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Abstract
Since 2009, the European Association for Predictive, Preventive and Personalised Medicine (EPMA, Brussels) promotes 
the paradigm change from reactive approach to predictive, preventive, and personalized medicine (PPPM/3PM) to protect 
individuals in sub-optimal health conditions from the health-to-disease transition, to increase life-quality of the affected 
patient cohorts improving, therefore, ethical standards and cost-efficacy of healthcare to great benefits of the society at large. 
The gene-editing technology utilizing CRISPR/Cas gene-editing approach has demonstrated its enormous value as a powerful 
tool in a broad spectrum of bio/medical research areas. Further, CRISPR/Cas gene-editing system is considered applicable to 
primary and secondary healthcare, in order to prevent disease spread and to treat clinically manifested disorders, involving 
diagnostics of SARS-Cov-2 infection and experimental treatment of COVID-19. Although the principle of the proposed 
gene editing is simple and elegant, there are a lot of technological challenges and ethical considerations to be solved prior 
to its broadly scaled clinical implementation. This article highlights technological innovation beyond the state of the art, 
exemplifies current achievements, discusses unsolved technological and ethical problems, and provides clinically relevant 
outlook in the framework of 3PM.
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Preamble

Reactive medicine as the currently implemented approach 
to treat clinically manifested disorders, has reached its limits 
from both ethical and economical points of view [1]. This can 
be illustrated by epidemics of non-communicable disorders 

demonstrating over a half of billion patients diagnosed with 
the diabetes mellitus and co-morbidities [2], breast cancer 
as the leading malignancy in female subpopulations [3], 
prostate cancer with the disease management costs annu-
ally increasing more rapidly than for any other cancer type 
[4] and alarming statistics of neurodegenerative disorders 
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worldwide [5]. Since 2009, European Association for Predic-
tive, Preventive and Personalised Medicine (EPMA, Brus-
sels, www. epman et. eu) promotes the paradigm change from 
reactive approach to predictive, preventive, and personalized 
medicine (PPPM/3PM) to reverse currently observed unfa-
vourable trends, to protect individuals in sub-optimal health 
conditions from the health-to-disease transition, to increase 
life-quality of the affected patient cohorts improving, there-
fore, ethical standards and cost-efficacy of healthcare to great 
benefits of the society at large [6–8].

CRISPR/Cas gene-editing approach is applicable to pri-
mary and secondary healthcare, in order to prevent spread 
of diseases and to treat clinically manifested disorders. 
Although the principle of the proposed gene editing is sim-
ple and elegant, there are a lot of technological challenges 
and ethical considerations to be solved prior to its broadly 
scaled clinical implementation.

This article highlights technological innovation beyond 
the state of the art, exemplifies current achievements, dis-
cusses unsolved technological and ethical problems, and pro-
vides clinically relevant outlook in the framework of 3PM.

Technological innovation by the CRISPR/Cas 
gene editing

CRISPR (Clustered Regularly Interspaced Short Palindro-
mic Repeats)/Cas9 (CRISPR associated protein 9) system 
originated from bacteria and archaea, providing an adaptive 
immune response against viruses and plasmids. This defense 
system uses small RNA sequences of pathogen origin for 
sequence-specific detection and silencing of foreign, invad-
ing nucleic acids [9]. Although the Cas9 molecule is a part of 
prokaryotic defense mechanisms [10], it is fully functional in a 
broad spectrum of both prokaryotic and eukaryotic organisms.

A list of suitable target organisms and derived cell lines, 
that can be modified using the CRISPR/Cas9 system, covers 
the whole spectrum of life forms. Naturally, the most com-
mon are laboratory mammals such as mice [11–13], rats [14, 
15], and rabbits [16], but also pigs [17, 18], dogs [19], and 
particularly human cell lines [20, 21]. Human gene editing 
is regulated by strict ethical norms and currently undergoes 
scientific, philosophical, and political discussion [22, 23]; 
however, in principle, it is executable. Besides the mam-
mals, also genome of reptiles [24], amphibians (Xenopus 
laevis and X. tropicalis) [25, 26], fish (Danio rerio, Oryzias 
latipes) [26–28], insects (Drosophila melanogaster, mos-
quitoes) [29, 30], worms (Caenorhabditis elegans) [31, 32], 
plants [33–35], fungi [36, 37], bacteria [38], and viruses 
[39] can be edited by CRISPR/Cas9. Paradoxically, using 
the CRISPR/Cas9 technology is not as common in bacteria 
as in other organisms, likely because other methods based 

on homologous recombination were already available for 
efficient manipulation of their genomes [40].

The Cas molecules used for the gene editing originate 
from different organisms; thus, it is not surprising that these 
molecules differ in sequences as well as other properties and 
requirements (e.g., size of a gene, efficacy, target molecule 
type, or PAM sequence); however, more or less identical 
mechanism of action is shared by all [41]. Most frequently 
and first utilized is spCas9, originally isolated from Staphy-
lococcus pyogenes [42–44]; later, other isolated Cas mol-
ecules from the other microorganisms started to be used as 
well. A list of examples contains Staphylococcus aureus [45, 
46], Francisella novicida [47, 48], Neisseria meningitides 
[49], Campylobacter jejuni [50, 51], Streptococcus thermo-
philus [52, 53], Acidaminococcus spp. and Lachnospiraceae 
bacterium [54].

