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Abstract
Background/aims  Timely detection and treatment of retinal detachment (RD) could effectively save vision and reduce the risk 
of progressing visual field defects. High myopia (HM) is known to be associated with an increased risk of RD. Evidently, it 
should be clearly discriminated the individuals with high or low risk of RD in patients with HM. By using multi-parametric 
analysis, risk assessment, and other techniques, it is crucial to create cutting-edge screening programs that may be utilized 
to improve population eye health and develop person-specific, cost-effective preventative, and targeted therapeutic measures. 
Therefore, we propose a novel, routine blood parameters-based prediction model as a screening program to help distinguish 
who should offer detailed ophthalmic examinations for RD diagnosis, prevent visual field defect progression, and provide 
personalized, serial monitoring in the context of predictive, preventive, and personalized medicine (PPPM/3 PM).
Methods  This population-based study included 20,870 subjects (HM = 19,284, HMRD = 1586) who underwent detailed 
routine blood tests and ophthalmic evaluations. HMRD cases and HM controls were matched using a nested case-control 
design. Then, the HMRD cases and HM controls were randomly assigned to the discovery cohort, validation cohort 1, and 
validation cohort 2 maintaining a 6:2:2 ratio, and other subjects were assigned to the HM validation cohort. Receiver operat-
ing characteristic curve analysis was performed to select feature indexes. Feature indexes were integrated into seven algorithm 
models, and an optimal model was selected based on the highest area under the curve (AUC) and accuracy.
Results  Six feature indexes were selected: lymphocyte, basophil, mean platelet volume, platelet distribution width, neutro-
phil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. Among the algorithm models, the algorithm of conditional 
probability (ACP) showed the best performance achieving an AUC of 0.79, a diagnostic accuracy of 0.72, a sensitivity of 
0.71, and a specificity of 0.74 in the discovery cohort. A good performance of the ACP model was also observed in the 
validation cohort 1 (AUC = 0.81, accuracy = 0.72, sensitivity = 0.71, specificity = 0.73) and validation cohort 2 (AUC = 
0.77, accuracy = 0.71, sensitivity = 0.70, specificity = 0.72). In addition, ACP model calibration was found to be good across 
three cohorts. In the HM validation cohort, the ACP model achieved a diagnostic accuracy of 0.81 for negative classification.
Conclusion  We have developed a routine blood parameters-based model with an ACP algorithm that could potentially be 
applied in the clinic with a PPPM approach for serial monitoring and predicting the occurrence of RD in HM and can facili-
tate the prevention of HM progression to RD. According to the current study, routine blood measures are essential in patient 
risk classification, predictive diagnosis, and targeted therapy. Therefore, for high-risk RD persons, novel screening programs 
and prompt treatment plans are essential to enhance individual outcomes and healthcare offered to the community with HM.
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Introduction

Myopia, exceptionally high myopia (HM), is one of the 
most common causes of distance vision impairment [1]. Its 
prevalence is increasing globally [2], especially in Asians 
[3, 4], making it a public health concern. Approximately 
half of the world’s population will be myopic by 2050, and 
10% will be highly myopic [2]. This will increase the visual 
burden associated with HM. In addition, HM increases the 
risk of irreversible vision loss from ocular pathologies such 
as retinal detachment (RD), glaucoma, and myopic macular 
degeneration [5, 6].

HM is known to be associated with an increased risk of 
RD [7, 8]. RD is a common cause of visual impairment that 
impacts about 1% of the world population [8]. Moreover, 
the incidence of RD has increased from 12.6 per 100,000 
people in 2000–2004 to 20.2 in 2015–2019 [9]. The timely 
detection of RD and treatment by surgery could effectively 
save vision and reduce the risk of progressing visual field 
defects [10]. Identifying high-risk individuals is a vital step 
in preventing RD, according to the European Association 
for Predictive, Preventive, and Personalized Medicine’s 
(PPPM/3 PM) white paper [11].

Given the rising number of RD patients, it is critical to 
develop a unique strategy that adheres to the PPPM princi-
ples for the early detection of patients with HM who are at 
a high risk of RD [12]. From the perspective of the PPPM, 
the early diagnosis of RD and dynamic monitoring by the 
biomarker/biomarkers panel may open a window of oppor-
tunity for targeted prevention and individualized therapy of 
RD. To achieve this, it is necessary to implement the funda-
mental tenet of personalized medicine—“one size does not 
fit all.” Hence, a rapid, reliable, and economically feasible 
clinical model for predicting RD onset in patients with HM 
is desirable as a screening method rather than relying on 
professional ophthalmologists and ophthalmic equipment.

It is widely believed that myopia is a multifactorial dis-
ease wherein inflammation and environmental factors play 
a vital role in myopia progression [5, 13, 14]. Some patho-
genic mechanisms are associated with RD, but accumulat-
ing evidence suggests inflammation plays an essential role 
in its pathogenesis [15, 16]. Regarding these earlier findings, 
it is vital to investigate the connection between inflamma-
tory changes and the risk of RD in HM patients, which is 
in line with the PPPM’s guiding principles. It is known that 
routine blood parameters indicate the general homeostasis and 
inflammatory state of the whole body. Consequently, from the 
viewpoints of PPPM in vulnerable populations and individual 

monitoring, routine blood parameters could be a novel strategy 
for the early identification of a high risk of RD in patients with 
HM [17].

Ophthalmologists would be interested in suggesting a 
novel strategy for the timely identification of a high risk 
of RD in patients with HM, in keeping with the PPPM 
concepts. Machine-learning techniques have been widely 
used to diagnose eye diseases [18–20]. For example, a 
PPPM technique for serial monitoring and the develop-
ment of retrospective data to study the various usage of 
therapies for macular degeneration and diabetic retinopa-
thy were created by Cheng et al. [21] in an AI-based app 
using an alternative transformer-based segmentation algo-
rithm. However, there is no clinically validated algorithm 
for predicting the occurrence of RD in patients with HM. 
We propose a routine blood parameters-based diagnostic 
prediction model to decide who should be offered detailed 
ophthalmic examinations for RD in patients with HM. 
This study developed a clinically feasible routine blood 
parameters-based model for the diagnostic prediction of 
RD, with validation of the model’s performance in two 
cohorts and one HM cohort.

Working hypothesis

In the context of PPPM [22], a prediction of RD risk clas-
sification in the population with HM, more preventative 
treatment via more accurate screening based on routine 
blood parameters across visits would be a beneficial and 
new method for managing patients with HM or RD, as this is 
presently not extensively implemented in the clinical arena. 
Thus, a routine blood parameters-based PPPM approach is 
critical since RD patients would benefit from an objective 
monitoring approach to prevent visual field defect progres-
sion and vision deterioration.

In the framework of PPPM/3 PM, we attempted to design 
and verify a predictive diagnosis tool for swiftly and cor-
rectly triaging patients at high risk of RD. The current study 
hypothesized that innovative routine blood parameters-based 
screening programs might be utilized to improve population 
eye health and develop person-specific, cost-effective pre-
ventative and therapeutic measures. To verify the hypothesis 
and aim of the study, this population-based cross-sectional 
study included 20,870 individuals who underwent compre-
hensive routine blood tests and ophthalmic evaluations. We 
used cost-effective clinical laboratory features to develop 
and validate a routine blood parameters-based model for the 
risk classification of RD in the HM population.
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Method

Study design and setting

This population-based cross-sectional study was done in 
the Eye and ENT Hospital of Fudan University, Shang-
hai, China, from June 2015 to June 2022. This study was 
approved by the Eye and ENT Hospital of Fudan Univer-
sity’s Ethics Committee (EENT2015011), which followed 
the Declaration of Helsinki. In addition, we obtained 
informed consent from all subjects.

A total of 20,870 unrelated subjects (HM = 19,284, 
HMRD = 1586) were enrolled in the study after quality 
control. We used a nested case-control design. First, HMRD 
cases and HM controls were matched based on age and sex. 
Then, the HMRD cases and HM controls were randomly 
assigned to the discovery cohort, validation cohort 1, and 
validation cohort 2 with a ratio of about 6:2:2. The data split 
was stratified randomly to ensure that the discovery cohort 
and the validation cohorts had a similar distribution of data. 
Other subjects were assigned to the HM validation cohort.

Inclusion and exclusion criteria

Emmetropia was defined as a mean spherical equivalent 
(SE) ranging from −0.25 to +0.25 diopters (D). High myo-
pia was defined as a SE of ≤ −6.00 D.

Inclusion criteria of HM: (1) age ≧ 18 years; (2) SE of 
− 6.00 D or higher. Exclusion criteria of HM: (1) missing 
refraction data; (2) history of fundus oculi surgery and self-
reported refractive surgery; (3) retinal detachment; (4) other 
types of fundus oculi diseases, such as macular degenera-
tion, diabetic retinopathy, glaucoma and so on; (5) ocular 
trauma; (6) coagulation disorders; (7) hematologic diseases; 
(8) received drugs that can affect blood components; (9) 
systemic diseases, such as infectious diseases, metabolic 
syndrome, autoimmune disorders, and cancer.

