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Abstract
Homocysteine (Hcy) metabolism is crucial for regulating methionine availability, protein homeostasis, and DNA-methyl-
ation presenting, therefore, key pathways in post-genomic and epigenetic regulation mechanisms. Consequently, impaired 
Hcy metabolism leading to elevated concentrations of Hcy in the blood plasma (hyperhomocysteinemia) is linked to the 
overproduction of free radicals, induced oxidative stress, mitochondrial impairments, systemic inflammation and increased 
risks of eye disorders, coronary artery diseases, atherosclerosis, myocardial infarction, ischemic stroke, thrombotic events, 
cancer development and progression, osteoporosis, neurodegenerative disorders, pregnancy complications, delayed healing 
processes, and poor COVID-19 outcomes, among others. This review focuses on the homocysteine metabolism impairments 
relevant for various pathological conditions. Innovative strategies in the framework of 3P medicine consider Hcy metabolic 
pathways as the specific target for in vitro diagnostics, predictive medical approaches, cost-effective preventive measures, 
and optimized treatments tailored to the individualized patient profiles in primary, secondary, and tertiary care.
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Physiologic Hcy levels and severity 
of deviations: what is the most optimal Hcy 
concentration in blood?

Homocysteine (Hcy), a sulfhydryl-containing non-pro-
teinogenic amino acid, is a metabolic intermediate pro-
duced by the demethylation of methionine (Met) in the 
body and is physiologically essential for processes such 
as cell cycle progression and maintenance of cellular 
homeostasis [1]. In turn, Hcy metabolism contributes to 
(1) the folate-dependent/independent remethylation to 
form Met and (2) the transsulfuration pathway (via cys-
tathionine) to form cysteine. Both these pathways require 
vitamin-derived cofactors, including pyridoxine (vitamin 
B6), for transsulfuration pathway mediated synthesis of 
cysteine as well as folate (vitamin B9), cobalamin (vita-
min B12), and riboflavin (vitamin B2) in the Met syn-
thesis cycle (Fig. 1). These pathways are coordinated by 
S-adenosylmethionine (SAM), which have a specific role 
as an allosteric inhibitor for the methylenetetrahydrofolate 
reductase (MTHFR) reaction and acts as an activator of 

cystathionine β-synthase (CBS) [2]. In the presence of suf-
ficient Met, Hcy produces cysteine through the enzyme 
cystathionine β-synthase [3]. However, in the event of 
Met deficiency, Hcy can be remethylated to salvage Met 
through the enzyme N5, N10-methylenetetrahydrofolate 
reductase [4]. Although Hcy is not directly involved in 
protein synthesis, its specific function in folate metabolism 
and choline catabolism is crucial for regulating Met avail-
ability and function [5].

Hcy is commonly found in blood plasma in four different 
forms: circulates as free thiol (1%), remains disulfide-bound 
to plasma proteins such as albumin (70–80%), and combines 
with other Hcy to form the dimer Hcy or combines with 
other thiols (20–30%) [6]. In healthy humans, the optimal 
total concentration of Hcy (tHcy) in plasma is in the range 
of 5.0 and 15.0 μmol/L (high-performance liquid chromatog-
raphy method) or 5.0–12.0 μmol/L (immunoassay method). 
Fluctuations in Hcy levels are associated with various dis-
eases, making Hcy to a useful marker of impaired amino 
acids and protein homeostasis [7, 8].

Elevated levels of Hcy in blood plasma (> 15 µmol/L) is a 
systemic medical condition known as hyperhomocysteinemia 

Fig. 1  Hcy metabolism. Abbreviations: blue-colored words, enzymes; green-colored words, cofactors
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(HHcy) [9]. Furthermore, the range of Hcy between 16 and 
30 μmol/L is classified as moderate, 31–100 μmol/L as 
intermediate, and above 100 μmol/L as severe HHcy [6]. 
Several risk factors such as aging, smoking, and oxidative 
stress contribute to HHcy severity [10, 11] contributing to 
severe pathologies, namely, neurodegenerative disorders 
(Alzheimer’s (AD) and Parkinson’s disease (PD), demen-
tia, neuropsychiatric illness), thrombosis, cerebrovascular 
disease, osteoporosis-associated fractures, cardiovascular 
disease (CVD), and cancer [12–17]. Consequently, HHcy is 
associated with increased all-cause mortality [18].