As mentioned above, the CRISPR/Cas system is com-
monly used in research studies to better understand bio-
logical processes. The development of precise treatment 
strategies should be preceded by the monitoring of genome 
editing experiments by NGS technology [55, 56] to elimi-
nate unintended gene modifications[57]. This review focuses 
on CRISPR/Cas systems that are potentially utilized in per-
sonalized medicine.

The brief history of CRISPR/Cas9 discovery

The discovery of the CRIPSR/Cas9 mechanism started 
in 1987, when an unusual repetitive DNA sequence with 
an unknown function, which was subsequently defined as 
a CRISPR, was described in the Escherichia coli genome 
[58]. Later, similar sequence patterns were reported in a 
range of other bacteria and archaea, suggesting an impor-
tant role for such evolutionarily conserved clusters of 
repeated sequences. At the beginning of this century, 
several conserved genes regularly present adjacent to the 
CRISPR region were also discovered. These genes were 
named CRISPR-associated sequences (Cas). To date, six 
CRISPR–Cas types have been described, which feature 
highly diverse cas gene content and operon organization. 
However, the function of these sequences remained unclear 
at that time [39, 40]. In 2005, several groups described 
observation that CRISPR sequences share homology with 
phages and plasmids; moreover, these phages and plasmids 
do not infect host strains harboring the homologous spacer 
sequences in the CRISPR. These observations concluded 
that these sequences are involved in the framework of a bio-
logical defense system—an adaptive immunity evolved by 
bacteria to destroy viral pathogens by cutting specifically 
their DNA with Cas proteases [40, 59–61]. Finally, in 2012 
first publication described genome-editing technology based 
on CRISPR/Cas9 [9]. Recently, in 2020, the first patient 
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legally received gene-editing therapy with CRISPR/Cas9 
directly administered into the body. This treatment aims to 
remove mutations that cause a rare genetic condition called 
Leber’s congenital amaurosis, causing blindness [62]. Such 
an approach can be used as a paradigm for the personalized 
treatment of other diseases with known genetic origin.

General mechanism of CRISPR/Cas9 function

The CRISPR/Cas9 complex is an RNA-guided DNA endo-
nuclease that recognizes target sites by RNA–DNA comple-
mentarity and produces sequence-specific double-stranded 
DNA break [63].

The CRISPR/Cas9 system consists of three key compo-
nents: the CRISPR-associated DNA cleaving endonuclease 
Cas9 protein, a target DNA sequence-recognizing RNA 
transcribed from short DNA sequences known as protospac-
ers (crRNA), and a trans-activating RNA (tracrRNA) [64]. 
The Cas9 nuclease contains two domains with endonucle-
ase activity: RuvC and HNH, which together produces blunt 
double-stranded breaks. The DNA-binding crRNA recog-
nized a 20-nucleotide-long DNA target sequence. The trans-
activating crRNA (tracrRNA) anchors the crRNA to the Cas9 
protein. Recognition and cleavage of a target site by Cas9 are 
conditioned and strictly depend on the presence of a so-called 
protospacer adjacent motif (PAM) sequence NGG immedi-
ately downstream of the crRNA target sequence. Cleavage 
occurs 3 bp upstream of the PAM [65]. The presence of a 

PAM sequence is the critical limitation of CRISPR/Cas9 gene 
editing. Currently, there are known various PAM sequences 
for different Cas molecules of different origins. Also, artifi-
cial Cas9 variants with expanded PAM compatibility were 
prepared [66]. Nowadays, the most common implementation 
of CRISPR genome editing in eukaryotic cells relies on a 
2-component system consisting of Cas9 nuclease and a single 
chimeric guide RNA (sgRNA) that consist of crRNA and 
tracrRNA and provides both the recognition and structural 
function [65]. For the schematic visualization of the general 
mechanism of CRISPR/Cas9, see Fig. 1.

CRISPR/Cas9 and other Cas molecule‑based 
technologies are instrumental for 3P 
medicine

The CRISPR/cas9 system can improve human health by cor-
recting genomes and searching for tumor manifestation, and 
capturing potential pathways of metastasis in organs. Similarly, 
in hereditary diseases, nucleases could be used to treat vari-
ous diseases, including hematological and neurological disor-
ders, autosomal dominant and X-linked disorders, and many 
others [67]. The basic principles of CRISPR/Cas technology, 
potentially useful in clinical practice, we discuss below. Gen-
erally, three main areas for CRISPR/Cas9 application in PPP 
are screening for inherited disease predispositions, diagnostic 
of molecular-based diseases, and therapy of such conditions.