Inclusion criteria of HMRD: (1) age ≧ 18 years; (2) 
SE of − 6.00 D or higher; (3) retinal detachment. Exclu-
sion criteria of HMRD: (1) missing refraction data; (2) 
history of fundus oculi surgery and self-reported refractive 
surgery; (3) other types of fundus oculi diseases, such as 
macular degeneration, diabetic retinopathy, glaucoma and 
so on; (4) ocular trauma; (5) coagulation disorders; (6) 
hematologic diseases; (7) received drugs that can affect 
blood components; (8) systemic diseases, including acute 
infectious diseases, metabolic syndrome, autoimmune dis-
ease, and cancer.

All patients underwent a comprehensive ophthalmologic 
and medical examination. In this study, patients with a miss-
ing value (such as age and sex) were excluded.

Ophthalmic and medical examinations

All patients underwent a comprehensive ophthalmologic 
examination as described previously [23–25]. As described 
previously, all subjects were examined by their respective 
specialty physicians at Fudan University’s Eye and ENT 
Hospital [26–28]. The examinations included slit-lamp 
examination, uncorrected distance visual acuity, corrected 
distance visual acuity, autorefraction, manifest refraction, 
intraocular pressure (IOP), and funduscopic examinations. 
Digital retinal camera analysis of their fundi was performed 
(TRC-NW200, Topcon). The central corneal thickness, axial 
length, and anterior chamber depth were all measured using 
an A-scan ultrasonography (A-Scan Pachymeter, Ultrasonic, 
Exton, PA, USA).

Collection and analysis of blood sample

During the morning, blood samples were obtained by veni-
puncture from the antecubital fossae (anterior elbow veins). 
Blood was drawn from the participants after 8 h of fasting. 
Laboratory parameters were measured within 0.5 h after 
blood samples were collected in ethylenediaminetetraacetic 
acid tubes. Laboratory tests were performed at the Depart-
ment of Clinical Laboratory of Eye and ENT Hospital of 
Fudan University [29].

Quantification of common blood indicators, such as 
platelet count (PLT), thrombocytocrit (PCT), eosinophil 
count (EOA), monocyte count (MONOA), white blood cell 
count (WBC), mean corpuscular hemoglobin concentration 
(MCHC), red blood cell (RBC), mean corpuscular volume 
(MCV), mean corpuscular hemoglobin (MCH), hematocrit 
(HCT), hemoglobin (HGB), neutrophil (NEUTA) (Kobe, 
Japan). Platelet count divided by lymphocyte count is known 
as the platelet-to-lymphocyte ratio (PLR). The ratio of neu-
trophils to lymphocytes (NLR) was established as neutro-
phil count divided by lymphocyte count. Lymphocyte count 
divided by monocyte count is known as the lymphocyte-to-
monocyte ratio (LMR). The systemic immune-inflammation 
index (SII) was defined as the neutrophil count × platelet 
count/lymphocyte count. Internal controls were also ana-
lyzed daily for 10 years, and no significant changes were 
found in their coefficient of variations (CVs).

Selection of the feature indexes

Twenty-two routine blood indexes, including eighteen quan-
titative feature indexes and four transformed indexes, were 
included. The quantitative feature indexes included PLT, 
PCT, EOA, MONOA, WBC, MCHC, RBC, MCV, MCH, 
HCT, HGB, NEUTA, RDWCV, RDWSD, LYMPHA, 
BASOA, MPV, and PDW. The four transformed indexes 
included: PLR, NLR, LMR, and SII.
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To select a subset of variables for model development, 
all candidate variables were ranked by the area under the 
curve (AUC) value. Only variables with high predictability 
(AUC > 0.6) were included in the final model to achieve 
better model performance and offset complexity. In addition, 
logistic analysis was performed to validate the association 
between selected feature indexes and HMRD. The signifi-
cant change in the mean of selected feature indexes between 
the HM and HMRD group were also estimated.

Model development and selection

The algorithm of conditional probability (ACP) model, 
logistic regression model, and classification models are 
applied to predict the event. The accuracy and AUC values 
are set as the output of the model. The classification mod-
els include decision tree, random forest, C5.0, CHAID, and 
neural networks. All selected feature indexes were arranged 
and combined and input into the model. Logistic regression 
model and classification model analyses were performed 
using IBM SPSS Modeler 18.0.

All selected feature indexes were arranged, combined, 
and input into the ACP model. In this study, the Bayes-
ian networks model was used. Use Bayes’ theorem to 
calculate the conditional probability of the event given 
the condition. This is done by multiplying the probabil-
ity of the event given the condition by the probability 
of the condition and then dividing by the probability of 
the event. This is given by P (X| pa (X)), where P is the 
conditional probability, a represents each index, and pa 
(X) represents the parents of index X (mathematical for-
mula: 1−(1-P)/(1−P+P*X)). A similar approach has been 
recently applied to clinical research [30, 31].

Sample size

To calculate the minimum total sample size, we used an 
open-source calculator which is based on the methods 
described by Obuchowski et al. [32] and Li, et al. [33]. 
The input parameters were specificity = 0.8 (allowable 
error = 0.05), sensitivity = 0.8 (allowable error = 0.05), 
and α = 0.025 (2-tailed). Based on this calculation, the 
minimum sample size required for the new model develop-
ment was 247 per group. The total sample size in all our 
cohorts was at least four times higher than this minimum.

Statistical analysis

We performed descriptive statistical analyses for all vari-
ables, and normality was assessed using the Shapiro–Wilk 
test. The statistical difference between cases and con-
trols was analyzed using multiple tests. For instance, an 
independent Student’s t-test was performed for normally 

distributed continuous variables, the Kruskal-Wallis test 
was done for non-normally distributed continuous vari-
ables, and the chi-squared test was used for categorical 
variables when necessary. In addition, one-way ANOVA 
analysis was used for normally distributed continuous 
variables among the three groups. Data of continuous var-
iables were expressed as mean ± SD. Data of categorical 
variables were summarized as frequency and percentage.

Receiver operating characteristic (ROC) curve analysis 
was performed to calculate the AUC value, and the Youden 
index maximizing sensitivity plus specificity was applied 
to determine the best cutoff value. AUC stands for the area 
under the curve and is a measure used to compare the perfor-
mance of different models/biomarkers. AUC is calculated by 
plotting the true positive rate against the false positive rate 
and measuring the AUC value. A model with a higher AUC 
accurately distinguishes between the two classes. It meas-
ures how well a model can distinguish between two classes 
(in this case, positive and negative outcomes). In this study, 
the ability to distinguish between RD and HM patients was 
determined using the AUC of the ROC curve. When the AUC 
surpasses 0.8, the diagnostic ability is deemed strong. It is 
regarded as reasonable when the AUC is higher than 0.7 [34].

The models used to achieve prediction are the ACP 
model, logistic regression model, decision tree, random for-
est, C5.0, CHAID, and neural networks. The performance 
of the diagnostic model was evaluated by metrics including 
accuracy, sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and AUC with 95% 
confidence intervals (CIs). The Hosmer-Lemeshow good-
ness of fit test analyzed calibration.

Univariate and multivariate logistic regression models 
were used to estimate odds ratios (ORs) and 95% confidence 
intervals (CIs). P-values less than 5% were considered sta-
tistically significant. All statistical analyses were performed 
using MedCalc statistical software and SPSS (version 19.0; 
SPSS Inc., Chicago, IL, USA).

Results

Study participants

A total of 20,870 unrelated subjects (HM = 19,284, HMRD 
= 1586) were enrolled after quality control. HMRD cases 
and HM controls were matched, resulting in a total of 
3451 subjects available for analysis (HM = 1865, HMRD 
= 1586). These subjects were randomly assigned to the 
discovery cohort (HM = 1119, HMRD = 950), valida-
tion cohort 1 (HM = 373, HMRD = 318), and validation 
cohort 2 (HM = 373, HMRD = 318) by a ratio of about 
6:2:2 (Fig. 1A). Other HM subjects (HM = 17,419) were 
assigned to the HM validation cohort.
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There was no statistical difference in the mean age (P > 
0.05) and the proportion of sex (P > 0.05) between HMRD 
cases and HM controls among the discovery and validation 
cohorts and among the discovery cohort, validation cohort 
1, and validation cohort 2 (Table 1).

Feature indexes selection in the discovery cohort

Figure 2A and Table 2 show the AUC value of the 22 can-
didate indicators in the discovery cohort. Among the 22 
candidate indicators, six candidate indicators (Fig. 2B), 
namely LYMPHA, BASOA, LMR, MPV, NLR, and PDW, 
showed better performance (AUC > 0.6) in diagnosing RD 
in patients with HM. The AUC of LYMPHA was 0.68 (95% 
confidence interval (CI): 0.66–0.70, P < 0.001). The AUC 

of BASOA was 0.64 (95% CI: 0.61–0.66, P < 0.001). The 
AUC of LMR was 0.63 (95% CI: 0.61–0.66, P < 0.001). The 
AUC of MPV was 0.68 (95% CI: 0.66–0.71, P < 0.001). The 
AUC of NLR was 0.70 (95% CI: 0.67–0.72, P < 0.001). The 
AUC of PDW was 0.72 (95% CI: 0.69–0.74, P < 0.001).

