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Abstract

Background Concern exists that noninvasive ventilation (NIV) may promote ventilation-induced lung injury(VILI) and
worsen outcome in acute hypoxemic respiratory failure (AHRF). Different individual ventilatory variables have been pro-
posed to predict clinical outcomes, with inconsistent results.

Mechanical power (MP), a measure of the energy transfer rate from the ventilator to the respiratory system during mechani-
cal ventilation, might provide solutions for this issue in the framework of predictive, preventive and personalized medi-
cine (PPPM). We explored (1) the impact of ventilator-delivered MP normalized to well-aerated lung (MPyy,; ) on physio-
anatomical and clinical responses to NIV in COVID-19-related AHRF and (2) the effect of prone position(PP) on MPy,; .
Methods We analyzed 216 noninvasively ventilated COVID-19 patients (108 patients receiving PP+ NIV and 108 propen-
sity score-matched patients receiving supine NIV) with moderate-to-severe(paO2/FiO2 ratio < 200) AHRF enrolled in the
PRO-NIV controlled non-randomized study (ISRCTN23016116).

Quantification of differentially aerated lung volumes by lung ultrasonography (LUS) was validated against CT scans. Respira-
tory parameters were hourly recorded, ABG were performed 1 h after each postural change. Time-weighed average values of
ventilatory variables, including MPyy,; , and gas exchange parameters (paO2/FiO2 ratio, dead space indices) were calculated
for each ventilatory session. LUS and circulating biomarkers were assessed daily.

Results Compared with supine position, PP was associated with a 34% MPyy,; reduction, attributable largely to an absolute
MP reduction and secondly to an enhanced lung reaeration.

Patients receiving a high MPy,; during the 1°' 24 h of NIV [MPy,,(day 1)] had higher 28-d NIV failure
(HR=4.33,95%CI:3.09 — 5.98) and death (HR =5.17,95%CI: 3.01 — 7.35) risks than those receiving a low MPy,,; (day 1).
In Cox multivariate analyses, MPy,4; (day 1) remained independently associated with 28-d NIV failure (HR =1.68,95%CI:1.15—
2.41) and death (HR =1.69,95%CI:1.22-2.32).

MPy,(day 1) outperformed other power measures and ventilatory variables as predictor of 28-d NIV fail-
ure (AUROC =0.89;95%C1:0.85-0.93) and death (AUROC =0.89;95%C1:0.85-0.94).

MPy,,; (day 1) predicted also gas exchange, ultrasonographic and inflammatory biomarker responses, as markers of VILI,
on linear multivariate analysis.

Conclusions In the framework of PPPM, early bedside MPyy,; calculation may provide added value to predict response to
NIV and guide subsequent therapeutic choices i.e. prone position adoption during NIV or upgrading to invasive ventilation,
to reduce hazardous MPy,; delivery, prevent VILI progression and improve clinical outcomes in COVID-19-related AHRF.

Keywords Predictive preventive personalized medicine (PPPM / 3PM) - COVID-19 - Hypoxemic respiratory failure -
Individual outcomes - Differentially aerated lung volume - Predictive model - Noninvasive ventilation - Therapeutic choice -
Lung ultrasound - Mechanical power - Well-aerated lung - Prone position
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Introduction

The unmet need for accurate early predictors
of treatment failure and death during noninvasive
ventilation (NIV)

NIV is being increasingly used as first-line ventilatory
support in de novo (i.e., not due to exacerbation of chronic
lung disease or cardiac failure) acute hypoxemic respira-
tory failure (AHRF). However, concern has been raised
that mechanical ventilation may exacerbate lung injury
(i.e., ventilation-induced lung injury, VILI) and worsen
outcome in spontaneously breathing patients with AHRF
[1]. Different ventilatory variables have been proposed to
contribute to VILI progression, including high tidal vol-
ume [2], minute ventilation [3] and inspiratory effort [4]:
these parameters have been separately addressed in clini-
cal studies, but data in noninvasively ventilated patients
are scarce, inconsistent and inconclusive, at least in part
due to the difficulty in controlling and monitoring time-
varying individual ventilatory parameters in spontaneously
breathing patients.

Potential contribution of Mechanical Power (MP)
to clinical prediction in the framework of PPPM

Predictive, Preventive, and Personalized Medicine (PPPM)
is an effective integrative approach, which has been pro-
moted by the European Association for Predictive, Preven-
tive and.

Personalized Medicine (EPMA, http://www.epmanet.
eu/) [5]. It contains three aspects: individual predisposi-
tion prediction, targeted preventive measures and personal-
ized treatment algorithms [6].

In recent years, a unifying patho-physiological theory,
based on thermodynamic principles, has been proposed
to underlie VILI: this theory attributes lung injury to the
energy transfer from the ventilator to the pulmonary paren-
chyma, with energy dissipation within the lungs leading
to heat production, cell integrity and extracellular matrix
disruption, and inflammatory cell recruitment [7-9].
Consistently, mechanical power (MP), a measure of the
energy transfer rate from the ventilator to the respiratory
system, predicted mortality in invasively ventilated ARDS
patients, irrespective of the combination of each ventila-
tory component [10-13].

Whether the energy delivered to the respiratory sys-
tem during noninvasive ventilation (NIV) affects clinical
outcomes in AHRF is unexplored. During COVID-19
pandemic, NIV intensity and duration were linked to an
increased mortality in COVD-19-related AHRF [14-16],
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but no individual ventilatory parameter, including respira-
tory drive and inspiratory effort, was able to predict clini-
cal outcomes [17-20]. Furthermore, clinical benefits from
awake prone position (PP) during NIV have been reported
by several, but not all studies, through still unclear mecha-
nisms [21, 22].

Working hypothesis

We hypothesized the energy delivered by noninvasive ven-
tilatory assistance to the respiratory system could contrib-
ute to physio-anatomical and clinical responses to NIV in
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-
CoV-2) pneumonia-related AHRF, and that the clinical ben-
efits of awake PP in these patients could be at least in part
mediated by a reduced MP delivery during prone NIV. We
therefore investigated:

1) the effect of prone position (PP) on different measures
of MP during NIV.

2) the contribution of MP measures delivered early during
either supine or prone NIV to physio-anatomical and
clinical outcomes in COVID-19 pneumonia

Methods

In this secondary analysis of the non-randomized, controlled
Prone position in NonlInvasive Ventilation (PRO-NIV)
study(study ID: ISRCTN23016116) [23], we studied 216
SARS-CoV-2 pneumonia patients with acute (i.e. symptom
onset < 14 days of hospital admission) moderate-to-severe
AHRF(paO2/FiO2 ratio <200 mmHg while on a Fi02 50%
Venturi mask or a non-rebreather reservoir bag mask): 108
patients treated with NIV (CPAP or PSV) plus early PP and
108 matched controls treated with supine NIV) at HUMAN-
ITAS Gradenigo COVID Subintensive Care Unit between
June 1st 2020 and June 30th 2021.

