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Abstract

Thromboembolism is the third leading vascular disease, with a high annual incidence of 1 to 2 cases per 1000 individuals
within the general population. The broader term venous thromboembolism generally refers to deep vein thrombosis, pulmo-
nary embolism, and/or a combination of both. Therefore, thromboembolism can affect both — the central and peripheral veins.
Arterial thromboembolism causes systemic ischemia by disturbing blood flow and oxygen supply to organs, tissues, and cells
causing, therefore, apoptosis and/or necrosis in the affected tissues. Currently applied antithrombotic drugs used, e.g. to pro-
tect affected individuals against ischemic stroke, demonstrate significant limitations. For example, platelet inhibitors possess
only moderate efficacy. On the other hand, thrombolytics and anticoagulants significantly increase hemorrhage. Contextually,
new approaches are extensively under consideration to develop next-generation antithrombotics with improved efficacy and
more personalized and targeted application. To this end, phytochemicals show potent antithrombotic efficacy demonstrated
in numerous in vitro, ex vivo, and in vivo models as well as in clinical evaluations conducted on healthy individuals and
persons at high risk of thrombotic events, such as pregnant women (primary care), cancer, and COVID-19-affected patients
(secondary and tertiary care). Here, we hypothesized that specific antithrombotic and antiplatelet effects of plant-derived
compounds might be of great clinical utility in primary, secondary, and tertiary care. To increase the efficacy, precise patient
stratification based on predictive diagnostics is essential for targeted protection and treatments tailored to the person in the
framework of 3P medicine. Contextually, this paper aims at critical review toward the involvement of specific classes of
phytochemicals in antiplatelet and anticoagulation adapted to clinical needs. The paper exemplifies selected plant-derived
drugs, plant extracts, and whole plant foods/herbs demonstrating their specific antithrombotic, antiplatelet, and fibrinolytic
activities relevant for primary, secondary, and tertiary care. One of the examples considered is antithrombotic and antiplatelet
protection specifically relevant for COVID-19-affected patient groups.
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Hemostasis is a complex process playing a fundamental role
in preventing blood loss. It includes the close interplay of the
vascular endothelium, platelets, and plasma coagulation fac-
tors. The interactions between platelets and components of
the injured vascular wall play a crucial role in the activation/

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13167-022-00293-2&domain=pdf

408

EPMA Journal (2022) 13:407-431

regulation of platelets. Platelets that form the hemostatic
plug serve as a platform for the consequent events triggered
by the coagulation factors that finalize the process of hemo-
stasis [1]. In several cases, these normally physiologic pro-
cesses can lead to pathological clot formation in the arteries
or veins that are manifested as venous and arterial throm-
boembolism [2].

Thromboembolism is one of the world’s leading
vascular diseases

Thromboembolism is the third leading vascular disease, with
a high annual incidence of 1 to 2 cases per 1000 individuals
within the general population [3]. The broader term venous
thromboembolism generally refers to deep vein thrombo-
sis (DVT), pulmonary embolism (PE), and/or a combina-
tion of both (DVT/PE). In addition, thromboembolism can
also affect the health status of other veins of the body, both
central and peripheral ones. Less common sites of venous
thromboembolism involve the arms, liver, brain, and kid-
neys. Arterial thromboembolism causes systemic ischemia
by disturbing blood flow and oxygen supply to organs, tis-
sues, and cells causing, therefore, apoptosis and/or necrosis
in the affected tissues.

Where does thromboembolism occur?

Arterial thromboembolism often occurs in the extremities
(legs and feet) as well as in the life important organs: in the
heart, causing a sudden heart attack (myocardial infarction,
MI), and in the brain, causing ischemic stroke. In contrast,
kidneys, intestines, and eyes are organs with a lower inci-
dence of arterial thromboembolism observed [2, 4]. Throm-
boembolic diseases are associated with higher morbidity and
mortality [5, 6], high rates of hospital readmissions [7], low
health-related quality of life [8], and have a notable negative
economic impact on society. In the pathologies mentioned
earlier, antithrombotic drugs, which include antiplatelet
therapies and anticoagulants, are standardly used in indi-
viduals. The pathophysiology of arterial thrombosis differs
from that of venous thrombosis, as reflected by the different
ways they are treated.

Thrombosis treatments and adverse effects
of antiplatelet drug administration

In broad terms, arterial thrombosis is treated with drugs that
target platelets (such as cyclooxygenase inhibitor — acetylsali-
cylic acid; adenosine-diphosphate receptor antagonists — clopi-
dogrel, ticlopidine, prasugrel, and ticagrelor; phosphodiester-
ase inhibitors — dipyridamole, cilostazol; and glycoprotein IIb/
IIIa inhibitors — abciximab, tirofiban), and venous thrombosis
is treated with drugs that target proteins of the coagulation
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cascade (such as vitamin K antagonist, low molecular weight
heparins, unfractionated heparin, direct oral anticoagulants
(DOAC:S), indirect parenteral factor Xa inhibitors) [9]. How-
ever, these drugs also demonstrate undesirable side effects. The
major adverse effect of antiplatelet drug administration is an
increased risk of bleeding complications. The gastrointestinal
tract is one of the most common sites of bleeding. In addition,
all types of anticoagulant treatment increase the risk of bleed-
ing. Warfarin causes fetal loss and skin necrosis. Unfraction-
ated heparins can cause osteoporosis, thrombocytopenia with
or without thrombosis, and other rare reactions. Low molecular
weight heparins are less likely to do so. Bleeding episodes con-
stitute the main adverse effects of the DOACs [10, 11].

Antithrombotic, antiplatelet, and fibrinolytic effects
of phytochemicals

Comprehensive preclinical research demonstrates that specific
phytochemicals and plant-derived extracts show significant
antithrombotic, antiplatelet, and fibrinolytic activities [12].
These include flavonoids, alkaloids, saponins, coumarins,
polyphenols, furan derivatives, iridoid glycosides, sesquiter-
penes, and aporphines [13]. Flavonoids, as the most significant
group of the above-mentioned phytochemicals, are known for
their venotonic activity, but their mechanism of action remains
incomplete. Supposedly, their activity is mediated by the regu-
lation of prostaglandin metabolism. Specific phytochemicals
may interfere with the arachidonic acid (AA) cascade and its
metabolites, which are directly related to platelet aggregation
regulation [14]. They also revealed significant antiplatelet
activity via the modulation of a wide signaling network asso-
ciated with the platelet activation blockage and calcium iono-
phore effects and increased fibrinolysis [15]. These data point
to specific classes of phytochemicals as compounds that can
reduce platelet functions, resulting in antithrombotic, antiplate-
let, and fibrinolytic profiles and may play a clinically essential
role in the prevention and therapy of cardiovascular diseases.
Integrating relevant data in this topic associated with complex
medical informatics and personalized medicine is highly rec-
ommended in preventing and treating thromboembolic events.
Such medicinal approaches fall into the progressive concept
of advanced health care tailored to the person [16]. Such a
medical approach provides an advanced clinical strategy to
improve individual outcomes and cost-efficacy in managing
various pathologies [17-19].

Working hypothesis and study aims
in the framework of 3P medicine

Here, we hypothesized that specific antithrombotic and anti-
platelet effects of plant-derived compounds might be of great
clinical utility in primary, secondary, and tertiary care. To
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increase the efficacy, precise patient stratification based on
predictive diagnostics is essential for targeted protection and
treatments tailored to the person in the framework of 3P
medicine.

Contextually, this paper aimed at critical review toward
the involvement of specific classes of phytochemicals in
antiplatelet and anticoagulation adapted to clinical needs.
The paper exemplified selected plant-derived drugs, plant
extracts, and whole plant foods/herbs demonstrating their
specific antithrombotic, antiplatelet, and fibrinolytic activi-
ties relevant for primary, secondary, and tertiary care. One
of the examples considered is antithrombotic and antiplate-
let protection specifically relevant for COVID-19-affected
patient groups.