Validation of the feature indexes in the validation 
cohorts

In validation cohort 1, six candidate indicators also 
showed better performance (AUC > 0.6) in diagnosing 
HMRD in patients with HM (Fig. 3A, Table 3). The AUC 
of LYMPHA was 0.28 (95% CI: 0.24–0.32, P < 0.001). 
The AUC of BASOA was 0.64 (95% CI: 0.60–0.68, P < 
0.001). The AUC of LMR was 0.61 (95% CI: 0.58–0.65, 

Fig. 1   Study consort diagram and cohort description. A Study con-
sort diagram: flowchart of high myopia (HM) and retinal detachment 
(RD). B Distribution of LYMPHA, BASOA, LMR, MPV, NLR, and 
PDW between HM and HMRD in the discovery cohort. C Distribu-

tion of LYMPHA, BASOA, LMR, MPV, NLR, and PDW between 
HM and HMRD in validation cohort 1. D Distribution of LYMPHA, 
BASOA, LMR, MPV, NLR, and PDW between HM and HMRD in 
validation cohort 2
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P < 0.001). The AUC of MPV was 0.65 (95% CI: 0.61–0.70, 
P < 0.001). The AUC of NLR was 0.71 (95% CI: 0.67–0.75, 
P < 0.001). The AUC of PDW was 0.72 (95% CI: 0.68–0.76, 
P < 0.001).

In validation cohort 2, similar results were observed 
(Fig. 3B, Table 3). The AUC of LYMPHA was 0.70 (95% 
CI: 0.66–0.73, P < 0.001). The AUC of BASOA was 0.63 
(95% CI: 0.59–0.66, P < 0.001). The AUC of LMR was 
0.64 (95% CI: 0.60–0.67, P < 0.001). The AUC of MPV 
was 0.66 (95% CI: 0.62–0.70, P < 0.001). The AUC of 
NLR was 0.71 (95% CI: 0.67–0.75, P < 0.001). The AUC 
of PDW was 0.67 (95% CI: 0.63–0.71, P < 0.001).

The distributions of feature indexes

The distributions of LYMPHA, BASOA, LMR, MPV, 
NLR, and PDW in the discovery cohort (P > 0.05), 
validation cohort 1 (P > 0.05), and validation cohort 
2 (P > 0.05). The distribution of LYMPHA, BASOA, 
LMR, MPV, NLR, and PDW was similar across the three 
cohorts, and the distribution of these indicators is shown 
in Figs. 1 B–D.

Table 1   Baseline characteristics in the discovery and validation 
cohorts

Variables HM HMRD P value

Discovery cohort
  Number, n 1119 950
  Age (year) 49.11±8.70 49.32±15.30 0.711
  Sex (male) 307 (27.43%) 270 (28.42%) 0.618
Validation cohort 1
  Number, n 373 318
  Age (year) 49.36±9.23 49.34±15.47 0.989
  Sex (male) 100 (26.81%) 88 (27.67%) 0.799
Validation cohort 2
  Number, n 373 318
  Age (year) 49.77±9.05 49.29±15.25 0.629
  Sex (male) 97 (26.01%) 89 (27.99) 0.558
P value (age) 0.464 0.999
P value (sex) 0.860 0.957

Fig. 2   The area under the 
receiver operating characteristic 
(ROC) curves of twenty-two 
routine blood indexes for pre-
diction of occurrence of retinal 
detachment in patients with 
high myopia in the discovery 
cohort. A ROC curve of EOA, 
HCT, HGB, MCH, MCHC, 
and MCV. B ROC curve of 
MONOA, NEUTA, PCT, PLR, 
PLT, and RBC. C ROC curve 
of RDWCV, RDWSD, SII, and 
WBC. D ROC curve of LYM-
PHA, BASOA, LMR, MPV, 
NLR, and PDW
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Furthermore, the mean levels of BASOA, LYM-
PHA, and LMR were significantly higher (P < 0.001) 
in HM groups than in HMRD groups in the discovery 
cohort (Fig. 1B). However, the mean levels of NLR, 
PDW, and MPV were significantly lower (P < 0.001) 
in HM groups than in HMRD groups in the discovery 
cohort (Fig. 1B). Similar results were also observed 
in validation cohort 1 (Fig. 1C) and validation cohort 
2 (Fig. 1D).

The risk of feature indexes for HMRD by logistic 
analysis

Next, we performed univariate and multivariate logistic 
regression analyses to validate the relationship between can-
didate indicators and the risk of HMRD in patients with HM 
(Table 4). Both univariate and multivariate logistic regression 
analyses show that a high level of PDW, NLR, and MPV were 
risk factors for HMRD in patients with HM in the discovery 
cohort. On the contrary, low levels of LMR, BASOA, and 
LYMPHA were risk factors for HMRD in patients with HM 
in the discovery cohort. In validation cohort 1 and validation 
cohort 2, similar results were observed.

Diagnostic model development and selection

To further develop the model, we then selected a few can-
didate variables ranked by AUC value. Finally, the top six 
better-performing variables, such as LYMPHA, BASOA, 
LMR, MPV, NLR, and PDW, were chosen for the final 
model because of their high predictive ability (AUC > 0.6).

Using these six candidate variables, we observed 
that in the discovery cohort, the ACP model has the 
highest AUC and accuracy in diagnosing HMRD in 
patients with HM (AUC = 0.79, accuracy = 0.72). This 
was followed by the neural networks (AUC = 0.77, 
accuracy = 0.71), logistic regression (AUC = 0.77, 
accuracy = 0.70), and other models. The performance 
of the classification models for HMRD diagnostic is 
listed in Table 5. These results show that for predicting 
HMRD in patients with HM, the ACP model is a better 
performer compared to other models.

Furthermore, 22 features and two demographic fac-
tors (age and sex) were integrated into seven algorithm 
models to compare the performance with the six features-
based models. The performance of the 22 features and two 
demographic factors-based models for HMRD diagnos-
tic is listed in Table S1. The performance between all 24 
parameters-based models and six selected features-based 
models was similar.

ACP model performance evaluation

The ACP model performance was then evaluated in the dis-
covery cohort, validation cohort 1, and validation cohort 2 
(Table 6). The AUC of the ACP diagnostic model was 0.79 
(95% CI: 0.77–0.81, P < 0.001) in the discovery cohort 
(Fig. 4A). In the discovery cohort, the ACP model achieved 
a diagnostic accuracy of 0.72, a sensitivity of 0.71, a speci-
ficity of 0.74, a PPV of 0.68, and an NPV of 0.76.

Table 2   The performance of routine blood index in the discovery 
cohort

PLT platelet count, PCT thrombocytocrit, EOA eosinophil count, 
MONOA monocyte count, WBC white blood cell count, MCHC mean 
corpuscular hemoglobin concentration, RBC red blood cell, MCV 
mean corpuscular volume, MCH mean corpuscular hemoglobin, HCT 
hematocrit, HGB hemoglobin, NEUTA​ neutrophil, RDWCV red cell 
distribution width coefficient of variation, RDWSD red cell distribu-
tion width standard deviation, LYMPHA lymphocyte count, BASOA 
basophil count, MPV mean platelet volume, PDW platelet distribution 
width, PLR platelet-to-lymphocyte ratio, NLR neutrophil-to-lympho-
cyte ratio, LMR lymphocyte-to-monocyte ratio, SII systemic immune-
inflammation index

Variable AUC​ S. E P 95%CI

Lower Upper

AUC (0.5–0.6)
  PLT 0.60 0.01 <0.001 0.58 0.63
  PCT 0.53 0.01 0.01 0.51 0.56
  EOA 0.53 0.01 0.02 0.51 0.56
  MONOA 0.53 0.01 0.04 0.51 0.55
  WBC 0.51 0.01 0.69 0.48 0.53
  MCHC 0.52 0.01 0.07 0.50 0.55
  RBC 0.53 0.01 0.01 0.51 0.56
  MCV 0.55 0.01 <0.001 0.53 0.58
  MCH 0.55 0.01 <0.001 0.53 0.58
  HCT 0.55 0.01 <0.001 0.53 0.58
  HGB 0.56 0.01 <0.001 0.53 0.58
  NEUTA​ 0.58 0.01 <0.001 0.55 0.60
  RDWCV 0.58 0.01 <0.001 0.55 0.60
  PLR 0.59 0.01 <0.001 0.56 0.61
  RDWSD 0.59 0.01 <0.001 0.56 0.61
  SII 0.60 0.01 <0.001 0.59 0.64
AUC (>0.6)
  LYMPHA 0.68 0.01 <0.001 0.66 0.70
  BASOA 0.64 0.01 <0.001 0.61 0.66
  LMR 0.63 0.01 <0.001 0.61 0.66
  MPV 0.68 0.01 <0.001 0.66 0.71
  NLR 0.70 0.01 <0.001 0.67 0.72
  PDW 0.72 0.01 <0.001 0.69 0.74
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In the validation cohort 1, the ACP diagnostic model achieved 
an AUC of 0.81 (95% CI: 0.77–0.84, P < 0.001, Fig. 4B) with 
a diagnostic accuracy of 0.72, a sensitivity of 0.71, a specificity 
of 0.73, a PPV of 0.67, and an NPV of 0.77 (Table 6).