In both groups, NIV was initiated within 24 h of admis-
sion to Subintensive Care Unit and delivered continuously
for >48 h or until discharge or death; full-face mask was the
initial interface of choice. PP was initiated within 24 h of
admission in the PP group. NIV and PP duration, equipment,
settings, standard care, monitoring, treatment failure criteria
were protocolized a priori before patients enrollment (see
supplementary text, Supplementary Fig. 1, Supplementary
Table 1) [23].

Measurements
Respiratory parameters NIV duration, posture, ventilatory set-

tings and parameters (spO2, RR, VTe, MV) were continuously
monitored and recorded on an hourly basis on a predefined form.
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ABGs were performed during NIV, every 24 hand > 1 h
after each postural change, after achievement of ventilatory
stability (defined by a <10% variation in RR and VTe and
air leaks < 10% for >30 min).

The following gas exchange parameters were calculated
from ABG: paO2/FiO2 ratio and dead space indices (DSIs)
[Ventilatory Ratio (VR) and corrected Minute Ventilation
(MV o]

The energy delivered by ventilatory assistance to respira-
tory system per time unit (mechanical power, MP) was esti-
mated via Becher formula [24], which was already evaluated
in noninvasively ventilated patients and was recommended
to improve noninvasive ventilatory support monitoring in
COVID-19 pneumonia [14, 25]. In this formula, APinsp was
replaced by APaw(airway pressure over PEEP) to reflect the
energy imparted by ventilator during inspiration [1, 26].

Since NIV isa dynamic process, to reflect the power
delivered during the entire ventilatory sessions, time
weighted—average of hourly MP values during each NIV
session (supine/prone) was calculated as the area under the
parameter—versus—time plot (detailed in supplementary text)
[27]. The same procedure was followed to calculate time
weighted—average values of RR, VTe, and MV for each ven-
tilator session and for each day.

For MV, we also planned to verify consistency between
time-averaged values and those obtained at the time of
ABGs, which were used to calculate DSIs.

The primary exposure variable of interest was MP nor-
malized by the volume of well-aerated lung (MPy,;), to
reflect the “intensity” of the power, i.e., the volume of well-
aerated lung exposed to energy load during mechanical ven-
tilation, during the 1°° 24 h of NIV [MPy,,; (day 1)].

We also normalized MP by predicted body weight
(MPpgy,) to account for individual lung size variation.

Lung imaging All patients underwent a lung CT scan on
admission: the nature and extent of parenchymal involve-
ment were scored using a validated index [28] and the vol-
ume of well-aerated lung (WAL), of poorly aerated lung
(PAL) and of non-aerated lung (NAL) were quantified on
CT scans via a validated open-source software (3D Slicer
ver.4.13.2) (see supplementary text) [29].

Lung ultrasound was performed daily from admission
(day 0) to day 7 by three intensivists with expertise in lung
and cardiac recording and interpretation (each operator hav-
ing performed at least 50 supervised procedures and at least
200 non-supervised procedures) [30] using the same equip-
ment (HM70A Samsung, Seoul, Korea), the same convex-
array probe and the same setting.

The accuracy of ultrasound examinations in staging lung
disease severity was preliminarily evaluated at baseline
against the CT scan (double-blinded operators, LUS per-
formed within 24 h of CT examination).

The severity and extent of parenchymal involvement of
each of 6 lung regions (2 anterior, 2 lateral, 2 dorsal) were
scored (range 0-3) [31] and recorded on a predefined form
and the following indices were calculated (supplementary
text):

— regional and global lung ultrasound score (LUS);

— regional and global LUS reaeration score, a validated
index of lung recruitment (i.e., change from consolidated,
non-aerated tissue to aerated tissue) [32, 33];

— additionally, using software-based lung parenchyma
segmentation and analysis function [29], each lung was
divided into six areas to mirror as much as possible the
regions explored by ultrasound, and regional and global
LUS-derived WAL volume (i.e. lung volume with LUS
score 0—1), PAL (i.e. lung volume with LUS score 2) and
NAL (i.e. lung volume with LUS score 3) were derived
from admitting LUS scan examinations as previously
described in ARDS [34]. Global LUS-derived WAL
volume, a predictor of COVID-19 pneumonia outcome
[24], was then calculated from daily LUS scans through
day 0-7(detailed in supplementary text).

The agreement between regional LUS score and regional
CT classification was assessed with Cohen’s kappa coeffi-
cient, and the association between regional CT-derived gas/
tissue content and regional LUS categories was assessed by
simple linear regression and Spearman’s rank correlation
(ry).

Details on full derivations are provided in supplementary
text.

The PEEP at which each LUS examination was made
was recorded.

— Circulating biomarkers: eighteen circulating inflamma-
tory and procoagulative biomarkers were measured daily
from admission to discharge or death [35].

Definitions and timepoints

We adopted the following definitions:

— day O (baseline): the time of NIV initiation;

day 1: first 24 h after NIV initiation;

— day 7: day 7 after NIV initiation;

— timepoint sp0: supine position. In PP group, the session
preceded the first PP session. ABG was performed>1h
after supine NIV initiation, after achieving ventilatory
stability;

— timepoint ppl: first PP session in PP group. ABG was
performed > 1 h after prone NIV initiation, after achiev-
ing ventilatory stability;
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— timepoint sp1: supine position; ABG was performed>1 h
after resupination following the first PP session in the PP
group and 24 h after NIV initiation in the supine group,
after achieving ventilatory stability;

This schedule allowed comparing all groups in the supine
position, after 24 h of NIV, while taking into account the
effect of the first PP session (ppl) in the PP group.

Further definitions are provided in legends to Table 1 and
in a study scheme (Supplementary Fig. 1).

Outcomes
Primary outcomes were the occurrence of.

— NIV failure within 28 days of enrolment, defined as intu-
bation OR death;
— death, censored at 28 days after enrollment.

Secondary outcomes were:

— endotracheal intubation (ETI) at 28 days (after excluding
patients with a do-not-intubate, DNI, order);

— 60-day death

— O2-response: paO2/Fi02,—paO2/FiO2,, (or ApaO2/
FiO2,. ).

— CO2-response: AVR ..

— C-reactive protein (CRP) response: ACRP, ;.

— global LUS response at day 1: Aglobal LUS,, ;.

— global reaeration score at day 1: global reaeration score;,

— change in LUS- assessed WAL (%) at day 1 (AWAL,, ;)

Statistical analyses

Sample size calculation and propensity score (PS)-matching
of PP and supine group.

Sample size calculation and PS-matching of PP and supine
groups for relevant baseline covariates are detailed in sup-
plementary text.

Descriptive statistics Data are given as median (IQR) or n
(%) as appropriate.