Source of the data

Data were obtained from the English-language biomedical
literature by the use of “alkaloids,” “antiplatelet effects,”
“anticoagulation,” “aporphine compounds,” “coumarins,”
“COVID-19 patients,” “fibrinolytic,” “flavonoids,” “furan
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derivatives,” “iridoid glycosides,” “phytochemicals,” “plant
extracts,” “plant foods,” “polyphenols,” “prevention,” “sap-
onins,” “sesquiterpenes,” “therapy,” and “thrombosis,”

or other associated terms as either a keyword or medical
subject heading (MeSH) term in searches of the PubMed
bibliographic database. In the special part, focusing on the
antithrombotic and antiplatelet effects of phytochemicals, we
emphasize the analysis of the most recent scientific papers
from the years 2018-2022.

Signal transduction pathways
associated with platelet activation

and platelet inhibition: possible targets
for phytochemicals

Studies describe the modulatory effects of specific phy-
tochemicals on platelets mostly via signaling pathways
affecting TXAZ2 release, platelet aggregation, or granule
secretion [20]. Specific agonists targeting the key plate-
let receptors induce these activities [21]. Platelet activa-
tion is a crucial step in the pathogenesis of thrombosis.
Besides the capacity of acetylsalicylic acid to inhibit the
synthesis of TXA2 (an inducer of platelet aggregation and
vasoconstrictor), it plays a crucial role in the treatment
of thromboembolic disease and myocardial infarction
[22]. AA derivatives (prostanoids and isoprostanes) are
essential in the modulation of contractile and proliferative
responses of vascular smooth muscle cells (VSMCs) and

the aggregation of blood platelets. The platelet prostanoids
normally functioning in vascular injury are also implicated
in the progression of physiological hemostatic response
to thrombotic occlusion. Indeed, AA is the precursor of
TXA2 [23]. Figure 1 summarizes the specific signaling
pathways associated with the activation of platelets and
thrombotic processes as possible molecular targets for
phytochemicals. In general, the role of signaling pathways
in platelets is less well described compared to nucleated
cells in the human organism, e.g., NFkB (nuclear factor
kappa-enhancer of activated B cells), mMTOR (mammalian
target of rapamycin), and JAK (Janus kinase) [21].

Mentioned signaling pathways include G-protein cou-
pled receptors for TXA2, ADP, and thrombin that activate
platelets through protein kinase C (PKC) isoforms and
phospholipase Cp. Integrin alIbp3 mediates inside-out and
outside-in signaling events, and cAMP signaling modulates
thrombus formation [24]. Integrin alIbp3 activation via the
protein kinase B (PKB or Akt), glycogen synthase kinase
(GSK), and phosphoinositide 3-kinases (PI3K) is initiated
via the P2Y1 and P2Y 12 ADP receptors. P2Y12 receptor
activation is a crucial event in PI3K phosphorylation. On
the other hand, P2Y1 receptor activation appears to induce
high cytosolic Ca** levels conducive to increased activity
of PI3K [25, 26]. The cyclooxygenase-induced synthesis of
TXA2 depends on increased cytosolic Ca** levels linked
with activating mitogen-activated protein kinases (MAPKs)
isoforms, i.e., ERK and p38. Except for increased cAMP lev-
els, Fuentes et al. described the antiplatelet activity caused
by the PPARSs agonist [26].

In addition, MAPKs, including ERK2, p38, and JNK1/2,
are present and activated in platelets. In human platelets,
JNKI1 isoform is activated by thrombin, von Willebrand
factor, and collagen, while allbp3 can downregulate JNK1
activation by thrombin. Above all, INK isoforms (JNK1/2/3)
are associated with platelet adhesion and thrombus forma-
tion [27].

The phosphorylation of tyrosine-kinase-linked receptors,
particularly the glycoprotein VI (GPVI) receptor for col-
lagen, represents another way for platelet activation. Cur-
rent research shows that mTOR plays an essential role in
GPVI-dependent platelet activation and thrombus formation
[28]. In addition, activation of olIbp3 outside-in signaling
induces the phosphorylation of c-Src and spleen tyrosine
kinase (Syk), and consequently, through PLCy and PKC iso-
forms regulate platelet activation, granule secretion, platelet
spreading, and clot retraction [29].

In addition, processes of thrombus formation can be mod-
ulated by the oxidation status of labile disulfide bonds in
hemostatic processes. Disulfide bond formation is catalyzed
by an oxidoreductase protein disulfide isomerase (PDI) or
other thiol isomerases family members. PDI is also impli-
cated in the regulation of allbp3 activity [30]. Therefore,
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Fig.1 Signaling pathways associated with platelet activation. AA,
arachidonic acid; COX1/2, cyclooxygenase 1/2; PGG2, prostaglan-
din G2; PGH2, prostaglandin H2; TX-synthase, thromboxane syn-
thase; TXA2, thromboxane A2; ADP, adenosine diphosphate; PAR,
protease-activated receptors; TP, thromboxane receptor; ATP, adeno-
sine triphosphate; GPVI, glycoprotein VI; PDI, protein disulfide
isomerase; SFK, Src family kinase; MAPK, mitogen-activated pro-
tein kinases; ERK; extracellular signal-regulated kinase; JNK, c-Jun
N-terminal kinase; PLCy2, phospholipase C gamma 2; PI3K, phosph-

PDI, secreted by most of the cell types involved in thrombo-
sis, plays a vital role in thrombus formation [31, 32].

The platelet inhibition in physiological conditions is
associated with elevated cAMP- and ¢cGMP-dependent
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oinositide 3-kinases; Akt, protein kinase B; mTOR, mammalian tar-
get of rapamycin; SYK, spleen tyrosine kinase; PGI2, prostaglandin
12; IP, prostacyclin receptor; NO, nitric oxide; AC, adenylyl cyclase;
cAMP, cyclic adenosine monophosphate; PKA, cAMP-dependent
protein kinase; sGC, soluble guanylyl cyclase; PKG, cGMP-depend-
ent protein kinase; cGMP, cyclic guanosine monophosphate; PDE
2/3/5, phosphodiesterase 2/3/5; ROS, reactive oxygen species; eNOS,
endothelial NOS; TF, tissue factor; AP-1, activator protein 1; Egr-1;
early growth response 1

protein kinases (PKA and PKG). Both kinases are activated
by endothelial-derived prostaglandin I 2 (PGI,/IP receptor)
and nitric oxide (NO), respectively. PGI, and NO actions are
mediated by platelet adenylyl and guanylyl cyclases, which
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synthesize cAMP and cGMP, respectively. Furthermore,
deregulations in cAMP/cGMP signaling might contribute
to platelet hyperreactivity. Finally, cAMP and cGMP are
degraded by isoforms of phosphodiesterase (PDEs) that are
included in these inhibitory processes and signaling restric-
tions within specific subcellular compartments [33].

In addition, NO released by the endothelium prevents
platelet adhesion to the vessel wall, and when released
by platelets, NO inhibits the recruitment of platelets to a
growing thrombus [34]. Reactive oxygen species (ROS) are
associated with decreased NO bioavailability, and oxida-
tive stress contributes to endothelial dysfunction, progres-
sive atherogenesis, and thrombosis [35]. The formation of
the thrombus is associated with ROS through its effects on
fibrinolysis, coagulation, proteolysis, and regulation of effec-
tor cells (platelets, endothelial cells, erythrocytes, mast cells,
neutrophils, monocytes, or fibroblasts) [36].

