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Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay 
between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into 
metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early 
events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic 
modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones’ methylation. In turn, 
the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity 
of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such 
as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-
coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, 
strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically 
analyzed. Contextually, the article aims at:

– consolidating the accumulated knowledge on both—the 
genome-wide methylation status and corresponding 
lncRNA expression patterns in BC and

– highlighting the potential benefits of this consolidated 
multi-professional approach for advanced BC manage-
ment.

Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates 
a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-
optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms 
tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically 
relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
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Introduction

Why the paradigm change from reactive medicine 
to 3 PM approach is essential for breast cancer 
research and overall disease management?

According to the current statistics, breast cancer (BC) 
represents the most frequently diagnosed type of malig-
nancy with the highest mortality (mainly due to the BC-
associated metastatic disease) in women worldwide [1, 
2]. Despite improved early screening and more effective 
therapeutic strategies, more than 90% of BC mortality 
is attributable to advanced or metastatic disease [3–5]. 
Therefore, a better understanding of cellular and molecular 
mechanisms regulating BC cell plasticity [6] is crucial to 
improve overall BC management reflected in innovative 
PPPM strategies comprising individualized patient profil-
ing, predictive diagnostics, targeted prevention in primary 
and secondary care, and treatment algorithms tailored to 
the person—altogether leading to improved individual 
outcomes and healthcare economy [7, 8]. To this end, 
epigenetic regulation plays a pivotal role in the interplay 
between genotype and phenotype and promoting and pro-
tection against the health-to-disease transition, which is 
instrumental for the paradigm change from reactive care 
to predictive, preventive, and personalized approach [9].

Evidence towards reciprocity between genome‑wide 
methylation and long non‑coding RNA expression 
levels

The study of biological functions of the human genome 
encoding non-coding RNAs (ncRNAs) is a subject of 
intensive scientific research nowadays (Fig. 1A). Com-
monly, NcRNAs are defined as RNAs with no protein-
coding potential but with a proven significant regulatory 
role in various physiological and pathological processes, 
including cancer, at the epigenetic, transcriptional, or 
post-transcriptional level [10]. Long non-coding RNAs 
(lncRNAs) represent one of the largest and most diverse 
classes of ncRNAs. Although the research of lncRNAs 
is still in infancy, and there is a large gap between the 
number of existing lncRNAs and their known relation to 
molecular or cellular function, lncRNAs are considered 
master gene regulators at the epigenetic level in carcino-
genesis (Fig.  1B). An improved understanding of the 
function and role of lncRNAs in cancer is therefore highly 
required. In the context of BC, current studies have shown 
that specific dysregulation of many lncRNAs is associ-
ated with the development and progression of BC and 
significantly correlates with poor outcomes in BC patients 

(Fig. 1C) [11–18]. These discoveries suggest that lncR-
NAs could represent suitable diagnostic and prognostic 
biomarkers and potential therapeutic targets for BC man-
agement. However, these conclusions are mainly based on 
the study of aberrant lncRNA expression profiles, while 
the regulatory mechanisms, e.g., methylation patterns, 
conditioning these changes remain largely unexplored. 
Most recent BC mechanistic evidence suggests several 
plausible mechanisms. Firstly, lncRNAs can regulate the 
methylation status of DNA, RNA, and histones. Secondly, 
the methylation status of DNA, RNA, and histones can 
affect lncRNAs levels. Third, lncRNAs may undergo 
methylation in response to medical conditions such as 
tumor development and treated malignancies [19, 20].

Aims of the study in the framework of predictive, 
preventive, and personalized medicine

Both genetic and epigenetic alterations cause BC devel-
opment and disease progression. Previous studies focused 
mainly on identifying methylation patterns of protein-coding 
genes concerning BC. However, increasing evidence indi-
cates a potential functional interplay between genome-wide 
methylation status and expression levels of lncRNAs. The 
latter is considered a hub in regulating epigenetic events 
highly relevant for BC development and BC progression 
into metastatic disease. Contextually, the current review 
article aims at consolidating the accumulated knowledge 
on genome-wide methylation status in correspondence 
with lncRNA patterns with their reciprocity relevance, spe-
cifically for BC in research and healthcare. The proposed 
approach may be of clinical potential to benefit affected 
patient cohorts and disease-predisposed individuals. The 
results could strongly contribute to BC prediction, devel-
opment of innovative screening programs, targeted pre-
vention, treatment algorithms tailored to the person, and 
improved individual outcomes and overall economy of BC 
management.

Here, we hypothesize that highlighted innovative bio-
marker panels are of potential clinical utility in primary 
(sub-optimal health conditions and protection against the 
health-to-disease transition) and secondary (adequate protec-
tion against metastatic BC) care.

Source of data

English-language biomedical literature sources from Pub-
Med bibliographic database were collected and analyzed for 
the topic-related items, including all the keywords or medi-
cal subject heading (MeSH) terms listed above. The most 
recent scientific publications from 2017 to 2023 were mainly 
considered for the final statement presented in this paper.
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Genome‑wide methylation profiling 
and its correlation with lncRNA expression 
and carcinogenesis

NcRNAs (both groups—housekeeping ncRNAs and regu-
latory ncRNAs) can be genetically or epigenetically regu-
lated (Fig. 2). Many diverse genetic variations affecting 
ncRNAs have been identified regarding carcinogenesis 
[21, 33–44]. Unlike genetic changes, epigenetic modifica-
tions represent heritable reversible changes that affect gene 
activity without changing the DNA and RNA sequence 
[45–47]. These modifications related to various DNA, 
histone, and chromatin modifications and changes in the 

regulation of ncRNAs play an essential role in different 
biological and pathological processes, including cancer 
[48].

LncRNAs are RNA transcripts above 200  bp long 
(i.e., their size varies from hundreds of base pairs to tens 
of kilobases) without open reading frames, characterized 
by complicated structures and intrinsic origins, typically 
expressed in a tissue-specific manner [52, 53]. LncRNAs 
possess mRNA-like characteristics, 5′ cap, and 3′ poly(A) 
tail but lack protein-coding ability [54]. Moreover, 
lncRNAs can interact with other RNAs, DNA, and proteins 
and thus affect almost every aspect of gene regulation. 
Furthermore, lncRNAs can serve as the precursor of various 
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Fig. 1  A Genome vs transcriptome, and ncRNAs vs protein-coding 
RNAs. B Essential functions of lncRNAs in the cell. C The roles 
of lncRNAs in breast cancer. A Most of the mammalian genome is 
actively transcribed. However, non-coding RNAs, formerly called 
“transcriptional noise” or “junk,” form a substantial part of the tran-
scriptome. Besides, less than 2% of the transcripts code for proteins. 
B Long non-coding RNAs forming the most prevalent and diverse 
class of regulatory ncRNAs are linked to different cellular functions, 
including gene activation, chromatin modification and remodeling, 

scaffold for protein complex, shorter ncRNAs generation, mRNA 
regulation and suppression, and miRNA sponges. C Numerous lncR-
NAs participated in regulating different stages of breast cancer, for 
example, cell cycle progression, proliferation and apoptosis, migra-
tion, invasion, metastasis, EMT, drug resistance, genomic instability, 
or breast cancer stem cells. LncRNAs acted as either promoters or 
inhibitors of the abovementioned key processes associated with breast 
carcinogenesis [15, 16, 21–32]
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small RNAs, e.g., miRNAs, snoRNAs, and piRNAs, and 
regulate their expression and function [22, 55, 56]. Within 
the cells, lncRNAs are found in the nuclei, cytoplasm, 
or mitochondria. In the nucleus, lncRNAs can regulate 
chromatin re-modeling, transcription, translation, and 
mRNA turnover in the cytoplasm. Moreover, lncRNAs 
can pass from one cellular component to another, e.g., in 
dependence on environmental changes (Fig. 1B) [5, 57]. 
The first lncRNA H19 was discovered and characterized 
in 1990 [58]. Since then, the number of mammalian non-
coding transcripts has spectacularly increased, and to date, 