Fig. 1  Schematic description of the general mechanism of CRISPR/Cas9 action
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CRISPR/Cas9 gene knock‑out of defective genes

The CRISPR/Cas9 gene knock-out is a molecular genetics 
technique in which a target gene is inactivated. In principle, 
CRISPR/Cas9 gene knock-out is a combination of 2 dif-
ferent events. First, the CRISPR/Cas9 complex cleaves the 
target DNA sequence with a resulting blunt double-strand 
break that is subsequently repaired by the error-prone non-
homologous end joining pathway (NHEJ), resulting in gene 
inactivation by the creation of frameshift alleles by random 
insertions or deletions (indels) [68, 69]. The creation of gene 
knockouts is one of the first and most widely used applica-
tions of the CRISPR–Cas9 system. Potentially therapeutic 
knockout of some genetic variants of genes involved in auto-
immune disorders, such as multiple sclerosis, type 1 diabetes 
mellitus, psoriasis, rheumatoid arthritis, inflammatory bowel 
disease, systemic lupus erythematosus, and type 1 coeliac 
disease [70], shall be considered. For the schematic visuali-
zation of CRISPR/Cas9 knock-out, see Fig. 2.

CRISPR/Cas9 gene knock‑in for restoration 
of physiologic gene expression

Unlike the gene knock-out, CRISPR/Cas9 gene knock-in is 
an insertion of DNA sequence into the genome without dis-
rupting the ORF. It starts (just like knock-out) with CRISPR/
Cas9 targeted cleavage of target DNA sequence with subse-
quent targeted integration of a sequence via the homology-
directed repair pathway, which uses a provided DNA tem-
plate to repair the cleavage [71]. A donor DNA containing a 
sequence surrounding the cleavage site with an insert in the 

frame has to be provided. For the schematic visualization of 
CRISPR/Cas9 knock-in, see Fig. 2.

The scale of modifications used in basic research 
includes the introduction of a single nucleotide–point 
mutation, small tags (Flag-tag, His-tag), up to larger 
protein sequences, very often fluorescent proteins [72]. 
However, this approach was used in experiments in cell 
lines in vitro, as well as in humanized centrosomal protein 
290 (CEP290) mice in vivo carrying the mutation in the 
CEP290 gene, responsible for Leber congenital amaurosis 
type 10. The results showed the normal expression of the 
CEP290 gene and demonstrated the ability of CRISPR/
Cas9 to edit somatic primate cells in vivo at levels that 
met the target therapeutic threshold. The authors suggest 
the application of the method for other inherited retinal 
disorders [73].

Nickases—a safer approach for gene editing

Off-targeting by CRISPR/Cas9 endonucleases is a signifi-
cant concern. To address this problem, a paired nickase 
technology has been developed. To improve the specificity 
of CRISPR/Cas9 gene editing and to decrease the number 
of off-target mutagenesis events, CRISPR/Cas9 system was 
modified in the manner in which two single-strand nicks in 
proximity are created instead of a double-strand break. For 
this, a modified Cas9 protein called Cas9 nickase is used. 
Nickase is a catalytic mutant of Cas9 protein with one inac-
tivated endonuclease domain; thus, it cleaves only one strand 
of the target dsDNA. When two different gRNAs targeting 
two neighboring sequences, however, on the opposite strands 

Fig. 2  Schematic visualization 
of CRISPR/Cas9-mediated gene 
knock-out and knock-in
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are used, then two separate single-strand breaks occur. This 
results in the formation of 5′ and 3′ overhangs at the cleaved 
target site. Induced break with overhang is either repaired 
by non-homologous end joining or homologous recombina-
tion-based repair mechanisms [74]. Using two close target 
sites on opposite strands decreases the possibility of random 
cleavage caused by off-target activity [75]. For the schematic 
visualization of nickases mechanism of function, see Fig. 3.

The catalytically dead dCas9 fused with the FokI domain 
works in an identical manner. The formation of DSB occurs 
only upon dimerization of FokI; thus, two unique gRNAs, 
binding to opposite strands approximately 15–25 bp apart, 
are necessary to bring two dCas9-FokI fusion proteins 
together to generate an active DNA-cleaving complex. 
This technology reduces the unwanted off-target activity of 
CRISPR, likewise the nickase approach [76, 77].

Also, nickases have been practically used in the develop-
ment of sensitive and specific isothermal amplification of 
target genomic DNA adaptable in routine assays [78] and can 
potentially replace a traditional polymerase chain reaction 
(PCR) in non-laboratory on-site diagnostic applications [79].

CRISPR/Cas9‑mediated up‑ and downregulation 
of gene expression and epigenetic modifications

A direct downregulation of gene expression can be mediated 
by catalytically deactivated Cas9 (dCas9) with disturbed 
endonuclease activity. When co-expressed with a guide 
RNA, it generates a DNA recognition complex, targeting 
specific sequences, which can interfere with transcriptional 
elongation, RNA polymerase binding, or transcription factor 
binding. This system, called CRISPR interference (CRIS-
PRi), can be used to repress multiple target genes simultane-
ously, and its effects are reversible [80].

The site-specific binding of dCas9 can be utilized also 
for specific emplacement of various activator or repressor 
domains fused with dCas9, which alters the gene expression, 
mostly via modification of methylation [81] and/or acetyla-
tion [82]. These effector domains can write or erase histone 
modifications or modulate DNA methylation. Epigenome 
editing can be used to transiently or stably activate or repress 
specific genes. It was demonstrated that a catalytic domain of 
the human demethylase TET1cd targeted to specific methyl-
ated regions can cause highly efficient demethylation, thus 
up-regulation of a particular gene and a heritable change of 
the phenotype. In combination with dCas9, it provides tools 
for the targeted removal of 5mC at specific loci in the genome 
with high specificity and minimal off-target effects [83].

