2,1 (Id2 ⊗Δ)

(
EV⊗2

2 ⊗ E |U1|
)
.

EX⊗4 = EV⊗4
1 +K2,1,1

(
EV⊗2

1 ⊗V⊗2
2

)
+ EV⊗4

2 ,

where EV⊗4
1 = E p41 ER4Δ⊗4 E |U1|⊗4 and

EV⊗4
2 =

(
E p42 ER4

)((
I−ΔΔ�

)1/2
)⊗4

EU⊗4
2 ,

EV⊗2
1 ⊗V⊗2

2 = E p21p
2
2 ER4

(
Δ⊗2 ⊗ Im2

) (
E |U1|⊗2 ⊗ EV⊗2

2

)
.

Proof of Lemma 5. In the proof, the operator D⊗
λ is used repeatedly;

let CX denote the cumulant function of X and note that

D⊗
λ log Φm (iΔᵀλ) = i

1

Φm

(
iΔ�λ

)Δ
[
Φm (Y)

∂

∂Yᵀ

∣∣∣∣
Y=iΔ�λ

]ᵀ
,

put ek for the kth unit vector, since Φm is the distribution function of the
m-variate standard normal distribution which is simply the product of uni-
variate standard normal distributions; hence

Φm (Y)
∂

∂Yᵀ

∣∣∣∣
Y=iΔ�λ

=
∑
k

Φm−1 (Y)ϕ (yk) e
ᵀ
kΔ

�
∣∣∣
Y=iΔ�λ

= Φm (Y)

[
ϕ (yk)

Φ (yk)

]
k=1:m

Δ�
∣∣∣∣
Y=iΔ�λ

,
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and

D⊗
λ log Φm

(
iΔ�λ

)
= −i Δ

[
ϕ (yk)

Φ (yk)

]�
k=1:m

∣∣∣∣∣
Y=iΔ�λ

.

The first two cumulants are obtained, by evaluating the derivatives at λ = 0.
We have:

D⊗
λCX = −Σλ+D⊗

λ log Φm

(
iΔ�λ

)
.

Consider next

Δ

[
ϕ (yk)

Φ (yk)

]
k=1:m

∣∣∣∣
Y=iΔ�λ

∂

∂λᵀ = Δ

[
ϕ (yk)

Φ (yk)

(
yk −

ϕ (yk)

Φ (yk)

)
eᵀkΔ

�
]
k=1:m

= Δ

[
ϕ (yk)

Φ (yk)

(
yk −

ϕ (yk)

Φ (yk)

)
eᵀk

]
k=1:m

Δ�,

to obtain

D⊗2
λ CX = − vecΣ + i vecΔ

[
ϕ (yk)

Φ (yk)

(
yk −

ϕ (yk)

Φ (yk)

)
eᵀk

]
k=1:m

Δ�

= − vecΣ + iΔ⊗2 vec

(
Diag

[
ϕ (yk)

Φ (yk)

(
yk −

ϕ (yk)

Φ (yk)

)])
.

For the third order cumulant, we have
(
Diag

[
ϕ (yk)

Φ (yk)

(
yk −

ϕ (yk)

Φ (yk)

)])
∂

∂λᵀ

= vec

([
eᵀk

ϕ (yk)

Φ (yk)

(
yk −

ϕ (yk)

Φ (yk)

)])
∂

∂λᵀ

=

[
ek

∂

∂yk

ϕ (yk)

Φ (yk)

(
yk −

ϕ (yk)

Φ (yk)

)
eᵀkΔ

�
]
,

and

vec

(
Δ

[
∂

∂y1

ϕ (y1)

Φ (y1)
e1e

ᵀ
1, . . .

∂

∂ym

ϕ (ym)

Φ (ym)
emeᵀm

]
Δ�⊗2

)

= Δ�⊗3 vec

[
∂

∂y1

ϕ (y1)

Φ (y1)
e1e

ᵀ
1, . . .

∂

∂ym

ϕ (ym)

Φ (ym)
emeᵀm

]

= Δ�⊗3 vec

[
∂

∂y1

ϕ (y1)

Φ (y1)
e⊗2
1 , . . .

∂

∂ym

ϕ (ym)

Φ (ym)
e⊗2
m

]
,

hence

Cum3 (X) =

√
2

π

(
4

π
− 1

)
Δ⊗3 vec

[
e⊗2
k

]
k=1:m

.
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Here
[
e⊗2
k

]
k=1:m

is a matrix of vectors of e⊗2
k with dimension m2×m. Higher

order cumulants come out as constant times Δ⊗k vec
[
e⊗k−1
p

]
p=1:m

, k =
3, 4, . . ..

Note that c3 and c4 coincide with those given in Appendix A.2 of Azzalini
and Capitanio (1999), and we omit details about the other constants ck.
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