according to the NONCODE database (Current Version 
v6.0), there are 173,112 human lncRNAs transcribed 
from 96,411 genomic loci [19, 59]. These lncRNAs are 
classified according to their origin in the genome into 6 
groups: (1) sense lncRNA, (2) anti-sense lncRNA, (3) 
bidirectional lncRNA, (4) intronic lncRNA, (5) intergenic 
lncRNA, and (6) sense-overlapping lncRNA (Fig.  2). 
LncRNAs can regulate the major pathways leading to 
cancer development and progression at the epigenetic, 
transcriptional, or post-transcriptional level [5, 14, 60–64]. 
Specifically, lncRNAs can regulate critical genes involved in 
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Fig. 2  Schematic representation of a classification of non-coding 
RNAs based on their structure, function, length, genomic loca-
tion, mechanism of action, and effects on DNA, emphasizing long 
non-coding RNAs; NcRNAs can be divided into linear or circular. 
According to their function, ncRNAs are recognized as housekeep-
ing or regulatory. Housekeeping ncRNAs are constitutively expressed 
in each cell type, required for their viability and primarily regulating 
generic and essential functions of cells. The regulatory ncRNAs act 
as key regulators of various RNA molecules and gene expression at 
the epigenetic, transcriptional, and post-transcriptional levels. Based 
on their length, ncRNAs can be divided into small or long. LncRNAs 
can be genomically located between two protein-coding genes (inter-
genic lncRNAs), in an intron of a coding region (intronic lncRNAs), 
or within 1 kb of promoters and transcribed from the same promoter 
as a protein-coding gene yet in the opposite direction (bidirectional 
lncRNAs). Other lncRNAs can be transcribed either from the sense 
RNA strand of the protein-coding genes (sense lncRNAs) or the anti-
sense RNA strand of a protein-coding gene (antisense lncRNA) 
might overlap one or several introns and/or exons. According to the 
mechanism of action, lncRNAs can be divided into four groups—
signal, decoy, guide, and scaffold. Signal lncRNAs, with regulatory 

function, are expressed at a specific time and in a particular posi-
tion in the cell as a response to stimuli. Signal lncRNAs can mediate 
the transcription of downstream genes alone or in combination with 
other proteins. Decoy lncRNAs can indirectly repress transcription, 
either binding to some functional proteins and blocking them from 
regulating DNA and mRNA or binding to miRNA competitively 
with mRNA and blocking the inhibitory effect of miRNA on mRNA. 
Guide lncRNAs are necessary to organize and locate some functional 
proteins at specific genomic loci to perform their functions. Scaffold 
lncRNAs are important in assembling multi-protein complexes in the 
target area. Moreover, lncRNAs can mediate epigenetic regulation via 
chromatin-modifying proteins in cis or trans manner. Cis-acting lncR-
NAs affect target genes located near the lncRNA gene on the same 
chromosome, while trans-acting lncRNAs affect target genes situated 
distal to the lncRNA gene, often in a different chromosome [22, 24, 
26, 28, 30–32, 49–51]; Abbreviations used: crasiRNA, centromere 
repeat associated small interacting RNA; miRNA, microRNA; ncR-
NAs, non-coding RNAs; piRNA, piwi RNA; rRNA, ribosomal 
RNAs; siRNA, small interfering RNA; snoRNA, small nucleolar 
RNA; snRNA, small nuclear RNA; tRNA, transfer RNA; tsRNA, 
tRNA-derived small RNAs
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malignant transformation and either increase the activation 
of oncogenes or limit the expression of tumor-suppressor 
genes. Moreover, many lncRNAs are expressed in cell-
type-, tissue-, disease-, or developmental stage-specific 
manner [65–69]. From an epigenetic point of view, lncRNAs 
are recognized as significant epigenetic regulators in 
carcinogenesis. Cancer research has shown that lncRNAs 
can regulate DNA, RNA, or histones methylation. On the 
contrary, the methylation status of DNA, RNA, and histones 
can affect the expression level of lncRNAs. Moreover, 
lncRNAs themselves can also be subject to the process of 
methylation.

DNA methylation

DNA methylation is the most widely studied epigenetic 
alteration known since 1948, with a proven significant 
impact on the development of cancer and other diseases 
[54, 70–75]. DNA methylation is characterized by adding 
a methyl group  (CH3) from S-adenyl methionine (SAM) 
onto the C5 position of the cytosine residue to form 5mC. 
DNA methylation is regulated by enzymes called DNA 
methyltransferases (DNMTs), also known as “writers.” Three 
members of DNMTs—DNMT1, DNMT3a, and DNMT3b—
DNA methylation can be removed by enzymes known as 
demethylases, also referred to as “erasers.” Demethylases 
include TET enzymes (ten-eleven translocation 
methylcytosine dioxygenases). Lastly, DNA methylation 
can be recognized by three families of proteins, so-called 
readers, which include (1) the MBD proteins (containing 
a methyl-CpG-binding domain); (2) the UHRF proteins 
(ubiquitin-like, containing PHD, and RING finger domains); 
and the zinc-finger proteins (containing a zinc-finger 
domain) [19, 20, 76, 77]. In mammals, DNA methylation is 
typically found in CpG dinucleotides. About 80% of CpG 
sites are estimated to be methylated, excluding specific 
regions called CpG islands (CGIs). CGIs primarily exist 
in the promoter regions of genes. Therefore, methylation 
changes (hyper- or hypo-methylation) in the promoter 
regions of genes can be associated with alterations in their 
expression, either upregulation or downregulation [19, 20, 
71]. Current research has shown that differences in DNA 
methylation profiles between normal and malignant tissues 
have the potential to serve as a diagnostic and/or prognostic 
marker in various types of cancer, including BC [72, 73]. 
Moreover, the interplay between DNA methylation and 
lncRNAs represents a critical layer of epigenetic regulation 
in carcinogenesis. DNA methylation mediated by lncRNAs 
can be crucial in tumor progression, proliferation, invasion, 
and metastasis of various tumor cells [19, 20, 78–80]. On 
the contrary, DNA methylation can affect the expression and 
function of multiple lncRNAs with a significant impact on 
the process of carcinogenesis [81, 82].

Histone methylation

Histone methylation is another essential regulatory epige-
netic mechanism closely associated with cancer develop-
ment. Histone methylation mainly occurs on lysine and 
arginine residues within proteins. Lysine can be monometh-
ylated (me1), dimethylated (me2), or trimethylated (me3). 
Arginine can be me1 or me2 symmetrically (me1s, me2s) or 
me2 asymmetrically (me2a) [83, 84]. Histone methyltrans-
ferases (HMTs) contain three group members. The first one 
consists of the SET domain and lysine methyltransferases 
(KMTs) (except of DOT1L (KMT4)), the second one con-
sists of a non-SET domain and DOT1L and the PRDM 
protein family members with N-terminal PR domain, and 
the last one represents PRMT family that shares a common 
methyltransferase domain. Eight KDM families are known 
among histone demethylases (HDM) [85, 86]. Moreover, 
histone methylation can be recognized by various histone 
methylation readers, such as PWWP, chromodomain, PHD, 
Tudor, and WD40 [87]. Above all, DNA and histone meth-
ylation regulate chromatin structure and function synergisti-
cally [88]. Cancer research confirmed that lncRNAs could 
regulate histone methylation via involvement in the recruit-
ment of polycomb proteins or methyltransferases associated 
with histone methylation of specific targets. On the contrary, 
histone methylation can affect lncRNAs and cause their acti-
vation or repression [89–92].