Moreover, the initiator of the extrinsic coagulation cascade,
tissue factor (TF) is considered the primary cause of athero-
thrombosis, atherosclerotic plaque rupture, and subsequent
thrombosis. TF is regulated mainly at the transcriptional level,
while binding sites for transcriptional factors, including acti-
vator protein-1 (AP-1) and early growth response-1 (Egr-1),
are localized in human TF promoters [37].

Phytochemicals with protective effects
against thrombosis

Phytochemicals are widely distributed in vegetables, fruits,
legumes, whole grains, seeds, and herbs. Examples of phy-
tochemicals include phenolics, alkaloids, sulfur-containing
substances, and terpenoids [38]. Flavonoids and non-flavo-
noid compounds, including phenolic acids, coumarins, stil-
benes, and lignans, represent the main subgroups of pheno-
lics [39-41].

Flavonoids

Flavonoids represent a large group of phenolic compounds
[42] that are widely found in fruits, vegetables, berry-based
beverages, and many medicinal plants. The classification of
flavonoids is associated with the chemical structure, oxida-
tion level, and pattern of substitution of ring C (heterocyclic
pyrane), while the substitution of rings A and B (benzene)
defines the individual compounds within the subclasses.
Flavonoids are therefore classified as flavanols, flavonols,
flavones, flavanones, isoflavonoids, anthocyanins, and
chalcones [43]. Flavonoids are clinically associated with
numerous biological activities, including anti-inflammatory,
antioxidant, and potential anti-cancer effects [42, 44—46].
Moreover, flavonoids are discussed as potentially effective
antithrombotic agents [47, 48].

Quercetin is one of the most widely distributed and stud-
ied flavonoids belonging to flavonols. It is found in large
quantities in apples, onions, or red wine [43]. Quercetin
exists primarily in glycosylated forms such as quercitrin
[49]. Quercetin and its derivatives (isorhamnetin and tama-
rixetin) exert potent antithrombotic activity and effects on
platelet inhibition demonstrated through the suppression
of platelet aggregation and the modulation of early activa-
tory processes in vitro, including the inhibition of granule
secretion, cytosolic calcium elevation, and early signaling
events downstream of GPVI, as well as the modulation of
integrin ollbB3 function. Moreover, quercetin-derived fla-
vonols enhanced the antiplatelet effects of acetylsalicylic
acid in vitro and inhibited thrombus formation in vivo [50].
Similarly, quercitrin inhibited platelet aggregation, granule
secretion, ROS generation, and intracellular calcium mobi-
lization in arterial thrombosis models.

Furthermore, quercitrin suppressed outside-in signal-
ing of olIbf3 integrin and inhibited thrombus formation
in vivo and in vitro (on collagen-coated surfaces under
arteriolar shear). Indeed, the inhibitory effects were medi-
ated by the inhibition of GPVI-modulated platelet signal
transduction during cell activation, thus regulating plate-
let activation [49]. In addition, using quercetin 3,7,3',4'-
tetrasulphate, extracted from leaves of Flaveria bidentis (L.)
Kuntze, showed antithrombotic effects in vivo from high
(100 mg/kg/i.p) to low (25 mg/kg/i.p) concentrations in a
dose-dependent manner, demonstrated through prolonged
bleeding time and increased blood loss in a model of pul-
monary thromboembolism [51]. Also, the flavonol kaemp-
ferol showed potent antithrombotic effects and antiplate-
let activation in vitro, in vivo, and ex vivo. The observed
effects of kaempferol included decreased enzymatic activ-
ity of coagulant factors in the coagulation cascade, specifi-
cally thrombin and activated factor X (FXa), and fibrin clot
formation, platelet activation, prolonged activated partial
thromboplastin time (APTT), and survival of thrombotic
challenges. Indeed, the effects on APTT and prothrombin
time (PT) reflected the anticoagulant activity of this phyto-
substance [52]. Rutin, isolated from Dendropanax morbif-
era Leville, exerted potent antithrombotic effects in vitro
and in vivo through inhibition of thrombin activity, fibrin
clotting, prolongation of APTT and PT prolongation, and
protection from thrombotic challenge [53]. Current research
highlights the popularity of nanomedicines to load and
deliver the anticoagulants directly to the target, reduce the
dose of anticoagulant agents and improve antithrombic effi-
cacy, and decrease the complications represented mainly by
hemorrhage, or improve the stability and aqueous solubility
of the agent. Wu and colleagues evaluated the antithrombic
effects of rutin-loaded silver nanoparticles (Rutin@AgNPs).
The authors described the potent anticoagulant activity of
Rutin@ AgNPs, demonstrated through prolonged APTT and
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PT, as well as the inhibition of thrombosis in a carrageenan-
induced venous thrombosis mouse model. Effects were
associated with the described capacity of rutin to target and
inhibit PDI, thus resulting in the blockage of platelet accu-
mulation and fibrin generation, accompanied by a reduction
of inflammation induced by carrageenan [31].

The main representatives of flavanones, a class of fla-
vonoids mainly found in citrus fruits, are, among others,
hesperidin and naringin [43, 54]. Ikemura et al. (2012)
evaluated the effects of hesperidin, glucosyl hesperidin
(G-hesperidin) — a water well-soluble derivative of hesperi-
din — and naringin on blood pressure and cerebral throm-
bosis in stroke-prone spontaneously hypertensive rats. The
authors found a decreased thrombotic tendency in cerebral
blood vessels, effects on oxidative stress demonstrated
through reduced marker of oxidative stress 8-hydroxy-2'-
deoxyguanosine (8-OHdG), increased production of NO
metabolites, and increased vascular relaxation in a stroke-
prone spontaneously hypertensive rats. Potent antioxidant
capacity protects endothelial function from ROS [35]. More-
over, a recent study by Haggag et al. suggested the potential
effects of hesperidin against venous thromboembolism in
association with COVID-19 [55].

Guerrero et al. (2005 and 2007) reviewed that flavonoids
could inhibit platelet function by binding to the TXA2 recep-
tor [56, 57]. The flavone apigenin is one of the most com-
mon flavonoids widely found in fruits and vegetables [43].
Apigenin exerted a potent capacity to modulate platelet
reactivity. Apigenin inhibited platelet adhesion and throm-
bus formation and synergized with acetylsalicylic acid in
suppressing the AA pathway in vitro. The inhibitory effects
of apigenin could at least rely on TXA?2 receptor antago-
nism. These results support the potential combined use of
acetylsalicylic acid and flavonoids in patients who suppress
TXA2 failed.

Similar to apigenin, isoflavone genistein and flavan-3-ol
catechin also diminished thrombus formation in the same
model [22]. Furthermore, wogonin, a flavone isolated from
Scutellaria baicalensis Georgi, exerted a potent capacity to
target the initiator of extrinsic coagulation cascade — TF.
Wogonin inhibited ERK/Egr-1- and JNK/AP-1-mediated
transactivation of TF promoter activity, resulting in the
downregulation of TF expression and activity induced by
inflammatory mediators in human endothelial cells [37].
Similarly, wogonin and its glycoside wogonoside showed
antithrombotic effects in vitro and in vivo, demonstrated
through anticoagulant activity (prolonged APTT and PT),
inhibited fibrin polymerization, mouse platelet aggregation
induced by thrombin, thrombin activity and production, FXa
activity, and prolongation of tail bleeding time in mice [58].