We used chi-square test or Fisher’s exact test for categori-
cal variables, T-Test for normally distributed and Kruskal—
Wallis test for non-normal continuous variables.

Time change in continuous variables was assessed by
computing the AUC with the trapezoid method [36].

Repeated measures two-factor (within subject and
between group) ANOVA was used to compare continuous
variables assessed at multiple timepoints (i.e., respiratory
and biochemical parameters), after log-transformation of
non-normal variables.

@ Springer

To explore the effect of early MPy;,; delivery on clinical
outcomes, the whole cohort was split into 2 groups accord-
ing to median MPy,; values at day 1. The probability of
28-day NIV failure, death and ETI in low vs high MPy,,;
group at day 1 was compared using Kaplan—-Meier procedure
and log-rank test. Data were analyzed on an intention-to-
treat basis.

Beside categorizing patients into low/high MPy,;, we
explored dose—-response relationship between early power
delivery and clinical outcomes by dividing the entire cohort
into quartiles of power measures at day 1. Comparison
between quartiles was made by ANOVA with post-hoc
comparison from the first quartile performed using the
Tukey test. We planned to assess also reciprocal relation-
ship between MP, MPpgy, and MPy,,; at day 1 by univariate
analysis and Spearman correlation coefficient (ry).

Multivariable Cox proportional regression analysis
adjusting for imbalanced covariates between groups was
used to assess the effect of confounders on 28-d NIV fail-
ure, death and ETI in the whole cohort, with the maximum
number of covariates allowed in each model set at (event
rate X N)/10, where N is the sample size [37]. The alloca-
tion assignment (PP or supine) was entered as a predefined
covariate into the models. Calendar month of admission was
forced into all models to account for unmeasured temporal
disease trends during the pandemic.

Anticipating high collinearity between ventilatory vari-
ables, in all (Cox and linear) multivariable models we used a
combination of backward procedure and exclusion of highly
collinear variables through model-dependent Variance Infla-
tion Factor(VIF) cut-off values to select covariates [38].

MP, MPpgy and MPy,; at day 1 were included into all
backward multivariate models to assess relative robustness
of the association of each power measure (MP, MPpgy.
MPy,,; ) with outcomes.

We also explored the predictive performance of each
power measure and of other ventilatory variables at day 1
for 28-day NIV failure and death and the optimal cut-offs
using the area under receiver operating characteristic curve
(AUROC) analysis and Youden index.

Comparison between AUROC curves was made by
DeLong’s method.

In the physio-anatomical analysis, we explored dose—
response relationship between the power delivered at day 1
by the ventilator to the respiratory system and gas exchange,
ultrasonographic and circulating biomarker changes after the
1524 h of NIV by univariable and multivariable regression
analysis, after log transformation of skewed parameters; the
best fit among four predictive models (linear, exponential,
logarithmic, binomial) was searched using R? values.

Two-tailed p values < 0.05 were considered statistically
significant (MedCalc 19.7, Ostend, Belgium).
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Results
Characteristics at Inclusion

We analyzed 216 COVID-19 patients (108 treated with
PP and 108 with supine NIV) (Table 1, Supplementary
Fig. 2). Pre-post-matching SMDs, PS density and logit(PS)
distribution plots revealed good balance between PP and

Fig. 1 Panel A: categorization
of individual lung regions with
different CT-assessed gas/tis-
sue density in relation to their

Panel A

supine groups in selected covariates (Supplementary
Fig. 3, Supplementary Table 2).

Baseline demographics, pharmacological therapies,
clinical-radiological features, and respiratory parameters
of patients treated with PP or supine NIV, subgrouped
according to median MPy,; at day 1, were similar across
groups; NRS (dyspnea), WOB score [39] and RR showed
no evidence for increased respiratory drive, while lung CT

CT lung tissue density and LUS score

LUS score. Panel B: correlation

between WAL(%) assessed by P 0 &'
software-based analysis of CT 2 2
scans and WAL(%) as estimated 5 T —
by global lung ultrasound (LUS) > -200
score in the 216 COVID-19 = / R2=0.87 3
pneumonia patients included in - = 1 o
the study. The Spearman cor- -t -400 / = = A=(.000
relation coefficient (r,) with its v
95%ClI and statistical signifi- 2 T
- @ 600 —
cance are shown. Abbreviations: 2 | ~X
CT: computed tomography; HU: :,) = &'
Hounsfield Units; LUS: lung c 800 =7= ;
ultrasound; NAL: non-aerated _: ¥ .~
lung volume; PAL: poorly
aerated lung volume; WAL: -1000 ==
well-aerated lung volume 0 1 2 3
LUS score
Panel B
LUS score-WAL (%) correlation
100
90
o o ®
- . y =-3,6051x+ 121,85
= S ® e R#=0.9142
= 70
?\: .
= 60
<
E 50
-1
5
= 40
S
©
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P
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3
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0
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Panel A: Mechanical Power (MP) corrected for well-aerated volume (MPwa1)

IvlpWAL
O pp [J supine
p<0.0001
# #9 # #9 # #9 # #9 # #9 §9 # tq
18 ' ' '
16
14 L
£ 5 __, v\ Ihd 1 1 x ’ .
£ 3 A o H :
S OING ARG R L AL L | ]
‘}(: { - [ PG \,, ’ £ - 1)\’ X
6 | I _ (] s &
I
4 l | [
2
0
sp0 ppl spl pp2 sp2 pp3 sp3 ppd spd PpS sp5 pp6 sp6 pp7 sp7
timepoint
N at risk
PP 108 108 107 106 104 103 102 97
supine 108 106 104 102 100 97 90 85
PEEP (cmH20)
PP 7(6-8) 7(6-8) 7(6-8) 7(6-8) 7(6-8) 7(6-8) 7(6-8) 6(5-7)
supine 7(6-8) 7(6-8) 8(7-9) 8(7-9) 8/6-9) 7(6-8) 7(6-8) 7(6-8)
Ps (cmH20)
PP 3(3-4) 3(3-4) 3(3-4) 3(3-4) 3(3-4) 3(2-4) 3(2-4) 3(2-4)
supine 3(3-4) 3(3-4) 3(3-4) 4(3-4) 3(3-4) 3(3-4) 3(3-4) 3(3-4)
WAL (L)
PP 1.9 2.0 21 2.1 2.1 2.2 23 24
(1.6-2.1) (1.7-2.2) (1.8-2.3) (1.9-2.4) (1.8-2.4) (2.0-2.4) (2.0-2.6) (2.1-2.7)
supine 1.9 1.9 1.9 1.9 1.8 1.8 1.7 1.7
(1.6-2.2) (1.6-2.1) (1.6-2.1) (1.6-2.1) (1.6-2.1) (1.5-2.0) (1.5-2.0) (1.5-1.9)