Hypohomocysteinemia (< 6 μmol/L) occurs in 0.5–1% of 
the population [19]. Similarly to HHcy, also abnormally low 
Hcy concentration is considered a health risk factor. Despite 
a high prevalence of HHcy in patients receiving maintenance 
hemodialysis, a decreased blood plasma concentration of Hcy 
in this patient cohort correlates with increased hospitalization 
and mortality [20]. Further, low Hcy levels are associated 
with peripheral neuropathy (41% of patients with idiopathic 
peripheral neuropathy) [19]. In rare cases, low Hcy levels 
are associated with excessive conversion to cystathionine in 
the transsulfuration pathways leading to the impaired ability 
for de novo production of the anti-oxidant glutathione thus 
increasing the susceptibility to the oxidative stress overload 
[21]. Therefore, Met, N-acetylcysteine, and taurine supple-
mentation is strongly recommended for patients with abnor-
mally low levels of Hcy in blood plasma [21].

HHcy‑affected pathways and cascading 
pathologies

HHcy is often related to age and race physiological particu-
larities as well as individual genetic, epigenetic, nutritional, 
and latrogenic (drugs) risk factors, among others [22]. At the 
same time, the leading cause of HHcy is related to an insuf-
ficient amount and/or dysfunction of enzymes and cofac-
tors (water-soluble vitamins B2, B6, B9, and B12) associ-
ated with the metabolism of Hcy, especially in the elderly 
population [23, 24]. HHcy can be related to increased Hcy 
production by transmethylation, decreased Hcy removal by 
transsulfuration or remethylation, or a decrease in the Hcy 
excretion [25] as summarized in Fig. 1.

HHCy is associated with disruptions 
in transmethylation pathway

Disturbances in the transmethylation pathway are related to 
HHcy characterized by an increased S-adenosylhomocyst-
eine (SAH) and decreased SAM/SAH ratio, aberrant protein 
repair mechanisms requiring methyltransferases, and DNA 
hypomethylation [26]. SAH hydrolase deficiency caused by 
the missense mutation (R49H) in adenosylhomocysteinase 

(AHCY) in patients with liver disease and related increase in 
serum aminotransferases, SAH, SAM, and Met may lead to 
the early onset of hepatocellular carcinoma [27].

The transmethylation pathway is closely associated 
with epigenetic processes, including DNA methylation 
and histone modifications (acetylation, methylation, and 
N-homocysteinylation). However, these epigenetic changes 
also depend on several factors such as gender, diet, and/or 
gene mutations [28]. DNA methylation is connected to Hcy 
metabolism through the generation of SAM and SAH. In 
HHcy, the accumulation of SAH causes the decline of meth-
ylation capacity characterized by decreased SAM/SAH ratio 
[29]. A lack of essential one-carbon nutrients, including Met, 
folic acid, or choline, significantly reduces SAM and SAM/
SAH ratio associated with decreased global DNA methyla-
tion. Despite the reversible changes of DNA methylation, a 
long-term administration (> 18 weeks) of a methyl-deficient 
diet causes irreversible DNA hypomethylations [30]. Fur-
ther, excessive Hcy can be converted to a Hcy thiolactone 
that can react with the ε-amino group of a protein lysine 
residue (N-homocysteinylation) and contribute to the mani-
festations of HHcy [31]. Further, N-Homocysteinylation of 
both non-histone and histone residues (by increased Hcy 
thiolactone) represents a post-translational modification [32] 
that causes also alterations in gene expression [33].

Folate‑dependent and ‑independent remethylation

HHcy is associated with disruptions in the folate-dependent 
remethylation of Hcy to for Met. Folate, the water-soluble 
B9 essential vitamin, is a coenzyme in nucleic acid syn-
thesis and Met regeneration [34]. Mild HHcy is usually 
caused by mild impairment of the methylation pathway and 
is associated with folate or B12 deficiencies or the thermo-
lability of MTHFR [2]. Furthermore, a rare but severe form 
of HHcy is connected to genetic mutations of the enzymes 
implicated in Hcy metabolism resulting in MTHFR deficien-
cies or enzymes involved in methyl-B12 synthesis and Hcy 
methylation [2, 3]. HHcy caused by an altered expression of 
MTHFR is described as occurring in elderly patients with 
memory loss [35], cognitive impairments, AD, PD, epilepsy 
[36], and its C677T polymorphism is connected to a higher 
risk of various CVDs and associated morbidity and mortality 
[37]. Further, Hcy remethylation, primarily through a folate-
dependent pathway, is markedly decreased in renal patients 
on hemodialysis; however, the transsulfuration pathway is 
not altered [38].