The main phytochemicals in green tea are known as
green tea catechins (GTC). A flavanol derivative (-)-epi-
gallocatechin gallate (EGCG) represents the main GTC.
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Antithrombotic activity of GTC was described at the end
of the twentieth century by Kang et al. (1999), who dem-
onstrated the effects of GTC and EGCG in the protection
from paralysis or death by pulmonary thrombosis and the
prolongation of the mouse tail bleeding time of conscious
mice in vivo and inhibition of platelet aggregation in vitro
and ex vivo [59]. Also, epicatechin inhibited the maximal
platelet aggregation induced by adenosine diphosphate,
thrombin receptor activating peptide, epinephrine, and colla-
gen, reduced endogenous thrombin potential, and improved
fibrinolysis in analyses evaluating plasma samples from
healthy volunteers [15]. Cocoa is a rich source of bioactive
compounds, including flavan-3-ols such as epicatechin and
catechin. Montagnana et al. (2018) studied healthy volun-
teers and demonstrated that dark chocolate modulates plate-
let function via flavan-3-ol metabolites. Due to the crucial
role of platelets in arterial and venous thromboembolism,
the authors suggested the beneficial part of dark chocolate
consumption in subjects with an increased risk of throm-
bosis [60]. In addition, a study conducted on healthy men
demonstrated flavonoid-rich dark chocolate blunted acute
prothrombotic response to psychosocial stress through
attenuated stress reactivity of the hypercoagulability marker
D-dimer [61], a marker for coagulation cascade activation
and fibrinolysis [62]. Besides, elevations of plasma D-dimer
mark an increased risk of thrombosis, especially in cancer
patients [63]. Flavonoids show potent antithrombotic capac-
ity also in cancer patients. Isoquercetin exerted an ability to
target extracellular PDI and improve coagulation markers in
advanced cancer patients [63].

Phenolic acids and furan derivatives

Phenolic acids are one of the main classes of plant phenolic
compounds characterized by an aromatic skeleton and car-
boxylic group [64]. Phenolic acids are divided, depending on
their structure, into hydroxybenzoic and hydroxycinnamic
acids [65].

Caffeic acid is found in different plant species and repre-
sents an essential component of coffee, tea, or wine. Caffeic
acid exerts numerous beneficial effects on human health,
mediated by its antioxidant and anti-inflammatory activities,
which were documented in many preclinical and clinical
studies [66—70]. Moreover, caffeic acid may affect pathologi-
cal cascades associated with thrombosis [71]. Antithrom-
botic activities of caffeic acid were observed via inhibition
of platelet aggregation. Caffeic acid significantly reduced
thrombin-induced platelet aggregation, Ca>* mobilization,
and P-selectin expression—furthermore, caffeic acid regu-
lated the ability of integrin olIbp3 to bind fibrinogen and
accelerated cAMP generation. In addition, caffeic acid sup-
pressed thrombin-induced Akt and ERK phosphorylation
in platelets [72]. Similarly, Lee et al. identified antiplatelet
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activity of caffeic acid mediated by inhibition of Ca** mobi-
lization via inositol 1,4,5-trisphosphate (IP;R) phosphoryla-
tion and decreasing TXA, production via COX-1 inhibition
in washed platelets from rats [73]. Curcumin (diferuoylmeth-
ane), a yellow pigment extracted from Curcuma longa L.,
possesses numerous beneficial properties for human health
[74]. Anticoagulant activities of curcumin and its derivate
bisdemethoxycurcumin (BDMC) were documented to inhibit
thrombin and FXa generation in the HUVEC cell line. More-
over, curcumin and BDMC significantly prolonged clotting
time in plasma-based coagulation APTT and PT tests [75].

In large quantities obtained from cinnamon, cinnamic
acid is characterized by low toxicity and a broad range of
biological activities associated with health benefits. It repre-
sents an essential component of safflower injection (known
in traditional Chinese medicine). Anticoagulant features
of cinnamic acid were documented in vitro by measuring
APTT and PT. Three active ingredients of safflower injection
(p-hydroxybenzaldehyde; (8Z)-decaene-4,6-diyne-1-O-D-
glucopyranoside; and p-hydroxycinnamic acid) were evalu-
ated according to their APTT against human plasma. Among
analyzed components, p-hydroxycinnamic acid showed
the most significant prolonging of APTT tested on human
plasma [76]. Ferulic acid, widely distributed in numerous
plants, demonstrated antithrombotic activities both in vitro
and in vivo. Choi et al. confirmed the antithrombotic role of
ferulic acid mediated by prolonged recalcification time in
plasma coagulation. In vivo analysis identified the role of
ferulic acid in downregulating allbf3/fibrinogen complex
(FIB) expression as well as in phosphorylating Akt in throm-
bin-stimulated platelet activation [77]. Similarly, ferulic acid
exerted an antithrombotic effect in vivo and in vitro via dif-
ferent mechanisms of action. Oral administration of ferulic
acid reduced the risk of death due to pulmonary thrombosis
and delayed clotting time in mice. In addition, ferulic acid
dose-dependently suppressed platelet aggregation in vivo
and in vitro and affected levels of thromboxane B2 (TXB2),
cAMP, cGMP, and phosphorylation of MAPKs and PDE.
Interestingly, this phenolic acid influenced Ca** mobiliza-
tion in washed rat platelets, which may subsequently affect
the activation of platelet integrins, secretion of granules, or
platelet shape changes [78, 79]. Moreover, ferulic acid sig-
nificantly prolonged whole blood coagulation time (WBCT)
in vitro [80].

Furan is a 5-membered heterocyclic, oxygen-containing,
unsaturated ring compound [81]. Furans, benzofurans, and
their reduced forms represent common structural motifs in
naturally occurring compounds [82]. A natural breakdown
product of glucose and fructose-containing foods (fruit
juices), 5-(hydroxymethyl)furfural, reduced the effects of
hypoxia on sickle cell trait that is commonly associated with
increased risk for venous thromboembolism and chronic kid-
ney disease; 5-(hydroxymethyl)furfural also decreased blood

rheology in vitro and restored near-normal flow velocities
at very low oxygen [83]. Moreover, Dan Zhi tablets, com-
monly used in traditional Chinese medicine, exert anti-
platelet activity that could lead to cerebral ischemic injury
protection. Dan Zhi tablets contain various naturally occur-
ring compounds, including furan sulfonic acids, phenolic
acids, tanshinones, flavonoids, saponins, and phthalides. Dan
Zhi tablet inhibited in vitro prostaglandin G/H synthase 1
(PTGS1) activity and platelet aggregation. Moreover, the
Dan Zhi tablet reduced ex vivo platelet aggregation and
reduced thromboxane A2 (TXA2) level in a rat model of
middle cerebral artery occlusion. Dan Zhi tablets’ other ben-
eficial properties prevented thrombus formation in an acute
pulmonary thromboembolism mice model [84].

Stilbenes

Stilbenes are naturally occurring non-flavonoid phenolics
characterized by the presence of 1,2-diphenylethylene nuclei
[85]. This group of phenolic compounds exerts a multifunc-
tional impact on human health via modulation of antioxi-
dant, anti-inflammatory, and cardioprotective cascade [86].
Resveratrol (3,4',5-trihydroxy-trans-stilbene) represents the
most extensively studied stilbene which possesses a wide
range of health-associated impacts, including antithrombotic
and antiplatelet effects [87]. Resveratrol exerted a synergic
effect combined with warfarin (routinely used to prevent
blood from clotting) in rats. Orally administrated resvera-
trol improved pharmacokinetics and anticoagulant activity of
warfarin via suppression of breast cancer resistance protein
(BCRP) and cytochrome P450 family 2 subfamily C member
9 (CYP2C9) [88].

Similarly, resveratrol enhanced the anticoagulant capacity
of warfarin in animal models using male C57BL/6 J mice
[89]. Furthermore, resveratrol showed anticoagulated, anti-
inflammatory, and antifibrinolytic roles analyzed in vitro
using the HUVEC cell line. In-depth analysis revealed that
resveratrol decreased interleukin 8 (IL-8), tissue plasmino-
gen activator-1 (t-PA-1), and von Willebrand factor expres-
sion and secretion, as well as inhibited activity of factor
VIII [90]. Additionally, based on its potent antithrombotic
effect, a study by Xu et al. suggested the role of resveratrol
in reducing the incidence of portal vein system thrombosis
(PVST) after splenectomy in an animal model of fibrosis via
decreasing platelet aggregation, generation of ROS in plate-
lets, and increasing NO synthesis and platelet apoptosis [91].

