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Abstract
Background Concern exists that noninvasive ventilation (NIV) may promote ventilation-induced lung injury(VILI) and 
worsen outcome in acute hypoxemic respiratory failure (AHRF). Different individual ventilatory variables have been pro-
posed to predict clinical outcomes, with inconsistent results.
Mechanical power (MP), a measure of the energy transfer rate from the ventilator to the respiratory system during mechani-
cal ventilation, might provide solutions for this issue in the framework of predictive, preventive and personalized medi-
cine (PPPM). We explored (1) the impact of ventilator-delivered MP normalized to well-aerated lung  (MPWAL) on physio-
anatomical and clinical responses to NIV in COVID-19-related AHRF and (2) the effect of prone position(PP) on  MPWAL.
Methods We analyzed 216 noninvasively ventilated COVID-19 patients (108 patients receiving PP + NIV and 108 propen-
sity score-matched patients receiving supine NIV) with moderate-to-severe(paO2/FiO2 ratio < 200) AHRF enrolled in the 
PRO-NIV controlled non-randomized study (ISRCTN23016116).
Quantification of differentially aerated lung volumes by lung ultrasonography (LUS) was validated against CT scans. Respira-
tory parameters were hourly recorded, ABG were performed 1 h after each postural change. Time-weighed average values of 
ventilatory variables, including  MPWAL, and gas exchange parameters (paO2/FiO2 ratio, dead space indices) were calculated 
for each ventilatory session. LUS and circulating biomarkers were assessed daily.
Results Compared with supine position, PP was associated with a 34%  MPWAL reduction, attributable largely to an absolute 
MP reduction and secondly to an enhanced lung reaeration.
Patients receiving a high  MPWAL during the  1st 24  h of NIV  [MPWAL(day 1)] had higher 28-d NIV failure 
(HR = 4.33,95%CI:3.09 − 5.98) and death (HR = 5.17,95%CI: 3.01 − 7.35) risks than those receiving a low  MPWAL(day 1).
In Cox multivariate analyses,  MPWAL(day 1) remained independently associated with 28-d NIV failure (HR = 1.68,95%CI:1.15–
2.41) and death (HR = 1.69,95%CI:1.22–2.32).
MPWAL(day 1) outperformed other power measures and ventilatory variables as predictor of 28-d NIV fail-
ure (AUROC = 0.89;95%CI:0.85–0.93) and death (AUROC = 0.89;95%CI:0.85–0.94).
MPWAL(day 1) predicted also gas exchange, ultrasonographic and inflammatory biomarker responses, as markers of VILI, 
on linear multivariate analysis.
Conclusions In the framework of PPPM, early bedside  MPWAL calculation may provide added value to predict response to 
NIV and guide subsequent therapeutic choices i.e. prone position adoption during NIV or upgrading to invasive ventilation, 
to reduce hazardous  MPWAL delivery, prevent VILI progression and improve clinical outcomes in COVID-19-related AHRF.

Keywords Predictive preventive personalized medicine (PPPM / 3PM) · COVID-19 · Hypoxemic respiratory failure · 
Individual outcomes · Differentially aerated lung volume · Predictive model · Noninvasive ventilation · Therapeutic choice · 
Lung ultrasound · Mechanical power · Well-aerated lung · Prone position
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Introduction

The unmet need for accurate early predictors 
of treatment failure and death during noninvasive 
ventilation (NIV)

NIV is being increasingly used as first-line ventilatory 
support in de novo (i.e., not due to exacerbation of chronic 
lung disease or cardiac failure) acute hypoxemic respira-
tory failure (AHRF). However, concern has been raised 
that mechanical ventilation may exacerbate lung injury 
(i.e., ventilation-induced lung injury, VILI) and worsen 
outcome in spontaneously breathing patients with AHRF 
[1]. Different ventilatory variables have been proposed to 
contribute to VILI progression, including high tidal vol-
ume [2], minute ventilation [3] and inspiratory effort [4]: 
these parameters have been separately addressed in clini-
cal studies, but data in noninvasively ventilated patients 
are scarce, inconsistent and inconclusive, at least in part 
due to the difficulty in controlling and monitoring time-
varying individual ventilatory parameters in spontaneously 
breathing patients.

Potential contribution of Mechanical Power (MP) 
to clinical prediction in the framework of PPPM

Predictive, Preventive, and Personalized Medicine (PPPM) 
is an effective integrative approach, which has been pro-
moted by the European Association for Predictive, Preven-
tive and.

Personalized Medicine (EPMA, http:// www. epman et. 
eu/) [5]. It contains three aspects: individual predisposi-
tion prediction, targeted preventive measures and personal-
ized treatment algorithms [6].

In recent years, a unifying patho-physiological theory, 
based on thermodynamic principles, has been proposed 
to underlie VILI: this theory attributes lung injury to the 
energy transfer from the ventilator to the pulmonary paren-
chyma, with energy dissipation within the lungs leading 
to heat production, cell integrity and extracellular matrix 
disruption, and inflammatory cell recruitment [7-9]. 
Consistently, mechanical power (MP), a measure of the 
energy transfer rate from the ventilator to the respiratory 
system, predicted mortality in invasively ventilated ARDS 
patients, irrespective of the combination of each ventila-
tory component [10-13].

Whether the energy delivered to the respiratory sys-
tem during noninvasive ventilation (NIV) affects clinical 
outcomes in AHRF is unexplored. During COVID-19 
pandemic, NIV intensity and duration were linked to an 
increased mortality in COVD-19-related AHRF [14-16], 

but no individual ventilatory parameter, including respira-
tory drive and inspiratory effort, was able to predict clini-
cal outcomes [17-20]. Furthermore, clinical benefits from 
awake prone position (PP) during NIV have been reported 
by several, but not all studies, through still unclear mecha-
nisms [21, 22].

Working hypothesis

We hypothesized the energy delivered by noninvasive ven-
tilatory assistance to the respiratory system could contrib-
ute to physio-anatomical and clinical responses to NIV in 
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS‐
CoV‐2) pneumonia-related AHRF, and that the clinical ben-
efits of awake PP in these patients could be at least in part 
mediated by a reduced MP delivery during prone NIV. We 
therefore investigated:

1) the effect of prone position (PP) on different measures 
of MP during NIV.

2) the contribution of MP measures delivered early during 
either supine or prone NIV to physio-anatomical and 
clinical outcomes in COVID-19 pneumonia

Methods

In this secondary analysis of the non-randomized, controlled 
Prone position in NonInvasive Ventilation (PRO-NIV) 
study(study ID: ISRCTN23016116) [23], we studied 216 
SARS‐CoV‐2 pneumonia patients with acute (i.e. symptom 
onset < 14 days of hospital admission) moderate-to-severe 
AHRF(paO2/FiO2 ratio < 200 mmHg while on a FiO2 50% 
Venturi mask or a non-rebreather reservoir bag mask): 108 
patients treated with NIV (CPAP or PSV) plus early PP and 
108 matched controls treated with supine NIV) at HUMAN-
ITAS Gradenigo COVID Subintensive Care Unit between 
June 1st 2020 and June 30th 2021.