RNA methylation modifications

According to the MODOMIC database, more than 170 kinds 
of RNA modifications have been confirmed so far [93]. RNA 
modifications affect all bases of RNA and the ribose moiety 
and are, therefore, more diverse and complex when com-
pared to DNA modifications. Moreover, RNA modifications 
can occur in a highly dynamic fashion, thereby increasing 
the complexity of the RNA species on different levels, such 
as biogenesis, localization, structure, and function of RNAs 
[94–96]. Approximately 60% of RNA modifications repre-
sent methylated modifications [97]. RNA methylation is a 
reversible post-transcriptional RNA modification found in 
various coding and non-coding RNA types, including lncR-
NAs [98–100]. LncRNAs themselves can either undergo 
various methylation modifications or participate in devel-
oping some of them within the process of carcinogenesis. 
In general, RNA methylation (analogously like DNA meth-
ylation) is characterized by the transfer of  CH3 from the 
cofactor (e.g., S-adenosyl-L-methionine) by methyltrans-
ferases to RNA molecules. Furthermore, RNA methylation 
can be removed by the demethylases and recognized by 
RNA-binding proteins (“readers”) [19, 20, 101]. Although 
RNA methylation is a relatively newly discovered mecha-
nism of epigenetic regulation of gene expression, increasing 
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evidence has revealed its crucial roles in signaling pathways 
regulating physiological and pathological processes. RNA 
methylation is involved in many aspects of RNA metabolism 
and is associated with regulating RNA splicing, translation, 
stability, degradation, translocation, function, and high-level 
structure [101, 102]. Within the process of carcinogenesis, 
RNA methylation represents a so-called dual-edged weapon. 
On the one hand, RNA methylation can act as an activator 
and trigger the carcinogenesis process (by promoting the 
expression of oncogenes or by inhibiting the expression of 
TS genes). But on the other hand, RNA methylation can act 
as an inhibitor or suppressor of carcinogenesis (by promot-
ing the expression of TS genes or by inhibiting the expres-
sion of oncogenes) [19, 20, 103–105]. The development of 
epi transcriptomic methodologies (e.g., analyses used anti-
modification antibodies or chemical methods coupled to the 
RNA methylation sequencing technology (NGS)) enabled to 
find and study several types of RNA methylations, such as 
N6-methyladenosine (m6A), N1-methyladenosine (m1A), 
and 5-methylcytosine (m5C), among others briefly men-
tioned below. There are also known other types of RNA 
modifications dysregulated in human cancers such as, e.g., 
5-hydroxymethylcytosine (hm5C), 5-hydroxymethyl-2′-
O-methylcytidine (hm5Cm), 5-methoxycarbonylmethyl-
2-thiouridine  (mcm5s2U), 5-methoxycarbonylmethyluridine 
 (mcm5U), pseudouridine (Ψ), or adenosine-to-inosine (A-to-
I) RNA editing [100, 106]. However, these RNA modifi-
cations are beyond the scope of the interest of this review 
(not purely methylation modifications), and therefore, we do 
not discuss them further below. Besides, m6A is the most 
intensely researched epigenetic RNA modification with a 
significant effect on carcinogenesis. However, the research 
on other types of RNA methylations is still not systematic 
and in-depth, probably owing to the difficulty in mapping 
this modification on the transcriptome [99, 107]. Further 
studies in RNA methylations are needed and highly required, 
especially in the context of BS as the most frequently diag-
nosed type of cancer nowadays.

N6‑methyladenosine

N6-Methyladenosine (m6A), first identified in 1974 on 
messenger RNA (mRNA), represents one of the most com-
mon, dynamic, and deeply researched epigenetic modi-
fications found in different types of eukaryotic coding as 
well as non-coding RNAs, including lncRNAs. M6A is 
assumed to occur in ~ 30% of all transcripts [19, 20, 101, 
102, 105, 108]. m6A modification arises by methylation of 
the 6th nitrogen atom of adenine in RNA. Besides, m6A 
primarily mediates post-transcriptional regulation of gene 
expression by modifying RNA structure or specific binding 
[19, 20, 93, 109]. Importantly, m6A is modified by m6A 

methyltransferases (METTL3/14/16, RBM15/15B, ZC3H3, 
KIAA1429 (VIRMA), CBLL1, or WTAP), removed by m6A 
demethylases (FTO and ALKBH5 or ALKBH3), and recog-
nized by m6A-binding proteins (YTHDF1/2/3, YTHDC1/2, 
IGF2BP1/2/3, HNRNPA2B1, HNRNPC, HNRNPG among 
others) [19, 20, 101, 110, 111]. In general, m6A RNA modi-
fication sites tend to be in the termination codons, the 5′ cap 
structure, and at the 3′- and 5′- untranslated region (3′-UTR 
and 5′-UTR) [93, 110–112].

In addition to gene expression regulation, m6A RNA 
methylation can influence cancer stem/initiating cell pluri-
potency, cancer cell differentiation and proliferation, cancer 
cell migration and metastasis, angiogenesis, tumor micro-
environment, or immune regulation [101, 102, 113, 114]. 
In experimental and clinical studies, aberrant expression of 
m6A RNA regulators promotes tumorigenesis. However, 
some researchers also describe the tumor suppressive func-
tion of m6A regulators [99, 106, 107, 112, 115–120].

N1‑methyladenosine

N1-Methyladenosine (m1A) was first identified in the total 
mixed RNA samples in 1961. As described in 1968, m1A 
can rearrange into m6A under alkaline conditions [121]. 
However, the functional research of m1A has become the 
scope of interest only in the last few years. Specifically, m1A 
modification involves adding an active methyl group from 
the donor to the nitrogen atom in 1st position of the adeno-
sine in RNA [106]. Several m1A RNA writers (TRMT6, 
TRMT61A, TRMT10C, Trmt61B, RRP8), m1A erasers 
(ALKBH1, ALKBH3, FTO), and m1A readers (YTHDF1, 
YTHDF2, YTHDF3, YTHDC1) have been described 
[122–125]. Besides, m1A is highly enriched within the 
5′-UTR or selectively at the start codon of transcripts [123, 
126–130].

Regarding ncRNAs, m1A is a well-known modification in 
tRNA, rRNA, and lncRNA [128, 129, 131]. Current cancer 
research highlights the potential of m1A regulators to pro-
mote and sustain cancer cell proliferation, migration, and 
invasion to affect metabolic heterogeneity in cancer patients 
[124, 132–134]. Moreover, m1A modification patterns can 
predict cancer patient survival, stage, and grade. In the con-
text of an immunotherapeutic strategy for cancer patients, 
m1A modification can have an essential role in shaping the 
immune microenvironment [135].

5‑methylcytosine

5-Methylcytosine (m5C) modification, firstly discovered in 
the 1970s in ribosomal (rRNA) and transfer (tRNA) RNA, 
occurs by methylation of RNA at the position of the 5th 
atom of cytidine residues [106, 136]. Notably, m5C modi-
fication can also fulfill different functions depending on the 



255EPMA Journal (2023) 14:249–273 

1 3

RNA subtype. For example, m5C is probably important for 
the nuclear export of mature mRNA [137]. Also, m5C can 
regulate tRNA structure and stability, or translation effi-
ciency and accuracy, or can affect translational readthrough 
of termination codons in rRNA [138, 139]. The group 
of enzymes responsible for m5C modification of RNAs 
includes several types of m5C methyltransferases, namely 
members of the NOL1/NOP2/SUN domain (NSUN) fam-
ily (NSUN1, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, 
NSUN7), further DNMT2, and TRDMT1. Besides, m5C 
erasers are represented by TET2, and m5C readers include 
YBX1 and ALYREF [125, 140]. m5C is preferentially accu-
mulated around the translational start codons and 3′-UTRs 
of transcripts [141, 142].

Importantly, m5C modifications occur also in other 
types of ncRNAs, for instance, in lncRNAs, vault RNAs 
(vtRNAs), enhancer RNAs (eRNAs), or small Cajal body-
specific RNAs (scaRNAs) [143]. Based on recent oncologi-
cal studies, m5C RNA modifications possess diverse and 
extensive scopes of action. Specifically, m5C has onco-
genic potential and can promote cancer progression, cancer 
cell migration, and metastasis and induce chemoresistance 
to anticancer therapy by methylation of various ncRNAs. 
Moreover, m5C significantly correlated with poor prognosis 
in cancer patients [112, 125, 140, 144–149].

7‑methylguanosine

7-Methylguanosine (m7G), characterized by methylation of 
guanosine on position N7, was first detected in 5′ caps of 
eukaryotic mRNA and subsequently internally in tRNA and 
rRNA [150–152]. More recently, m7G has been identified 
internally in miRNA precursors and mature miRNA, mRNA, 
and lncRNAs [153–156]. In mammals, several m7G regula-
tors mediate m7G methylation of various RNAs—RNMT/
RAM methyltransferase complex in mRNA, METTL1/
WDR4 complex in tRNAs, and WBSCR22/TRMT112 
complex in rRNA [157–159]. However, the research on 
identifying other specific m7G regulators is still limited. 
The primary role of m7G modification within mRNA is 
to sustain the translation process, in contrast with m7G 
modification within rRNA in which the effect on transla-
tion is weak. Moreover, m7G modification within mRNA is 
dynamically regulated by changes in stress conditions [159, 
160]. In tRNA, m7G maintains the structural integrity of 
tRNA [161].

METTL1 (respectively the METTL1/WDR4 complex) 
has shown pro-oncogenic and tumor-suppressive activity 
within oncological research. The depletion or overexpres-
sion of METTL1 significantly affected the viability, pro-
liferation, migration, and metastasis of various tumor cell 
types [155, 162–165]. Furthermore, METTL1 was crucial 
in regulating resistance to certain chemotherapeutic drugs 

such as 5-fluorouracil or cisplatin [166, 167]. In the clini-
cal study of Tian QH et al. [168], METTL1 downregulated 
the tumor suppressor gene PTEN. Moreover, mainly within 
the integrated analysis and predictive models, METTL1, in 
combination with aberrant expression of other m7G regula-
tors and various m7G-related RNAs, is correlated with poor 
prognosis of cancer patients [162, 168–172]. Significant 
tumor suppressive potential was also recorded in the case 
of other m7G regulators, i.e., WBSCR22 and TRMT112. 
Their overexpression significantly suppressed the prolifera-
tion, migration, and invasion of canscer cells in experimental 
models of pancreatic cancer [173].