On the other hand, the use of the dCas9 fused with DNA 
methyltransferase catalytic domain led to a reduced expres-
sion of the gene of interest and to change in the phenotype 
[84]. Indeed, DNA methylation plays a critical role in regu-
lating gene expression. Dysregulation of DNA methylation 
is involved in the pathogenesis of numerous diseases. Thus, 
the potential of technologies designed to manipulate DNA 
methylation at specific genomic loci is very high [85].

In parallel, if dCas9 is linked to the histone-modifying 
domain, it edits the chromatin histone, resulting in either 
activation or deactivation of the gene of choice. For exam-
ple, p300 histone acetyltransferase increases H3K27 acet-
ylation, which leads to gene activation; SID4X decreases 
H3K27 acetylation, thus decreasing gene expression, KRAB 
domain increases methylation at H3K9me3 and subse-
quently silences the gene expression, and paradoxically, 
LSD1 decreases methylation at H3K4me and also repress 
the gene expression [82, 86].

Epigenome editing tools have a place in precise medicine 
because they can be utilized in the treatment strategies of 

Fig. 3  Schematic visualiza-
tion of nickases mechanism of 
function
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diseases, such as cancer, when some technological challenges 
of the method will be overcome [87]. Precise identification 
of epigenetically edited areas by NGS and elucidation of the 
interaction of edited genomes in epigenetic recombination 
should be taken into account [88]. For the schematic visuali-
zation of CRISPR/Cas9 utilization for up- and downregulation 
of gene expression and epigenetic modifications, see Fig. 4.

Targeted base editing can be useful in personalized 
medicine of monogenic disease

A targeted base editing could represent a promising con-
tribution to personalized medicine, especially since many 
diseases are caused by small nucleotide substitutions or dele-
tions. The CRISPR/Cas9 base-editing system directly edits 
single nucleotides, which avoids the dependence on homol-
ogy-dependent repair [89]. Either dCas9 or Cas9 nickase 
(nCas9) can be fused to deaminases to induce substitutions 
or base edits without inducing double-strand breaks; thus, 
this approach minimizes the indels. Deaminases combined 
with Cas9 nickase and uracil DNA glycosylase inhibitors 
can make precise edits, changing cytidine to thymidine with 
high efficiency [90].

Until now, two kinds of base editors have been devel-
oped. The cytidine editor mediates the conversion of C/T (or 
G/A), whereas the adenosine editor affects an A/G (or T/C) 
substitution. The base editors are typically composed of a 
defective Cas9 protein (Cas9D10A or Cas9D10AH840A) 
and a deaminase fused to the Cas9 protein. Guided by the 
Cas9/sgRNA complex, the deaminase can be directed to any 
genomic locus to perform base editing in the single-stranded 
DNA (ssDNA) generated upon Cas9/sgRNA binding. By 
catalyzing the conversion of CAA, CAG, CGA, or TGG to 
TAA, TAG, or TGA codons, the cytidine base editor is capa-
ble of inactivating a target gene by generating a premature 
stop codon [91]. The base editors are applicable in the treat-
ment of monogenic diseases with known pathogenic muta-
tions and are intensively studied in experiments in vitro and 
in vivo. Actually, in vivo experiments showed that a single 

administration of base editors can have a longtime effect on 
many organs or tissues and improve the patient’s life that is 
complicated by symptomatic treatment. The rapid develop-
ment of base editing tools is directly fused with the improve-
ment in bioinformatic approaches that predict base editing 
outcomes. Once these shortcomings are eliminated, they can 
be used in personalized medicine [92]. For the schematic 
visualization of CRISPR/Cas9 targeted base editing, see 
Fig. 5.

Imaging tools based on CRISPR/Cas9

Besides the utilization of standard CRISPR/Cas9 knock-
in strategy to fuse DNA sequence coding for fluorescent 
proteins with the gene of interest, enabling the imaging of 
produced protein [93, 94], CRISPR/Cas9 technology can be 
utilized for direct labeling of DNA and/or RNA. The dCas9/
gRNA complex tagged with one or several fluorescent mol-
ecules can label specific DNA loci in living cells [95] (see 
Fig. 6). This approach has been proven to be effective in 
monitoring the localization of any genomic sequence. In 
this direction, another advantageous method for enriching 
the signal in live cell imaging is the use of the dCas9-SunTag 
system [96]. In this case, dCas9 is fused to an epitope tail—a 
protein platform loaded with multiple epitopes, each of which 
is recognized by a single chain variable fragment (scFv) of 
antibody. Simultaneously, fluorescent molecules are fused to 
a single chain variable fragment (scFv). While the possible 
number of scFv epitopes is much higher than any possible 
number of fluorescent proteins that can be directly fused to 
dCas9, this approach outperforms previous ones when the 
intensity of the signal is taken into consideration [97]. As 
an example of an imaging method that is not based on the 
utilization of various fluorescent proteins, a Cas9-mediated 
fluorescence in situ hybridization (CASFISH) should be 
mentioned. In this case, Halo Tag conjugated to fluorescent 
dye was used as a shorter replacement for fluorescent pro-
teins [98]. Another recently developed strategy is labeling 
viral DNA with streptavidin-conjugated Quantum Dots (QD) 

Fig. 4  Examples of CRISPR/
Cas9-mediated up- and down-
regulation of gene expression 
and epigenetic modifications
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connected to dCas9-Bio/gRNA complex via streptavidin/
biotin binding [99]. Imaging of target sequences based on 
CRISPR/Cas9 technology can be used in live cells to study 
native chromatin organization. The method is rapid, cost-
effective, comfortable, and applicable to multiple targets, 
which gives the prerequisite for the inclusion of the method 
into the diagnostics of human diseases [98].