In the validation cohort 2, the ACP diagnostic model 
achieved an AUC of 0.77 (95% CI: 0.73–0.80, P < 0.001, 
Fig. 4C) with a diagnostic accuracy of 0.71, a sensitivity of 
0.70, a specificity of 0.72, a PPV of 0.64, and an NPV of 
0.77 (Table 6).

The Hosmer-Lemeshow goodness of fit test showed that 
the ACP diagnostic model had good calibration in the dis-
covery cohort (χ2 = 11.363, P = 0.182), validation cohort 1 
(χ2 = 9.704, P = 0.286), and validation cohort 2 (χ2 = 4.609, 
P = 0.798) (Table 6).

ACP model performance evaluation in HM cohort

A total of 17,419 HM patients were assigned to the HM valida-
tion cohort. The distributions of HM patients based on the ACP 
diagnostic model are shown in Fig. 5A. Based on the cutoff 
value of 0.165, 14,092 subjects (> 0.165) were considered HM, 
and 3327 subjects (> 0.165) were considered HMRD (Fig. 5B). 
In the HM validation cohort, the ACP model achieved a diag-
nostic accuracy of 0.81 for negative classification.

Discussion

Data interpretation

In this study, we considered the PPPM/3 PM strategy for 
predictive diagnosis RD in patients with HM. We applied 
the cost-effective clinical routine blood parameters pro-
file to develop and validate the prediction models. As a 
result, we innovatively developed a routine blood param-
eters-based ACP model for predictive diagnosis of RD 
in patients with HM. The ACP model provided margin-
ally better results than the decision tree, random forest, 
C5.0, CHAID, neural networks, and logistic regression 
models in terms of AUC and accuracy obtained in the 
discovery cohort. This is the first study to develop an 

Fig. 3   The area under the receiver operating characteristic curves 
(ROC) of LYMPHA, BASOA, LMR, MPV, NLR, and PDW for pre-
diction of occurrence retinal detachment in patients with high myo-
pia. A ROC of LYMPHA, BASOA, LMR, MPV, NLR, and PDW 

for prediction of occurrence retinal detachment in patients with high 
myopia in validation cohort 1. B ROC of LYMPHA, BASOA, LMR, 
MPV, NLR, and PDW for prediction of occurrence retinal detach-
ment in patients with high myopia in validation cohort 2

Table 3   The performance of selected routine blood index in the vali-
dation cohort

PDW platelet distribution width, NLR neutrophil-to-lymphocyte ratio, 
MPV mean platelet volume, LMR lymphocyte-to-monocyte ratio, 
BASOA basophil count, LYMPHA lymphocyte count

Variable AUC​ S. E P 95%CI

Lower Upper

Validation cohort 1
  PDW 0.72 0.02 <0.001 0.68 0.76
  NLR 0.71 0.02 <0.001 0.67 0.75
  MPV 0.65 0.02 <0.001 0.61 0.70
  LMR 0.61 0.02 <0.001 0.58 0.65
  BASOA 0.64 0.02 <0.001 0.60 0.68
  LYMPHA 0.72 0.02 <0.001 0.68 0.76
Validation cohort 2
  PDW 0.67 0.02 <0.001 0.63 0.71
  NLR 0.71 0.02 <0.001 0.67 0.75
  MPV 0.66 0.02 <0.001 0.62 0.70
  LMR 0.64 0.02 <0.001 0.60 0.67
  BASOA 0.63 0.02 <0.001 0.59 0.66
  LYMPHA 0.70 0.02 <0.001 0.66 0.73
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ACP model based on six routine blood parameters to 
predict RD with high AUC, accuracy, and robustness. 
This process can improve patient risk stratification and 
individualized treatment.

In the discovery cohort, the ACP model demonstrated 
good discrimination between HM patients with and with-
out RD (AUC = 0.79, P < 0.001, 95% CI = 0.77–0.81). 
Importantly, model performance was robust in validation 
cohort 1 (AUC = 0.81, P < 0.001, 95% CI = 0.77–0.88) 

and validation cohort 2 (AUC = 0.77, P < 0.001, 95% CI 
= 0.73–0.80). Furthermore, a high diagnostic accuracy 
(0.81) for negative classification was also achieved in 
the HM validation cohort. Our results suggest that the 
routine blood parameters-based ACP model is a good 
predictor for HMRD and will facilitate the timely iden-
tification of high-risk HM subjects to prevent HM pro-
gression to RD.

AI techniques achievements based on fundus image 
to diagnose RD in the previous studies

Several investigators have reported fundus image-based 
models for automated RD detection [35–38]. For example, 
Lin et al. [37] developed a cascaded deep learning system 
based on 11,087 ultra-widefield fundus images, which 
reported a 96.1% sensitivity and a 99.6% specificity with 
an AUC of 0.989 (95% CI: 0.978–0.996) to detect RD. 
Meanwhile, Ohsugi and colleagues [36] included 411 ultra-
wide-field fundus images and found that the deep learn-
ing model demonstrated a high sensitivity of 97.6% (95% 
CI, 94.2–100%) and a high specificity of 96.5% (95% CI, 
90.2–100%), with AUC of 0.988 (95% CI, 0.981–0.995). 

Table 4   Univariable logistic 
analysis and multivariable 
logistic analysis in the discovery 
cohort and validation cohort

*Adjusted for gender (male=1, female=2) and age
PDW platelet distribution width, NLR neutrophil-to-lymphocyte ratio, MPV mean platelet volume, LMR 
lymphocyte-to-monocyte ratio, BASOA basophil count, LYMPHA lymphocyte count

Univariable analysis Multivariable analysis*

OR (95%CI) P value OR (95%CI) P value

Discovery cohort
  PDW 1.189 (1.134–1.246) <0.001 1.189 (1.134–1.247) <0.001
  NLR 1.654 (1.446–1.892) <0.001 1.651 (1.443–1.889) <0.001
  MPV 1.321 (1.179–1.481) <0.001 1.321 (1.178–1.481) <0.001
  LMR 0.936 (0.892–0.923) 0.003 0.937 (0.893–0.923) 0.004
  BASOA 0.001 (0.000–0.001) <0.001 0.001 (0.000–0.001) <0.001
  LYMPHA 0.694 (0.551–0.875) <0.001 0.689 (0.546–0.869) 0.002
Validation cohort 1
  PDW 1.241 (1.139–1.353) <0.001 1.236 (1.133–1.348) <0.001
  NLR 1.667 (1.304–2.131) <0.001 1.671 (1.306–2.136) <0.001
  MPV 1.262 (1.029–1.547) 0.026 1.300 (1.055–1.601) 0.014
  LMR 0.785 (0.714–0.862) <0.001 0.780 (0.709–0.858) <0.001
  BASOA 0.001 (0.000–0.087) 0.019 0.001 (0.000–0.130) 0.023
  LYMPHA 0.379 (0.240–0.600) <0.001 0.358 (0.224–0.570) <0.001
Validation cohort 2
  PDW 1.217 (1.146–1.293) <0.001 1.221 (1.149–1.297) <0.001
  NLR 1.903 (1.504–2.407) <0.001 2.056 (1.702–2.485) <0.001
  MPV 1.560 (1.289–1.888) <0.001 1.736 (1.476–2.042) <0.001
  LMR 0.873 (0.789–0.965) 0.008 0.873 (0.789–0.965) 0.008
  BASOA 0.001 (0.000–0.001) 0.001 0.001 (0.000–0.001) <0.001
  LYMPHA 0.408 (0.287–0.965) <0.001 0.396 (0.277–0.564) <0.001

Table 5   Performance of the seven types of models for HMRD predic-
tion

Model AUC​ Accuracy

ACP 0.79 0.72
Random forest 0.75 0.68
C5.0 0.76 0.68
Decision tree 0.75 0.71
CHAID 0.74 0.69
Neural networks 0.77 0.71
Logistic regression 0.77 0.70
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Using dual-stream deep convolutional neural networks, Li 
et al. displayed consistent performance with high sensitivity, 
specificity, and AUC on fundus images obtained from clinics 
to diagnose distinct myopic maculopathy levels (tessellated 
fundus or pathologic myopia) [38].

Furthermore, a study by Li et al. [39] developed and vali-
dation of a deep learning system to screen vision-threatening 
conditions in HM patients using optical coherence tomog-
raphy images. The model was trained on a dataset of fun-
dus images from high myopia patients and could accurately 
detect retinal detachment with an AUC of 0.986.

Fundus image has been an excellent tool for machine 
learning training in identifying common retinal diseases. 
Although these fundus image-based models showed better 
performance, they are unsuitable for screening patients due 
to their reliance on professional eye examination equipment. 
Of note, patients rarely visit an ophthalmologist until the 
symptoms aggravate or visual acuity sharply drops [40]. 
Therefore, it is hard to predict and diagnose RD early by 
relying solely on fundus image-based models. Hence, it 
remains an unmet clinical need to develop a rapid, reliable, 
and economically feasible screening approach to detect RD.