Fig.2 Panel A-D: time course of MPy,;, MP and their components during
the initial 7 days of NIV in the PP (n=108) and supine (n=108) group. N at
risk and median (IQR) values of PEEP, Pressure support (Ps) and well-aerated
lung volume (WAL) are shown at the bottom of panel A. # P<0.01 vs. base-
line (same group); § P<0.01 vs. baseline (both groups) T P<0.001 vs. baseline
(both groups) I P<0.01 between PP and supine groups | P<0.001 between
PP and supine groups. In the box plots the middle line represents the median
observed value, boxes represent the interquartile range (IQR), whiskers extend
to the most extreme observed values with 1.5 times the interquartile range of
the nearer quartile, and dots represent observed values outside that range. The
connecting line connects the mean values within each box plot at different time
points. For VTe, RR, MV, MP, MPy,,; time weighted-average of hourly values
during each session (supine/prone) of NIV are presented. For MV, we verified
consistency between time-average MV values and values obtained at the time of
ABG (which were used to calculate Dead Space Indices): the comparison con-
firmed a good agreement between the two values, with p-value>0.7 for com-
parison at all timepoints (not shown). The timepoints are indicated as follows:
sp0: supine position timepoint O (baseline, after NIV initiation).In PP group, the
session preceded the first PP session. ABGs were performed>1 h after supine
NIV initiation, after achieving ventilatory stability; ppl: first PP session in PP

group. ABGs were performed>1 h after prone NIV initiation, after achieving
ventilatory stability; spl: supine position timepoint 1 (after the initial 24 h of
NIV); in the PP group this corresponded to the resupination after the 1% PP ses-
sion) on day 1. pp2: during the 2™ PP session; sp2: supine position timepoint 2
(after the 2 day of NIV, in the PP group this also corresponded to the resupina-
tion after the 2° PP session on day 2; pp3 during the 3™ PP session; sp3 supine
position timepoint 3 (after the 3 day of NIV, in the PP group this also corre-
sponded to the resupination after the 3" PP session on day 3. pp4 during the 4%
PP sessionx; sp4 supine position timepoint 4 (after the 4" day of NIV, in the PP
group this also corresponded to the resupination after the 4" PP session on day
4. pp5 during the 5" PP session; sp3 supine position timepoint 5 (after the 5
day of NIV, in the PP group this also corresponded the 5% PP session on day 5.
pp6 during the 6™ PP session; sp6 supine position timepoint 6 (after the 6™ day
of NIV, in the PP group this also corresponded to the resupination after the 6%
PP session on day 6. pp7 during the 7% PP session; sp7 supine position time-
point 7 (after the 7" day of NIV, in the PP group this also corresponded to the
resupination after the 7 PP session on day 7. This schedule allowed comparing
gas exchange responses among group at day 1, after 24 h of NIV, in the same
(supine) position, after taking into account the effect of the first overnight PP ses-
sion (timepoint pp1) in the PP groups
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Panel B: Mechanical Power (MP)
Mechanical Power (MP)

[J PP [ supine

p<0.0001
40 # #9 # HY # #o# # # # # # ##7

35

25

20

J/min

-— -
X
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10 ‘ LE ‘.

K]
( X ]
(LI X

sp0  ppl spl pp2 sp2 pp3 sp3 ppd spd pp5 spS5 pp6 sp6 pp7  sp7

timepoint

Panel C: expiratory tidal volume (VTe)
VTe

1 pp [ supine
12
1 Ly ‘

10 | ‘

ml/kg PBW
® ©
=

— L __!—r—
)
I L, )

sp0 ppl spl pp2 sp2 pp3 sp3 ppd sp4d pp5 spS pp6 sp6 pp7  sp7
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Fig.2 (continued)
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Panel D: respiratory rate (RR)

RR

p<0.0001 PP

# #9 # #H 4 #9
40

35
30

25

breaths/min

20
15

10
sp0 ppl spl pp2 sp2 pp3 sp3

Fig.2 (continued)

scans showed largely predominant ground-glass opacities
(Table 1).

LUS lung aeration assessment

The median (IQR) global LUS severity score was 25 (21,
30), closely correlating with global CT severity score
(r,=0.83; p<0.001: Supplementary Fig. 4).

Regional LUS categorization closely correlated with CT-
assessed gas/tissue density, with each step increase of LUS
score being associated with a significant increase in lung tis-
sue density (Fig. 1 panel A): CT-LUS agreement was almost
complete for WAL (k=0.91; 95%CI: 0.85-0.97), substantial
for PAL(k=0.61; 95%CI: 0.57-0.66) and moderate (k=0.55;
95%CI: 0.51-0.60) for NAL (Supplementary Table 3A-B),
consistent with previous reports in ARDS [34].

Based on these findings, an equation was developed to
predict WAL(%) from global LUS score (Fig. 1 panel B).

Treatment-related parameters and outcomes

No patient was lost to follow-up and there were no missing
data for evaluated end-points.

Patients initiated NIV and PP within 24 h of admission
to the Subintensive Care Unit. Over the initial 48 h of treat-
ment, NIV was delivered continuously or until intubation

supine

# #q # #9 # 81 # #9

pP4 spd  pp5S spS  pp6 sp6  pp7  sp7

timepoint

and only brief interruptions were allowed for eventual
adjustments and nursing care, lasting no more than few
minutes; subsequently, daily breaks, lasting no more than
2 h, were allowed for meals and nursing care, depending on
patient clinical condition and tolerance.

In PP and supine groups, ventilatory settings were sim-
ilar among groups at baseline and remained unchanged
from timepoints sp0 to spl (Table 1).

Daily hours of NIV and PP, the duration of the longest
PP session, daily PP sessions and days of PP therapy are
reported in Table 1.

Compared with supine group, PP therapy was associated
with improved gas exchange and ultrasonographic param-
eters and clinical outcomes (Supplementary Fig. 5-6, Sup-
plementary Table 4).

Effect of PP therapy on MP,,

PP therapy was associated with a significant MPy,,; reduc-
tion: MPy, decreased by a median 34% (IQR: 30-38%)
during the first PP session (timepoint ppl) as compared
with pre-proning values (timepoint sp0) (Fig. 2 panel A-D).
MPy,,; reduction during 1% PP session was driven mainly by
a RR decrease and secondly by a modest (5%; 2—-7%) WAL
increase (Fig. 2A-D). The magnitude of WAL % increase
during 1st PP session was consistent with recent reports
[40-42].
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Fig.3 Panel A-B: relation- Panel A
ship between MP, MPpgy, and
MPy,; during day 1 of NIV MP (day 1)
in the whole study population i
(n=216). Panel C-D: quartiles NIV failure —@—death
of MP (Panel A), MPpgy, (Panel % * %0
B) and MPy,; (Panel C) and 80 80
28-d NIV failure and death(%)
in the whole study population 70 70
(n=216). Median (range) of 60 60
MP, of components of MP and < *
of well aerated lung (WAL) % 50 50 <
volumes are displayed at the 5 40 40 =
bottom of each graph. #p <0.05 B 5
vs. other quartiles for NIV = 30 30 ©
failure and death; ¥ <0.001 vs z 20 20
other quartiles for NIV failure
and death 10 10
/
0 0
Q16.9(4.9-8.8) Q212.9(9.9-16.7) Q3 22.1(18.1-26.8) Q4 33.1(27.9-42.0)
MP (J/min)
RR(1/min)  24(20-28) 24(20-26) 27(22-30) 30(27-32)