HHcy could also be connected to disruptions in folate 
independent remethylation of Hcy to form Met. Choline, 
a water-soluble vitamin-like nutrient, exerts heterogeneous 
functions in cells. One of its many functions is its specific 
role in Met regeneration. Choline can be oxidized to betaine 
that acts as an osmoregulator. Choline and betaine represent 
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the essential sources of one-carbon units, especially during 
folate deficiency. Therefore, Hcy in the liver and kidney can 
be converted to Met by betaine-homocysteine methyltrans-
ferase (BHMT) [39, 40]. Dysfunction of BHMT leads to 
HHcy, which is associated with increased susceptibility to 
noise-induced hearing loss [41].

HHcy‑associated disruptions of the transsulfuration 
pathway

When extracellular cysteine is depleted, the production of 
cysteine through the transsulfuration pathway supports glu-
tathione synthesis and protein translation [42]. On the other 
hand, the changes in transsulfuration pathway caused mainly 
by altered enzyme activity can be associated with HHcy and 
hyperhomocystinuria. A deficiency in CBS that converts Hcy 
into cystathionine increases Hcy levels. Also, Hcy concen-
tration increases due to the widely diffused polymorphisms 
of several enzymes. Specifically, a T833C polymorphism in 
CBS is linked to mild HHcy in different ethnic groups [43]. 
Further, the 1364 T/T mutation of the cystathionine-γ-lyase 
gene also affects the enzyme cystathionine γ-lyase that is 
associated with the elevation of tHcy [35]. Both enzymes, 
CBS and cystathionine-γ-lyase, are responsible for hydrogen 
sulfide  (H2S) generation through desulfuration reactions. The 
dysfunction of these enzymes can lead to HHcy and con-
tribute to pathological oxidative stress, inflammation, car-
diovascular and cerebral dysfunction, fatty liver disease, and 
ischemia–reperfusion injury [44].

Diet‑associated HHcy

Hcy plasma levels can markedly fluctuate among differ-
ent populations due to their dietary habits [45]. Depending 
on the content of dietary Met, commonly found in poultry 
diet [46], and choline, approximately 50–80% of generated 
Hcy, is remethylated to Met [47]. In humans, the relation 
between Met intake and HHcy also depends on vitamin sta-
tus (folate, vitamins B6 and B12) and the supply of other 
amino acids [48]. In vivo analysis revealed that a high-Met 
diet can induce HHcy and can affect epigenetic processes, 
mainly increased global methylation (5-mC) and DNA meth-
yltransferase-1 (DNMT1) expression. Further, HHcy is asso-
ciated with increased methylation of CBS promoter in bone 
marrow-derived endothelial progenitor cells [49].

HHcy is also related to the deficiencies in cofactors, 
like vitamin B12, B6, and folate, all are important for Hcy 
metabolism. The source of vitamin B12 is dairy and meat 
products [50]. Therefore, in vegetarians, dietary deficiency 
of vitamin B12 can cause HHcy, especially in the Indian 
subcontinent, Mexico, Central and South America, and some 
specific areas in Africa [51]. Regarding a plant-based diet 

in the Spanish population, a higher Hcy level is described 
in lacto-ovo vegetarians than vegans [52]. Further, folate 
is found in fresh food sources, including broccoli, brussels 
sprouts, or leafy green vegetables [53]. Therefore, tHcy lev-
els and serum folate can fluctuate depending on the folate 
intake and genetic polymorphisms in MTHFR, such as 
C677T [54]. HHcy caused by inadequate ingestion of folate 
and vitamin B12 in diet can increase the risk of cervical 
artery dissection [55] or can promote oxidative stress in 
patients with type 2 diabetes [56]. Like most B vitamins, 
vitamin B6 is abundant in meat, fish, and poultry [57], and 
its deficiency leads to HHcy, which correlates with increased 
mortality from any cause [57].