Routine blood parameters‑based model applied 
to non‑ophthalmic diseases

As we know, there are no other studies with blood-based bio-
markers for predicting the occurrence of RD in patients with 
HM. However, routine blood indexes-based deep-learning 
algorithms have been successfully applied to non-ophthalmic 
diseases in recent years [41–45]. For example, using routine 
blood tests from 15,176 neurological patients, Podnar et al. [42] 
built a machine learning-based predictive model for the diagno-
sis of brain tumors and found that the sensitivity of the model 
was 96% (95% CI, 91–100%), the specificity was 74% (95% 
CI, 68–79%), and the accuracy was 79% (95% CI, 74–84%). 
According to data from the UK Biobank cohort, blood-based 
biomarkers obtained during regular exams are sensitive to both 
preclinical and clinical cases of colorectal cancer. The final Cox 
and tree-boosting models achieved a C-index and an AUC of 
0.67 and 0.76, respectively [45]. Furthermore, Araújo et al. 
[46] developed a machine learning-based panel composed of 
parameters derived from complete blood counts (lymphocytes, 

MCV, platelets, and RDW), with an average AUC of 0.91 to 
predict death by COVID-19. In addition, a recent study suggests 
that simple blood test abnormalities can be used to identify 
patients with unexpected weight loss who need further evalua-
tion [47]. Thus, routine blood parameters may contain far more 
information than recognized, and detecting such non-obvious 
interrelationships is suitable for developing a machine-learning 
model for screening diseases.

Strengths

The routine blood parameters-based ACP model developed 
in this study is a rapid, reliable, easily accessible, and eco-
nomical clinical model for the diagnosis of RD. Our study 
has numerous strengths compared to previously published 
reports. First, it has only six well-performed indexes, all 
of which can be completed within 30 min during a routine 
blood test. Second, the routine blood test is an economic 
health examination item, costing only 20 Yuan Ren Min Bi 
(approximately 3 dollars) in China. Third, routine labora-
tory tests in primary care increase its clinical applicabil-
ity, avoiding the requirement for professional ophthalmic 
examination, often only available in a specialized hospi-
tal setting. Last, based on the above advantages and good 
model performance, the routine blood parameters-based 
ACP model could help decide who should be offered 
detailed ophthalmic examinations for RD in patients with 
HM. In addition, the ACP model showed similar predictive 
performance in the discovery cohort, validation cohorts, 
and HM validation cohorts. Thus, the routine blood param-
eters-based ACP could be used in the primary care setting 
to screen RD in patients with HM.

Limitations

Our study has the following limitations. First, the input 
data of our ACP model are only routine blood param-
eters and did not include demographic factors, ophthal-
mic or other clinical parameters, and other no-routine 
blood inflammatory factors. Clinical RD evaluation and 
diagnosis generally require integrated analysis of mul-
tiple modalities. Our study only chose routine blood 
parameters as the input due to their high feasibility and 

Table 6   The performance of the ACP model*

PPV, positive predictive value; NPV, negative predictive value; HL, Hosmer-Lemeshow test; ACP, algorithm of conditional probability
*Combined LYMPHA, BASOA, LMR, MPV, NLR, and PDW index

Cutoff AUC (P, 95% CI) Sensitivity Specificity PPV NPV Accuracy HL χ2 (P value)

Discovery cohort 0.165 0.79 (<0.001, 0.77–0.81) 0.71 0.74 0.68 0.76 0.72 11.363 (0.182)
Validation cohort 1 0.165 0.81 (<0.001, 0.77–0.84) 0.71 0.73 0.67 0.77 0.72 9.704 (0.286)
Validation cohort 2 0.165 0.77 (<0.001, 0.73–0.80) 0.70 0.72 0.64 0.77 0.71 4.609 (0.798)

228 



EPMA Journal (2023) 14:219-233 

1 3

widespread availability. Meanwhile, the primary purpose 
of our study was a proof-of-concept study as to whether 
routine blood parameters contained sufficient informa-
tion to predict RD in patients with HM robustly. Future 
studies are required to further improve the diagnostic per-
formance of the ACP model by incorporating other rou-
tine data. Second, the routine blood test was performed 
using a Sysmex series automated blood counting system 
(Kobe, Japan). Variability in the results obtained from 
other automated blood counting systems may limit the 
application of the ACP model. Third, all the data used 
for building the ACP model were from patients of one 
population cohort. However, the population-level changes 
in the reference level of routine blood indexes should be 
accounted for across different populations. Hence, this 
ACP model must be further validated in other populations 
to determine its broader applicability.

Conclusions and expert recommendations

Due to the reactive medical approach to disease manage-
ment, RD reached an epidemic scale worldwide, impacting 
about 1% of the world population. Moreover, the incidence 
of RD trends to increase, particularly for individuals with 
HM. The corresponding socio-economic burden is enor-
mous. Further, clinically manifested RD is only the “tip 
of the iceberg”: apparently, the total size is about greater 
in the population than the currently applied reactive medi-
cal approach. To this end, we used cost-effective clinical 
laboratory features to develop and validate a routine blood 
parameters-based model for the risk. It is a candidate predic-
tion model in predicting patient risk classification, which can 
be applied for predictive diagnosis of RD in a population 
with HM. of RD in the HM population. In this work, we 
have developed an ACP model to predict the onset of RD 
among HM subjects based on six routine blood parameters, 
namely LYMPHA, BASOA, LMR, MPV, NLR, and PDW. 
We established and compared seven models to pre-screen 
RD in patients with HM, showing that the ACP-based model 
has the highest overall predictive power. This model may 
help predict RD in patients with HM, and informed deci-
sions on who should be offered detailed ophthalmic exami-
nations could be made. Furthermore, the model promotes the 
precise prevention and personalized administration of HM 
subjects at high risk of RD onset. Accordingly, this supports 
the paradigm shift from reactive medicine to PPPM/3 PM.

Fig. 4   The area under the receiver operating characteristic curves of 
the ACP model for prediction of the occurrence of retinal detachment 
in patients with high myopia. A–C Predictive performance of the 
ACP model in the discovery cohort (n = 2069), the validation cohort 
1 (n = 691), and the validation cohort 2 (n = 691)

▸
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For the further application routine blood 
parameters‑based model in the context of PPPM 
in RD management, we recommend the following

Predictive medical approach  Routine blood indexes-based 
models have been successfully applied to non-ophthalmic 
diseases in recent years [41, 42]. The routine blood parame-
ters-based model for ophthalmic diseases yields a better-dis-
criminating power or predictive accuracies for predicting HM 
individuals likely to develop early-onset RD. It is a candidate pre-
diction model in predicting patient risk classification which can be 
applied for the predictive diagnosis of RD in population with HM.

Targeted prevention  The timely detection of RD could pre-
vent visual field defect progression. The early identification 
of HM individuals with a high risk of RD is a cost-effective 
way for the targeted prevention of RD diseases. Based on 
each patient’s unique risk profile, this model may enable 
tailored follow-up and care to lower the risk of advancing 
visual field abnormalities.

Personalized treatments  The early diagnosis of RD and timely 
treatment could effectively save vision. Accumulating evidence 
suggests inflammation plays an essential role in RD pathogen-
esis [15, 16]. It is well-recognized that routine blood param-
eters reflect the body’s overall homeostasis and inflammatory 
status. A high inflammatory state is related to an increased 
risk of RD. It should be used to justify additional investigation 
and individualized therapies incorporating anti-inflammatory 
medicines, nutritional substitutes, and therapy supplements, 
such as diet and exercise regimens. Consequently, from the 
viewpoints of PPPM in vulnerable populations and individual 
monitoring, dynamically monitoring routine blood parameters 
might be a unique approach that could enhance customized 
management in the treatment of RD or HM.

Importantly, what is exactly the added value of our 
study?

The research described in this study advances our knowledge 
and will be helpful when evaluating PPPM in RD patients.

First, a model based on routine blood parameters can be a valu-
able tool for predicting an individual’s transition from HM to RD.

Second, to avoid disease progression from HM to RD 
based on each patient’s unique risk profile, a routine blood 
parameters-based model may provide tailored follow-up and 
care for each patient.

Finally, routine blood parameters-based models may 
also be utilized in the future, either alone or in combina-
tion with additional biochemical markers, in algorithms to 
choose the most appropriate course of treatment for each 
patient, including anti-inflammatory drugs, nutritional 
supplements, or therapy supplements. For example, (1) 
several studies reported that anti-inflammatory treatment 
in RD results in restoration of the anatomical position of 
the ciliary body and improves reattachment rates [48–50]; 
(2) according to surveys on lutein and zeaxanthin supple-
mentation, moderate intakes of these nutrients are linked 
to a lower incidence of RD and reduced visual impairment 
[51]; (3) Alejandra Daruich et al. [52] performed a clini-
cal trial and reported that oral ursodeoxycholic acid is a 
potential neuroprotective adjuvant therapy in RD.

The paradigm shifts from reactive to PPPM/3PM 
and go beyond the state of the art

(1)	 Developing innovative solutions for better predictive, 
preventative, and customized capability, as well as 
improved cost-efficiency of healthcare systems based 

Fig. 5   The number of high myopia subjects according to the level of ACP model-based value (A). The number of high myopia subjects in the 
ACP model-based value<0.165 group and >0.165 group (B)
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on a routine blood parameters-based model for screen-
ing the incidence of RD in HM in the context of PPPM.