In both groups, NIV was initiated within 24 h of admis-
sion to Subintensive Care Unit and delivered continuously 
for ≥ 48 h or until discharge or death; full-face mask was the 
initial interface of choice. PP was initiated within 24 h of 
admission in the PP group. NIV and PP duration, equipment, 
settings, standard care, monitoring, treatment failure criteria 
were protocolized a priori before patients enrollment (see 
supplementary text, Supplementary Fig. 1, Supplementary 
Table 1) [23].

Measurements

Respiratory parameters NIV duration, posture, ventilatory set-
tings and parameters (spO2, RR, VTe, MV) were continuously 
monitored and recorded on an hourly basis on a predefined form.

http://www.epmanet.eu/)
http://www.epmanet.eu/)
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ABGs were performed during NIV, every 24 h and ≥ 1 h 
after each postural change, after achievement of ventilatory 
stability (defined by a ≤ 10% variation in RR and VTe and 
air leaks < 10% for ≥ 30 min).

The following gas exchange parameters were calculated 
from ABG: paO2/FiO2 ratio and dead space indices (DSIs) 
[Ventilatory Ratio (VR) and corrected Minute Ventilation 
 (MVcorr)]

The energy delivered by ventilatory assistance to respira-
tory system per time unit (mechanical power, MP) was esti-
mated via Becher formula [24], which was already evaluated 
in noninvasively ventilated patients and was recommended 
to improve noninvasive ventilatory support monitoring in 
COVID-19 pneumonia [14, 25]. In this formula, ∆Pinsp was 
replaced by ∆Paw(airway pressure over PEEP) to reflect the 
energy imparted by ventilator during inspiration [1, 26].

Since NIV isa dynamic process, to reflect the power 
delivered during the entire ventilatory sessions, time 
weighted–average of hourly MP values during each NIV 
session (supine/prone) was calculated as the area under the 
parameter–versus–time plot (detailed in supplementary text) 
[27]. The same procedure was followed to calculate time 
weighted–average values of RR, VTe, and MV for each ven-
tilator session and for each day.

For MV, we also planned to verify consistency between 
time-averaged values and those obtained at the time of 
ABGs, which were used to calculate DSIs.

The primary exposure variable of interest was MP nor-
malized by the volume of well-aerated lung  (MPWAL), to 
reflect the “intensity” of the power, i.e., the volume of well-
aerated lung exposed to energy load during mechanical ven-
tilation, during the  1st 24 h of NIV  [MPWAL(day 1)].

We also normalized MP by predicted body weight 
 (MPPBW) to account for individual lung size variation.

Lung imaging All patients underwent a lung CT scan on 
admission: the nature and extent of parenchymal involve-
ment were scored using a validated index [28] and the vol-
ume of well-aerated lung (WAL), of poorly aerated lung 
(PAL) and of non-aerated lung (NAL) were quantified on 
CT scans via a validated open-source software (3D Slicer 
ver.4.13.2) (see supplementary text) [29].

Lung ultrasound was performed daily from admission 
(day 0) to day 7 by three intensivists with expertise in lung 
and cardiac recording and interpretation (each operator hav-
ing performed at least 50 supervised procedures and at least 
200 non-supervised procedures) [30] using the same equip-
ment (HM70A Samsung, Seoul, Korea), the same convex-
array probe and the same setting.

The accuracy of ultrasound examinations in staging lung 
disease severity was preliminarily evaluated at baseline 
against the CT scan (double-blinded operators, LUS per-
formed within 24 h of CT examination).

The severity and extent of parenchymal involvement of 
each of 6 lung regions (2 anterior, 2 lateral, 2 dorsal) were 
scored (range 0–3) [31] and recorded on a predefined form 
and the following indices were calculated (supplementary 
text):

– regional and global lung ultrasound score (LUS);
– regional and global LUS reaeration score, a validated 

index of lung recruitment (i.e., change from consolidated, 
non-aerated tissue to aerated tissue) [32, 33];

– additionally, using software-based lung parenchyma 
segmentation and analysis function [29], each lung was 
divided into six areas to mirror as much as possible the 
regions explored by ultrasound, and regional and global 
LUS-derived WAL volume (i.e. lung volume with LUS 
score 0–1), PAL (i.e. lung volume with LUS score 2) and 
NAL (i.e. lung volume with LUS score 3) were derived 
from admitting LUS scan examinations as previously 
described in ARDS [34]. Global LUS-derived WAL 
volume, a predictor of COVID-19 pneumonia outcome 
[24], was then calculated from daily LUS scans through 
day 0–7(detailed in supplementary text).

The agreement between regional LUS score and regional 
CT classification was assessed with Cohen’s kappa coeffi-
cient, and the association between regional CT-derived gas/
tissue content and regional LUS categories was assessed by 
simple linear regression and Spearman’s rank correlation 
 (rs).

Details on full derivations are provided in supplementary 
text.

The PEEP at which each LUS examination was made 
was recorded.

– Circulating biomarkers: eighteen circulating inflamma-
tory and procoagulative biomarkers were measured daily 
from admission to discharge or death [35].

Definitions and timepoints

We adopted the following definitions:

– day 0 (baseline): the time of NIV initiation;
– day 1: first 24 h after NIV initiation;
– day 7: day 7 after NIV initiation;
– timepoint sp0: supine position. In PP group, the session 

preceded the first PP session. ABG was performed ≥ 1 h 
after supine NIV initiation, after achieving ventilatory 
stability;

– timepoint pp1: first PP session in PP group. ABG was 
performed ≥ 1 h after prone NIV initiation, after achiev-
ing ventilatory stability;
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– timepoint sp1: supine position; ABG was performed ≥ 1 h 
after resupination following the first PP session in the PP 
group and 24 h after NIV initiation in the supine group, 
after achieving ventilatory stability;

This schedule allowed comparing all groups in the supine 
position, after 24 h of NIV, while taking into account the 
effect of the first PP session (pp1) in the PP group.

Further definitions are provided in legends to Table 1 and 
in a study scheme (Supplementary Fig. 1).

Outcomes

Primary outcomes were the occurrence of.

– NIV failure within 28 days of enrolment, defined as intu-
bation OR death;

– death, censored at 28 days after enrollment.

Secondary outcomes were:

– endotracheal intubation (ETI) at 28 days (after excluding 
patients with a do-not-intubate, DNI, order);

– 60-day death
– O2-response: paO2/FiO2sp1–paO2/FiO2sp0 (or ∆paO2/

FiO2sp0-1).
– CO2-response: ∆VRsp0-1;
– C-reactive protein (CRP) response: ∆CRP0-1;
– global LUS response at day 1: ∆global  LUS0-1;
– global reaeration score at day 1: global reaeration  score1;
– change in LUS- assessed WAL (%) at day 1 (∆WAL0-1)

Statistical analyses

Sample size calculation and propensity score (PS)‑matching 
of PP and supine group.

Sample size calculation and PS-matching of PP and supine 
groups for relevant baseline covariates are detailed in sup-
plementary text.