VTe 7.1(6.7-7.8) 7.1(6.5-8.0) 7.7(7.1-8.6) 7.9(7.1-9.1)

(ml/kg PBW)

PEEP (cmH20) 7(6-8) 7(7-8) 8(7-9) 9(8-9)

Ps (cmH20) 3(3-3) 3(3-4) 4(3-5) 5(4-6)
WAL (L) 1.9(1.5-2.2) 1.9(1.5-2.2) 1.4(1.0-1.9) 1.6(1.1-2.1)

Daily MPy,,; swings between prone and supine posi-
tion subsided after day 5(timepoint pp5)(P supine vs.
prone >0.05), suggesting no additional effect on MPy,;
from further PP days (Fig. 2A).

Relationship of early (day 1) power measures
with clinical outcomes

We first assessed the relationship between different power
measures at day 1 and clinical outcomes (NIV failure, death)
(Fig. 3A—C): we observed a progressive, linear, statistically
significant increase in NIV failure and death rates across
each MPy,,; quartile, but not across MP and MPpgy, quar-
tiles, which rather showed a steep increase in the rate of
clinical outcomes in the 3-4™ quartile as compared with the
lower 2 quartiles.

The investigation of mutual relationship between MP,
MPypgyw and MPy,,; at day 1 disclosed a the weak correla-
tion between MPy,,; and the other power measures, indi-
cating for any given value of MP delivered by NIV to the

@ Springer

respiratory system, the energy per unit volume of WAL var-
ied widely (Fig. 3D-E).

Early (day 1) MP,, is independently associated
with clinical outcomes

We then categorized the whole study population based
on median MPy,,; delivered during the initial 24 h of NIV
(day 1) into high MPy,; (i.e. MPy,; >9.1 J/min/L) or low
MPy,;, (i.e., MPy,; <9.1 J/min/L): patients receiving a low
MPy,; (day 1) showed lower 28-d NIV failure, intubation and
death rates than those receiving a high MPy,,; (day 1) (Table 1,
Fig. 4).

In Cox proportional multivariable models, MPy,
(day 1) predicted 28-d NIV failure (HR 1.682; 95%CI:
1.147-2.412, p=0.003), intubation (HR 1.521; 95%CI:
1.193-2.314, p=0.009) and death (HR 1.697; 95%CI:
1.217-2.313, p=0.002) independently of baseline illness
and lung disease severity and of other ventilatory vari-
ables (Table 2).
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Fig.3 (continued) Panel B

80
70
60
50
40

30

NIV failure (%)

20

MPpg,y (day 1)

NIV failure —@=death

70
60
50
40

30

death (%)

20

@
10 / 10
®

Q1 0.09 (0.07-0.10) Q2 0.15(0.13-0.18) Q3 0.21 (0.19-0.24) Q4 0.30 (0.26-0.57)

RR 22(20-27)
(/min)

VTe 6.9(6.6-7.8)

(ml/kg PBW)

PEEP 7(6-8)
(cmH20)

Ps 3(3-3)
(cmH20)

WAL (L) 1.8(1.4-2.5)

Predictive performance of MP,,, (day 1) for clinical
outcomes

Each ventilatory variable at day 1 was regressed on NIV
failure and mortality in the whole study population:
MPy,,; (day 1) showed the highest AUROC for predict-
ing 28-d NIV failure (AUROC 0.89; 95%CI: 0.85-0.93,
p <0.001) and death (AUROC 0.89; 95%CI: 0.85-0.94,
p <0.001), outperforming all other ventilatory param-
eters and WAL (p <0.011 for both comparisons by
DeLong’s test) (Table 3, Fig. 5). Additionally, MPy,;
(day 1) optimal thresholds for both NIV failure and death
overlapped.

MP pgy(J/min/kg)

24(20-27) 27(23-30) 30(27-32)
7.1(6.3-7.9) 7.8(7.0-8.7) 7.9(7.2-9.1)
7(7-8) 8(7-9) 9(8-9)
3(3-4) 4(3-5) 5(4-6)
1.6(1.2-2.4) 1.9(1.5-2.4) 1.7(1.0-2.1)

Time course of ventilatory and other
physio-anatomical variables during the initial
7 days of NIV

Over the initial 7 days there were missing data in the physi-
ological parameters due to the occurrence of NIV failure or
success and subsequent Unit discharge. Because these data
were not missing at random but due to the consequence of
treatment effect, we did not perform multiple imputation and
excluded missing values from analyses.

Figure 6 shows time course of different ventilatory, ultra-
sonographic and inflammatory parameters in PP and supine
patients receiving either high or low MPy,, (day 1).
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Fig.3 (continued) Panel C

20
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NIV failure (%)

30

MPy, (day 1)

NIV failure =8=death
80
+
° 70
60
:‘: 50
o 40 &
-
®
30 g

o 20

20 ¥
10 / .
®

0
Q1 4.2(3.2-5.7)
RR 24(20-27)
(/min)

VTe 7.2(6.6-8.1)
(ml/kg PBW)

PEEP 7(6-8)
(cmH20)

Ps 3(3-3)
(cmH20)

WAL 2.2(1.8-3.0)
(L)

Within each treatment group (PP or supine), median daily
MPy,,; remained relatively constant during initial days of NIV
(Fig. 6A-B); gas exchange parameters (paO2/FiO2 ratio, VR,
MVcorr), ultrasonographic parameters (global LUS score, global
reaeration score, WAL %) and inflammatory biomarkers (CRP,
procalcitonin) improved significantly over the initial 24 h of NIV
(day 1, timepoint sp0-1) only in patients receiving a low MPy5;
but not in those receiving a high MPy,,; (Table 1, Fig. 6C—P). The
differences between low and high MPy,,; group observed at day 1
were magnified during the initial 7 days of NIV (Table 1, Fig. 6).

@ Springer

Q2 7.5(6.2-8.8)

Q3 14.5 (9.9-19.3)
MP,,., (J/min/L)

Q4 29.4 (21.9-66.9)

24(20-28) 27(24-30) 29(26-32)
7.8(6.9-8.2) 7.6(7.0-8.6) 7.6(7.2-8.5)
8(7-8) 8(7-9) 9(8-9)
3(3-4) 4(3-5) 4(3-5)
1.8(1.4-2.2) 1.7(1.5-2.3) 1.6(1.2-2.1)

Impact of early (day 1) MP,,,, on physio-anatomical
responses

We next explored potential mechanisms underlying the
association of MPy,; (day 1) with the observed clinical
outcomes.