(2)	 Risk stratification of RD patients and improvement of 
individual clinical outcomes at the secondary care level.

(3)	 Instead of depending on qualified ophthalmologists and 
ophthalmic equipment, a simple, accurate, and financially 
viable clinical model based on routine blood parameters is 
preferred for predicting the onset of RD in patients with HM.

A crucial part of the PPPM approach during the EPMA World 
Congress 2019 was the tailored and real-time monitoring of 
patient biological parameters to enhance therapeutic results [53]. 
Improving the levels of routine blood parameters might potentially 
increase both—the quality of vision and the life quality.

Despite routine blood parameters-based model simplicity 
and quick administration, this predictive tool still needs further 
validation and calibration in longitudinal studies. Additional 
prospective data collection in actual primary care settings 
is required to verify this recent result’s validity and further 
improve the final risk prediction model.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13167-​023-​00319-3.

Acknowledgements  The authors would like to thank Sysmex Corpora-
tion (Shanghai) for their assistance in statistical analysis.

Code availability  All software applications used are included in this article.

Author contribution  SJ. Li: data curation, formal analysis, investigation, 
visualization, writing—original draft, project administration, writing—
review and editing. MY Li: data curation, investigation, visualization, 
writing—review and editing. JN Wu: data curation, visualization, writ-
ing—original draft, project administration, writing—review and edit-
ing. YZ Li: resources, investigation, writing—original draft, writing—
review and editing. JP Han: resources, investigation, writing—original 
draft, writing—review and editing. WJ Cao: resources, supervision, 
funding acquisition, investigation, writing—original draft, writing—
review and editing. XT Zhou: resources, supervision, funding acquisi-
tion, investigation, writing—original draft, writing—review and editing.

Funding  This work was supported by Youth Medical Talents – Clinical 
Laboratory Practitioner Program (2022-65), Shanghai Municipal Com-
mission of Health and Family Planning (20224Y0317), Clinical Research 
Plan of SHDC (SHDC2020CR1043B), Project of Shanghai Xuhui Dis-
trict Science and Technology (2020-015). The sponsor or funding organi-
zation had no role in the design or conduct of this research.

Data availability  The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on 
reasonable request.

Declarations 

Ethics approval  This study was approved by the Eye and ENT Hospital 
of Fudan University’s Ethics Committee (EENT2015011), which fol-
lowed the Declaration of Helsinki.

Consent to participate  Informed consent was obtained from all participants.

Consent for publication  Not applicable.

Competing interests  The authors declare no competing interests.

References

	 1.	 Bourne RRA, Stevens GA, White RA, Smith JL, Flaxman SR, 
Price H, et al. Causes of vision loss worldwide, 1990-2010: a 
systematic analysis. Lancet Glob Health. 2013;1:e339–49. https://​
doi.​org/​10.​1016/​S2214-​109X(13)​70113-X.

	 2.	 Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sanka-
ridurg P, et al. Global prevalence of myopia and high myopia 
and temporal trends from 2000 through 2050. Ophthalmology. 
2016;123:1036–42. https://​doi.​org/​10.​1016/j.​ophtha.​2016.​01.​006.

	 3.	 Ding B-Y, Shih Y-F, Lin LLK, Hsiao CK, Wang I-J. Myopia among 
schoolchildren in East Asia and Singapore. Surv Ophthalmol. 
2017;62:677–97. https://​doi.​org/​10.​1016/j.​survo​phthal.​2017.​03.​006.

	 4.	 Tsai T-H, Liu Y-L, Ma I-H, Su C-C, Lin C-W, Lin LL-K, et al. Evo-
lution of the prevalence of myopia among Taiwanese schoolchildren: 
a review of survey data from 1983 through 2017. Ophthalmology. 
2021;128:290–301. https://​doi.​org/​10.​1016/j.​ophtha.​2020.​07.​017.

	 5.	 Morgan IG, Ohno-Matsui K, Saw S-M. Myopia. Lancet. 2012;379:1739–
48. https://​doi.​org/​10.​1016/​S0140-​6736(12)​60272-4.

	 6.	 Bullimore MA, Ritchey ER, Shah S, Leveziel N, Bourne RRA, 
Flitcroft DI. The risks and benefits of myopia control. Ophthal-
mology. 2021;128:1561–79. https://​doi.​org/​10.​1016/j.​ophtha.​
2021.​04.​032.

	 7.	 Han X, Ong J-S, An J, Craig JE, Gharahkhani P, Hewitt AW, et al. Asso-
ciation of myopia and intraocular pressure with retinal detachment 
in european descent participants of the UK Biobank Cohort: a men-
delian randomization study. JAMA Ophthalmol. 2020;138:671–8. 
https://​doi.​org/​10.​1001/​jamao​phtha​lmol.​2020.​1231.

	 8.	 Mitry D, Charteris DG, Fleck BW, Campbell H, Singh J. The 
epidemiology of rhegmatogenous retinal detachment: geo-
graphical variation and clinical associations. Br J Ophthalmol. 
2010;94:678–84. https://​doi.​org/​10.​1136/​bjo.​2009.​157727.

	 9.	 Achour H, Thomseth VM, Kvaløy JT, Krohn J, Utheim TP, For-
saa VA. Substantial increase in the incidence of rhegmatogenous 
retinal detachment in Western Norway over 20 years. Acta Oph-
thalmol. 2022;100(7):763–8. https://​doi.​org/​10.​1111/​aos.​15119.

	10.	 Sodhi A, Leung L-S, Do DV, Gower EW, Schein OD, Handa 
JT. Recent trends in the management of rhegmatogenous retinal 
detachment. Surv Ophthalmol. 2008;53:50–67. https://​doi.​org/​10.​
1016/j.​survo​phthal.​2007.​10.​007.

	11.	 Golubnitschaja O, Costigliola V, EPMA. General report & recom-
mendations in predictive, preventive and personalised medicine 
2012: white paper of the European Association for Predictive, Pre-
ventive and Personalised Medicine. EPMA J. 2012;3:14. https://​
doi.​org/​10.​1186/​1878-​5085-3-​14.

	12.	 Golubnitschaja O, Potuznik P, Polivka J, Pesta M, Kaverina O, 
Pieper CC, et al. Ischemic stroke of unclear aetiology: a case-by-
case analysis and call for a multi-professional predictive, preven-
tive and personalised approach. EPMA J. 2022;13:535–45. https://​
doi.​org/​10.​1007/​s13167-​022-​00307-z.

	13.	 Lin H-J, Wei C-C, Chang C-Y, Chen T-H, Hsu Y-A, Hsieh Y-C, 
et  al. Role of Chronic inflammation in myopia progression: 
clinical evidence and experimental validation. EBioMedicine. 
2016;10:269–81. https://​doi.​org/​10.​1016/j.​ebiom.​2016.​07.​021.

	14.	 Wojciechowski R, Yee SS, Simpson CL, Bailey-Wilson JE, Stam-
bolian D. Matrix metalloproteinases and educational attainment in 
refractive error: evidence of gene-environment interactions in the 
Age-Related Eye Disease Study. Ophthalmology. 2013;120:298–
305. https://​doi.​org/​10.​1016/j.​ophtha.​2012.​07.​078.

	15.	 Augustine J, Pavlou S, Ali I, Harkin K, Ozaki E, Campbell M, 
et al. IL-33 deficiency causes persistent inflammation and severe 

231 

https://doi.org/10.1007/s13167-023-00319-3
https://doi.org/10.1016/S2214-109X(13)70113-X
https://doi.org/10.1016/S2214-109X(13)70113-X
https://doi.org/10.1016/j.ophtha.2016.01.006
https://doi.org/10.1016/j.survophthal.2017.03.006
https://doi.org/10.1016/j.ophtha.2020.07.017
https://doi.org/10.1016/S0140-6736(12)60272-4
https://doi.org/10.1016/j.ophtha.2021.04.032
https://doi.org/10.1016/j.ophtha.2021.04.032
https://doi.org/10.1001/jamaophthalmol.2020.1231
https://doi.org/10.1136/bjo.2009.157727
https://doi.org/10.1111/aos.15119
https://doi.org/10.1016/j.survophthal.2007.10.007
https://doi.org/10.1016/j.survophthal.2007.10.007
https://doi.org/10.1186/1878-5085-3-14
https://doi.org/10.1186/1878-5085-3-14
https://doi.org/10.1007/s13167-022-00307-z
https://doi.org/10.1007/s13167-022-00307-z
https://doi.org/10.1016/j.ebiom.2016.07.021
https://doi.org/10.1016/j.ophtha.2012.07.078


EPMA Journal (2023) 14:219-233 

1 3

neurodegeneration in retinal detachment. J Neuroinflammation. 
2019;16:251. https://​doi.​org/​10.​1186/​s12974-​019-​1625-y.

	16.	 Dai Y, Wu Z, Sheng H, Zhang Z, Yu M, Zhang Q. Identification 
of inflammatory mediators in patients with rhegmatogenous reti-
nal detachment associated with choroidal detachment. Mol Vis. 
2015;21:417–27.