Descriptive statistics Data are given as median (IQR) or n 
(%) as appropriate.

We used chi-square test or Fisher´s exact test for categori-
cal variables, T-Test for normally distributed and Kruskal–
Wallis test for non-normal continuous variables.

Time change in continuous variables was assessed by 
computing the AUC with the trapezoid method [36].

Repeated measures two-factor (within subject and 
between group) ANOVA was used to compare continuous 
variables assessed at multiple timepoints (i.e., respiratory 
and biochemical parameters), after log-transformation of 
non-normal variables.

To explore the effect of early  MPWAL delivery on clinical 
outcomes, the whole cohort was split into 2 groups accord-
ing to median  MPWAL values at day 1. The probability of 
28-day NIV failure, death and ETI in low vs high  MPWAL 
group at day 1 was compared using Kaplan–Meier procedure 
and log-rank test. Data were analyzed on an intention-to-
treat basis.

Beside categorizing patients into low/high  MPWAL, we 
explored dose–response relationship between early power 
delivery and clinical outcomes by dividing the entire cohort 
into quartiles of power measures at day 1. Comparison 
between quartiles was made by ANOVA with post-hoc 
comparison from the first quartile performed using the 
Tukey test. We planned to assess also reciprocal relation-
ship between MP,  MPPBW and  MPWAL at day 1 by univariate 
analysis and Spearman correlation coefficient  (rs).

Multivariable Cox proportional regression analysis 
adjusting for imbalanced covariates between groups was 
used to assess the effect of confounders on 28-d NIV fail-
ure, death and ETI in the whole cohort, with the maximum 
number of covariates allowed in each model set at (event 
rate x N)/10, where N is the sample size [37]. The alloca-
tion assignment (PP or supine) was entered as a predefined 
covariate into the models. Calendar month of admission was 
forced into all models to account for unmeasured temporal 
disease trends during the pandemic.

Anticipating high collinearity between ventilatory vari-
ables, in all (Cox and linear) multivariable models we used a 
combination of backward procedure and exclusion of highly 
collinear variables through model-dependent Variance Infla-
tion Factor(VIF) cut-off values to select covariates [38].

MP,  MPPBW and  MPWAL at day 1 were included into all 
backward multivariate models to assess relative robustness 
of the association of each power measure (MP,  MPPBW, 
 MPWAL) with outcomes.

We also explored the predictive performance of each 
power measure and of other ventilatory variables at day 1 
for 28-day NIV failure and death and the optimal cut-offs 
using the area under receiver operating characteristic curve 
(AUROC) analysis and Youden index.

Comparison between AUROC curves was made by 
DeLong’s method.

In the physio-anatomical analysis, we explored dose–
response relationship between the power delivered at day 1 
by the ventilator to the respiratory system and gas exchange, 
ultrasonographic and circulating biomarker changes after the 
 1st 24 h of NIV by univariable and multivariable regression 
analysis, after log transformation of skewed parameters; the 
best fit among four predictive models (linear, exponential, 
logarithmic, binomial) was searched using  R2 values.

Two-tailed p values < 0.05 were considered statistically 
significant (MedCalc 19.7, Ostend, Belgium).
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Results

Characteristics at Inclusion

We analyzed 216 COVID-19 patients (108 treated with 
PP and 108 with supine NIV) (Table 1, Supplementary 
Fig. 2). Pre-post-matching SMDs, PS density and logit(PS) 
distribution plots revealed good balance between PP and 

supine groups in selected covariates (Supplementary 
Fig. 3, Supplementary Table 2).

Baseline demographics, pharmacological therapies, 
clinical-radiological features, and respiratory parameters 
of patients treated with PP or supine NIV, subgrouped 
according to median  MPWAL at day 1, were similar across 
groups; NRS (dyspnea), WOB score [39] and RR showed 
no evidence for increased respiratory drive, while lung CT 

Fig. 1  Panel A: categorization 
of individual lung regions with 
different CT-assessed gas/tis-
sue density in relation to their 
LUS score. Panel B: correlation 
between WAL(%) assessed by 
software-based analysis of CT 
scans and WAL(%) as estimated 
by global lung ultrasound (LUS) 
score in the 216 COVID-19 
pneumonia patients included in 
the study. The Spearman cor-
relation coefficient  (rs) with its 
95%CI and statistical signifi-
cance are shown. Abbreviations: 
CT: computed tomography; HU: 
Hounsfield Units; LUS: lung 
ultrasound; NAL: non-aerated 
lung volume; PAL: poorly 
aerated lung volume; WAL: 
well-aerated lung volume

Panel A

Panel B

W
A
L

P
A
L

N
A
L

R2=0.87
p=0.0001



353EPMA Journal (2023) 14:341–379 

1 3

Panel A: Mechanical Power (MP) corrected for well-aerated volume (MPWAL)

PEEP (cmH2O)
PP 7(6-8) 7(6-8)                      7(6-8)                      7(6-8)                 7(6-8)                     7(6-8)                     7(6-8)                    6(5-7)
supine 7(6-8) 7(6-8)                     8(7-9) 8(7-9)                   8/6-9)                    7(6-8)                     7(6-8)                   7(6-8)

Ps (cmH2O)
PP 3(3-4) 3(3-4)                      3(3-4)                      3(3-4)                  3(3-4)                     3(2-4)      3(2-4)                    3(2-4) 
supine 3(3-4) 3(3-4)                      3(3-4)                       4(3-4)                  3(3-4)                    3(3-4)                     3(3-4)                    3(3-4) 

N at risk
PP 108 108 107 106 104 103                         102                        97
supine 108 106 104 102 100 97 90 85

p<0.0001

WAL (L)
PP 1.9 2.0                            2.1 2.1 2.1 2.2 2.3 2.4

(1.6-2.1)              (1.7-2.2)                  (1.8-2.3)                 (1.9-2.4)               (1.8-2.4)                (2.0-2.4)                (2.0-2.6)             (2.1-2.7)
supine 1.9 1.9 1.9 1.9 1.8                     1.8 1.7                        1.7

(1.6-2.2)             (1.6-2.1)                  (1.6-2.1)                 (1.6-2.1)               (1.6-2.1)                (1.5-2.0)                (1.5-2.0)             (1.5-1.9)