For adults, the adequate intake for choline is 550 mg/
day for men and 425 mg/day for women [58]. The dietary 
sources of choline and its derivatives phosphocholine, glyc-
erophosphocholine, phosphatidylcholine, sphingomyelin, 
total choline, and betaine are summarized by the US Depart-
ment of Agriculture (USDA). Whole eggs, organ meat, 
caviar, fish, and shiitake mushrooms represent the primary 
source of choline in diet [59]. Furthermore, spinach, cereals, 
grains, and grain-based products are primary dietary sources 
of betaine [60, 61]. Impaired folate independent remethyla-
tion by the deficiency in dietary choline and/or betaine can 
be related to HHcy. In rats with low-Met diet (standard 
soybean protein diet and low casein diet), the deprivation 
of choline induces HHcy, probably due to the inhibition of 
Hcy removal by both remethylation and cystathionine forma-
tion [62]. However, betaine or spinach can suppress HHcy 
induced by choline deficiency in vivo [61].

Association of Hcy‑axes with mitochondrial 
dysfunction

Mitochondria are essential for maintaining cellular homeo-
stasis and function, primarily in oxidative phosphorylation 
(OXPHOS), and for regulation of ion homeostasis, redox 
potential, lipid metabolism, metabolite synthesis, cell dif-
ferentiation, immune system, anti-apoptotic, and anti-aging 
mechanisms [63]. The disruption/disbalance of mentioned 
processes or accumulation of mutations in mitochondrial 
DNA (mtDNA) are related to mitochondrial dysfunction 
and aging-associated pathologies, including neurological 
disorders, CVDs, metabolic syndromes, and cancers [64]. 
In aging, progressive mitochondrial dysfunction occurs due 
to the loss of the thioretinaco ozonide oxygen ATP complex 
from mitochondrial membranes through the opening of the 
mitochondrial permeability transition pore [65]. Further, 
various studies describe the potential correlation between 
mitochondrial dysfunction and higher Hcy levels. In rats 
with acute myocardial ischemia–reperfusion injury, elevated 
plasma Hcy induced mitochondrial dysfunction and oxidative 
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stress through increased cytochrome c release, stimulation of 
ROS production, and ERK1/2 signaling pathway that subse-
quently caused cardiac dysfunction [66]. Interestingly, HHcy 
is also implicated in elderly frailty and causes skeletal muscle 
weakness and fatigability. HHcy may cause mitochondrial 
dysfunction through reduced dystrophin levels along with 
a decrease in mitochondrial transcription factor A (mtTFA) 
and its regulator nuclear respiratory factor 1 (NRF-1) in 
rodent model [67]. To this end, elevated Hcy levels inhibit 
the enzymatic activity of mitochondrial complex I–III that is 
associated with higher cytochrome c release in rat ischemic 
brain as a model of cerebral infarction-related disease. In 
Hcy-treated animals, increased 8-hydroxy-2′-deoxyguanosine 
(8-OHdG) content and mitoStat3 protein phosphorylation 
were also observed. Finally, treatment with Hcy aggravated 
the damage of mitochondrial ultrastructure in the brain cortex 
and the dentate gyrus region of the hippocampus after focal 
cerebral ischemia [68]. Furthermore, prolonged Hcy treat-
ment induced mitochondrial apoptosis of human umbilical 
vein endothelial cells through increased NADPH oxidase 4 
(NOX4) expression and intracellular ROS production and 
decreased Bcl-2/Bax ratio and mitochondrial membrane 
potential (MMP), resulting in cytochrome c release and cas-
pase-3 activation [69]. In PD rat model, Hcy also reduced 
activity of mitochondrial complex I and caused oxidative 
stress in the nigrostriatal pathway that were associated with 
increased production of hydroxyl radicals, reduced glu-
tathione level, and enhanced activity of antioxidant enzymes 
such as superoxide dismutase and catalase [70].

Several aging-associated pathologies are characterized by 
altered mitochondrial functions. In many cases, the elevated 
Hcy levels aggravated mitochondrial dysfunction, resulting 
in poor prognosis. Therefore, in the treatment of mitochon-
drial impairment diseases, it is important to consider also 
Hcy levels in organism.

Association of Hcy‑axes with cellular 
senescence and aging

Cellular senescence and aging act as the risk factors that 
contribute to HHcy [10, 11]. Normal diploid fibroblast 
cells can divide approximately (45 to 50 times) in culture 
until the mitotic activity ceases. This phenomenon of cel-
lular senescence is known as Hayflick limit. Cellular senes-
cence is characterized by the shortening of telomeres and 
decreased activity of telomerase [65]. The efficiency of Hcy 
thiolactone metabolism declines during aging process that 
is related to decreased formation of SAM associated with 
the loss of thioretinaco ozonide. Thioretinaco ozonide can 
prevent carcinogenesis and atherogenesis; however, its loss 
from mitochondrial membranes underlying the aging pro-
cess of cellular senescence [71].