	17.	 Bertele N, Karabatsiakis A, Buss C, Talmon A. How biomarker 
patterns can be utilized to identify individuals with a high disease 
burden: a bioinformatics approach towards predictive, preven-
tive, and personalized (3P) medicine. EPMA J. 2021;12:507–16. 
https://​doi.​org/​10.​1007/​s13167-​021-​00255-0.

	18.	 Phene S, Dunn RC, Hammel N, Liu Y, Krause J, Kitade N, et al. 
Deep learning and glaucoma specialists: the relative importance 
of optic disc features to predict glaucoma referral in fundus pho-
tographs. Ophthalmology. 2019;126:1627–39. https://​doi.​org/​10.​
1016/j.​ophtha.​2019.​07.​024.

	19.	 Li F, Su Y, Lin F, Li Z, Song Y, Nie S, et al. A deep-learning 
system predicts glaucoma incidence and progression using retinal 
photographs. J Clin Invest. 2022;132:e157968. https://​doi.​org/​10.​
1172/​JCI15​7968.

	20.	 Baek SU, Lee WJ, Park KH, Choi HJ. Health screening program 
revealed risk factors associated with development and progression 
of papillomacular bundle defect. EPMA J. 2021;12:41–55. https://​
doi.​org/​10.​1007/​s13167-​021-​00235-4.

	21.	 Quek TC, Takahashi K, Kang HG, Thakur S, Deshmukh M, Tseng 
RMWW, et al. Predictive, preventive, and personalized manage-
ment of retinal fluid via computer-aided detection app for optical 
coherence tomography scans. EPMA J. 2022;13:547–60. https://​
doi.​org/​10.​1007/​s13167-​022-​00301-5.

	22.	 Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, 
Kapalla M, et al. Medicine in the early twenty-first century: para-
digm and anticipation - EPMA position paper 2016. EPMA J. 
2016;7:23. https://​doi.​org/​10.​1186/​s13167-​016-​0072-4.

	23.	 Shen Y, Wang L, Jian W, Shang J, Wang X, Ju L, et al. Big-
data and artificial-intelligence-assisted vault prediction and 
EVO-ICL size selection for myopia correction. Br J Ophthalmol. 
2023;107(2):201–6.bjophthalmol-2021-319618. https://​doi.​org/​
10.​1136/​bjoph​thalm​ol-​2021-​319618.

	24.	 Li S, Shao M, Li Y, Li X, Wan Y, Sun X, et al. Relationship between 
oxidative stress biomarkers and visual field progression in patients 
with primary angle closure glaucoma. Oxid Med Cell Longev. 
2020;2020:2701539. https://​doi.​org/​10.​1155/​2020/​27015​39.

	25.	 Li S, Shao M, Li D, Tang B, Cao W, Sun X. Association of serum 
uric acid levels with primary open-angle glaucoma: a 5-year case-
control study. Acta Ophthalmol. 2019;97:e356–63. https://​doi.​org/​
10.​1111/​aos.​13789.

	26.	 Li S, Zhang H, Shao M, Li Y, Song Y, Sun X, et al. Association 
between 17-β-estradiol and interleukin-8 and visual field pro-
gression in postmenopausal women with primary angle closure 
glaucoma. Am J Ophthalmol. 2020;217:55–67. https://​doi.​org/​10.​
1016/j.​ajo.​2020.​04.​033.

	27.	 Li S, Qiu Y, Yu J, Shao M, Li Y, Cao W, et al. Association of 
systemic inflammation indices with visual field loss progression in 
patients with primary angle-closure glaucoma: potential biomark-
ers for 3P medical approaches. EPMA J. 2021;12:659–75. https://​
doi.​org/​10.​1007/​s13167-​021-​00260-3.

	28.	 Li S, Shao M, Wan Y, Tang B, Sun X, Cao W. Relationship 
between ocular biometry and severity of primary angle-closure 
glaucoma: relevance for predictive, preventive, and personalized 
medicine. EPMA J. 2019;10:261–71. https://​doi.​org/​10.​1007/​
s13167-​019-​00174-1.

	29.	 Zhang A, Ning L, Han J, Ma Y, Ma Y, Cao W, et al. Neutrophil-
to-lymphocyte ratio as a potential biomarker of neovascular glau-
coma. Ocul Immunol Inflamm. 2021;29:417–24. https://​doi.​org/​
10.​1080/​09273​948.​2019.

	30.	 Song W, Qin Z, Hu X, Han H, Li A, Zhou X, et al. Using Bayesian 
networks with Tabu-search algorithm to explore risk factors for 
hyperhomocysteinemia. Sci Rep. 2023;13:1610. https://​doi.​org/​
10.​1038/​s41598-​023-​28123-z.

	31.	 Yang Y, Huo H, Jiang J, Sun X, Guan Y, Guo X, et al. Clini-
cal decision-making framework against over-testing based 
on modeling implicit evaluation criteria. J Biomed Inform. 
2021;119:103823. https:/ / ​doi. ​org/​10.​1016/j . ​jbi . ​2021.​
103823.

	32.	 Obuchowski NA, Zhou X-H. Prospective studies of diagnos-
tic test accuracy when disease prevalence is low. Biostatistics. 
2002;3:477–92. https://​doi.​org/​10.​1093/​biost​atist​ics/3.​4.​477.

	33.	 Li J, Fine J. On sample size for sensitivity and specificity in pro-
spective diagnostic accuracy studies. Stat Med. 2004;23:2537–50. 
https://​doi.​org/​10.​1002/​sim.​1836.

	34.	 Robba C, Cardim D, Tajsic T, Pietersen J, Bulman M, Donnelly J, 
et al. Ultrasound non-invasive measurement of intracranial pres-
sure in neurointensive care: a prospective observational study. 
PLoS Med. 2017;14:e1002356. https://​doi.​org/​10.​1371/​journ​al.​
pmed.​10023​56.

	35.	 Xing R, Niu S, Gao X, Liu T, Fan W, Chen Y. Weakly super-
vised serous retinal detachment segmentation in SD-OCT images 
by two-stage learning. Biomed Opt Express. 2021;12:2312–27. 
https://​doi.​org/​10.​1364/​BOE.​416167.

	36.	 Ohsugi H, Tabuchi H, Enno H, Ishitobi N. Accuracy of deep 
learning, a machine-learning technology, using ultra-wide-field 
fundus ophthalmoscopy for detecting rhegmatogenous retinal 
detachment. Sci Rep. 2017;7:9425. https://​doi.​org/​10.​1038/​
s41598-​017-​09891-x.

	37.	 Li Z, Guo C, Nie D, Lin D, Zhu Y, Chen C, et al. Deep learning for 
detecting retinal detachment and discerning macular status using 
ultra-widefield fundus images. Commun Biol. 2020;3:15. https://​
doi.​org/​10.​1038/​s42003-​019-​0730-x.

	38.	 Li J, Wang L, Gao Y, Liang Q, Chen L, Sun X, et al. Automated 
detection of myopic maculopathy from color fundus photographs 
using deep convolutional neural networks. Eye Vis (Lond). 
2022;9:13. https://​doi.​org/​10.​1186/​s40662-​022-​00285-3.

	39.	 Li Y, Feng W, Zhao X, Liu B, Zhang Y, Chi W, et al. Develop-
ment and validation of a deep learning system to screen vision-
threatening conditions in high myopia using optical coherence 
tomography images. Br J Ophthalmol. 2022;106:633–9. https://​
doi.​org/​10.​1136/​bjoph​thalm​ol-​2020-​317825.

	40.	 Eijk ESV, Busschbach JJV, Timman R, Monteban HC, Vissers 
JMH, van Meurs JC. What made you wait so long? Delays in 
presentation of retinal detachment: knowledge is related to an 
attached macula. Acta Ophthalmol. 2016;94:434–40. https://​doi.​
org/​10.​1111/​aos.​13016.

	41.	 Wu J, Zan X, Gao L, Zhao J, Fan J, Shi H, et al. A machine 
learning method for identifying lung cancer based on routine 
blood indices: qualitative feasibility study. JMIR Med Inform. 
2019;7:e13476. https://​doi.​org/​10.​2196/​13476.

	42.	 Podnar S, Kukar M, Gunčar G, Notar M, Gošnjak N, Notar M. 
Diagnosing brain tumours by routine blood tests using machine 
learning. Sci Rep. 2019;9:14481. https://​doi.​org/​10.​1038/​
s41598-​019-​51147-3.

	43.	 Zhan J, Chen W, Cheng L, Wang Q, Han F, Cui Y. Diagnosis of 
asthma based on routine blood biomarkers using machine learn-
ing. Comput Intell Neurosci. 2020;2020:8841002. https://​doi.​org/​
10.​1155/​2020/​88410​02.

	44.	 Plante TB, Blau AM, Berg AN, Weinberg AS, Jun IC, Tapson VF, 
et al. Development and external validation of a machine learning tool 
to rule out COVID-19 among adults in the emergency department 
using routine blood tests: a large, multicenter, real-world study. J Med 
Internet Res. 2020;22:e24048. https://​doi.​org/​10.​2196/​24048.