# #¶ # #¶  # #¶        # #¶       # #¶  # §¶        # †¶

Fig. 2  Panel A–D: time course of  MPWAL, MP and their components during 
the initial 7 days of NIV in the PP (n = 108) and supine (n = 108) group. N at 
risk and median (IQR) values of PEEP, Pressure support (Ps) and well-aerated 
lung volume (WAL) are shown at the bottom of panel A. # P < 0.01 vs. base-
line (same group); § P < 0.01 vs. baseline (both groups) † P < 0.001 vs. baseline 
(both groups) ǁ P < 0.01 between PP and supine groups ¶ P < 0.001 between 
PP and supine groups. In the box plots the middle line represents the median 
observed value, boxes represent the interquartile range (IQR), whiskers extend 
to the most extreme observed values with 1.5 times the interquartile range of 
the nearer quartile, and dots represent observed values outside that range. The 
connecting line connects the mean values within each box plot at different time 
points. For VTe, RR, MV, MP,  MPWAL time weighted–average of hourly values 
during each session (supine/prone) of NIV are presented. For MV, we verified 
consistency between time-average MV values and values obtained at the time of 
ABG (which were used to calculate Dead Space Indices): the comparison con-
firmed a good agreement between the two values, with p-value > 0.7 for com-
parison at all timepoints (not shown). The timepoints are indicated as follows: 
sp0: supine position timepoint 0 (baseline, after NIV initiation).In PP group, the 
session preceded the first PP session. ABGs were performed ≥ 1 h after supine 
NIV initiation, after achieving ventilatory stability; pp1: first PP session in PP 

group. ABGs were performed ≥ 1 h after prone NIV initiation, after achieving 
ventilatory stability; sp1: supine position timepoint 1 (after the initial 24 h of 
NIV); in the PP group this corresponded to the resupination after the  1st PP ses-
sion) on day 1. pp2: during the  2nd PP session; sp2: supine position timepoint 2 
(after the  2nd day of NIV, in the PP group this also corresponded to the resupina-
tion after the  2nd PP session on day 2; pp3 during the  3rd PP session; sp3 supine 
position timepoint 3 (after the  3rd day of NIV, in the PP group this also corre-
sponded to the resupination after the  3rd PP session on day 3. pp4 during the  4th 
PP sessionx; sp4 supine position timepoint 4 (after the  4th day of NIV, in the PP 
group this also corresponded to the resupination after the  4th PP session on day 
4. pp5 during the  5th PP session; sp5 supine position timepoint 5 (after the  5th 
day of NIV, in the PP group this also corresponded the  5th PP session on day 5. 
pp6 during the  6th PP session; sp6 supine position timepoint 6 (after the  6th day 
of NIV, in the PP group this also corresponded to the resupination after the  6th 
PP session on day 6. pp7 during the  7th PP session; sp7 supine position time-
point 7 (after the  7th day of NIV, in the PP group this also corresponded to the 
resupination after the  7th PP session on day 7. This schedule allowed comparing 
gas exchange responses among group at day 1, after 24 h of NIV, in the same 
(supine) position, after taking into account the effect of the first overnight PP ses-
sion (timepoint pp1) in the PP groups
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Panel B: Mechanical Power (MP)

Panel C: expiratory tidal volume (VTe)

# #¶ # #¶  # #¶        # #¶       # #¶  # #¶        # #¶
p<0.0001

Fig. 2  (continued)
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scans showed largely predominant ground-glass opacities 
(Table 1).

LUS lung aeration assessment

The median (IQR) global LUS severity score was 25 (21, 
30), closely correlating with global CT severity score 
 (rs = 0.83; p < 0.001: Supplementary Fig. 4).

Regional LUS categorization closely correlated with CT-
assessed gas/tissue density, with each step increase of LUS 
score being associated with a significant increase in lung tis-
sue density (Fig. 1 panel A): CT-LUS agreement was almost 
complete for WAL (k = 0.91; 95%CI: 0.85–0.97), substantial 
for PAL(k = 0.61; 95%CI: 0.57–0.66) and moderate (k = 0.55; 
95%CI: 0.51–0.60) for NAL (Supplementary Table 3A–B), 
consistent with previous reports in ARDS [34].

Based on these findings, an equation was developed to 
predict WAL(%) from global LUS score (Fig. 1 panel B).

Treatment‑related parameters and outcomes

No patient was lost to follow-up and there were no missing 
data for evaluated end-points.

Patients initiated NIV and PP within 24 h of admission 
to the Subintensive Care Unit. Over the initial 48 h of treat-
ment, NIV was delivered continuously or until intubation 

and only brief interruptions were allowed for eventual 
adjustments and nursing care, lasting no more than few 
minutes; subsequently, daily breaks, lasting no more than 
2 h, were allowed for meals and nursing care, depending on 
patient clinical condition and tolerance.

In PP and supine groups, ventilatory settings were sim-
ilar among groups at baseline and remained unchanged 
from timepoints sp0 to sp1 (Table 1).

Daily hours of NIV and PP, the duration of the longest 
PP session, daily PP sessions and days of PP therapy are 
reported in Table 1.

Compared with supine group, PP therapy was associated 
with improved gas exchange and ultrasonographic param-
eters and clinical outcomes (Supplementary Fig. 5–6, Sup-
plementary Table 4).

Effect of PP therapy on  MPWAL

PP therapy was associated with a significant  MPWAL reduc-
tion:  MPWAL decreased by a median 34% (IQR: 30–38%) 
during the first PP session (timepoint pp1) as compared 
with pre-proning values (timepoint sp0) (Fig. 2 panel A–D). 
 MPWAL reduction during  1st PP session was driven mainly by 
a RR decrease and secondly by a modest (5%; 2–7%) WAL 
increase (Fig. 2A–D). The magnitude of WAL % increase 
during 1st PP session was consistent with recent reports 
[40-42].

Panel D: respiratory rate (RR)

p<0.0001
# #¶ # #¶  # #¶        # #¶       # #¶  # §¶        # #¶

Fig. 2  (continued)
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Daily  MPWAL swings between prone and supine posi-
tion subsided after day 5(timepoint pp5)(P supine vs. 
prone > 0.05), suggesting no additional effect on  MPWAL 
from further PP days (Fig. 2A).

Relationship of early (day 1) power measures 
with clinical outcomes

We first assessed the relationship between different power 
measures at day 1 and clinical outcomes (NIV failure, death) 
(Fig. 3A–C): we observed a progressive, linear, statistically 
significant increase in NIV failure and death rates across 
each  MPWAL quartile, but not across MP and  MPPBW quar-
tiles, which rather showed a steep increase in the rate of 
clinical outcomes in the 3-4th quartile as compared with the 
lower 2 quartiles.

The investigation of mutual relationship between MP, 
 MPPBW and  MPWAL at day 1 disclosed a the weak correla-
tion between  MPWAL and the other power measures, indi-
cating for any given value of MP delivered by NIV to the 

respiratory system, the energy per unit volume of WAL var-
ied widely (Fig. 3D–E).

Early (day 1)  MPWAL is independently associated 
with clinical outcomes

We then categorized the whole study population based 
on median  MPWAL delivered during the initial 24 h of NIV 
(day 1) into high  MPWAL (i.e.  MPWAL ≥ 9.1 J/min/L) or low 
 MPWAL (i.e.,  MPWAL < 9.1 J/min/L): patients receiving a low 
 MPWAL(day 1) showed lower 28-d NIV failure, intubation and 
death rates than those receiving a high  MPWAL(day 1) (Table 1, 
Fig. 4).

In Cox proportional multivariable models,  MPWAL 
(day 1) predicted 28-d NIV failure (HR 1.682; 95%CI: 
1.147–2.412, p = 0.003), intubation (HR 1.521; 95%CI: 
1.193–2.314, p = 0.009) and death (HR 1.697; 95%CI: 
1.217–2.313, p = 0.002) independently of baseline illness 
and lung disease severity and of other ventilatory vari-
ables (Table 2).