In the whole study population, early MPy,; (day 1) cor-
related significantly with O2 response, CO2 response ultra-
sonographic responses and C-reactive protein changes at
resupination (timepoint spl) in univariate analysis (Fig. 7).
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Fig.3 (continued) Panel D

Relationship MP - MPgg,, (day 1)
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The observed associations were confirmed by multivariable
analysis, where MPy,; (day 1) independently predicted
AVR,,,(p=0.43, p=0.011), Aglobal LUS,,($=0.41,
p=0.018), global reaeration scoreg,;(f =-0.49, p=0.009),
AWAL (=041, p=0.018) and AC-reactive
proteing,,($=0.38, p=0.029) (Table 4).

Discussion

In the first report exploring MPy,; in COVID-19 AHRF
treated with prone or supine NIV, we found that.

L
R?=0.26
p=0.04

20
MP (J/min)

30 40

1) PP was associated with a significant MPy,,; reduction,
attributable mainly to an absolute MP reduction and sec-
ondly to a relief in the “intensity” of the power delivered
to the aerated lung through enhanced lung reaeration
(Fig. 2).

MPy,,, delivered during the first 24 h of NIV
[MPy,,; (day 1)] outperformed other power measures
and ventilatory variables in clinical and pathophysi-
ological outcome prediction.

MPy,,; (day 1) independently predicted different markers
of VILI, including gas exchange parameters, ultrasono-
graphic and inflammatory biomarkers, in both supine
and proning patients.

2)

3)
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Fig.4 Cumulative incidence of
Noninvasive Ventilation (NIV)
failure (Panel A), death (Panel
B) and endotracheal intuba-
tion (Panel C) at 28 days after
enrollment in patients grouped
according to high (>9.1J/
min/L) vs low (<9.1 J/min/L)
MPy,; at day 1. In the endotra-
cheal intubation group, patients
with a Do-Not-Intubate (DNI)
disposition were excluded
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Fig.4 (continued)

Panel C: endotracheal intubation (ETI)

cumulative incidence of ETI at 28 days
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Diferent mechanical ventilatory variables have been pro-
posed to affect clinical outcomes and to contribute to VILI, all
of which have been separately addressed in experimental or
clinical studies [1-3]. The MP represents the energy delivered
to the respiratory system by mechanical ventilation, which
results from a combination of ventilatory variables. Therefore,
MP might have a higher predictive value for patient-centered
outcomes, as different combinations of its components may
yield a similar damage to the lung [4-8]. The ability to com-
bine the effect of time-varying ventilatory variables seems
particularly attractive in spontaneously breathing patients.

Our findings suggest MP delivered early after NIV ini-
tiation predicts both NIV failure and mortality. However,
the power should be normalized to the size of for the size
of well-inflated lung to get an optimal cut-off that could be
used in clinical practice, as VILI originates from the interac-
tion between the MP delivered to the respiratory system by
the ventilation and the anatomical and pathophysiological
characteristics of the latter. Notably, we demonstrated that
bedside LUS could be used to accurately estimates WAL
size, consistent with data from nonCOVID-19 ARDS [29].

Lastly, we showed that early PP may reduce MPy,;
while improving oxygenation and CO2 clearance during
NIV. Therefore, early PP therapy may be a more “energeti-
cally” advantageous strategy to relieve hypoxemia than
PEEP uptitration, which may overdistend the lung and
increase MP and lung injury when it does not recruit ate-
lectatic lung tissue [8, 35]. The association of PEEP levels

12 16 20 24 28

60 57 57 57 0

and NIV duration with COVID-19 pneumonia severity and
mortality is consistent with this view [11-13].

Our analysis may have several clinical implications for
noninvasive AHRF management.

First, it suggests PP can effectively reduce MP delivery.
Second, they suggest early MPy,,; calculation may help define
the trade-offs between the benefits and risks of noninvasive
ventilatory support, helping to titrate NIV to the least possi-
ble energy to achieve oxygenation and enhancing prompt NIV
up-grade to invasive mechanical ventilation (IMV) to prevent
VILI progression. Both these issues warrant evaluation in
future ad hoc trials enrolling different AHRF etiologies.

Strengths and limitations

Strengths of our report are the thorough patient assessment,
the hourly ventilatory data collection, which reflect actual
power delivery during each ventilatory session more accurately
than once daily data, and the separate assessment of supine
and prone ventilatory modality. Limitations of our analysis
include its post hoc nature and the absence of randomization
in the original study. Furthermore, we focused on ventilator-
delivered energy and did not assess the energy transferred
from respiratory muscles to the lung during inspiration. How-
ever, consistent with COVID-19 literature. our patients had
no clinical-radiological evidence for increased inspiratory
effort or reduced lung compliance [14-17], and Pes swings,
an index of inspiratory effort, are unrelated to disease course
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and unaffected by PP [43], while MPWAL predicted physio-
anatomical and clinical outcomes in our patient population.

Conclusions and expert recommendations

Concern has been raised that mechanical ventilation may
promote VILI and worsen outcome in spontaneously breath-
ing patients with AHRF. Different ventilatory variables have
been proposed to contribute to VILI progression, but no
effective predictive, preventive and patient-centered model
has been developed [44-48].

Based on our findings we suggest early quantitation of well-
aeraled lung volume before NIV initiation in each patient with
AHREF candidate to NIV, through CT scan analysis or at least
through lung ultrasound, which in our series was at least as
accurate for WAL quantitation as free open source software.

After NIV initiation, the value of MP delivered to the patient
by NIV could be estimated from routine ventilatory parameters
using available formulas and adjusted for individual WAL volume
to estimate MPy,; : if patient’s MPy,; exceeds suggested safey
threshold (9.1 J/min/L), VILI could be prevented by implementing
PP, which reduced MPy,,; by an average of 34% in our series.

If PP fails to reduce MPy;,; below safety threshold,
NIV upgrade to invasive ventilation should be considered
to achieve complete ventilatory control and reduce MPy,;
and the risk of VILI.

The added value of this approach in noninvasively venti-
lated AHREF patients is to provide an accurate tool for early
prediction of the risk of VILI and adverse outcomes(i.e.,
MPy,,; at day 1), an effective mean to prevent or reduce the
risk of VILI (i.e., prone position adoption). Furthermore, this
approach should be personalized, i.e. the MP delivered by the
ventilator to patient’s respiratory system should be adjusted
for individual WAL size, which varies widely across AHRF
patients and could be calculated by lung imaging techniques.

This integrated approach, which showed accuracy in
our study, needs prospective validation in independent
cohorts of patients with AHRF of diverse etiologies.