Various studies revealed that Hcy can accelerate the cel-
lular senescence through many mechanisms. In a study of 
Zhang et al. (2015), the exposure of cultured endothelial cells 
to Hcy led to cellular senescence through shortened telom-
eres via DNA hypomethylation of human telomerase reverse 
transcriptase (hTERT) and increased marker of cellular 
senescence acidic β-galactosidase. Further, Hcy upregulated 
the markers of cellular senescence, including p16, p21, and 
p53, in cultured endothelial cells; however, the administration 
of folic acid or SAM could reverse mentioned effect [72]. 
Furthermore, chronic exposure of endothelial cells to Hcy 
accelerated the rate of cellular senescence through the redox 
pathway suggesting that oxidative stress could increase the 
production of vascular cell senescence proven by increased 
expression of two surface molecules such as intracellular 
adhesion molecule-1 (ICAM-1) and plasminogen activator 
inhibitor-1 (PAI-1), factors implicated in the pathogenesis 
of atherosclerosis [73]. The exposure of cultured endothe-
lial progenitor cells (EPC) to Hcy, precursors of mature 
endothelial cells, decreased proliferation and increased EPC 
senescence through diminished telomerase activity and Akt 
phosphorylation. However, the treatment with atorvastatin 
revealed the preventive effect against Hcy-induced senes-
cence of EPC as a model of coronary heart disease [74].

The effects of aging on enzyme activity, connective tis-
sues, lipid synthesis, auto-immune diseases, atherogenesis, 
and carcinogenesis are closely associated with changes in 
Hcy metabolism [71]. Elevated level of Hcy contributes to 
the acceleration of cellular senescence. It is important to 
evaluate the effects of various agents that could prevent or 
reverse the cellular senescence, thus inhibiting the progres-
sion of associated diseases.

CVDs are associated with elevated plasma 
Hcy

CVD represents the leading cause of death in the world [75]. 
CVD includes several pathologies from which the coro-
nary heart disease, cerebrovascular disease, or rheumatic 
heart disease have the highest incidence. More than 80% of 
CVD deaths are attributed to heart attacks and strokes, and 
approximately one-third of these deaths occur prematurely 
in people under 70 years of age [76]. Conventional risk fac-
tors of CVDs such as dyslipidemia, hypertension, smoking, 
or diabetes mellitus do not fully clarify all CVD events and 
deaths. Several studies summarized that elevated plasma 
Hcy denotes an independent risk factor for CVDs other than 
conventional risk factors and can be applied as a biomarker 
to predict CVD onset in individuals [77–79].

Mechanisms by which Hcy supposedly induces vascu-
lar injury and consequent CVDs include endothelial injury, 
DNA dysfunction, elevated oxidative stress, increased 
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proliferation of smooth muscle cells, downregulation of glu-
tathione peroxidase activity, and supporting the process of 
inflammation. These pathologic changes caused by Hcy are 
manifested by impaired flow-mediated vasodilation, mainly 
due to decreased nitric oxide (NO) production and bioavaila-
bility [80]. Unbalanced NO synthesis causes and potentiates 
oxidative stress and atherothrombogenesis. The damage of 
endothelial cells represents a crucial inducer of atheroscle-
rosis and thus triggers the manifestation of various cardio-
vascular events and pathologies. Among them are ischemic 
heart attacks and ischemic stroke. However, endothelial 
dysfunction is linked to hypertension, ischemia–reperfu-
sion injury, diabetes, and neurodegenerative processes [79].

Hcy‑induced endothelial dysfunction

The endothelium has a variety of functions apart from 
adjusting the tone (dilation/contriction) of blood vessels. 
Any deviation from normal function of the endothelium is 
defined as endothelial dysfunction. This systemic pathologi-
cal status is the core in the process of atherosclerosis and 
CVDs [80]. The vascular dilatation as a response to shear 
stress of blood flow is dependent on the endothelium-derived 
relaxing factor − NO. Further, its potent vasodilatory activity 
also suppresses platelet aggregation, supposing the throm-
botic potential of HHcy may be modulated by the impair-
ment of NO release/effects. Consequently, the failure of 
endothelial-mediated vasodilatory activity characterized by 
shifting the vascular balance toward an abnormally constric-
tive, inflammatory, and prothrombombic state is regarded as 
one of the earliest manifestations of cardiovascular damage 
supporting the formation of atherosclerotic plaques [81].