Fig. 3  Panel A–B: relation-
ship between MP,  MPPBW and 
 MPWAL during day 1 of NIV 
in the whole study population 
(n = 216). Panel C–D: quartiles 
of MP (Panel A),  MPPBW (Panel 
B) and  MPWAL (Panel C) and 
28-d NIV failure and death(%) 
in the whole study population 
(n = 216). Median (range) of 
MP, of components of MP and 
of well aerated lung (WAL) 
volumes are displayed at the 
bottom of each graph. ⁕p < 0.05 
vs. other quartiles for NIV 
failure and death; ǂp < 0.001 vs 
other quartiles for NIV failure 
and death
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Predictive performance of  MPWAL(day 1) for clinical 
outcomes

Each ventilatory variable at day 1 was regressed on NIV 
failure and mortality in the whole study population: 
 MPWAL(day 1) showed the highest AUROC for predict-
ing 28-d NIV failure (AUROC 0.89; 95%CI: 0.85–0.93, 
p < 0.001) and death (AUROC 0.89; 95%CI: 0.85–0.94, 
p < 0.001), outperforming all other ventilatory param-
eters and WAL (p < 0.011 for both comparisons by 
DeLong’s test) (Table 3, Fig. 5). Additionally,  MPWAL 
(day 1) optimal thresholds for both NIV failure and death 
overlapped.

Time course of ventilatory and other 
physio‑anatomical variables during the initial 
7 days of NIV

Over the initial 7 days there were missing data in the physi-
ological parameters due to the occurrence of NIV failure or 
success and subsequent Unit discharge. Because these data 
were not missing at random but due to the consequence of 
treatment effect, we did not perform multiple imputation and 
excluded missing values from analyses.

Figure 6 shows time course of different ventilatory, ultra-
sonographic and inflammatory parameters in PP and supine 
patients receiving either high or low  MPWAL(day 1).
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Fig. 3  (continued)
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Within each treatment group (PP or supine), median daily 
 MPWAL remained relatively constant during initial days of NIV 
(Fig. 6A–B); gas exchange parameters (paO2/FiO2 ratio, VR, 
MVcorr), ultrasonographic parameters (global LUS score, global 
reaeration score, WAL %) and inflammatory biomarkers (CRP, 
procalcitonin) improved significantly over the initial 24 h of NIV 
(day 1, timepoint sp0-1) only in patients receiving a low  MPWAL, 
but not in those receiving a high  MPWAL (Table 1, Fig. 6C–P). The 
differences between low and high  MPWAL group observed at day 1 
were magnified during the initial 7 days of NIV (Table 1, Fig. 6).

Impact of early (day 1)  MPWAL on physio‑anatomical 
responses

We next explored potential mechanisms underlying the 
association of  MPWAL(day 1) with the observed clinical 
outcomes.

In the whole study population, early  MPWAL(day 1) cor-
related significantly with O2 response, CO2 response ultra-
sonographic responses and C-reactive protein changes at 
resupination (timepoint sp1) in univariate analysis (Fig. 7). 
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(ml/kg PBW)

PEEP              7(6-8) 8(7-8)                       8(7-9)                             9(8-9)
(cmH2O)

Ps                    3(3-3) 3(3-4)                       4(3-5)                             4(3-5)
(cmH2O)

WAL            2.2(1.8-3.0) 1.8(1.4-2.2)                1.7(1.5-2.3)                   1.6(1.2-2.1)
(L)

Fig. 3  (continued)
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The observed associations were confirmed by multivariable 
analysis, where  MPWAL(day 1) independently predicted 
∆VRsp0-1(β = 0.43, p = 0.011), ∆global  LUSsp0-1(β = 0.41, 
p = 0.018), global reaeration  scoresp1(β = -0.49, p = 0.009), 
∆WALsp0-1(β = 0.41, p  = 0.018) and ∆C-reactive 
 proteinsp0-1(β = 0.38, p = 0.029) (Table 4).

Discussion

In the first report exploring  MPWAL in COVID-19 AHRF 
treated with prone or supine NIV, we found that.

1) PP was associated with a significant  MPWAL reduction, 
attributable mainly to an absolute MP reduction and sec-
ondly to a relief in the “intensity” of the power delivered 
to the aerated lung through enhanced lung reaeration 
(Fig. 2).

2) MPWAL delivered during the first 24  h of NIV 
 [MPWAL(day 1)] outperformed other power measures 
and ventilatory variables in clinical and pathophysi-
ological outcome prediction.

3) MPWAL(day 1) independently predicted different markers 
of VILI, including gas exchange parameters, ultrasono-
graphic and inflammatory biomarkers, in both supine 
and proning patients.

Panel D

Panel E

Fig. 3  (continued)
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Fig. 4  Cumulative incidence of 
Noninvasive Ventilation (NIV) 
failure (Panel A), death (Panel 
B) and endotracheal intuba-
tion (Panel C) at 28 days after 
enrollment in patients grouped 
according to high (≥ 9.1 J/
min/L) vs low (< 9.1 J/min/L) 
 MPWAL at day 1. In the endotra-
cheal intubation group, patients 
with a Do-Not-Intubate (DNI) 
disposition were excluded

Panel A: NIV failure

Panel B: death
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Diferent mechanical ventilatory variables have been pro-
posed to affect clinical outcomes and to contribute to VILI, all 
of which have been separately addressed in experimental or 
clinical studies [1-3]. The MP represents the energy delivered 
to the respiratory system by mechanical ventilation, which 
results from a combination of ventilatory variables. Therefore, 
MP might have a higher predictive value for patient-centered 
outcomes, as different combinations of its components may 
yield a similar damage to the lung [4-8]. The ability to com-
bine the effect of time-varying ventilatory variables seems 
particularly attractive in spontaneously breathing patients.

Our findings suggest MP delivered early after NIV ini-
tiation predicts both NIV failure and mortality. However, 
the power should be normalized to the size of for the size 
of well-inflated lung to get an optimal cut-off that could be 
used in clinical practice, as VILI originates from the interac-
tion between the MP delivered to the respiratory system by 
the ventilation and the anatomical and pathophysiological 
characteristics of the latter. Notably, we demonstrated that 
bedside LUS could be used to accurately estimates WAL 
size, consistent with data from nonCOVID-19 ARDS [29].

Lastly, we showed that early PP may reduce  MPWAL 
while improving oxygenation and CO2 clearance during 
NIV. Therefore, early PP therapy may be a more “energeti-
cally” advantageous strategy to relieve hypoxemia than 
PEEP uptitration, which may overdistend the lung and 
increase MP and lung injury when it does not recruit ate-
lectatic lung tissue [8, 35]. The association of PEEP levels 

and NIV duration with COVID-19 pneumonia severity and 
mortality is consistent with this view [11-13].

Our analysis may have several clinical implications for 
noninvasive AHRF management.