Appendix

PPPM Innovation highlights

Working hypothesis in the framework of PPPM

Concern has been raised that mechanical ventilation may pro-
mote lung injury (so called ventilation-induced lung injury,
VILI) and worsen outcome in spontaneously breathing
patients with acute hypoxemic respiratory failure (AHRF).

Different ventilatory variables have been proposed to
contribute to VILI progression, but data in noninvasively
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ventilated patients are scarce, inconsistent and inconclu-
sive and no valuable outcome predictor currently exists.

Mechanical power (MP), a measure of the energy transfer
rate from the ventilator to the respiratory system, predicted
mortality in invasively ventilated ARDS patients, but its
role in noninvasively ventilated AHRF is unexplored.

Innovation towards the
1. predictive approach,

Mechanical Power normalized to the volume of well-
aerated lung (MPWAL) delivered during the initial 24 h of

noninvasive ventilation (NIV) independently predicts NIV
failure intubation and death and affects physio-anatomical

Table 2 Cox multivariable analysis of predictors of 28-d NV failure,
death and endotracheal intubation (ETI) (n=216)

28-d NIV failure

SAPS 11 1.027 0.983 to 1.272 0.293
PP therapy (1 =yes, 0=No) 0.581 0.392 t0 0.772 0.009
Baseline pO2/FiO2* 0.982 0.734 to 1.696 0.128
Baseline WAL (L) 1.044 0.891 to 1.986 0.319
RR (day 1) 1.186 0.892 to 1.539 0.146
VTe(day 1) (ml/kgPBW) 1.017 0.749 t0 2.013 0.318
PEEP(day 1)(mmHg) 1.179 0.874 to 1.528 0.412
MPy,;, (day 1)(J/min/L) 1.682 1.147 t0 2.412 0.005
28-d death

Parameter HR 95%CI P
Age 1.088 1.0426 to 1.198 0.028
ISARIC 4C score 1.026 0.947 to 1.192 0.334
PP therapy 0.629 0.271t0 0.812 0.010
Baseline paO2/FiO2* 0.999 0.894 to 1.166 0.296
Baseline WAL (L) 1.039 0.792 to 1.893 0.427
RR (day 1) 1.116 0.975 to 1.428 0.239
MPy,;, (day 1) 1.697 1.217 t0 2.316 0.002
28-d endotracheal intubation

SAPS 11 1.021 0.872to 1.812 0.513
PP therapy (1 =yes, 0=No) 0.598 0.283 to 0.781 0.007
Baseline pO2/FiO2* 0.992 0.621 to 1.769 0.389
Baseline WAL (L) 1.028 0.891 to 1.986 0.319
RR (day 1) 1.112 0.783 to 1.702 0.192
VTe(day 1) (ml/kgPBW) 1.132 0.649 to 2.913 0.413
MPy,;, (day 1)(J/min/L) 1.682 1.147 t0 2.412 0.005

Statistically significant p-values are written in bold characters

ISARIC international severe acute respiratory infection consortium,
NIV noninvasive ventilation, SAPS simplified acute physiology score,
PEEP positive end-expiratory pressure, MPy,,;, mechanical power
normalized to well-aerated lung volume, CI confidence interval, PBW
predicted body weight

* . . . . .
on admission, while on a FiO2 50% Venturi mask or a non-
rebreather reservoir bag mask
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Table 3 Discrimination of
ventilator parameters measured
during the 1st 24 h of NIV)
(day 1) in predicting 28-d NIV
failure and death in the whole
study population (n=216)

NIV failure at 28 days

Death at 28 days

Parameter Cut-off Se(%) Sp(%) AUROC Cut-off Se(%) Sp(%) AUROC
(95%CI) (95%CI)

MPy,; (day 1) 88 86 0.89 (0.85-0.93) ** 9.3 89 87 0.89 (0.85-0.94)

(J/min/L) e

MP (day 1) 78 77 0.80 (0.72-0.85) 20.9 80 73 0.76 (0.72-0.83)

(J/min) * *

MPppgy (day 1) 76 77 0.79 (0.72-0.85) 0.169 84 76 0.79 (0.73-0.86)

(J/min/kg) * *

VTe(day 1) 64 72 0.66 (0.58-0.73) 9.6 65 78 0.67 (0.59-0.74)

(ml/kg)

RR(day 1) 75 61 0.65 (0.58-0.72) 31 69 60 0.64 (0.56-0.70)

(breaths/min)

PEEP(day 1) 36 74 0.54 (0.47-0.61) 10 46 78 0.63 (0.55-0.70)

(cmH20)

Ps(day 1) 65 50 0.58 (0.47-0.68) 6 74 53 0.64 (0.53-0.74)

(cmH20)

WAL(day 1) 66 72 0.70 (0.62-0.78) 1.0 81 45 0.63 (0.55-0.71)

L)

* p<0.001 vs VTe, RR, PEEP, Ps, WAL at day 1 by DeLong test
# p<0.01 vs. MP or MPpg,, at day 1 by DeLong test

ISARIC international severe acute respiratory infection consortium, N/V noninvasive ventilation, SAPS sim-
plified acute physiology score, PEEP positive end-expiratory pressure, MPy,; mechanical power normal-
ized to well-aerated lung volume, MP mechanical power, AUROC area under receiver operating character-
istic curve, CI confidence interval, PBW predicted body weight
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Fig.5 Time-course of different Panel A: measures of power (day 1) and 28-d NIV failure
ventilatory (Panel A-B), gas
exchange(Panel C-F), ultra-
sonographic (Panel G-N) and
inflammatory (Panel O-P)
parameters during the ini-
tial 7 days of NIV in the PP
and supine groups, grouped
according to low MPy,; or 80 |
high MPy,,; during the 1st
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Fig.6 Dose-response relation-
ship between Mechanical Power
normalized to well-aerated
lung volume during the 1%

24 h of NIV [MP y; (day

1)] and physio-anatomical
responses after the 13 24 h

of NIV(Asp0-1) in the whole
study population (n=216).

PP patients are represented by
black full dots, supine patients
are represented by empty trian-
gles. In the plots, the green area
denotes a positive gas exchange
(02 or CO2) response, the red
area a negative gas exchange
response. -O2 response: an
increase in paO2/FiO2 ratio
during NIV in supine posi-

tion at day 1 (timepoint spl)

as compared with NIV supine
at timepoint sp0: i.e., pO2/
Fi02,,—pO2/Fi02,,> 0, or
ApaO2/Fi02,, ;>0.-CO2
response: an increase in CO2
clearance, defined by a reduc-
tion in dead space indices (VR
and MV, tested separately) at
spl as compared with time-
point sp0 [VR,;-VR,, <0 (or
AVR ., <0)]
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Fig.6 (continued) Panel B: MPwaL supine group

MP,,,, supine
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Fig.6 (continued)

Panel C: paO2/FiO2 PP group
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Fig.6 (continued) Panel E: Ventilatory Ratio (VR) PP group
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Fig. 6 (continued) Panel G: global LUS score PP group
global LUS PP
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Fig.6 (continued)
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Fig.6 (continued) Panel M: global reaeration score PP group
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Fig.6 (continued) Panel O: serum C-reactive protein (CRP) PP group
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Fig. 7 Dose-response relation-
ship between Mechanical Power
normalized to well-aerated
lung volume during the 1*

24 h of NIV [MP y; (day

1)] and physio-anatomical
responses after the 13 24 h

of NIV(Asp0-1) in the whole
study population (n=216).