Several clinical and preclinical studies support the role 
of HHcy in the pathophysiology of endothelial dysfunc-
tion and consequent CVDs. Ahmed et al. (2020) evaluated 
whether high serum Hcy levels are associated with coronary 
microvascular endothelial dysfunction (CMED). The study 
involved participants with angina pectoris and non-obstruc-
tive coronary artery disease. Results showed that increased 
serum Hcy levels in patients correlated with higher rates of 
an invasive diagnosis of CMED. The authors summarized 
that the correlation between high Hcy levels and adverse 
cardiovascular events might potentially be modulated by 
coronary endothelial dysfunction. However, based on this 
study, no causal link can be univocally established [82]. He 
et al. (2010) investigated the link between damaged coro-
nary endothelial function and chronic HHcy patients (plasma 
level of Hcy > 15 μmol/l), and if so, whether this impaired 
endothelial function is caused by the suppressed function 
of endothelial NO synthase (eNOS). Results revealed that 
plasma level of Hcy negatively correlates with coronary 
flow velocity reserve, and chronic HHcy may induce the 
onset of coronary artery disease by causing the dysfunction 

of the coronary artery endothelium. The malfunction 
of eNOS caused by chronic HHcy in these patients may 
partly explain this pathology [83]. Other authors pointed to 
various pathophysiological mechanisms of HHcy impair-
ing endothelium-mediated NO-dependent vasodilatation. 
Hcy post-translationally downregulates dimethylarginine 
dimethylaminohydrolase enzyme activity (the enzyme 
that degrades ADMA), causing asymmetric dimethylargi-
nine (ADMA, an endogenous inhibitor of NO synthase) to 
accumulate and thus inhibit NO synthesis [84]. Liang et al. 
(2021) described that Hcy activates the epithelial sodium 
channel and consequently induces endothelial dysfunc-
tion via reactive oxygen species (ROS)/COX-2-dependent 
activation of SGK-1/Nedd4-2 signaling [85]. Additionally, 
Hcy induced a calcium-mediated disruption of dynamics 
and mitochondrial function in endothelial cells due to over-
expression of the mitochondrial calcium uniporter and the 
IP3R-Grp75-VDAC complex in mitochondria-associated 
membranes [86].

Comprehensive clinical research demonstrates that ele-
vated Hcy levels associated with endothelial dysfunction 
represent the predisposing factor for the ethiopathogenesis 
of atherosclerotic processes and hypercoagulability states, 
which strongly correlate with cardiovascular mortality, coro-
nary artery disease, and stroke.

HHcy and coronary artery disease

Jin et al. (2021) evaluated the correlation between elevated 
plasma Hcy and heart failure subjects. This meta-analy-
sis revealed significantly elevated plasma Hcy levels in 
patients with heart failure compared to the control individ-
uals [76]. Another retrospective study evaluated the pre-
dictive role of HHcy for obstructive coronary artery dis-
ease (CAD) in an Asian population. Multivariate logistic 
regression analysis showed an independent correlation of 
HHcy with obstructive CAD in both old (aged > 55 years) 
and young individuals (aged ≤ 55 years). HHcy demon-
strated a higher sensitivity (93.1%), accuracy (90.0%), and 
specificity (86.1%) for obstructive CAD compared to non-
obstructive CAD [87]. Sun et al. (2021) analyzed whether 
HHcy is associated with acute coronary syndrome (ACS) 
and the severity of coronary artery stenosis in young Chi-
nese adults. Young ACS subjects showed a greater preva-
lence of HHcy when compared with non-CAD individu-
als. In addition, HHcy in young ACS patients was linked 
with the severity of coronary artery stenosis, characterized 
by increased prevalence of multi-vessel disease, reduced 
value of left ventricular ejection fraction, and ST-segment 
elevation myocardial infarction (STEMI) [88]. Another 
study investigated the linkage between vitamin D defi-
ciency and serum Hcy levels with the extent of CAD. This 
correlation was significant only among individuals with 
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hypovitaminosis D. These results indicated that a normal 
vitamin D status can suppress the deleterious effects of 
HHcy on coronary atherosclerosis. However, this hypoth-
esis needs further investigation [89]. On the contrary to the 
above-mentioned data, a two-sample Mendelian randomi-
zation study was conducted, i.e., “coronary heart disease” 
and “acute myocardial infarction.” Study results did not 
indicate a causal linkage between mentioned diagnosis 
and plasma Hcy levels. They concluded that conflicting 
data might have raised residual confounding or reverse 
causation [90].