2′‑O‑methylation

2′-O-methylation (Nm or 2′O-Me in which N stands for any 
nucleotide) was first discovered in tRNA and rRNA in the 
1960s [174]. Nm has also been found in mRNA, snRNA, 
and small non-coding RNAs such as siRNA, piRNA, and 
miRNA [175–183]. This type of methylation modifica-
tion has not yet been found in lncRNAs. Recently, Wu H 
et al. [179] informed about the important regulatory role 
of lncRNA ZFAS1 in promoting 2′-O-Me modification in 
colorectal carcinogenesis. Notably, Nm is characterized by 
methylation of ribose at 2′-OH group and occurs in all four 
types of canonical nucleotides (i.e., Am, Gm, Um, and Cm) 
but also in other modified (non-canonical) nucleotides (i.e., 
Im and ψm) [175]. Two alternative enzymatic mechanisms 
can form nm modification. First, by stand-alone protein 
enzymes (stand-alone methyltransferases), or second, by a 
complex assembly of proteins (fibrillarin, or FBL) associ-
ated with snoRNA guides (sno(s)RNPs) (the box C/D (sno(s)
RNPs)) [176]. Nm regulators include human methyltrans-
ferase CMTR1, capable of modifying the mRNA cap’s first 
transcribed nucleotide [184, 185]. FBL is the only known 
snoRNP 2ʹ-O-methyltransferase [186]. However, we know 
no erasers and readers have been discovered and studied for 
Nm yet. Nm was observed in the 5′ cap of mRNA, internally 
in the coding DNA sequence, further in the decoding or 
peptidyl-transferase centers within rRNA, or at the periph-
ery of the ribosomal subunits [185–187]. Ribose methyla-
tion represents dynamic modification with a significant 
impact on RNA structure and stability regulation. Indeed, 
ribose methylation increases the hydrophobicity of RNA 
molecules, thereby protecting them from nuclease activ-
ity, alkaline hydrolysis, and oxidation [188]. Furthermore, 
ribose methylation affects mRNA splicing and translation, 
interactions of RNA with proteins or other RNAs, and the 
immune response of organisms [185].

Aberrant FBL expression can significantly affect rRNA 
methylation, thus ribosome biogenesis and function, pro-
tein synthesis, and cell proliferation that can subsequently 
result in cancer development [186]. Marcel V et al. [189, 
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190] have shown that FBL expression is under the direct 
control of p53, which acts as a repressor of FBL and 
therefore prevent the enhancement of the translation of 
various oncogenes. Moreover, alterations in box C/D 
snoRNA expression levels can also affect the process of 
carcinogenesis, for example, by promoting the stemness 
phenotype and proliferation of cancer cells or by their 
utilization for the prediction of cancer patient survival 
[191–205].

The relationship between genome‑wide 
methylation profiling and lncRNAs 
expression—the results from the most 
current BC studies

BC is a highly biologically and clinically heterogeneous dis-
ease characterized by histological and molecular diversity, 
distinct treatment responses, and prognostic patterns. There-
fore, identifying reliable and highly informative diagnostic 
and prognostic BC biomarkers and therapeutic targets is 
highly required. DNA methylation biomarkers with diagnos-
tic, prognostic, and predictive power significantly linked to 
BC or epigenetic therapies of BC focusing on the therapeutic 
effects of DNA methyltransferase (DNMT) inhibitors are in 
ongoing clinical trials [73, 83, 206–214]. Currently, as we 
mentioned above, several epigenetic studies are available 
regarding the relationship between the methylation status of 
DNA, RNA, or histones and the expression of various RNAs 
as biomarkers in the diagnosis and prognosis of several types 
of cancer, including BC as well as targets in personalized 
anticancer therapy [85, 104, 169, 215–222]. However, none 
of the studied RNA methylation biomarkers or epigenetic 
BC therapies that target DNA, RNA, or histone methylation 
in the context of various RNAs’ expression and function has 
not been approved for clinical use. Therefore, to deepen the 
current knowledge, we decided to summarize and discuss 
the results from the most recent BC studies (from 2017 to 
2023) dealing with the relationship between genome-wide 
methylation profiling and lncRNAs. Several modes of inter-
action between lncRNAs and methylation modifications in 
BC have been described: (1) lncRNAs can be regulated by 
DNA methylation, DNA methylation negatively correlates 
with lncRNA expression; (2) DNA methylation can be reg-
ulated by lncRNAs that either recruit DNMTs or regulate 
the binding status of DNMTs; (3) lncRNAs can either regu-
late histone methylation or histone methylation can affect 
lncRNAs; and (4) lncRNAs can either regulate various type 
of RNA methylation or lncRNAs may themselves undergo 
specific methylation modifications [223]. Here, we focus on 
all the aspects mentioned above of the relationship between 
lncRNAs and methylation modifications in BC. Since many 

authors within more complex studies supplemented the 
analysis of BC tissue high‐throughput sequencing data with 
results from in vitro or in vivo experiments, we decided to 
divide corresponding BC studies into the following subsec-
tions based on the type of studied interaction.

DNA methylation and lncRNAs

Several BC studies have shown that the decrease of DNA 
methylation levels upregulated the expression of oncogenic 
lncRNAs. On the contrary, increased DNA methylation 
levels downregulated the expression of antitumor lncR-
NAs. Wang Z et al. [224] observed upregulated lncRNA 
EPIC1, due to a promoter CpG island hypomethylation. At 
the same time, this overexpression was associated with BC 
cell cycle progression in in vitro and in vivo conditions. The 
authors further confirmed that EPIC1 overexpression was 
associated with significantly poor survival in luminal B BC 
patients. Another study showed that lncRNA HUMT could 
be upregulated by promoter hypomethylation that promotes 
lymphangiogenesis and metastasis by activating FOXK1 and 
increasing VEGF-C expression in TNBC.

Moreover, the higher level of HUMT was associated 
with poorer clinical prognosis in patients with TNBC [225]. 
Pangeni RP et al. [226] analyzed two (among others) epi-
genetically dysregulated genes coding two long intergenic 
non-coding RNAs (RP11-713P17.4 and CTD-2023M8.1) 
in breast-to-brain metastases (BBM). Compared to normal 
breast tissues and primary breast tumors, RP11-713P17.4 
was hypermethylated, whereas CTD-2023M8.1 was hypo-
methylated in BBM. Moreover, some aberrant methylation 
patterns were found in tumor-free circulating DNA in the 
patient’s serum; however, a sample of serum should be taken 
during BBM biopsy. According to the authors’ conclusions, 
epigenetic dysregulation of RP11-713P17.4 could be consid-
ered an early event in the process of BBM and could be used 
as BC prognostic marker. Another study showed that expres-
sion levels of GAS5 are commonly downregulated in cells 
and tissues of TNBC. However, targeted hypomethylation of 
GAS5 promoter increased the expression level of GAS5 in 
TNBC cells. Reducing TNBC cell proliferation and promot-
ing TNBC cell apoptosis and chemosensitivity accompanied 
the increased expression of GAS5. These results indicate 
the role of GAS5 as a potential future candidate for TNBC 
treatment [227].

Similarly, the expression level of MEG3 in BC cells and 
tissues was poor, while the methylation rate of MEG3 was 
significantly increased. Targeted hypomethylation of MEG3 
promoted the chemosensitivity of BC cells [228]. In addi-
tion, DNMT1 induced hyper-methylation of MEG3 promoter 
and facilitated the growth of BC via miR-494-3p/OTUD4 
axis. On the contrary, the knockdown of DNMT1 enhanced 
MEG3 expression, upregulation of MEG3 downregulated 
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miR-494-3p expression that also affected the expression of 
a miR-494-3p target OTUD4. Eventually, the authors con-
cluded the inhibition of BC progression in vitro and in vivo 
[229]. Furthermore, tumor suppressor lncRNA HOTAIRM1 
is downregulated and hypermethylated in BC tissues by 
DNMT1 and DNMT3A, promoting BC cell proliferation, 
migration, and metastasis.

Moreover, the authors confirmed that the downregula-
tion of HOTAIRM1 could be a potential therapeutic tar-
get in BC due to its significant prognostic value [230]. 
LncRNA BLAT1 is significantly upregulated in basal-like 
breast cancer (BLBC). BLAT1 promoter hypermethylation 
or hypomethylation may have an essential role in affecting 
the aggressive phenotype of BLBC cells. BLAT1 hypometh-
ylation correlated with decreased overall survival in BLBC 
patients. Contrary, a depletion of BLAT1 significantly 
increased the apoptosis of BC cells [231]. Related findings 
from this subsection are summarized in Table 1.