RNA targeting by CRISPR/Cas systems

Although CRISPR/Cas9 system in natural conditions rec-
ognizes and cleaves exclusively DNA molecules, it is also 
possible to target RNA molecules. Repurposing dCas9 of 
S. pyogenes to target RNA requires, besides the usual com-
ponents: dCas9 and gRNA, also PAMmers—short PAM-
presenting DNA oligonucleotides. Once used, it allows the 
Cas9 to bind with high affinity to the single-stranded RNA 
and subsequently perform its enzymatic activity [63]. Other 
options to target RNA are the usage of Cas9 molecules of 
Francisella novicida (FnCas9) and/or Cas13, which are 
known to recognize the RNA naturally [48, 100–102]. In 
parallel with Cas9-mediated technologies focused on DNA, 

there are similar alternatives for RNA, for example, imag-
ing [103, 104], base editing of full-length transcripts to 
repair pathogenic mutations on mRNA level [101], potential 
experimental therapeutic applications against RNA viruses 
[48], the introduction of antiviral resistance in plants [105] 
or oncology research—via targeting of lncRNAs [106]. A 
recent pandemic of the SARS-CoV-2 RNA virus allowed 
the development of CRISPR/Cas12 and/Cas13 molecular 
diagnostic kits focused on viral RNA, running in isothermal 
conditions and with no requirement of special equipment 
or training people. Colorimetric and visual detection of the 
pathogen in samples allows massive use of this test type 
anywhere and is also adjustable for other viral agents [107] 
(see Fig. 7).

Usage of CRISPR/Cas9 for the disease predisposition 
screening

Screening the disease as a part of preventive medicine rep-
resents a strategy to search for the risk markers or condi-
tions that could turn into a disease in the future. Screening 
testing should be applied to individuals by cost-effective 
point-of-care diagnostics that advance the CRISPR/Cas 
system to candidate methods. The high-throughput genetic 
perturbation technologies are a useful tool for uncovering 
the involvement of particular genes in a broad spectrum of 
biological processes. Standard CRISPR/Cas9 knock-out 
combined with utilization of whole-genome or more specific 
gRNA libraries and subsequent identification of genes of 
interest represents a very effective approach for such screen-
ing [108]. Development of the CRISPR/Cas9-based loss-of-
function screening assays enabled efficient identification of 
essential genes in mammalian cells involved in cancer ther-
apy resistance [109], genes involved in the immune response 
to cancer [110], genes enabling the viral infection [111], 
genes associated with sepsis [112], biosynthesis pathways 
[113] and very probably many more.

Fig. 5  Examples of CRISPR/
Cas9 targeted base editing

Fig. 6  Utilization of dCas9 fused with a fluorescent protein to tag 
specific DNA sequence
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In addition to screening based on a knock-out approach, 
catalytically inactive dCas9 fused with various transcrip-
tional activator, repressor, and recruitment domains have 
been used to modulate gene expression without introducing 
irreversible mutations to the genome. In this case, gRNA 
libraries are focused on the upstream, regulating regions of 
investigated genes [114].

Purification of specific target DNA with CRISPR/
Cas9‑based technology

The capability of dCas9 to bind selectively a specific 
DNA sequence is also employed in engineered DNA-
binding molecule-mediated chromatin immunoprecipi-
tation enChIP technology. The dCas9 molecule fused to 
an epitope tag is being used to isolate a given genomic 
locus. In addition, this technology allows for retaining 
the intracellular molecular interactions; thus, in vitro 
enChIP technology is of potential use not only for 
sequence-specific isolation of DNA but as well as for 
the identification of molecules interacting with genomic 
regions of interest [115, 116].

The delivery strategy of the CRISPR/Cas9 system 
into target cells affects the outcome

Efficient and successful delivery of the CRISPR/Cas system 
into the target cells in vivo remains a challenge. Current 
delivery methods include viral and non-viral vectors and 
physical delivery. An effective delivery system must over-
come the barriers of tissues and cell membranes; then, it 
should be transported to the nucleus, where it operates. The 
ineffective carriers may cause problems such as immune 
response, gene mutations, and triggering carcinogenesis. 
Another problem is associated with the size of packing mol-
ecules. However, nano-delivery systems seem to be efficient 
in experiments in vivo and in vitro [117].