Coumarins
Coumarins are naturally occurring a-benzopyrone deriva-
tives [92]. The antithrombotic effects of many coumarins,

including daphnetin [93], semisynthetic warfarin, and other
4-hydroxycoumarins [94], such as phenprocoumon [95],
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were described and utilized in clinical practice. Recent stud-
ies focus on the more specific effects of coumarins and their
mechanisms of action. Esculetin, a bioactive 6,7-dihydroxy
derivative of coumarin, prevented thrombosis by inhibiting
PLCy2-PKC-AKT activation in human platelets. Moreover,
esculetin reduced collagen- and arachidonic acid-induced
platelet aggregation, ATP release, P-selectin expression,
and hydroxyl radical formation. In a mouse model, escule-
tin reduced mortality related to acute pulmonary thrombo-
embolism and increased the occlusion time in thrombotic
platelet plug formation [96]; 3-(5-hydroxy-2,2-dimethyl-
chroman-6-yl)-N-{2-[3-(5-hydroxy-2,2-dimethyl-chro-
man-6-yl)-propionylamino]-ethyl }-propionamide (C3), a
newly synthetized coumarin derivative, prevented pulmo-
nary thromboembolism and death in mice. In a model of
the arteriovenous shunt, reduced thrombus weight was also
observed. Moreover, in platelet-rich rat plasma, C3 reduced
platelet aggregation, and in a hamster model of chronic
dyslipidemia, the C3 administration reduced whole-blood
aggregation [97].

Alkaloids

Alkaloids are naturally occurring nitrogen-containing plant
metabolites [98]. Alkaloids are characterized by a great
structural diversity that can be divided into 5 groups: true
alkaloids, protoalkaloids, polyamine alkaloids, peptide and
cyclopeptide alkaloids, and pseudoalkaloids [99]. Some
alkaloids showed antithrombotic and antiplatelet effects.
Rutaecarpine, an alkaloid from Tetradium ruticapum
(AJuss.) T.G.Hartley (syn. Evodia rutaecarpa), prevented
platelet activation in humans and reduced microvascular
thrombosis in mice. Rutaecarpine exerted an antiplate-
let activation effect by inhibiting PLCy2/PKC and PI3K/
Akt/GSK3p pathways. Moreover, rutaecarpine reduced
P-selectin expression, ATP release, Ca”* immobilization,
and hydroxyl radical formation [100]. The consumption of
coffee purine-like alkaloids such as caffeine reduced the
risk of venous thrombosis (30% lower risk) compared with
the no coffee consumption group. These results seem to be
associated with lowering hemostatic factors, including the
von Willebrand factor and FVIII, in coffee consumers [101].

Aporphine alkaloids are naturally occurring chemical
compounds from the group of alkaloids derived from iso-
quinoline, which are widely distributed in the Annonaceae,
Lauraceae, Magnoliaceae, and Menispermaceae [102]. Rhi-
zoma of Corydalis yanhusuo W.T.Wang contains nearly 40
alkaloids, aporphine alkaloids among them. Five alkaloids
extracted from Corydalis rhizoma, including aporphine
glaucine, isochinolines dehydrocorydaline, canadine, tet-
rahydrocoptisine, and corydaline, inhibited in rabbit plate-
lets thrombin-induced platelet aggregation in a low dose.
In contrast, other alkaloids (protoberberine palmatine and
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tetrahydropalmatine) did not exert antiplatelet effects. Fur-
ther investigations of these effects are needed [103].

Saponins

The saponins are glycosides derived from triterpenes and
steroids. Several plants from families such as Araliaceae,
Fabaceae, Polygalaceae, Campanulaceae, Dioscoreaceae,
Liliaceae, and Scrophulariaceae produce saponins as sec-
ondary metabolites [104].

Among others, a spirostane saponin from Liriope mus-
cari (Decne.) L.H.Bailey, assigned as D39, demonstrated
antithrombotic activity in vitro and in vivo by targeting
non-muscular myosin heavy chain IIA (NMMHC IIA). D39
inhibited procoagulant activities and tissue factor expression
in HUVECs. Furthermore, D39 decreased thrombus weight
in inferior vena cava-ligated mice. Inhibition or knockdown
of NMMHC ITA decreased tissue factor expression and deep
vein thrombosis, primarily due to a modulation of the Akt/
GSK3p-NF-kB signaling pathway [105].

Diosgenin, the saponin extracted from the rhizome
of Dioscorea zingiberensis C.H. Wright, possesses
antithrombotic activity. In vivo study revealed that its
synthetic derivative disaccharide saponin diosgenyl-p-D-
galactopyranosyl-(1 — 4)-p-D-glucopyranoside inhibited
platelet aggregation and factor VIII activities and prolonged
APTT in rats. This compound also increased the protection
rate in mice, suggesting that steroidal saponins exerted
antithrombotic activity [106].

Using a mixture of panaxatriol saponins extracted from
Panax notoginseng (Burkill) F.H.Chen demonstrated anti-
platelet activity in rabbit and human platelets. Panaxatriol
saponins reduced rabbit platelet aggregation induced by
different agonists such as collagen, thrombin, or ADP. The
three main panaxatriol ginsenosides (Rgl, Re, and R1)
revealed antiplatelet activity on rabbit platelet aggregation
but without synergistic effects when combined. Similarly,
the antiplatelet activity of the panaxatriol saponin mixture
and its ginsenosides was observed on human platelets. Fur-
thermore, pre-treatment with panaxatriol saponin mixture
decreased the agonists-induced intracellular calcium mobili-
zation by suppressing ERK?2 and p38 phosphorylation [107].

Iridoid glycosides

Based on the structure, the iridoids, a class of cyclopen-
tane pyran monoterpenes, can be divided into four groups:
iridoid glycosides, secoiridoid glycosides, non-glycosidic
iridoids, and bis-iridoids [108]. Almost 600 iridoid glyco-
sides are described from 57 families of plants [109]. Some
iridoids showed promising antithrombotic activities.
Gardenia jasminoides J. Ellis with the main constitu-
ents iridoid glycosides and crocins prolonged bleeding
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time and inhibited platelet aggregation and thrombosis in
rats [110]. Another study revealed that geniposide, one of
the constituents of G. jasminoides, exerted antithrombotic
activity in mice. Geniposide and its metabolite genipin
prolonged the time required for thrombotic occlusion and
inhibited platelet aggregation through the inhibition of
phospholipase A(2) (PLA(2)) activity [111].

Iridoid glycosides extracted from Zhizi (Gardeniae
fructus) showed antithrombotic action by inhibiting plate-
let aggregation and reducing arterial thrombus in rats.
Moreover, iridoid glycoside prolonged the thrombin time
but only at a higher dose [112].

Sesquiterpenes

Sesquiterpenes are C15-terpenoids built from three iso-
prene units. The basic sesquiterpenic skeleton is often
modified by oxidation to form lactones, alcohols, acids,
aldehydes, and ketones [113].

Sesquiterpene glycoside 3-O-a-L-rhamnopyranosyl-
(1 —>4)-a-L-rhamnopyranosyl-(1 — 2)-[a-L-(4-trans-feruloyl)-
rhamnopyranosyl-(1 — 6)]-p-D-glucopyranosyl nerolidol and
ferulic acid isolated from the leaves of Eriobotrya japonica
(Lindley) inhibited tissue factor activity and elongated the
prothrombin time in the presence of tissue factors in a dose-
dependent manner [114].