Research further confirms that methylation can affect 
lncRNAs, and various lncRNAs can regulate the process 
of DNA methylation during BC progression in several spe-
cific ways. Xu X et al. [201] recently analyzed the Cancer 
Genome Atlas BC high‐throughput sequencing data and BC 
study in vitro. The authors revealed that overexpression of 
lncRNA MAGI2-AS3, which acts as a cis-regulatory ele-
ment to downregulate DNA methylation in the promoter 
region of MAGI2, inhibits proliferation and migration of BC 
cells and may be associated with a better prognosis of BC 
patient survival. Moreover, Wang HB et al. [232] described 
that LINC00518, which expression was significantly higher 
in BC tissues and cells, promotes the methylation of CDX2 
by recruiting DNA methyltransferases and activating Wnt 
signaling pathway. This is ultimately promoting BC epithe-
lial cell growth, proliferation, invasion, and epithelial-to-
mesenchymal transition (EMT), and also the development 

of lymph node metastasis and suppression of apoptosis. In 
another study, authors showed that lncRNA H19 promotes 
tamoxifen resistance in estrogen receptor-positive  (ER+) 
BC cells and autophagy in vitro and in vivo. The mecha-
nism beyond H19 action affects the binding of DNMT3B 
and the Beclin1 promoter region by altering the SAH accu-
mulation. The subsequent downregulation of the Beclin1 
promoter methylation and promotion of tamoxifen resist-
ance and autophagy of BC cells is modulated via the H19/
SAHH/DNMT3B axis [233]. In addition, H19 regulated the 
expression of NAT1 in tamoxifen-resistant BC cells via the 
regulation of NAT1 promoter methylation [234].

Furthermore, Li C et al. [235] uncovered that lncRNA 
MAYA and NSUN6 form an RNA–protein complex that 
methylates Hippo/MST1 resulting in MST1 kinase inacti-
vation and YAP target gene activation, which consequently 
triggers BC osteoclast differentiation and bone metastasis 
development. Moreover, lncRNA 91H demonstrated onco-
genic activity in vitro and in vivo; specifically, 91H pro-
moted the aggressive phenotype of BC cells via regulating 
the expression of H19/IGF2 imprinting locus by masking 
the methylation site on the imprinting control center and the 
H19 promoter [236]. In 2019, Miao H et al. [237] informed 
that lncRNA PYCARD-AS1 acts as a negative regulator of 
the pro-apoptotic gene PYCARD at both the epigenetic and 
translational levels in BC. PYCARD-AS1 facilitates DNA 
methylation of PYCARD promotor and H3K9me2 modifica-
tion by recruiting DNMT1 and G9a, resulting in the silenc-
ing of PYCARD and disruption of the apoptotic process in 
BC cells in vitro. Moreover, the study showed that reactiva-
tion of PYCARD induced by the PYCARD-AS1-knockdown 
increased the susceptibility of BC cells to the cytotoxic agent 
paclitaxel. The analysis of BC samples, accompanied by 
experimental analysis in vitro and in vivo, described a novel 
HER2 subtype-specific lincRNA BCLIN25 that promotes 

Table 1  Methylation modification and its interaction with various type of lncRNAs in BC studies: DNA methylation → lncRNA

Abbreviations: ↑, increased, upregulated; ↓, reduced, downregulated; BBM, breast to brain metastases; BCSCs, breast cancer stem cells; BLBC, 
basal-like breast cancer

Long ncRNA Expression in BC Signaling pathway involved Mechanism of action References

EPIC1 ↑ EPIC1/MYC Promotion of BC cell cycle progression [224]
HUMT ↑ HUMT/YBX1/FOXK1 Promotion of lymph-angiogenesis and metastasis in 

TNBC
[225]

RP11-713P17.4 not studied Not studied Hypermethylation of RP11-713P17.4 gene in BBM [226]
GAS5 ↓ Not studied Suppression of TNBC progression, reduction of TNBC 

cell proliferation, promotion of TNBC cell apoptosis 
and chemosensitivity

[227]

MEG3 ↓ Not studied Promotion of chemosensitivity of BC cells [228]
MEG3 ↓ DNMT1/MEG3/miR-494-3p/OTUD4 Supporting of the growth of BC cells [229]
HOTAIRM1 ↓ DNMT1 and DNMT3A/HOTAIRM1 Promotion of BC cells proliferation, clone formation, 

and invasion
[230]

BLAT1 ↑ BLAT1 promoter/BLAT1 Influencing the aggressive phenotype of BLBC cells [231]
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mammary carcinogenesis by upregulation of ERBB2 expres-
sion via enhancing promoter CpG methylation of miR-
125b. Downregulation of miR-125b led to the abrogation 
of ERBB2 mRNA degradation. The authors also provided a 
comprehensive landscape of molecular subtype-specific long 
intergenic noncoding RNAs, which could complement BC’s 
current molecular classification system [238].

Besides, lncRNA MIAT can bind to DNMT1, DNMT3A, 
and DNMT3B, promoting the methylation of CpG islands 
in DLG3 promoter and suppressing its expression. Moreo-
ver, DLG3 can bind to MST2, regulate LAST1, and prevent 
the nuclear translocation of YAP. Li D et al. [239] dem-
onstrated that MIAT silencing inhibited the progression of 
BC by upregulation of DLG3 and consequently led to the 
activation of mentioned Hippo signaling pathway. Moreover, 
the overexpression of lncRNA LINC00472 demonstrated 
the ability to suppress TNBC progression and inhibit pro-
liferation, invasion, and migration of TNBC cells via regu-
lation of DNA methylation. LINC00472 can significantly 
induce the methylation of MCM6 promoter via recruiting 
DNMT1, DNMT3a, and DNMT3b, and thus reduce its 
expression. Subsequently, the inhibition MCM6 expression 
led to the inactivation of the MEK/ERK signaling path-
way and suppression of mammary cell cycle progression. 
Therefore, LINC00472-mediated epigenetic silencing of 
MCM6 appears as a suitable therapeutic target for TNBC 
[240]. Another lncRNA TINCR, which was overexpressed 
in human BC and correlated with poor prognosis of BC 
patients, demonstrated in experimental conditions the abil-
ity to recruit DNMT1 to the miR-503-5p locus promoter, 
increasing methylation and suppressing the transcriptional 
expression of DNMT1.

Furthermore, TINCR acts as a ceRNA upregulated 
EGFR expression by sponging miR-503-5p. The study 
also revealed that TINCR could stimulate JAK2–STAT3 
signaling downstream from EGFR and vice versa STAT3 
enhances the transcriptional expression of TINCR [241]. 
Furthermore, TINCR reduced the effectiveness of immu-
notherapy against BC. Mechanistically, TINCR regulated 
the expression of USP20 and PD-L1 via ceRNA interaction 
and inhibition of miR-199a-5p transcription by promoting 
its methylation [242]. In the study of Wang Y et al. [243], 
lncRNA LINC00922 supported the progression of BC via 
NKD2 silencing, activating Wnt signaling pathway, and pro-
moting EMT, proliferative, invasive, and migratory capaci-
ties of BC cells. LINC00922 decreased the expression of 
NKD2 by supporting the methylation of its promoter. Fur-
thermore, Aini S et al. [244] showed that lncRNA SNHG10 
could negatively regulate miR-302b methylation and that 
overexpression of lncRNA SNHG10 increased chemo-
sensitivity of TNBC cells to doxorubicin via upregulation 
of miR-302b. In addition, the downregulation of lncRNA 
HOTAIR promoted the sensitivity of  HER2+-resistant BC 

cells to trastuzumab when compared with sensitive cells, 
mechanistically via the upregulation of PTEN methylation 
levels, demethylation of TGF-β, and subsequent reduction 
of PI3K/AKT signaling pathway activity. Besides, increased 
PI3K/AKT activity is considered one of the leading factors 
responsible for the emergence of trastuzumab resistance in 
BC [245]. Moreover, Long Q et al. [246] showed that over-
expression of lncRNA TATDN1 negatively regulated the 
expression of tumors suppressive miR-26b in TNBC cells, 
however positively affected methylation of miR-26b gene, 
thereby promoting the TNBC cell proliferation. Table 2 pro-
vides a detailed overview of the above-discussed findings.