As we mentioned, the selection of a suitable delivery 
method for Cas9/sgRNA expressing cassettes into target cells 
is an important step. For mammalian cells, plasmid transfec-
tion is the most common way to deliver the Cas9/sgRNA-
expressing cassette. However, transfection can cause overex-
pression of both Cas9 protein and sgRNA, and then induce 
off-target mutagenesis. In addition, many cell types are hard-
to-transfect cells (such as hematopoietic cells, immune cells, 
stem cells, etc.). A microinjection is an option but with a low 
efficiency of only one cell per injection. Several groups used 
adenovirus to deliver Cas9/sgRNA expressing cassettes, but 
the construction and amplification of recombinant adeno-
virus were laborious and time-consuming. A single lentivi-
ral vector was designed to simultaneously deliver Cas9 and 
sgRNA-expressing cassettes into the target cells. This system 
will enable genome editing in most cell types of interest [68]. 
Very promising is the so-called "nanoblade" technology [118], 
which avoids off-target mutation induced by the application 
of a standard CRIPSR/Cas9 system. This has been especially 
a significant concern when using this technique to generate 
a stable knock-out cell line [68]. To overcome this problem, 
engineered Murine leukemia virus-like particles loaded with 
Cas9-sgRNA ribonucleoproteins (Nanoblades) can be used for 
transduction and subsequent editing without integrating a virus 
genome, thus reducing editing to the one-time event [118]. 
The goal in the nanoparticle delivery will be a tissue-specific 
surface of nanostructure covered with specific ligands that will 
be suitable for clinical disease treatment [117]. Figure 8 repre-
sents nanoblade technology for CRISPR/Cas9 delivery.

CRISPR/Cas‑based diagnostics

The ability of gRNA-guided Cas molecules to recognize a 
specific sequence has its logical application in the diagnos-
tics of various diseases. Indeed, several approaches to detect 
both specific DNA and RNA in samples have been developed 

Fig. 7  Possibilities of CRISPR/
Cas techniques utilization for 
RNA targeting
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recently. For this purpose, Cas12a, Cas13a, and Cas13b are 
employed most often. The action of these members of the 
Cas family differs from that of the Cas9. Unlike Cas9, upon 
the activation of these CRISPR/Cas complexes with a spe-
cific target, an indiscriminate cleavage of substrate nucleic 
acids occurs. In the diagnostic assays, substrate sequences 
are coupled to a fluorescent reporter. The fluorescence signal 
is activated only when the substrate is cleaved. The presence 
of a limited amount of target sequence can elicit intense 
fluorescence; thus, the methods based on these principles are 
very sensitive [119]. As an example, the DETECTR (DNA 
endonuclease-targeted CRISPR trans reporter) method can 
be mentioned. Isothermal Recombinase Polymerase Amplifi-
cation (RPA) is coupled with subsequent Cas12a target DNA 
recognition, unleashing robust, indiscriminate cleavage of 
a quenched-fluorescent single-stranded DNA substrate 
reporter. This rapid, one-pot detection provides a straight-
forward platform for molecular diagnostics [120]. Another 
technique, named SHERLOCK (Specific High-sensitivity 
Enzymatic Reporter un-Locking), utilizes a combination of 
the isothermal RPA or reverse transcription (RT)-RPA with 
nuclease activity of Cas13a, followed by unspecific collat-
eral cleavage of labeled reporter RNA resulting in signal 
release [121, 122]. In All-In-One Dual CRISPR/Cas12a 
(AIOD-CRISPR) assay, a pair of gRNAs was introduced 
to initiate dual CRISPR/Cas12a detection, which resulted 
in improved detection sensitivity. The nucleic acids (DNA 

and RNA) were successfully detected with a sensitivity of 
few copies, which is comparable with the real-time RT-PCR 
method [123]. Also, Cas9-based assays can be utilized for 
diagnostic purposes. In this case, for the identification of 
different strains. The combination of the isothermal ampli-
fication technique NASBA (Nucleic acid sequence-based 
amplification) and subsequent application of specific gRNA/
Cas9 complex is used to differentiate strains in single-base 
discrimination. The result is either truncated or full-length 
DNA fragments, and only non-truncated fragments can trig-
ger the toehold switch, leading to a color reaction [124].

After the emergence of the COVID-19 pandemic, various 
SARS-CoV-2 diagnostic techniques based on Cas12a and 
Cas13a have been developed by numerous research groups 
very rapidly, demonstrating the flexibility, adaptability, and 
versatility of this approach and its potential for future chal-
lenges [125–129].

In general, the methods mentioned above and many 
similar methods have a great potential for developing next-
generation point-of-care molecular diagnostics necessary for 
the development of personalized medicine. For examples of 
CRISPR/Cas-based detection methods, see Fig. 9.

Fundamentals of the future CRISPR/
Cas9‑based therapy

The ability of CRISPR/Cas9-based methodology to modu-
late the expression of selected genes or precisely re-write 
the specific DNA sequence gives this technique tremendous 
potential in targeted therapy of a wide spectrum of both 
infectious and non-infectious diseases. It can find its place 
in the management of any condition where the removal or 
cleavage of specific genetic material might be beneficial. 
However, barely a few, if any, of the therapeutic procedures 
using CRISPR/Cas9 reached the state of the experimental 
application in human medicine. Thus, most of the discussed 
data shall be seen as a perspective and potential approach 
for future treatments.