	45.	 Tanriver G, Kocagoncu E. Additive pre-diagnostic and 
diagnostic value of routine blood-based biomarkers in the 

232 

https://doi.org/10.1186/s12974-019-1625-y
https://doi.org/10.1007/s13167-021-00255-0
https://doi.org/10.1016/j.ophtha.2019.07.024
https://doi.org/10.1016/j.ophtha.2019.07.024
https://doi.org/10.1172/JCI157968
https://doi.org/10.1172/JCI157968
https://doi.org/10.1007/s13167-021-00235-4
https://doi.org/10.1007/s13167-021-00235-4
https://doi.org/10.1007/s13167-022-00301-5
https://doi.org/10.1007/s13167-022-00301-5
https://doi.org/10.1186/s13167-016-0072-4
https://doi.org/10.1136/bjophthalmol-2021-319618
https://doi.org/10.1136/bjophthalmol-2021-319618
https://doi.org/10.1155/2020/2701539
https://doi.org/10.1111/aos.13789
https://doi.org/10.1111/aos.13789
https://doi.org/10.1016/j.ajo.2020.04.033
https://doi.org/10.1016/j.ajo.2020.04.033
https://doi.org/10.1007/s13167-021-00260-3
https://doi.org/10.1007/s13167-021-00260-3
https://doi.org/10.1007/s13167-019-00174-1
https://doi.org/10.1007/s13167-019-00174-1
https://doi.org/10.1080/09273948.2019
https://doi.org/10.1080/09273948.2019
https://doi.org/10.1038/s41598-023-28123-z
https://doi.org/10.1038/s41598-023-28123-z
https://doi.org/10.1016/j.jbi.2021.103823
https://doi.org/10.1016/j.jbi.2021.103823
https://doi.org/10.1093/biostatistics/3.4.477
https://doi.org/10.1002/sim.1836
https://doi.org/10.1371/journal.pmed.1002356
https://doi.org/10.1371/journal.pmed.1002356
https://doi.org/10.1364/BOE.416167
https://doi.org/10.1038/s41598-017-09891-x
https://doi.org/10.1038/s41598-017-09891-x
https://doi.org/10.1038/s42003-019-0730-x
https://doi.org/10.1038/s42003-019-0730-x
https://doi.org/10.1186/s40662-022-00285-3
https://doi.org/10.1136/bjophthalmol-2020-317825
https://doi.org/10.1136/bjophthalmol-2020-317825
https://doi.org/10.1111/aos.13016
https://doi.org/10.1111/aos.13016
https://doi.org/10.2196/13476
https://doi.org/10.1038/s41598-019-51147-3
https://doi.org/10.1038/s41598-019-51147-3
https://doi.org/10.1155/2020/8841002
https://doi.org/10.1155/2020/8841002
https://doi.org/10.2196/24048


EPMA Journal (2023) 14:219-233 

1 3

detection of colorectal cancer in the UK Biobank cohort. Sci Rep. 
2023;13:1367. https://​doi.​org/​10.​1038/​s41598-​023-​28631-y.

	46.	 Araújo DC, Veloso AA, Borges KBG, Carvalho M, das G. Prognos-
ing the risk of COVID-19 death through a machine learning-based 
routine blood panel: a retrospective study in Brazil. Int J Med Inform. 
2022;165:104835. https://​doi.​org/​10.​1016/j.​ijmed​inf.​2022.​104835.

	47.	 Nicholson BD, Aveyard P, Koshiaris C, Perera R, Hamilton W, 
Oke J, et al. Combining simple blood tests to identify primary 
care patients with unexpected weight loss for cancer investigation: 
clinical risk score development, internal validation, and net benefit 
analysis. PLoS Med. 2021;18:e1003728. https://​doi.​org/​10.​1371/​
journ​al.​pmed.​10037​28.

	48.	 Alibet Y, Levytska G, Umanets N, Pasyechnikova N, Henrich 
PB. Ciliary body thickness changes after preoperative anti-
inflammatory treatment in rhegmatogenous retinal detach-
ment complicated by choroidal detachment. Graefes Arch 
Clin Exp Ophthalmol. 2017;255:1503–8. https://​doi.​org/​10.​
1007/​s00417-​017-​3673-2.

	49.	 Wei Y, Wang N, Chen F, Wang H, Bi C, Zu Z, et al. Vitrectomy 
combined with periocular/intravitreal injection of steroids for 
rhegmatogenous retinal detachment associated with choroidal 
detachment. Retina. 2014;34:136–41. https://​doi.​org/​10.​1097/​
IAE.​0b013​e3182​923463.

	50.	 Sharma T, Gopal L, Reddy RK, Kasinathan N, Shah NA, 
Sulochana KN, et al. Primary vitrectomy for combined rheg-
matogenous retinal detachment and choroidal detachment 

with or without oral corticosteroids: a pilot study. Retina. 
2005;25:152–7. https://​doi.​org/​10.​1097/​00006​982-​20050​
2000-​00006.

	51.	 Jia Y-P, Sun L, Yu H-S, Liang L-P, Li W, Ding H, et al. The phar-
macological effects of lutein and zeaxanthin on visual disorders 
and cognition diseases. Molecules. 2017;22:610. https://​doi.​org/​
10.​3390/​molec​ules2​20406​10.

	52.	 Daruich A, Jaworski T, Henry H, Zola M, Youale J, Parenti L, 
et al. Oral ursodeoxycholic acid crosses the blood retinal bar-
rier in patients with retinal detachment and protects against 
retinal degeneration in an ex vivo model. Neurotherapeutics. 
2021;18:1325–38. https://​doi.​org/​10.​1007/​s13311-​021-​01009-6.

	53.	 Golubnitschaja O, Topolcan O, Kucera R, Costigliola V, EPMA. 
10th Anniversary of the European Association for Predictive, Pre-
ventive and Personalised (3P) Medicine - EPMA World Congress 
Supplement 2020. EPMA J. 2020;11:1–133. https://​doi.​org/​10.​
1007/​s13167-​020-​00206-1.

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

Authors and Affiliations

Shengjie Li1,2,3,4   · Meiyan Li2,3,4,5,6 · Jianing Wu1 · Yingzhu Li1 · Jianping Han1 · Wenjun Cao1,2,3,4 · 
Xingtao Zhou2,3,4,5,6

 *	 Wenjun Cao 
	 wgkjyk@aliyun.com

 *	 Xingtao Zhou 
	 doctzhouxingtao@163.com

1	 Department of Clinical Laboratory, Eye & ENT Hospital, 
Shanghai Medical College, Fudan University, Shanghai, 
China

2	 Eye Institute and Department of Ophthalmology, Eye & ENT 
Hospital of Fudan University, Shanghai, China

3	 NHC Key Laboratory of Myopia, Shanghai, China

4	 Shanghai Research Center of Ophthalmology and Optometry, 
Shanghai, China

5	 Key Laboratory of Myopia, Chinese Academy of Medical 
Sciences, Shanghai, China

6	 Shanghai Engineering Research Center of Laser 
and Autostereoscopic 3D for Vision Care, Shanghai, China

233 

https://doi.org/10.1038/s41598-023-28631-y
https://doi.org/10.1016/j.ijmedinf.2022.104835
https://doi.org/10.1371/journal.pmed.1003728
https://doi.org/10.1371/journal.pmed.1003728
https://doi.org/10.1007/s00417-017-3673-2
https://doi.org/10.1007/s00417-017-3673-2
https://doi.org/10.1097/IAE.0b013e3182923463
https://doi.org/10.1097/IAE.0b013e3182923463
https://doi.org/10.1097/00006982-200502000-00006
https://doi.org/10.1097/00006982-200502000-00006
https://doi.org/10.3390/molecules22040610
https://doi.org/10.3390/molecules22040610
https://doi.org/10.1007/s13311-021-01009-6
https://doi.org/10.1007/s13167-020-00206-1
https://doi.org/10.1007/s13167-020-00206-1
http://orcid.org/0000-0002-6443-740X

	Development and validation of a routine blood parameters-based model for screening the occurrence of retinal detachment in high myopia in the context of PPPM
	Abstract
	Backgroundaims 
	Methods 
	Results 
	Conclusion 

	Introduction
	Working hypothesis

	Method
	Study design and setting
	Inclusion and exclusion criteria
	Ophthalmic and medical examinations
	Collection and analysis of blood sample
	Selection of the feature indexes
	Model development and selection
	Sample size
	Statistical analysis

	Results
	Study participants
	Feature indexes selection in the discovery cohort
	Validation of the feature indexes in the validation cohorts
	The distributions of feature indexes
	The risk of feature indexes for HMRD by logistic analysis
	Diagnostic model development and selection
	ACP model performance evaluation
	ACP model performance evaluation in HM cohort

	Discussion
	Data interpretation
	AI techniques achievements based on fundus image to diagnose RD in the previous studies
	Routine blood parameters-based model applied to non-ophthalmic diseases
	Strengths
	Limitations

	Conclusions and expert recommendations
	For the further application routine blood parameters-based model in the context of PPPM in RD management, we recommend the following
	Importantly, what is exactly the added value of our study?
	The paradigm shifts from reactive to PPPM3PM and go beyond the state of the art

	Anchor 37
	Acknowledgements 
	References