First, it suggests PP can effectively reduce MP delivery. 
Second, they suggest early  MPWAL calculation may help define 
the trade-offs between the benefits and risks of noninvasive 
ventilatory support, helping to titrate NIV to the least possi-
ble energy to achieve oxygenation and enhancing prompt NIV 
up-grade to invasive mechanical ventilation (IMV) to prevent 
VILI progression. Both these issues warrant evaluation in 
future ad hoc trials enrolling different AHRF etiologies.

Strengths and limitations

Strengths of our report are the thorough patient assessment, 
the hourly ventilatory data collection, which reflect actual 
power delivery during each ventilatory session more accurately 
than once daily data, and the separate assessment of supine 
and prone ventilatory modality. Limitations of our analysis 
include its post hoc nature and the absence of randomization 
in the original study. Furthermore, we focused on ventilator-
delivered energy and did not assess the energy transferred 
from respiratory muscles to the lung during inspiration. How-
ever, consistent with COVID-19 literature. our patients had 
no clinical-radiological evidence for increased inspiratory 
effort or reduced lung compliance [14-17], and Pes swings, 
an index of inspiratory effort, are unrelated to disease course 

Panel C: endotracheal intubation (ETI)Fig. 4  (continued)
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and unaffected by PP [43], while MPWAL predicted physio-
anatomical and clinical outcomes in our patient population.

Conclusions and expert recommendations

Concern has been raised that mechanical ventilation may 
promote VILI and worsen outcome in spontaneously breath-
ing patients with AHRF. Different ventilatory variables have 
been proposed to contribute to VILI progression, but no 
effective predictive, preventive and patient-centered model 
has been developed [44-48].

Based on our findings we suggest early quantitation of well-
aeraled lung volume before NIV initiation in each patient with 
AHRF candidate to NIV, through CT scan analysis or at least 
through lung ultrasound, which in our series was at least as 
accurate for WAL quantitation as free open source software.

After NIV initiation, the value of MP delivered to the patient 
by NIV could be estimated from routine ventilatory parameters 
using available formulas and adjusted for individual WAL volume 
to estimate  MPWAL: if patient’s  MPWAL exceeds suggested safey 
threshold (9.1 J/min/L), VILI could be prevented by implementing 
PP, which reduced  MPWAL by an average of 34% in our series.

If PP fails to reduce  MPWAL below safety threshold, 
NIV upgrade to invasive ventilation should be considered 
to achieve complete ventilatory control and reduce  MPWAL 
and the risk of VILI.

The added value of this approach in noninvasively venti-
lated AHRF patients is to provide an accurate tool for early 
prediction of the risk of VILI and adverse outcomes(i.e., 
 MPWAL at day 1), an effective mean to prevent or reduce the 
risk of VILI (i.e., prone position adoption). Furthermore, this 
approach should be personalized, i.e. the MP delivered by the 
ventilator to patient’s respiratory system should be adjusted 
for individual WAL size, which varies widely across AHRF 
patients and could be calculated by lung imaging techniques.

This integrated approach, which showed accuracy in 
our study, needs prospective validation in independent 
cohorts of patients with AHRF of diverse etiologies.

Appendix

PPPM Innovation highlights

Working hypothesis in the framework of PPPM

Concern has been raised that mechanical ventilation may pro-
mote lung injury (so called ventilation-induced lung injury, 
VILI) and worsen outcome in spontaneously breathing 
patients with acute hypoxemic respiratory failure (AHRF).

Different ventilatory variables have been proposed to 
contribute to VILI progression, but data in noninvasively 

ventilated patients are scarce, inconsistent and inconclu-
sive and no valuable outcome predictor currently exists.

Mechanical power (MP), a measure of the energy transfer 
rate from the ventilator to the respiratory system, predicted 
mortality in invasively ventilated ARDS patients, but its 
role in noninvasively ventilated AHRF is unexplored.

Innovation towards the

1. predictive approach,

Mechanical Power normalized to the volume of well-
aerated lung (MPWAL) delivered during the initial 24 h of 
noninvasive ventilation (NIV) independently predicts NIV 
failure intubation and death and affects physio-anatomical 

Table 2  Cox multivariable analysis of predictors of 28-d NV failure, 
death and endotracheal intubation (ETI) (n = 216)

Statistically significant p-values are written in bold characters
ISARIC  international severe acute respiratory infection consortium, 
NIV noninvasive ventilation, SAPS simplified acute physiology score, 
PEEP positive end-expiratory pressure, MPWAL, mechanical power 
normalized to well-aerated lung volume, CI confidence interval, PBW 
predicted body weight
* on admission, while on a FiO2 50% Venturi mask or a non-
rebreather reservoir bag mask

28-d NIV failure
SAPS II 1.027 0.983 to 1.272 0.293
PP therapy (1 = yes, 0 = No) 0.581 0.392 to 0.772 0.009
Baseline pO2/FiO2* 0.982 0.734 to 1.696 0.128
Baseline WAL (L) 1.044 0.891 to 1.986 0.319
RR (day 1) 1.186 0.892 to 1.539 0.146
VTe(day 1) (ml/kgPBW) 1.017 0.749 to 2.013 0.318
PEEP(day 1)(mmHg) 1.179 0.874 to 1.528 0.412
MPWAL (day 1)(J/min/L) 1.682 1.147 to 2.412 0.005
28-d death
Parameter HR 95%CI P
Age 1.088 1.0426 to 1.198 0.028
ISARIC 4C score 1.026 0.947 to 1.192 0.334
PP therapy 0.629 0.271 to 0.812 0.010
Baseline paO2/FiO2* 0.999 0.894 to 1.166 0.296
Baseline WAL (L) 1.039 0.792 to 1.893 0.427
RR (day 1) 1.116 0.975 to 1.428 0.239
MPWAL (day 1) 1.697 1.217 to 2.316 0.002
28-d endotracheal intubation
SAPS II 1.021 0.872 to 1.812 0.513
PP therapy (1 = yes, 0 = No) 0.598 0.283 to 0.781 0.007
Baseline pO2/FiO2* 0.992 0.621 to 1.769 0.389
Baseline WAL (L) 1.028 0.891 to 1.986 0.319
RR (day 1) 1.112 0.783 to 1.702 0.192
VTe(day 1) (ml/kgPBW) 1.132 0.649 to 2.913 0.413
MPWAL (day 1)(J/min/L) 1.682 1.147 to 2.412 0.005
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Table 3  Discrimination of 
ventilator parameters measured 
during the 1st 24 h of NIV)
(day 1) in predicting 28-d NIV 
failure and death in the whole 
study population (n = 216)

*  p < 0.001 vs VTe, RR, PEEP, Ps, WAL at day 1 by DeLong test
#  p < 0.01 vs. MP or  MPPBW at day 1 by DeLong test
ISARIC international severe acute respiratory infection consortium, NIV noninvasive ventilation, SAPS sim-
plified acute physiology score, PEEP positive end-expiratory pressure, MPWAL mechanical power normal-
ized to well-aerated lung volume, MP mechanical power, AUROC area under receiver operating character-
istic curve, CI confidence interval, PBW predicted body weight

NIV failure at 28 days Death at 28 days

Parameter Cut-off Se(%) Sp(%) AUROC
(95%CI)