Histone methylation and lncRNAs

As mentioned above, lncRNAs can either regulate histone 
methylation or histone methylation can affect lncRNAs, 
which several BC studies have also confirmed. Firstly, lncR-
NAs can recruit polycomb proteins or methyltransferases 
associated with histone methylation of specific targets. For 
example, LINC00511 showed oncogenic function in ER-
negative BC via interaction with EZH2 and recruiting PRC2 
to mediate H3K27me3 modification in the promoter region 
of CDKN1B, which led to the suppression of CDKN1B 
expression. ER deficiency directly affected the expression of 
LINC00511, and high expression of LINC00511 indicated 
a markedly poorer prognosis in BC patients [247]. Another 
study demonstrated that lncRNA ROR supported BC pro-
gression by promoting H3K4 trimethylation of TIMP3 (via 
MLL1 recruitment) and enhanced its transcription levels. 
The expression levels of lncRNA ROR and TIMP3 were 
higher in BC tissues than in adjacent tissues. The results of 
this study provide evidence that lncRNA ROR can serve as 
a promising marker for BC prognosis and can be an impor-
tant therapeutic target in BC therapy [248]. In addition, 
lncRNA UCA1 can support tamoxifen resistance of BC 
cells via regulation of the EZH2/p21 axis. UCA1 is associ-
ated with EZH2 suppressing the expression of p21 through 
H3K27me3 on the p21 promoter [249]. Also, the overex-
pression of lncRNA PHACTR2-AS1 promoted H3K9 meth-
ylation of rDNA by recruiting SUV39H1, thereby suppress-
ing BC cell growth and metastasis. However, EZH2-induced 
silencing of PHACTR2-AS1 promoted ribosome synthesis 
and ribosomal DNA (rDNA) instability that, in turn, sup-
ported cancer cell proliferation and metastasis [250].

Furthermore, lncRNA HOTAIRM1 promoted the resist-
ance of  ER+ BC cells in vitro to tamoxifen via regulating 
HOXA1 expression through direct interaction with EZH2 and 
hindered deposition of H3K27me3 marks at HOXA1 promoter 
[251]. LncRNA LINC02273 showed oncogenic potential and 
promoted BC invasion and metastasis in vitro and in vivo. 
Mechanistically, the hnRNPL-LINC02273 complex activated 
AGR2 transcription and promoted BC metastasis by increasing 
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H3K4me3 and H3K27ac levels around its promoter region 
[252]. Finally, lncRNA DANCR showed the ability to support 
EMT, cancer stemness, and inflammation in BC cells in vitro 

by promoting the binding of EZH2 to the SOCS3 promoter, 
thereby inhibiting its expression [253]. Related findings from 
this subsection are summarized in Table 3.

Table 2  Methylation modification and its interaction with various type of lncRNAs in BC studies: LncRNA → DNA methylation

Abbreviations: ↑, increased, upregulated; ↓, reduced, downregulated; BBM, breast to brain metastases; BCSCs, breast cancer stem cells

Long ncRNA Expression in BC Signaling pathway involved Mechanism of action References

MAGI2-AS3 ↓ MAGI2-AS3/MAGI2/Wnt/beta-catenin Inhibition of BC cell proliferation and migration [201]
LINC00518 ↑ LINC00518/CDX2/Wnt Promotion of BC epithelial cell growth, prolif-

eration, invasion, EMT, lymph node metastasis 
and suppression of apoptosis

[232]

H19 ↑ H19/SAHH/DNMT3B Promotion of tamoxifen resistance in  ER+ BC 
cells trigger BC osteoclast differentiation and 
bone metastasis development

[233]

H19 ↑ H19/NAT1 Promotion of tamoxifen resistance in BC cells [234]
MAYA ↑ ROR1/HER3/MAYA Stimulation of BC osteoclast differentiation and 

bone metastasis development
[235]

91H ↑ 91H /H19/IGF2 Promotion of aggressive phenotype of BC cells [236]
PYCARD-AS1 Not studied PYCARD-AS1/PYCARD Disruption of apoptosis of BC cells [237]
BCLIN25 ↑ BCLIN25/miR-125b/ERBB2 Promotion of HER2 BC [238]
MIAT ↑ MIAT/DLG3/Hippo Promotion of BC progression [239]
LINC00472 ↓ LINC00472/MCM6/MEK/ERK Inhibition of progression and metastasis in 

TNBC
[240]

TINCR ↑ STAT3/TINCR/EGFR-feedback loop Promotion of BC progression [241]
TINCR ↑ STAT1/TINCR/miR-199a-5p/USP20/PD-L1 Reducing the effectiveness of immunotherapy 

against BC
[242]

LINC00922 ↑ LINC00922/NKD2/Wnt Progression of BC by promoting EMT, prolifera-
tive, invasive and migratory capacities of BC 
cells

[243]

SNHG10 ↓ SNHG10/miR-302b Suppression of chemoresistance of TNBC cells [244]
HOTAIR ↑ HOTAIR/PTEN/TGF-β/PI3K/AKT Promotion of trastuzumab resistance in  HER2+ 

BC cells, reduction of their apoptosis, and 
promotion of their proliferative and invasion 
ability

[245]

TATDN1 ↑ TATDN1/miR-26b Promotion of TNBC cells proliferation [246]

Table 3  Methylation modification and its interaction with various type of lncRNAs in BC studies: LncRNA → histone methylation and Histone 
methylation → lncRNA

Abbreviations: ↑, increased, upregulated; ↓, reduced, downregulated; BBM, breast to brain metastases; BCSCs, breast cancer stem cells

Long ncRNA Expres-
sion in 
BC

Signaling pathway involved Mechanism of action References

LINC00511 ↑ LINC00511/EZH2/PRC2/CDKN1B Suppression of CDKN1B expression in  ER− BC [247]
ROR ↑ ROR/MLL1/TIMP3 Support of BC progression [248]
UCA1 ↑ UCA1/EZH2/p21 Supporting of tamoxifen resistance of BC cells [249]
PHACTR2-AS1 ↓ EZH2/PHACTR2-AS1/Ribosome DNA Suppression of the BC cell growth and metastasis [250]
HOTAIRM1 ↑ HOTAIRM1/EZH2/PRC2/HOXA1 Promotion of tamoxifen resistance in  ER+ BC cells [251]
LINC02273 ↑ LINC02273/AGR2 Promotion of BC metastasis [252]
DANCR ↑ DANCR/EZH2/SOCS3 Promotion of EMT, cancer stemness, and inflammation in 

BC
[253]

EPB41L4A-AS2 ↓ ZNF217/EZH2/EPB41L4A-AS2 Promotion of BC progression [254]
DLEU1 ↑ DLEU1/SRP4 Promotion of BC progression [255]
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Secondly, histone methylation marks on lncRNA can be 
associated with its activation or repression. Pang B et al. 
[254] first identified and validated the comprehensive land-
scape of tumor suppressor lncRNAs in BC tissues and 
subsequently selected lncRNA EPB41L4A-AS2 for fur-
ther mechanistic investigation. Specifically, EPB41L4A-
AS2 suppressed BC progression in vitro by upregulating 
the expression of RARRES1. Moreover, a high expression 
level of EPB41L4A-AS2 was associated with a favorable 
prognosis in BC patients. And finally, the authors showed 
that the progression of BC can be promoted by ZNF217 
recruiting EZH2 to EPB41L4A-AS2 locus and suppressing 
EPB41L4A-AS2 expression by increasing H3K27me3 modi-
fication. Moreover, a decreased DNA methylation led to the 
upregulation of oncogenic lncRNA DLEU1 through increas-
ing H3K4me3 and H3K27ac modifications in BC (in vitro 
and in vivo study supplemented by the TCGA and cohort 
data analysis). High DLEU1 expression correlates with a 
worse prognosis in BC patients. These findings indicate that 
epigenetic therapy targeting histone methylation modifica-
tion in combination with DLEU1 target therapy may have 
the potential of an effective anti-BC strategy [255]. Related 
conclusions of this subsection are summarized in Table 3.