Another sesquiterpene compound, curdione, isolated
from the essential oil of Curcuma aromatica (Salisb),
inhibited human platelet aggregation through down-
regulation of the phosphorylated AMPK (P-AMPK) and
P-integrin and reduction of vinculin/talin-mediated inte-
grin allbf3 signaling pathway [115].

Nootkatone, a sesquiterpenoid commonly found in
grapefruit, inhibited the prothrombotic effect induced by
diesel exhaust particles in platelet aggregation in whole
blood (in vitro) and pial arterioles and venules (in vivo).
Furthermore, nootkatone inhibited the plasma concentra-
tion of fibrinogen, plasminogen activator inhibitor-1, IL-6,
and lipid peroxidation, preventing the shortening of the
activated partial thromboplastin time and prothrombin
time. Finally, nootkatone mitigated thrombogenicity, oxi-
dative stress, and DNA damage induced by diesel exhaust
particles by activating nuclear factor erythroid-derived
2-like 2 and heme oxygenase-1 [116].

Sulfated polysaccharides

Sulfated polysaccharides, including galactans, ulvans,
fucans, and fucoidans, represent heterogeneous structures
with known anticoagulant activity. Seaweeds biosynthesize
sulfated polysaccharides as a key component of their cell
walls [117].

Sulfated galactans from the red alga Acanthophora mus-
coides exerted serpin-independent anticoagulant activities
and FXII-related procoagulant effects. Moreover, sulfated
galactans reduced arterial thrombus formation; however,
opposite effects were demonstrated on venous thrombosis
[118]. Moreover, sulfated D-galactans in the red algae Bot-
ryocladia occidentalis exerted anticoagulant activity. They
could prevent thrombosis at a lower dose (at doses up to
approximately 0.5 mg/ kg body weight) through enhanced
thrombin and factor Xa inhibition by heparin cofactor II or
antithrombin. On the other hand, at a higher dose, sulfated
D-galactans lost their antithrombotic and anticoagulant
effects and acted as a potent inducer of platelet aggregation.
In platelet-depleted animals, the antithrombotic effect of a
higher dose of sulfated D-galactan was restored, leading to
the inhibition of thrombus formation [119]. Furthermore,
sulfated pyranosic (1-> 3)-pB-L-arabinan obtained from
Codium vermilara (Bryopsidales) revealed anticoagulant
activity through the direct interaction with thrombin [120].

Plant foods with potent antithrombotic effects

Ginkgo biloba L. is a traditional medicinal plant widely
used for its health beneficiary effects for more than
2000 years. Ginkgo biloba is associated with numerous
phytochemicals, including flavonoids, terpenoids, and
alkylphenols [121]. Importantly, Ginkgo biloba is used to
prevent and treat cardiovascular diseases and thrombosis.
Indeed, Chen et al. (2019) recently evaluated the mecha-
nisms beyond the antithrombotic efficacy of Ginkgo biloba
constituents. The authors described the thrombin-inhibi-
tory activity of Ginkgo constituents, especially biflavones
(ginkgetin, isoginkgetin, bilobetin, and amentoflavone) and
flavonoids (luteolin, apigenin, quercetin, kaempferol, and
isorhamnetin). Moreover, the molecular docking method
showed that these biflavones could occupy the active cav-
ity with strong interactions of salt bridges and hydrogen
bonds. As suggested by mass spectrometry-based lysine
labeling reactivity assay, the biflavones could bind on
human thrombin at exosite I rather than exosite II. There-
fore, Ginkgo biloba biflavones act as potent inhibitors of
human thrombin and could be used as novel thrombin
inhibitors [122].

Furthermore, Ginkgo biloba Extract 50 (GBES5O0)
in combination with aspirin resulted in enhanced anti-
platelet effects (demonstrated through both synergistic
and additive effects in restraining platelet aggregation)
in vitro [123]. In addition, Ginkgo biloba extract showed
antithrombotic effects on endothelial cells demonstrated
through increased thrombomodulin expression and tissue-
type plasminogen activator secretion in the HUVECs cell
model. At the same time, Kriippel-like factor 2 (KLF2)
is considered a vital factor in these mechanisms. Indeed,
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KLF2 is described to possess a beneficial role in promot-
ing thrombomodulin expression to prevent thrombosis
formation [124].

Chamomilla is a popular herbaceous plant native to
Europe and Western Asia, and the plant is known for its
potent medicinal effects. The main phytochemicals of the
chamomilla include phenolic compounds (especially flavo-
noids quercetin, apigenin, or luteolin, among others) [125].
Chamomilla demonstrates potent effects on platelet inhibi-
tion. Pierre et al. (2005) evaluated the inhibitory effects of
aqueous extract of herbs on human platelet aggregation.
They showed that chamomilla aqueous extract possesses
potent antiplatelet effects, for example, inhibition of ADP-
induced and collagen-induced platelet aggregation in vitro
[126]. In addition, polysaccharide-polyphenolic conjugates
isolated from Matricaria chamomilla L. (MC) are also
being investigated to act on blood platelets. The treatment of
platelet-rich plasma from healthy donors with polyphenolic-
polysaccharide conjugates from MC resulted in decreased
platelet aggregation, and MC also reduced platelet aggrega-
tion in platelet-rich plasma from patients with cardiovascu-
lar disorders. Moreover, MC showed cytotoxicity effects on
human blood platelets, mouse fibroblast cultures 1.929, and
human lung cells A549. Therefore, MC compounds repre-
sent a potential source of the new antiplatelet agent [127].

Allium species are characterized by numerous bioactive
compounds with significant antiproliferative, anti-inflam-
matory, and antioxidant activity documented in vitro and
in vivo [128-131]. Additionally, the mixture of phytochemi-
cals occurring in garlic could be potentially beneficial in
the treatment and prevention of cardiovascular disease and
thrombosis [132—-134]. Antiplatelet activity of two Allium
species (A. ursinum and A. sativum) extracts was evaluated
in a study by Hiyasat and coworkers. Authors revealed the
antiaggregatory role of both Allium species via inhibition
of the ADP pathway in vitro [135]. In another study, Lori-
gooini et al. evaluated the antiplatelet aggregation effect of
seven Allium species (A. shelkovnikovii, A. jesdianum, A.
haemanthoides, A. vavillovi, A. atroviolaceum, A. hirtifo-
lium, and A. ampeloprasum). Acquired data showed that A.
atroviolaceum exerted a maximum antiplatelet aggregation
effect compared to other allium species [136]. Moreover,
the antiplatelet activity of garlic tablets was compared to
the cardioprotective dose of aspirin in a randomized clini-
cal trial conducted on healthy volunteers. Experimental data
showed no significant effect of platelet aggregation after the
consumption of garlic tablets in any quantity [137].

The mixture of phytochemicals occurring in Silybum
Marianum L. has numerous beneficial effects on human
health. Recent evidence identified its anticancer [138], anti-
apoptotic, and anti-inflammatory efficacy [139]. Moreover,
Silybum Marianum L. and its constituents (e.g., flavonolig-
nans) affect platelet aggregation. Bijak et al. (2016) analyzed
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the inhibitory effect of major flavonolignans (silybin, sily-
christin, and silydianin) on ADP-induced platelet activation.
All tested flavonolignans significantly and dose-dependent
manner suppressed platelet activation [140]. Moreover, sily-
bin, silychristin, and silydianin inhibited platelet aggrega-
tion, COX activity, and decreased levels of malondialdehyde
and thromboxane A, in vitro [141]. Similarly, flavonolignans
and their sulfate conjugants impacted platelet aggregation
and blood vessels in isolated rat aorta and human blood.
Analyzed flavonolignans showed potent vasorelaxant effects
ex vivo, but antiplatelet activity was relatively weak [142].