Significant progress in this field has been made by tak-
ing advantage of cell line and animal models. Therapeutic 
applications for various infectious, predominantly viral dis-
eases, monogenic disorders, or anti-cancer gene therapies 
have been investigated [130]. While the original role of the 
CRISPR/Cas system in bacteria was an antiviral defense, 
the attempts to utilize it as an antiviral agent are not sur-
prising. The possibility of direct targeting of viral genomes 
predisposes CRISPR/Cas9 system to be a promising treat-
ment against a wide spectrum of viruses. It has been shown 
in cultured cells that it can restrict the viral life cycle by 
introducing sequence-specific breaks in essential parts of the 
viral genome [131–133]. Based on the specific virus biology, 
different life stages can be targeted. For example, covalently 

Fig. 8  Delivery strategy for CRISPR/Cas9 system (nanoblade)
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closed circular DNA (cccDNA) of HBV is the preferred tar-
get while it is not reduced by standard treatment with nuclear 
analogs [134]; on the other hand, CRISPR/Cas9 treatment 
of HIV aims at integrated provirus removal or inactivation 
[135]. Similarly, in the case of HSV-1, replication of the 
virus can be effectively impaired by using nucleoside ana-
logs; however, the latent virus remains unaffected. Targeting 
key viral genes by CRISPR/Cas9 leads to indels resulting in 
reduced infectivity or even completely abrogated infection. 
Resistant strains of escaped mutants were fully prevented 
by simultaneously targeting two essential viral genes by 
co-delivery of two gRNAs [136, 137]. When multiplexed 
CRISPR/Cas9 was applied to target the latent EBV genomes 
in a Burkitt’s lymphoma patient-derived B cell line, an eradi-
cation or significant reduction of viral load in the majority of 
infected cells resulted in a dramatic cell proliferation arrest 
and induction of apoptosis [138, 139]. In the case of HPV, 
already established HPV-driven tumors have to be targeted. 
The CRISPR/Cas9 system was employed to inactivate the 
viral oncogenes E6 and/or E7, thereby restoring p53/Rb 
levels and induction of apoptosis of HPV16-infected cells 
[140]. Direct targeting of RNA viruses (e.g., HCV) is also 
possible [48]. It is not surprising, that after the outbreak of 
COVID-19, several research groups attempted to adjust the 
CRISPR/Cas technology as a potential anti-SARS-CoV-2 
therapeutics [141–143].

Another group of diseases that can be treated with the 
utilization of CRISPR/Cas are monogenic disorders caused 
by single gene defects. Therapies for this group of diseases 
are generally limited to managing symptoms regardless of 
the pathogenic mutation causing the disease in the patient. 

CRISPR/Cas system represents a promising personalized 
gene-editing approach in the treatment of monogenic dis-
orders. The results of preclinical studies carried out on 
human stem cells, patient-derived induced pluripotent stem 
cells (iPSCs), or animal models showed successful correc-
tion of various types of mutations in defective genes caus-
ing monogenic diseases such as cystic fibrosis [144, 145], 
Duchenne muscular dystrophy [146, 147], hemophilia [148, 
149], Huntington’s disease [150–152], and sickle cell anemia 
[153–155].

CRISPR/Cas system represents a powerful perspective 
tool with a wide spectrum of use in PPP medicine. The 
greatest possibilities of using a CRISPR-based therapeutic 
approach are in personalized cancer treatment. The potential 
of CRISPR-based screening combined with high-throughput 
next-generation sequencing brings great possibilities for dis-
covering new potential therapeutic targets, biomarkers for 
early diagnosis of disease, monitoring of disease progress, 
therapy efficiency, and prognostic biomarkers [156]. Drug 
and immunotherapy resistance is a big problem in long-term 
treatment, predominantly in oncology. CRISPR/Cas system 
can also be utilized to identify genes and mutations responsi-
ble for drug resistance and thereby help with individualized, 
effective therapy [157].

CRISPR/Cas mechanism can be utilized in personalized 
therapy not only for gene editing and regulation but also for 
editing of epigenetic modification, which is one of the gene 
expression activation or silencing mechanisms. In tumors, 
oncogenes and tumor suppressor genes are often regulated 
via epigenetic modifications, which are also possible thera-
peutic targets for personalized medicine. For epigenetic 

Fig. 9  Examples of Cas molecules utilization for detection of different templates (RNA, DNA)
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editing, the most promising technology was developed 
based on the fusion of deactivated Cas9 protein (dCas9) 
without endonuclease activity serving as DNA-binding 
protein with an epigenetic effector (epi-effector) [158] as 
described above. There are several studies bringing promis-
ing results of epigenetic modulation of tumor suppressor 
genes or oncogenes through dCas9/effector complexes in 
the most common cancers, for example, activation of PTEN 
in breast cancer [159], BRAF1 gene in cervical cancer [160] 
and other genes in colon cancer [161], liver cancer [162], 
prostate cancer [163] or lung cancer [164] and others.