Cut-off Se(%) Sp(%) AUROC
(95%CI)

MPWAL (day 1)
(J/min/L)

9.2 88 86 0.89 (0.85–0.93) *# 9.3 89 87 0.89 (0.85–0.94)
*#

MP (day 1)
(J/min)

16.7 78 77 0.80 (0.72–0.85)
*

20.9 80 73 0.76 (0.72–0.83)
*

MPPBW (day 1)
(J/min/kg)

0.147 76 77 0.79 (0.72–0.85)
*

0.169 84 76 0.79 (0.73–0.86)
*

VTe(day 1)
(ml/kg)

7.9 64 72 0.66 (0.58–0.73) 9.6 65 78 0.67 (0.59–0.74)

RR(day 1)
(breaths/min)

28 75 61 0.65 (0.58–0.72) 31 69 60 0.64 (0.56–0.70)

PEEP(day 1)
(cmH2O)

9 36 74 0.54 (0.47–0.61) 10 46 78 0.63 (0.55–0.70)

Ps(day 1)
(cmH2O)

4 65 50 0.58 (0.47–0.68) 6 74 53 0.64 (0.53–0.74)

WAL(day 1)
(L)

1.7 66 72 0.70 (0.62–0.78) 1.0 81 45 0.63 (0.55–0.71)
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Fig. 5  Time-course of different 
ventilatory (Panel A-B), gas 
exchange(Panel C-F), ultra-
sonographic (Panel G-N) and 
inflammatory (Panel O-P) 
parameters during the ini-
tial 7 days of NIV in the PP 
and supine groups, grouped 
according to low  MPWAL or 
high  MPWAL during the 1st 
24 h of NIV (day 1) (n = 216). 
* P < 0.05 vs baseline (same 
group) # P < 0.01 vs. base-
line (same group) § P < 0.01 
vs. baseline (both groups) † 
P < 0.001 vs. baseline (both 
groups) ǁ P < 0.01 between 
groups ¶ P < 0.001 between 
groups # P < 0.001 ‡

Panel A: measures of power (day 1) and 28-d NIV failure

Panel B: measures of power (day 1) and 28-d death
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Fig. 6  Dose–response relation-
ship between Mechanical Power 
normalized to well-aerated 
lung volume during the  1st 
24 h of NIV [MP WAL(day 
1)] and physio-anatomical 
responses after the  1st 24 h 
of NIV(∆sp0-1) in the whole 
study population (n = 216). 
PP patients are represented by 
black full dots, supine patients 
are represented by empty trian-
gles. In the plots, the green area 
denotes a positive gas exchange 
(O2 or CO2) response, the red 
area a negative gas exchange 
response. -O2 response: an 
increase in paO2/FiO2 ratio 
during NIV in supine posi-
tion at day 1 (timepoint sp1) 
as compared with NIV supine 
at timepoint sp0: i.e., pO2/
FiO2sp1—pO2/FiO2sp0 > 0, or 
∆paO2/FiO2sp0-1 > 0. -CO2 
response: an increase in CO2 
clearance, defined by a reduc-
tion in dead space indices (VR 
and  MVcorr, tested separately) at 
sp1 as compared with time-
point sp0  [VRsp1-VRsp0 < 0 (or 
∆VRsp0-1 < 0)]

Panel A: MPWAL PP group

N at risk 
low MPwal        66                          66                           66                        65                       64                          62                           60
high MPwal       41                          41              41                        40                         39                          38                           37
MP (J/min) 
low MPwal      8.5                         8.9                           8.9                       8.7     8.8                        8.6                           8.9

(6.5-9.2)                (6.8-9.6)                  (6.5-9.9)            (6.2-9.1)             (6.0-9.8)               (6.0-8.9)                 (6.6-9.8)
high MPwal    28.7                      29.8                          29.7                    27.3                    26.0   27.2                         28.1  

(25.5-31.9)           (25.9-32.2)           (27.0-33.2)         (24.9-30.5)        (23.8-29.1)          (24.4-33.0)             (25.6-31.2)
WAL (L) 
low MPwal        1.9                         2.1                           2.2                        2.2                    2.4                         2.5                       2.6

(1.6-2.1)               (1.8-2.3)                 (1.9-2.4)               (1.8-2.4)                (2.2-2.6)                 (2.3-2.7)             (2.4-2.8)
high MPwal        1.9                         2.0                   1.9                         1.8                          1.7                         1.6                       1.5 

(1.6-2.2)               (1.6-2.3)                  (1.6-2.2)              (1.5-2.1)                 (1.5-2.0)                (1.5-2.0)             (1.3-1.8)             

§ §
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Panel B: MPWAL supine group

N at risk 
low MP         42                     42                               42                          42                        41                         41                            40

high MP         67                     65              63                          61                         57                         54                            47

MP (J/min) 
low MPwal      8.7                         8.8                           8.9                       8.7                       9.1                        9.4                           9.5

(6.3-10.2)            (6.6-10.1)        (6.9-10.3)           (6.3-9.9)             (7.0-11.3)             (7.1-10.9)              (6.8-11.4)
high MPwal    27.8                      28.1                          27.6                    28.1                    27.5   26.0                         25.8  

(24.5-31.9)           (24.9-32.2)             (24.5-33.7)         (24.9-31.5)        (23.2-31.1)          (24.0-30.0)             (24.6-30.6)
WAL (L) 
low MPwal        1.9                         2.1                           2.2                        2.2                    2.4                         2.5                       2.6

(1.7-2.1)               (1.8-2.3)  (2.0-2.4)               (1.9-2.4)                (2.1-2.7)               (2.2-2.8)             (2.4-2.9)
high MPwal        2.0                         1.9                           1.9                         1.8                  1.7                         1.6                       1.5 

(1.7-2.3)               (1.8-2.2)                  (1.6-2.12)              (1.5-2.1)                (1.5-2.0)               (1.5-2.0)             (1.3-1.8)             

# # ⁕ #

Fig. 6  (continued)
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Panel C: paO2/FiO2 PP group

Panel D: paO2/FiO2 supine group

N at risk
low MP 66 66 66 66 65 64 62 60

high MP 41 41 41 41 40                 39 38 37

p<0.0001

§¶ #¶         #¶  #¶       #¶     #¶        #¶      #¶        #¶  #¶      #¶        #¶       #¶      #¶

N at risk 
low MP    42                        42                        42                       42  41                         41                        40                       40
high MP   67                        65                       63                        61                         60         57          54                       47

p<0.0001 #ǁ #¶ #¶ #¶ #¶ #¶ #¶

Fig. 6  (continued)
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Panel E: Ventilatory Ratio (VR) PP group

Panel F: Ventilatory Ratio (VR) supine group

§¶ #¶     #¶  #¶     #¶     #¶      #¶      #¶      #¶  #¶      #¶    #¶       #¶    #¶
p<0.0001

¶* ¶ * ¶ * ¶ * ¶  * § ¶               § ¶   p<0.0001

Fig. 6  (continued)
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Panel G: global LUS score PP group