Table 1 summarizes preclinical and clinical evidence of
the antithrombotic effects of phytochemicals.

In conclusion, phytochemicals show potent antithrom-
botic efficacy demonstrated in numerous in vitro, ex vivo,
and in vivo models as well as in clinical evaluations con-
ducted on healthy individuals and persons at high risk of
thrombotic events, such as cancer patients.

COVID-19 and the risk of thrombotic events:
the potential role of phytochemicals

The vascular system is, in particular, susceptible to SARS-
CoV-2 infections [143] owing to the presence of endothe-
lial cell (ECs) surface ACE2 receptors through which the
SARS-CoV-2 virus gains access to the ECs [144-148].
Impairment of vascular integrity and function owing to the
intracellular presence of SARS-CoV-2 particles and host
inflammatory cells in the ECs is suggestive that the altera-
tions in the endothelium function (endothelial dysfunction;
ED) contributes to disease progression and outcome among
COVID-19 patients [144, 146—148]. In addition, apart from
the ECs, SARS-CoV-2 was found to infect the pericytes and
cause a leaky endothelial barrier [149].

The endothelial dysfunction should explain why individu-
als with COVID-19 are at high risk for venous and arte-
rial thrombotic events [150], particularly the patients with
a severe course of disease [151]. The risk is visible when
comparing critically ill patients with COVID-19 and non-
COVID-19 respiratory diseases [152]. SARS-CoV-2 infec-
tion triggers a process known as immunothrombosis. Criti-
cally ill COVID-19 ICU patients reportedly present with
venous thromboembolism and microvascular lung throm-
bosis. These conditions could be correlated to the elevated
levels of D-dimer, von Willebrand factor (VWF), fibrinogen,
and soluble P-selectin and increased VWF and factor VIII
activity when compared with their non-ICU counterparts
[143, 147, 148, 153—-157]. This, in turn, can also explain
the characteristic ED, hyper-viscosity/coagulation, increased
rates of thrombotic events, and microvascular complica-
tions such as venous thromboembolism, microvascular lung
thrombosis, arterial events, and disseminated intravascular
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damage which required ICU admission and critical care and
higher mortality among severe COVID-19 patients [143,
146-148, 153, 154, 156-159].

In particular, ED in COVID-19 patients becomes more
relevant in diabetic subjects with diabetes-associated ED
correlated to several diabetes-related vascular complica-
tions. Diabetes-linked hyperinsulinemia, hyperglycemia,
and increased levels of free fatty acids can contribute to sig-
nificant metabolic/molecular changes in ECs, causing ED
[147, 148, 160]. It is well known that diabetic COVID-19
patients have a more severe course of the disease, require
ICU admissions and critical care, and have higher mortality
when compared to non-diabetic COVID-19 patients [147,
148, 155]. It is difficult to delineate whether COVID-19
infection accentuates diabetes-associated ED or diabetes-
associated ED exacerbates COVID-19 infection and needs
further investigation.

Innate and adaptive immunity regulates the pathophysiol-
ogy of SARS-CoV-2-induced endothelial and platelet dys-
functions through numerous direct or indirect mechanisms.
In this regard, SARS-CoV-2 modulates numerous immune-
modulatory cytokines and chemokines that trigger the coag-
ulation processes and create an intravascular prothrombotic
environment that is manifested with pulmonary embolism
and thrombocytopenia. During this process, stimulated
monocytes and neutrophils interact with platelets and affect
the coagulation cascade, leading to clot formation in small
and larger blood vessels [161]. Consequently, microthrom-
botic intravascular events may contribute to acute respiratory
distress syndrome (ARDS) and dysfunctions in other organs.
The direct SARS-CoV-2-induced endothelial injury with a
dysregulated coagulation factor stimulation and hyper-acti-
vated immune system is postulated as crucial contributors
to the development of the COVID-19-linked prothrombotic
intravascular conditions [162].

Therefore, therapeutic intervention(s) such as anticoagu-
lant therapy and antioxidant therapy that restores and stabi-
lizes the normal endothelial function and target inflamma-
tion may improve the prognosis and survival of COVID-19
patients [163]. In this regard, several phytochemicals known
to possess anti-inflammatory, antioxidant, and anti-coagu-
lative properties could mend the impaired EC function in
COVID-19 patients.

Thromboprophylaxis in COVID-19 patients is a highly
discussed topic among clinicians. The recommendations
are derived from limited clinical evidence from observa-
tional studies [164]. Anticoagulation therapy in COVID-19
patients with a severe course of disease using therapeutic
doses of heparin might lower the thrombotic complica-
tions without increasing the risk of bleeding [165]. How-
ever, the therapy with heparin is significantly linked with
some adverse effects in an organism, such as thrombocy-
topenia, hypersensitivity reactions hypoaldosteronism, or

osteoporosis [166]. Therefore, from the clinical point of
view, it is essential to set up specific therapeutic schemes,
including optimal dosage for effective and safe anticoagu-
lant/antithrombotic drugs in the prevention and treatment of
coagulation events associated with COVID-19 disease. As
mentioned above, new alternative anticoagulant/antithrom-
bic molecules include phytochemicals demonstrating various
cell biological activities. In addition, the plant-derived com-
pounds were previously documented to have anti-viral activ-
ities against the SARS family. The cardioprotective activities
of phytochemicals include the inhibition of platelet activa-
tion, secretion, adhesion, and aggregation, thus reducing the
processes of thrombus formation and consequent vascular
occlusion [167]. Based on mentioned mechanisms, specific
phytochemicals can target the platelet intracellular Ca®*
mobilization, thromboxane synthesis, and phospholipases-
mediated MAPK signaling that induces the suppression
of platelet functions [167]. Based on these well-described
mechanisms, phytochemicals could be potentially beneficial
in the treatment of COVID-19 patients, even though selected
phytochemicals represent excellent candidate molecules for
anticoagulant therapy within the primary and secondary pre-
vention of thromboembolic events, as the first well-designed
clinical studies must be performed to apply them into clini-
cal practice.

Conclusions and expert recommendations
in the framework of 3P medicine

Currently applied antithrombotic drugs used, e.g., to pro-
tect affected individuals against ischemic stroke demonstrate
significant limitations. For example, platelet inhibitors pos-
sess only moderate efficacy. On the other hand, thrombo-
lytics and anticoagulants significantly increase hemorrhage
[168]. Contextually, new approaches are currently under
consideration to develop next-generation antithrombotics
with improved efficacy and more personalized and targeted
application. Below clinically relevant conditions are exem-
plified following PPPM principles.

Exemplified clinically relevant conditions: primary,
secondary, and tertiary care

Epidemiologic analysis of cerebral venous sinus thrombo-
sis (CVST) in the USA updated for the years 2018-2019
revealed a higher prevalence of ischemic and hemorrhage
strokes and other types of venous thromboembolism, infec-
tions of central nervous and head/neck systems, thrombo-
philia (both genetic and acquired), cancers, head injury, and
hemorrhagic and connective tissue disorders as strongly
predisposing to CVST [169]. Furthermore, CVST has been
observed more commonly in a young stroke (young adults

@ Springer
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and children) compared to arterial stokes. Adult females
aged below 49 years and diagnosed with CVST demonstrate
significantly higher pregnancy prevalence compared to the
age-adjusted general population [169]. Contextually, the
accumulated knowledge exemplified with the CVST well
justifies the practical application of corresponding health
risk assessment tools to predict thrombosis-related health
risks, followed by targeted protection tailored to the indi-
vidualized patient profiling.