PP patients are represented by
black full dots, supine patients
are represented by empty
triangles. Green area denotes
a positive response, red area a
negative one

Panel A: Mechanical Power corrected for well-aerated lung volume (MPwaL) at day 1 and O2 response
(ApaO2/FiO2 ratiospo-1) in the whole cohort (n=216).
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Fig.7 (continued) Panel C: Mechanical Power corrected for well-aerated lung volume (MPwaL) at day 1 and change in global
lung ultrasonographic score at the end of day 1 (Aglobal LUSo-1) in the whole cohort (n=216).

MPyy,, (day 1) and Aglobal LUS, ,

20
R?=0.76
p<0.001

80

Aglobal LUS 4 4

-25 MP (J/min/L) (day 1)

Panel D: Mechanical Power corrected for well-aerated lung volume (MPwat) at day 1 and change in global
well-aerated lung volume (WAL) (%) at the end of day 1 (Aglobal WAL%o-1) in the whole cohort (n=216).
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Fig.7 (continued) Panel E: Mechanical Power corrected for well-aerated lung volume (MPwaL) at day 1 and global reaeration
score at the end of day 1 (global reaeration scorei) in the whole cohort (n=216).
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Panel F: Mechanical Power corrected for well-aerated lung volume (MPwaL) at day 1 and C-reactive protein
response (ACRPo-1) in the whole cohort (n=216).

MP,,., (day 1) and ACRP,,

ACRP (mg/dL)

-15

MPwal (J/min/L) (day 1)
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Table 4 Multivariable linear
regression analysis of predictors
of CO2-response (by ventilatory
ratio, VR), ultrasonographic
response and C-reactive protein
responses in the whole study
population(n=216)

@ Springer

O2-response (ApaO2y.)

Parameter i}
MPy,; (day 1) 0.46
Duration of 1% PP session (hours) 0.42
Not included in the model

paO2/Fi02, -0.29
PEEP (day 1) 0.18
VTe (day 1 -0.27
RR (day 1) -0.15
CO2-response (AVRgy.1)

Parameter 5}
MPy,; (day 1) 0.44
Duration of 1% PP session (hours) -0.41
Not included in the model

VR -0.31
PEEP (day 1) -0.13
RR(day 1) 0.29
Global LUS response: A global LUS |
Parameter p
MPy,; (day 1) 0.41
global LUS,,, -0.37
Not included in the model

RR (day 1) -0.19
PEEP (day 1) -0.13
Global reaeration scoregy,

Parameter p
Duration of 1% PP session (hours) 0.51
MPy,;, (day 1) -0.49
Not included in the model

global LUS,, 0.29
PEEP (day 0) 0.16
Well-aerated volume response: AWAL(%)gy.
Parameter [§}
global LUS, 0.51
MPy,; (day 1) —0.49
Not included in the model

WAL (day 0) 0.29
PEEP (day 1) 0.16
C-reactive protein response: A CRP,
Parameter p
CRPy, -0.59
MPy,;, (day 1) 0.38
Not included in the model

Obesity 0.31
PEEP (day 0) 0.28

SE
0.006
0.010

0.312
0.192
0.216
0.189

SE
0.011
0.008

0.128
0.139
0.146

SE

0.009
0002

0.318
0.128

SE

0.004
0006

0.612
0.316

SE

0.004
0006

0.612
0.316

SE

0.009
0.005

0.269
0.214

0.009
0.019

0.312
0.287
0.312
0.193

0.010

0.028

0.398
0.151

0.018
0.009

0.573
0.398

0.012
0.009

0.138
0.479

0.012
0.010

0.138
0.479

0.011
0.029

0.513
0.395

VIF
1.51
1.49

1.47
1.31
1.21
1.77

VIF
1.59
1.45

1.18
1.01

VIF

0.06
1.89

1.47
0.47

VIF

1.72
1.59

1.29
1.13

VIF

1.72
1.59

1.29
1.13

VIF

1.71
1.12

1.19
1.12

R2
0.66

R2
0.69

R2

0.68

R2

0.63

0.65

R2

0.65

R2

0.62

Rzadj
0.62

Rza\dj
0.61

RZ
adj
0.63

R2
adj
0.60

0.64

RZ
adj
0.63

R2
adj
0.57

Statistically significant p-values are written in bold characters
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markers of VILI (i.e., gas exchange, lung reaeration by lung
ultrasound, and inflammatory biomarkers), outperforming
all other ventilatory variables in outcome prediction.

4. targeted prevention

We found prone position during noninvasive ventilation
is an effective tool to reduce mechanical power delivered
during NIV.

5. personalization of medical services

Bedside MPWAL calculation during the 1% day of NIV
may guide NIV delivery, help define the tradeoffs between
the benefits of noninvasive support and the risks of VILI,
and enhance prompt escalation to invasive mechanical ven-
tilation to minimize lung injury progression.

How does the presented innovation go beyond

Early bedside MPy,,; calculation is a useful parameter that
can predict NIV outcome, suggest the need to adopt prone
position to reduce MP delivery during NIV, and help decide
when to stop NIV and upgrade treatment to invasive ventila-
tion to more effectively preventi VILI progression.

Abbreviations ABG: Arterial blood gas; AHRF: Acute hypoxemic res-
piratory failure; CPAP: Continuous positive airway pressure; DSI: Dead
space index; ETI: Endotracheal intubation; ISARIC: International
Severe Acute Respiratory Infection Consortium; LUS: Lung ultrasound
score; MV: Minute ventilation; MVcorr: Corrected MV; NAL: Non-
aerated lung volume; NIV: Noninvasive ventilation; NRS: Numeric rat-
ing scale; PBW: Predicted body weight; PEEP: Positive end-expiratory
pressure; PP: Prone position; PRO-NIV: Prone position in Nonlnvasive
Ventilation; Ps: Pressure support; PS: Propensity score; PSV: Pres-
sure support ventilation; RR: Respiratory rate; SAPS: Simplified
acute physiology score; MP: Mechanical power; MPy,,; : Mechanical
power normalized to well-aerated lung; PAL: Poorly aerated lung vol-
ume; SMD: Standardized mean difference; VILI: Ventilation-induced
lung injury; VR: Ventilatory ratio; VTe: Expiratory tidal volume;
WAL: Well-aerated lung volume; WOB: Work of breathing
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