CRISPR/Cas-based technology also offers opportunities 
for advances in immunotherapy based on artificial CAR- 
(chimeric antigen receptor) T cells recognizing specific 
tumor-associated antigens. This method brings innovative, 
precise engineering for reprogramming patients’ own T cells 
to target tumor cells. Next-generation CAR T cells engi-
neered with CRISPR/Cas9 system help overcome CAR-T 
cell therapy’s limitations such as stability, low persistence, 
T cell depletion, or toxic tumor microenvironment and open 
the possibilities for personalized immunotherapy not only for 
hematopoietic malignancies but also for solid tumors [165]. 
CRISPR/Cas9 is an effective tool for the knock-out of genes 
responsible for producing negative regulators of T cells like 
PD-1 or CTLA-4, Fas signaling, and toxic cytokines, which 
are factors reducing the effectiveness of CAR T cell therapy. 
These targets were successfully disrupted with a multiplex 
CRISPR/Cas9 gene-editing approach to increase the success 
of therapy [166–168]. CRISPR technology improves also 
the targeting of CAR encoding cassette to the specific loca-
tion under the control of the appropriate promotor to ensure 
stable expression and prevents unspecific insertion observed 
in the case of viral vectors [165, 169, 170].

Outlook in the framework of 3P medicine

Predictive, preventive, and personalized approach 
in primary care—ethical aspects

Primary care considers pre-pregnancy check-up as being cru-
cial for the cost-effective diagnostics and preventive strate-
gies. To this end, an advanced screening of suboptimal health 
status to predict and prevent individual health risks prior to 
planned pregnancies meets needs of young populations and 
of the society at large and falls into the framework of 3P 
medicine. Contextually, pre-pregnancy check-up has been 
demonstrated as being pivotal for advanced health policy [7].

CRISPR/Cas is a feasible genome-editing technology to 
prevent transmission of parental life-threatening chrDNA 
mutations to offspring. To this end, human germline gene 
editing (HGGE) is the tool to introduce permanent genetic 
modification to the embryo by both—eliminating and 

introducing DNA information. Due to severe technological 
challenges and ethical considerations, HGGE is the subject 
to a detailed analysis and careful consideration by research-
ers, relevant scientific groups, and governmental organiza-
tions. There is a consensus amongst the majority of them 
that, due to a number of unanswered scientific, ethical, 
and policy questions, currently, it is inappropriate to per-
form HGGE culminating in human pregnancy. The major 
disagreement is about the types of research which should 
be allowed. For example, both—the European Group on 
Ethics in Science and New Technologies, EGE, and NIH 
in the USA (which does not fund any use of gene-editing 
technologies in human embryos) suggested a partial or full 
moratorium on HGGE research, whereas the US National 
Academy of Sciences and National Academy of Medicine 
supports basic and preclinical HGGE research [171]. Due to 
a limited access to the human germline material and severe 
ethical concerns, stem cells are suggested as the reasonable 
alternative model for the HGGE approaches to promote the 
field [172].

Technological challenges of gene editing 
in the mitochondrial disease

The “gatekeeper” role of mitochondria is demonstrated for 
the wide range of molecular, cellular, organ, and organismal 
functions. Compromised mitochondrial health is linked to 
systemic effects in multi-organ functionality. Consequently, 
mitochondrial health sustainability is pivotal for primary, 
secondary, and tertiary care [173, 174].

Mitochondrial disease (MD) is a devastating inborn 
pathology originating from defects either directly in mtDNA 
or/and in chrDNA encoding for proteins localized to mito-
chondria. The most severe forms of MD are most frequently 
linked to OXPHOS function impairments, which are fatal 
causing death of affected newborn infants shortly after their 
birth. Although many mothers are at risk of transmitting MD 
to their offspring, corresponding screening programs are still 
underdeveloped and there is no cure of MD. To this end, 
mitochondrial replacement therapy, and CRISPR/Cas are 
considered promising technological solutions to prevent MD 
transmission from the affected mother to offspring [175].

Being proven as a highly effective system for the nuclear 
genome editing, CRISPR/Cas feasibility for mitochondrial 
genome editing is, however, controversial [176]. Specifi-
cally, the delivery of this gene-editing system into mito-
chondria remains debatable. RNA import process into 
mitochondria is insufficiently understood and the mito-
chondrial DNA repair machinery differs substantially from 
this of the chrDNA. To this end, the basis of the CRISPR/
Cas-associated editing system, namely DNA double-strand 
break repair, is lacking in mitochondria, in contrast to the 
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homologous recombination-mediated repair mechanisms 
that are detectable there.

Consequently, CRISPR/Cas editing system application in 
regard to the MD is focused mainly on studying mitochon-
drial biology and genome-related disorders being currently 
restricted to distinctive tasks:

– Ex vivo MD modeling
– Creation of isogenic populations of diseased cells with 

homogenous phenotype, e.g., with clearly defined muta-
tions causing co-enzyme Q10 deficiency to distinguish 
individual phenotypes in MD

– A genome-wide library screening to investigate the rel-
evance of individual genes to the co-enzyme Q10 bio-
synthesis machinery, ATP-production versus deficiency 
as well as to the electron-chain transfer efficacy.

These models utilizing CRISPR/Cas editing system are 
considered highly efficient to investigate potential therapeu-
tic treatments tailored to the individualized profile of the 
MD-affected patients discriminating between moderate and 
severe medical conditions [176].
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