m6A and lncRNAs

Although described as mRNA’s most frequent methylation 
modification, m6A is also commonly found in ncRNAs, 
including lncRNAs [256]. Several experimental studies 
demonstrated lncRNAs as less methylated than mRNAs, 
therefore assuming lncRNA methylation landscape dif-
fers from mRNA [62]. Indeed, lncRNAs can undergo m6A 
methylation modification, and some lncRNAs can partici-
pate in the modulation of m6A modification of the specific 
downstream target genes associated with BC. Specifically, 
METTL3 affected the LINC00675 sponge’s competitive 
endogenous RNA (ceRNA) network activity for miR-
513b-5p through increasing m6A methylation modification. 
Besides, m6A methylation modification of LINC00675 did 
not affect lncRNA expression but enhanced the interaction 
between LINC00675 and miR-513b-5p and promoted BC 
repression [257]. The results of another study described 
eight m6A sites on HOTAIR. Among them, A783 was 
defined as consistently methylated. Besides, A783 interacts 
with m6A “reader” YTHDC1 enabling chromatin associa-
tion and promoting high levels of HOTAIR expression and 
gene repression upstream of PRC2 complex, thereby pro-
moting HOTAIR-mediated proliferation and invasion of 
TNBC cells [258]. Furthermore, Rong D et al. [259] showed 
that METTL3-induced LINC00958 upregulation promoted 
BC tumorigenesis via miR-378a-3p/YY1 axis necessary 
to regulate cell proliferation and apoptosis. In the study 
of Zhao C et al. [260], METTL3-induced upregulation of 

lncRNA MALAT1 regulated the progression of BC through 
the METTL3/MALAT1/miR-26b/HMGA2 pathway. Moreo-
ver, m6A modified lncRNA DLGAP1-AS1 and promoted 
adriamycin resistance in BC cells via WTAP/DLGAP1-AS1/
miR-299-3p pathway [261]. Also, Sun T et al. [262] uncov-
ered the oncogenic potential of LINC00942 (LNC942) and 
METTL14, which upregulated the expression and stability 
of two downstream target genes CXCR4 and CYP1B1 by pro-
moting METTL14-mediated m6A methylation that subse-
quently led to accelerating BC cell proliferation, colony for-
mation, and reduced BC cell apoptosis in vitro and in vivo. 
In addition, UCA1 regulated m6A modification of miR-375 
by mediating METTL14 downregulation via DNA methyla-
tion. These results highlight miR-375 as poorly expressed in 
BC, and its expression positively correlated with METTL14 
expression. Moreover, METTL14 mediated high SOX12 
expression by m6A modification of miR-375 in BC in vitro 
and in vivo [263]. Furthermore, Zhu P et al. [264] demon-
strated a significant role in the interaction between m6A and 
lncRNA in BC stem cells. Hypoxic lncRNA KB-1980E6.3 
is upregulated in BC tissues and correlates with poor prog-
nosis in BC patients. Specifically, KB-1980E6.3 recruited 
IGF2BP1 and maintained BC stemness and tumorigenesis 
by retaining c-Myc mRNA stability in vitro and in vivo. 
Table 4 summarizes related findings from this subsection.

Other lncRNA methylation modifications in BC

Due to the lack of BC studies focusing on the interactions 
between lncRNAs and other types of methylation modifi-
cations such as m1A, m5C, m7G, or Nm, the association 
between these modifications and their effects on lncRNAs 
in human BC remains unclear and requires further research. 
Available research evidence provides no study on m1A- and/
or Nm-related lncRNAs in BC. Some relevant studies deal 
with the relationship between m1A and various mRNAs 
in BC or m1A-related lncRNAs in other cancer diseases. 
Firstly, the earlier BC study by Singh B et al. [265] demon-
strated the vital role of RNA demethylase FTO in the cell-
based model of pan resistance in TNBC. The inhibition of 
FTO significantly suppressed the survival and/or colony for-
mation of SUM149-MA TNBC cells compared to the con-
trol. At the same time, these effects were demonstrated via 
decreased demethylation of IRX3 mRNA and IRX3 protein 
synthesis. In another study, ALKBH3-induced m1A dem-
ethylation increased the CSF-1 mRNA stability in BT20 
BC cells. The overexpression of ALKBH3 increased CSF-1 
expression and invasiveness of BC cells without a significant 
effect on proliferation and migration [133].

On the other hand, Shi L et al. [131] realized m1A pro-
filing of lncRNAs in human colorectal cancer (CRC). The 
authors revealed a significant difference in m1A distribu-
tion between CRC and adjacent non-tumorous tissues. They 
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further determined downregulated lncRNAs along with m1A 
modification in CRC. And finally, they demonstrated the 
significant correlation between the unique distribution of 
m1A sites in lncRNAs with CRC signaling pathways. Simi-
larly, in the case of m5C modification, the importance of the 
m5C-related lncRNAs was already studied in hepatocellular 
(HCC) and esophageal squamous cell carcinoma (ESCC). 
Still, we are not aware of a similar study in BC. In men-
tioned HCC study, m5C modification increased the stability 
of oncogenic lncRNA H19. Moreover, m5C-modified H19 
demonstrated the ability to bond by G3BP1, which further 
led to MYC accumulation [266]. In the ESCC study, a novel 
NSUN2 methylated lncRNA NMR regulated tumor metasta-
sis and drug resistance via NSUN2 and BPTF [144].

Within current BC research, scientists mainly focus on 
constructing BC prognostic signatures based on various 
lncRNAs associated with a particular type of methylation 
modification. Huang Z et al. [267] selected three BC-spe-
cific m5C-related lncRNAs (AP005131.2, AL121832.2, and 
LINC01152) that could have prognostic and predictive value 
in BC patients. Other authors recently analyzed the prog-
nostic value of eleven m5C-related lncRNAs (AC002398.1, 
AL096701.3, AC073655.2, AL645608.7, AC244517.1, 
NDUFA6-DT, WEE2-AS1, AC090912.3, AL606834.2, 
AL136368.1, AC103858.2) and described an association 
between m5C-related lncRNAs and immune cell infiltra-
tion as well as chemotherapy drug sensitivity in BC patients 
[268]. Moreover, a comprehensive analysis provided poten-
tial m5C regulators in BC by a combination of expression, 
diagnosis, and survival analyses. Furthermore, the authors 
established the ncRNA–mRNA network accounting for the 
role of m5C regulators in BC in which several upstream 
potential lncRNAs of the five upstream potential binding 
miRNAs of m5C regulators (let-7b-5p, miR-195-5p, miR-
29a-3p, miR-26a-5p, and miR-26b-5p) were predicted and 

analyzed. Among the examined m5C regulators, DNMT3B 
and ALYREF were significantly upregulated in BC samples. 
At the same time, their high expression indicated an unfa-
vorable prognosis in BC patients and possessed the statistical 
abilities to distinguish BC tissues from normal breast tissues. 
Pathway analysis revealed that VEGFA and EZH2 represent 
the most potential target genes in BC’s m5C regulators-
related ncRNA–mRNA network. The upstream potential 
lncRNAs of studied miRNAs are listed in the supplementary 
material of the study [269]. Moreover, another BC prognos-
tic signature was based on m7G-related lncRNAs. Huang Z 
et al. [270] identified eight m7G-related lncRNAs (BAIAP2-
DT, COL4A2-AS1, FARP1-AS1, RERE-AS1, NDUFA6-
DT, TFAP2A-AS1, LINC00115, and MIR302CHG) and 
Cao J et al. [271] nine m7G-related lncRNAs (LINC01871, 
AP003469.4, Z68871.1, AC245297.3, EGOT, TFAP2A-
AS1, AL136531.1, SEMA3B-AS1, AL606834.2), which 
could serve as potential biomarkers and therapeutic targets 
of BC.

Reciprocity of genome‑wide methylation 
status and lncRNA patterns in BC: 
concluding remarks on potential benefits 
to the 3 PM approach

The application of genome-wide methylation analyses 
strongly contributes to understanding lncRNAs-associated 
pathomechanisms in BC development and progression. It 
presents a powerful diagnostic, prognostic, and therapeu-
tic tool in the context of 3P medicine [272]. Stage-specific 
lncRNA expression patterns are instrumental for the dif-
ferential diagnostics, targeted prevention, and treatment 
tailored to the individualized patient profiles. On the other 
hand, genome-wide epigenetic shifts individually analyzed 

Table 4  Methylation modification and its interaction with various type of lncRNAs in BC studies: m6A → lncRNA and lncRNA → m6A

Abbreviations: ↑, increased, upregulated; ↓, reduced, downregulated; BBM, breast to brain metastases; BCSCs, breast cancer stem cells

Long ncRNA Expres-
sion in 
BC

Signaling pathway involved Mechanism of action References

LINC00675 ↓ METTL3/LINC00675/miR-513b-5p Suppression of BC cell proliferation, migration, and 
invasion

[257]

HOTAIR ↑ YTHDC1/HOTAIR/PRC2 Promotion of proliferation and invasion of TNBC cells [258]
LINC00958 ↑ METTL3/LINC00958/miR-378a-3p/YY1 Promotion of BC tumorigenesis [259]
MALAT1 ↑ METTL3/MALAT1/miR-26b/HMGA2 Promotion of EMT, migration and invasion in BC [260]
DLGAP1-AS1 ↑ WTAP/DLGAP1-AS1/miR-299-3p Promotion of adriamycin resistance in BC [261]
LINC00942 ↑ LINC00942/METTL14/CXCR4 and CYP1B1 Acceleration of BC cell proliferation, colony formation, 

and reduction of BC cell apoptosis
[262]

UCA1 ↑ UCA1/METTL14/miR-375/SOX12 Progression of BC [263]
KB-1980E6.3 ↑ KB-1980E6.3/IGF2BP1/c-Myc Maintenance of BCSC stemness under hypoxic condi-

tions
[264]
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for BC patients are an essential indicator for an accurate 
prognosis and targeted preventive strategies [273]. Genome-
wide methylation analyses and stage-specific lncRNA pat-
terns synergistically increase the predictive power of BC 
diagnostics and the efficacy of the targeted anti-cancer 
therapy [274]. To this end, the role of the advanced 3 PM 
approach is to distinguish the “driver” genomic methylation 
events from their “passenger” functions, which is considered 
crucial for personalized treatment algorithms in BC manage-
ment [275–277].