Primary care

Pregnancy and puerperium are reported as increasing the
risk of ischemic and hemorrhagic stroke demonstrating
a three-fold higher incidence compared to non-pregnant
women. To this end, the need for new strategies to improve
predictive approach and personalized protection is well
justified in recent articles [170, 171]. Maternal CVST and
ischemic stroke defined as occurring during pregnancy or in
postpartum are the major cause of maternal disability and
mortality [171]. Per evidence, pregnancy-related physiologic
changes increase the risk of thromboembolic events includ-
ing CVST. In practical medicine, there is an evident lack
of predictive services which would help to stratify affected
women at high risk for pregnancy-related stroke who require
pre-pregnancy check-up, closer monitoring, and effective
individualized protection during pregnancy and postpartum
[172].

During pregnancy, the maternal cardiovascular system
is exposed to hemodynamic stress which is a significant
risk factor influencing the health status of the mother and
offspring [173, 174]. To this end, sub-optimal maternal
health conditions overlooked in pre-pregnancy time may
lead to progressive abnormalities in the fetal development
and maternal health status during pregnancy and postpar-
tum. Recently published study “Pre-pregnancy check-up
of maternal vascular status and associated phenotype is
crucial for the health of mother and offspring” investigated
maternal pre-pregnancy low BMI and Flammer syndrome
phenotype which were co-diagnosed with the connective tis-
sue dysfunction, increased stiffness of peripheral vessels and
concomitant systemic effects increasing risks of ischemic
stroke at a young age, among others [175]. Contextually,
Flammer syndrome phenotyping has been strongly recom-
mended for PPPM-relevant pre-pregnancy check-up as well
as an application of natural substances in primary and sec-
ondary care to mitigate associated health risks of the affected
mother and offspring [175]. The detailed analysis demon-
strated positive effects of phytochemicals protecting against
oxidative stress, endothelial dysfunction, connective tissue
dysfunction, small vessels disease and pro-inflammatory
conditions — all involved in the pathomechanisms underly-
ing CVST and ischemic stroke [175, 176].

@ Springer

Secondary and tertiary care
Cancer-associated thrombosis

Thromboembolism significantly impacts individual out-
comes in patients with malignancies. On the one hand, can-
cer pathomechanisms are intimately related to thrombosis
resulting from the complex interplay between coagulation
abnormalities, activated adhesion and platelets, endothelial
dysfunction, and activated pro-inflammatory pathways. On
the other hand, vascular toxicity and dysfunction are frequent
adverse effects of the currently applied anti-cancer therapy.
New predictive and therapeutic strategies are strongly rec-
ommended for comprehensive secondary care considering
the predictive approach, an aggressive antithrombotic treat-
ment, and cost-effective protection tailored to the personal-
ized patient profile [177, 178]. To this end, phytochemicals
have been demonstrated as being safe and potentially highly
effective in protecting against non-physiologic inflamma-
tion, endothelial dysfunction, and cancer-associated stroke
[19, 179-181].

Thrombosis in COVID-19-infected individuals

Acute cerebrovascular disease is not a rare complication
in COVID-19-affected individuals, particularly with pre-
existing vascular risk factors. Cerebral thrombosis and
thromboembolism have been suggested as possible dis-
ease causality with corresponding pathomechanisms of
hypercoagulable conditions and infection-induced systemic
inflammatory response synergistically increasing thrombo-
sis and stroke risks [182]. Post-mortem analysis of patients
who died on COVID-19 multi-organ dysfunction provided
evidence of endothelial disruption, extensive mononu-
clear and neutrophil infiltration into large arteries, and
excessive platelet activation - all relevant for thrombosis.
Recent studies emphasize the relevance of corresponding
pathomechanisms also for young adults [183]. Phytochemi-
cals are considered as potentially highly effective against
non-physiologic inflammation and endothelial dysfunction
in the protection of stratified individuals predisposed to
the severe disease cause [184].

Abbreviations 3P: Predictive preventive personalized; 8-
OHdG: 8-Hydroxy-2'-deoxyguanosine; AA: Arachidonic acid;
AC: Adenylyl cyclase; ADP: Adenosine diphosphate; AKT: Pro-
tein kinase B; AP-1: Activator protein-1; APTT: Activated partial
thromboplastin time; ARDS: Acute respiratory distress syndrome;
ATP: Adenosine triphosphate; BCRP: Breast cancer resist-
ance protein; BDMC: Bisdemethoxycurcumin; BMI: Body mass
index; Ca®*: Calcium; cAMP: Cyclic adenosine monophosphate;
¢GMP: Cyclic guanosine monophosphate; COVID-19: Coronavrus
disease 2019; COX1/2: Cyclooxygenase 1/2; CVST: Cerebral venous
sinus thrombosis; CYP2C9: Cytochrome P450 family 2 subfamily
C member 9; DOACS: Direct oral anticoagulants; DVT: Deep vein



EPMA Journal (2022) 13:407-431

425

thrombosis; ECs: Endothelial cells; ED: Endothelial dysfunction;
EGCG: (-)-Epigallocatechin gallate; Egr-1: Early growth response-1;
eNOS: Endothelial NOS; ERK2: Extracellular signal-regulated kinase
2; ETP: Endogenous thrombin potential; FXa: Activated factor X;
GBES50: Ginkgo biloba Extract 50; G-hesperidin: Glucosyl hesperi-
din; GPCR: G-protein coupled receptor; GPVI: Glycoprotein VI;
GSK: Glycogen synthase kinase; GSK3p: Glycogen synthase kinase-3
beta; GTC: Green tea catechins; HUVECs: Human umbilical vein
endothelial cells; ICU: Intensive care unit; IL: Interleukin; IP: Pros-
tacyclin receptor; IP;R: Inositol 1,4,5-trisphosphate; JAK: Janus
kinase; JNK: C-Jun N-terminal kinase; KLF2: Kriippel-like factor
2; LAT: Linker for activation of T cells; MAPKs: Mitogen-activated
protein kinases; MC: Matricaria chamomilla L.; MeSH: Medical sub-
ject heading; MI: Myocardial infarction; mTOR: Mammalian target of
rapamycin; NFkB: Nuclear factor kappa-enhancer of activated B cells;
NMMHC IIA: Non-muscular myosin heavy chain IIA; NO: Nitric
oxide; p38: Mitogen-activated protein kinase; P~AMPK: Phosphoryl-
ated AMPK; PAR: Protease-activated receptors; PDEs: Phosphodies-
terase; PDI: Protein disulfide isomerase; PE: Pulmonary embolism;
PGG?2: Prostaglandin G2; PGH2: Prostaglandin H2; PGI2: Prosta-
glandin I2; PI3K: Phosphoinositide 3-kinase; PKA: CAMP-depend-
ent protein kinase; PKB: Protein kinase B; PKC: Protein kinase C;
PKG: CGMP-dependent protein kinase; PLA(2): Phospholipase
A(2); PLCy2: Phosphatidylinositol-specific phospholipase Cy2;
PPARs: Peroxisome proliferator-activated receptors; PPPM: Pre-
dictive preventive personalized medicine; PT: Prothrombin time;
PVST: Portal vein system thrombosis; ROS: Reactive oxygen species;
Rutin@AgNPs: Rutin-loaded silver nanoparticles; SFK: Src family
kinase; sGC: Soluble guanylyl cyclase; SREMs: Structurally related
(epi)catechin metabolite; Syk: Spleen tyrosine kinase; TF: Tissue
factor; TNF-a: Tumor necrosis factor-o; TP: Thromboxane recep-
tor; t-PA-1: Tissue plasminogen activator-1; TXA2: Thromboxane
A2; TXB2: Thromboxane B2; TX-synthase: Thromboxane synthase;
VASP: Vasodilator-stimulated phosphoprotein; VSMCs: Vascular
smooth muscle cells; VWF: Von Willebrand factor; WBCT: Whole
blood coagulation time
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