Panel H: global LUS score supine group

¶                 # ¶                  # ¶                † ¶           †¶                  † ¶                  † ¶   

N at risk
low MP 66 66 66 66 65 64 62 60
high MP 41 41 41 40 40                 39 38 37

N at risk
low MP 42 42 42 42 41 41 40 40
high MP 67 65 63 61 60 57 54 47

ǁ # ¶                # ¶                † ¶              † ¶                  † ¶               † ¶   

Fig. 6  (continued)
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Panel I: WAL (%) PP group

Panel L: WAL (%) supine

# ǁ # ¶                † ¶                 † ¶                  † ¶                 † ¶                 † ¶   

ǁ # ¶ † ¶ † ¶ † ¶ † ¶ † ¶

Fig. 6  (continued)
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Panel M: global reaeration score PP group

Panel N:  global reaeration score supine group

ǁ # ǁ § ǁ † ǁ †  ¶                     † ¶                       † ¶   

ǁ # ǁ § ǁ † ǁ †  ¶                      † ¶                      † ¶   

Fig. 6  (continued)
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Panel O: serum C-reactive protein (CRP) PP group

Panel P: serum C-reactive protein (CRP) supine group

# ¶           # ¶            # ¶             § ¶            § ¶            §¶               § ¶   

* ¶            # ¶           # ¶             # ¶           # ¶            # ¶            # ¶

Fig. 6  (continued)
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Fig. 7  Dose–response relation-
ship between Mechanical Power 
normalized to well-aerated 
lung volume during the  1st 
24 h of NIV [MP WAL(day 
1)] and physio-anatomical 
responses after the  1st 24 h 
of NIV(∆sp0-1) in the whole 
study population (n = 216). 
PP patients are represented by 
black full dots, supine patients 
are represented by empty 
triangles. Green area denotes 
a positive response, red area a 
negative one

Panel A: Mechanical Power corrected for well-aerated lung volume (MPWAL) at day 1 and O2 response 
( paO2/FiO2 ratiosp0-1) in the whole cohort (n=216).

Panel B: Mechanical Power corrected for well-aerated lung volume (MPWAL) at day 1 and CO2 response (
ventilatory  ratiosp0-1) in the whole cohort (n=216).
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Panel C: Mechanical Power corrected for well-aerated lung volume (MPWAL) at day 1 and change in global 
lung ultrasonographic score at the end of  day 1 ( global LUS0-1) in the whole cohort (n=216).

Panel D: Mechanical Power corrected for well-aerated lung volume (MPWAL) at day 1 and change in global 
well-aerated lung volume (WAL) (%) at the end of  day 1 ( global WAL%0-1) in the whole cohort (n=216).

Fig. 7  (continued)



375EPMA Journal (2023) 14:341–379 

1 3

Panel E: Mechanical Power corrected for well-aerated lung volume (MPWAL) at day 1 and  global reaeration 
score at the end of day 1 (global reaeration score1) in the whole cohort (n=216).

Panel F: Mechanical Power corrected for well-aerated lung volume (MPWAL) at day 1 and C-reactive protein 
response ( CRP0-1) in the whole cohort (n=216).

Fig. 7  (continued)
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Table 4  Multivariable linear 
regression analysis of predictors 
of CO2-response (by ventilatory 
ratio, VR), ultrasonographic 
response and C-reactive protein 
responses in the whole study 
population(n = 216)

Statistically significant p-values are written in bold characters

O2-response (∆paO2sp0-1)
Parameter β SE P VIF R2 R2

adj

MPWAL (day 1) 0.46 0.006 0.009 1.51 0.66 0.62
Duration of  1st PP session (hours) 0.42 0.010 0.019 1.49
Not included in the model
paO2/FiO2sp0 –0.29 0.312 0.312 1.47
PEEP (day 1) 0.18 0.192 0.287 1.31
VTe (day 1 –0.27 0.216 0.312 1.21
RR (day 1) –0.15 0.189 0.193 1.77
CO2-response (∆VRsp0-1)
Parameter β SE P VIF R2 R2

adj

MPWAL(day 1) 0.44 0.011 0.010 1.59 0.69 0.61
Duration of  1st PP session (hours) –0.41 0.008 0.028 1.45
Not included in the model
VRsp0 –0.31 0.128 0.398 1.18
PEEP (day 1) –0.13 0.139 0.151 1.01
RR(day 1) 0.29 0.146
Global LUS response: ∆ global  LUSsp0-1

Parameter β SE P VIF R2 R2

adj

MPWAL (day 1) 0.41 0.009 0.018 0.06 0.68 0.63
global  LUSsp0 -0.37 0002 0.009 1.89
Not included in the model
RR (day 1) -0.19 0.318 0.573 1.47
PEEP (day 1) -0.13 0.128 0.398 0.47
Global reaeration  scoresp1

Parameter β SE P VIF R2 R2

adj

Duration of  1st PP session (hours) 0.51 0.004 0.012 1.72 0.63 0.60
MPWAL (day 1) –0.49 0006 0.009 1.59
Not included in the model
global  LUSsp0 0.29 0.612 0.138 1.29 0.65 0.64
PEEP (day 0) 0.16 0.316 0.479 1.13
Well-aerated volume response: ∆WAL(%)sp0-1

Parameter β SE P VIF R2 R2

adj

global  LUSsp0 0.51 0.004 0.012 1.72 0.65 0.63
MPWAL (day 1) –0.49 0006 0.010 1.59
Not included in the model
WAL (day 0) 0.29 0.612 0.138 1.29
PEEP (day 1) 0.16 0.316 0.479 1.13
C-reactive protein response: ∆  CRPsp0-1

Parameter β SE P VIF R2 R2

adj

CRPsp0 –0.59 0.009 0.011 1.71 0.62 0.57
MPWAL (day 1) 0.38 0.005 0.029 1.12
Not included in the model
Obesity 0.31 0.269 0.513 1.19
PEEP (day 0) 0.28 0.214 0.395 1.12
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markers of VILI (i.e., gas exchange, lung reaeration by lung 
ultrasound, and inflammatory biomarkers), outperforming 
all other ventilatory variables in outcome prediction.

4. targeted prevention

We found prone position during noninvasive ventilation 
is an effective tool to reduce mechanical power delivered 
during NIV.

5. personalization of medical services

Bedside MPWAL calculation during the  1st day of NIV 
may guide NIV delivery, help define the tradeoffs between 
the benefits of noninvasive support and the risks of VILI, 
and enhance prompt escalation to invasive mechanical ven-
tilation to minimize lung injury progression.

How does the presented innovation go beyond

Early bedside  MPWAL calculation is a useful parameter that 
can predict NIV outcome, suggest the need to adopt prone 
position to reduce MP delivery during NIV, and help decide 
when to stop NIV and upgrade treatment to invasive ventila-
tion to more effectively preventi VILI progression.

Abbreviations ABG: Arterial blood gas; AHRF: Acute hypoxemic res-
piratory failure; CPAP: Continuous positive airway pressure; DSI: Dead 
space index; ETI: Endotracheal intubation; ISARIC:  International 
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