Mitochondrial health as the prominent 
example of comprehensive epigenetic 
regulations involving methylation 
and lncRNA‑specific patterns highly 
relevant for primary and secondary BC care: 
a proposal for future PPPM approach

Predictive diagnostics

Mitochondrial health quality controls and regulates cellu-
lar, organ, and organismal metabolism [278]. Mitochondrial 
plasticity (fission, fusion, mitophagy) is crucial to integrate 
environmental and internal signals and govern an adequate 
reaction in physiological bioenergetics and multi-functional 
response to diverse stress stimuli. In contrast, mitochondrial 
dysfunction and burnout under severe medical conditions 
create extensive oxidative stress causing epigenetic dysreg-
ulation reflected in shifted DNA methylation and histone 
modification. To this end, oxidative and nitrosative stress 
provoked by injured mitochondria is a powerful systemic 
predictor of the health-to-disease transition reflected in cor-
responding health condition-specific multi-omic patterns 
well detectable in body fluids such as blood and tears [279, 
280]. Corresponding systemic molecular signature is asso-
ciated with an impaired immune function and cross-talking 
miRNAs and lncRNAs, exosomal ncRNA communication to 
cells and tissues [281], and increased extracellular presents 
of mtDNA fragments that are instrumental for predictive 
diagnostics with a great potential to reverse a disease devel-
opment at the stage of health-to-disease transition [280].

Mitochondria health control is pivotal 
for the targeted primary and secondary BC care

Under the influence of endogenous and environmental 
agents such as xenobiotics (environmental pollutants and 
heavy metals) and therapeutic drugs, the methylation status 
of mtDNA is changing, which may result in altered bioener-
getics and decreased ATP production, metabolic disorders, 
accelerated aging, and related pathologies such as chronic 
degenerative processes and cancers including metastatic 

breast cancer malignancies. It is abundantly described that 
epigenetic regulation of mtDNA and mitochondrial proteins 
allows for cross-talking between the nucleus and mitochon-
dria, orchestrating and maintaining cellular health and physi-
ologic mitochondrial homeostasis [282]. To this end, meth-
ylation occurs in mitochondria via DNA methyl-transferases 
identified in the organelle and regulated via long- and short-
noncoding RNAs [282].

Extensive evidence is provided for regular body exercise 
as an effective risk mitigation measure applied to primary 
(disease predisposition and development) and secondary 
(improved individual outcomes in treated breast malignan-
cies) BC care [7]. Accumulated knowledge demonstrates 
that all three components are involved in protective mecha-
nisms: increasing the population of healthy mitochondria 
and epigenetics and lncRNA regulation that functions 
reciprocally. To this end, the role of long non-coding RNA 
taurine-upregulated gene 1 (TUG1) was recently investi-
gated, which interacts with PGC-1alpha in regulating a tran-
scriptional response to exercise in skeletal muscle. TUG1 
expression was upregulated and positively correlated with 
an increased PGC-1alpha expression in human skeletal mus-
cles associated with mitochondrial calcium handling and 
improved myogenesis after a single exercise session. In con-
trast, Tug1 knockdown in mouse myotubes led to impaired 
mitochondrial respiration and morphology [283].

Furthermore, mitochondrial oxidative phosphorylation 
(OXPHOS) regulates metastatic disease. Arginine and lysin 
methylation of MRPS23 promote breast cancer metastasis by 
regulating OXPHOS, which opens the door for new thera-
peutic options based on mitochondrial epigenetic regulation 
[284].

Finally, metformin treatment, considered anti-diabetic 
and anti-cancer protection, employs epigenetic regulation. 
Metformin and a mitochondria/complex I (mCI)-targeted 
analog of metformin promote DNA methylation in non-
cancerous, cancer-prone, and metastatic cancer cells by 
decreasing S-adenosylhomocysteine (SAH) being capable 
of reprogramming the DNA methylation machinery [285].

Phenotyping as the screening tool 
for a cost‑effective 3 PM approach

To increase the overall efficacy of applying PPPM to BC 
management, phenotyping has been proposed as a screen-
ing tool of great clinical utility [286, 287]. To this end, the 
below listed phenotypes are recommended candidates for 
innovative screening programs and predictive approaches 
in the population. Their relevance for epigenetic dysregula-
tion and BC predisposition is justified in recent publications.

Compromised mitochondrial health is strongly associ-
ated with BC development and progression into metastatic 
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disease. As stated above, oxidative and nitrosative stress 
provoked by injured mitochondria is a powerful systemic 
predictor of the health-to-disease transition reflected in cor-
responding health condition-specific multi-omic patterns 
well detectable in body fluids such as blood and tears [279, 
280]. Corresponding systemic molecular signature is asso-
ciated with an impaired immune function and cross-talking 
miRNAs and lncRNAs, exosomal ncRNA communication to 
cells and tissues [281], and increased extracellular presents 
of mtDNA fragments that are instrumental for predictive 
diagnostics with a great potential to reverse a disease devel-
opment at the stage of health-to-disease transition [280]. 
Population screening for compromised mitochondrial health 
is recommended for primary care.

Increased blood plasma homocysteine (Hcy) is associ-
ated with metabolic and DNA methylation shifts. Subtile 
changes in Hcy concentration by 13–14 µmol/L (against 
11 µmol/L breast cancer-free controls) are associated with 
an increased risk of BC, T stage of the disease, and lymph 
node metastasis in BC patients [288]. H19 lncRNA inhibits 
S-adenosyl homocysteine (SAH) hydrolase, the only mam-
malian enzyme capable to hydrolise SAH. In turn, SAH 
inhibits S-adenosyl methionine (SAM)-dependent methyl-
transferases methylating key biomolecules such as DNA, 
RNA, proteins, lipids, and neurotransmitters. Consequently, 
genome-wide methylation status is shifted in individuals 
with altered Hcy patterns—a critical sub-population recom-
mended for the screening. Primary BC prevention by dietary 
folate supplement effectively normalizes a slight increase in 
Hcy concentration [289, 290].

Endothelial dysfunction is linked to the diabetes type 
2 phenotype (DMT2) and Flammer syndrome (FS)—both 
predisposed to increased risk of breast cancer with poor 
outcomes [286, 291–293]. In both phenotypes, endothelin-1 
(ET-1) is upregulated, leading to imbalanced vasoconstric-
tion, ischemic-reperfusion events, metabolic impairments 
with cascading complications, aging and related pathologies, 
cardiovascular diseases, neurodegenerative pathologies, 
and aggressive malignancies [294]. Specifically in DMT2, 
lncRNAs are involved in the glucose-induced transcriptional 
upregulation of ET-1 via hypomethylation in the proximal 
promoter and 5′ UTR/first exon regions of the EDN1, while 
knocking down specific lncRNA panels suppresses epige-
netic upregulation of ET-1 [295]. Furthermore, depending 
on the individual phenotype and environmental conditions 
and consequently being driven by epigenetic regulation 
mechanisms, the ET-1 axis affects the invasiveness of met-
astatic BC [296–299]. Both DMT2 and FS phenotypes are 
contextually recommended for population screening related 
to ET-1-associated BC risks.

An advanced health policy  should essentially consider 
the above-provided recommendations in order to improve the 
overall BC management.

Abbreviations BC: Breast cancer; IARC : The International Agency 
for Research on Cancer; lncRNAs: Long non-coding RNAs; ncR-
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personalized medicine
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