HHcy‑associated ischemic stroke

The meta-analysis of Huang et al. (2020) investigated 
the prognostic utility of Hcy in individuals with acute 
ischemic stroke (AIS) in terms of all-cause mortality, poor 
functional outcome, and recurrent stroke. Independently 
elevated Hcy levels were linked with an increased risk 
of all-cause mortality but not poor functional outcome 
and recurrent stroke in subjects with AIS [91]. Another 
study revealed a causal association between plasma Hcy 
levels and ischemic stroke (IS) induced by small artery 
occlusion. However, the authors did not find a linkage 
between other types of IS, transient ischemic attack, neu-
rodegenerative disease, and elevated plasma Hcy levels 
[92]. A comprehensive meta-analysis by Chinese research-
ers evaluated whether elevated Hcy levels represent an 
independent marker of unfavorable outcomes in AIS sub-
jects. Total 15.636 AIS patients were analyzed in seven-
teen studies. Elevated Hcy plasma levels were linked with 
poorer survival of subjects. Hcy levels were significantly 
lower in the healthy control patients than in the AIS group 
with an SMD of 5.11 and 95% CI (1.87–8.35). Signifi-
cant links between higher Hcy levels and the subject’s 
survival were observed only in Caucasians and Asians 
[91]. In a meta-analysis of prospective cohort studies, Wu 
et al. (2020) assessed the quantitative dose–response link 
of plasma Hcy levels with IS and stroke. They analyzed 
10 prospective cohort studies using 11.061 participants 
in this analysis. Hcy levels were linked with elevated risk 
of IS and stroke for the highest vs the lowest categories. 
The authors found a linear association between the Hcy 
level and stroke [93]. Another meta-analysis revealed that 
elevated Hcy plasma levels are associated with a higher 
risk for IS and recurrent strokes but Hcy had no distinct 
linkage with hemorrhagic strokes [94].

Despite above mentioned promising data, studies analyz-
ing the prognostic role of Hcy levels in subjects with CAD 
and IS are still rare. Definitive conclusions on this issue will 
require further clinical studies and in-depth analyzes.

Association of HHcy with complications 
in pregnancy

Altered Hcy levels are implicated in pregnancy complica-
tions such as preeclampsia (PE) [95] or eclampsia [96]. 
These are considered the most common severe complica-
tions of pregnancy [96] and the leading causes of morbid-
ity and mortality among pregnant women and fetuses [97]. 
PE is characterized by defects of placentation associated 
with hypertension in women that were previously normo-
tensive and proteinuria after 20 weeks of gestation [95, 96] 
or new onset of hypertension combined with hematologi-
cal, renal, liver, or neurological complications [97]. The 
state characterized by seizures in PE is defined as eclamp-
sia [95, 96]. Although the etiopathology of PE is not fully 
understood, it is essential to identify risk factors to pre-
vent PE development. Maternal concentrations of Hcy, 
folate, and vitamin B12 are investigated and evaluated in 
the development of PE. However, these efforts are not yet 
translated into clinical intervention [98]. Endothelial dys-
function is considered central in the pathophysiology of 
PE. During HHcy, Hcy auto-oxidizes to produce ROS that 
inactivates NO and thrombomodulin resulting in endothe-
lial damage and dysfunction. Also, Hcy interferes with the 
fibrinolytic system, contributing to the pathophysiology of 
PE and eclampsia [96].

Nevertheless, maternal and cord micronutrients are fre-
quently altered in women with PE or other pregnancy com-
plications [99, 100]. A control case study showed pregnant 
women with HHcy possess a 7.7-fold risk for PE compared 
with normal controls [101]. More recently, higher mater-
nal plasma Hcy levels were observed in women with PE 
compared with normotensive control (NC) women from 
early pregnancy, starting from the 16th week of gestation, 
until delivery accompanied by higher vitamin B12 levels. 
The study suggests the potential benefit of the Hcy analysis 
early in pregnancy before PE progression [95]. Also, Pisal 
et al. (2019) proved higher maternal Hcy levels at deliv-
ery accompanied by an increased level of vitamin B12 
and folate in PE groups compared with NC. However, an 
increased maternal and cord Hcy was observed only in the 
term but not the pre-term PE group. The authors observed 
a positive association between maternal plasma Hcy and 
systolic and diastolic blood pressure in the whole group 
[99]. Further, HHcy is associated with PE and eclampsia; 
higher concentration of Hcy in eclampsia compared with 
preeclampsia indicates its relation to the severity of the 
disorder [96].

In addition, maternal HHcy is related to other preg-
nancy complications, such as pre-term birth, low body 
weight [97], placental abruption, recurrent pregnancy 
loss, or neural tube defects (NTD) of the newborn [96, 
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102]. Indeed, increased Hcy and decreased vitamin B12 
were observed in mothers of neonates with NTD and in 
neonates with NTD [103]. Similarly, Felkner et al. (2009) 
demonstrated an association of high serum Hcy levels 
with pregnancies affected with NTD, even when serum 
red blood cell folate and B12 were high. These results 
suggest Hcy as an independent NTD factor [104]. Further, 
HHcy and oxidative stress were reported for women at risk 
of abortion or pre-term birth [102]. Overall, altered Hcy 
levels are crucial in PE, eclampsia, or other complications 
associated with the pregnancy or the newborn.

Hcy is metabolized to Met with vitamin B12 as a co-
factor and folate as a co-substrate, while their deficiency 
is associated with an increased Hcy level [99]. However, 
above discussed results do not always support the notion 
of higher Hcy accompanied by reduced vitamin B12 and 
folate [99]. Indeed, low serum vitamin B12, folate, or RBC 
folate are incompatible with low or moderate Hcy levels but 
result in high Hcy levels. Nevertheless, elevated Hcy can 
occur concurrently with high serum vitamin B12, folate, or 
RBC folate, potentially due to deficiency of other metabo-
lites causing high Hcy [104], poor cellular uptake of vitamin 
B12, or defects in Met synthase [99].

Association of Hcy‑axes with oxidative stress 
and inflammation

Elevated Hcy is related to various pathologies, while many 
of them are also associated with oxidative stress [105] or 
inflammation [106]. Redox state disbalance and oxidative 
stress are suggested as primary mechanisms associated with 
pathogenesis related to HHcy. ROS generation occurs during 
oxidation of the free thiol group of Hcy during its binding 
either with plasma proteins (such as albumin) or with other 
low-molecular plasma thiols or another Hcy molecule. Some 
of the proposed mechanisms of oxidative stress induced by 
Hcy include auto-oxidation of Hcy [107], inhibition of the 
expression or activity of antioxidant enzymes [107, 108], 
disruption of extracellular superoxide dismutase (SOD) from 
endothelial surface, or NO synthase-dependent superoxide 
anion generation [107]. Therefore, an elevated level of Hcy 
is relatively well explored in association with oxidative 
stress [109], and Hcy-associated ROS promote lipid peroxi-
dation resulting in oxidative damage of cellular molecules 
[108]. Indeed, elevated Hcy levels are linked to de novo and 
recurrent cardiovascular events promoting an oxidant state 
in vascular cells and tissues. Accordingly, an increase in 
Hcy is considered a risk factor for CVD, including CAD 
[110]. Lipid peroxidation and oxidative stress demonstrated 
by increased Iso-P (8-isoprostane-prostaglandin F2) was 
observed in CAD patients with increased tHcy. An increased 
plasma intercellular adhesion molecule 1 (ICAM-1) and 

serum amyloid A (S-AA) in patients with high plasma tHcy 
suggest an association between hyperhomocysteinemia and 
low-grade inflammation [111]. In addition, the crucial role 
of oxidative damage in the development of CVD in postmen-
opausal women is associated with decreased oestrogen avail-
ability accompanied by increased oxidative stress. Indeed, 
recent study demonstrated that postmenopausal women are 
affected by oxidative stress that is independently related 
to the level of Hcy [112]. Also, Hcy was demonstrated to 
induce oxidative stress in young adult central retinal vein 
occlusion [109]. Except CVD, altered level of Hcy contrib-
utes to the redox imbalance and increased oxidative stress 
associated with the generation of ROS in other cell types 
such as neuronal, endothelial, glial cells leading to neuro-
logical disorders [113]. High concentration of Hcy is related 
to cognitive decline, AD, and dementia with oxidative stress 
suggested to play a crucial role. In fact, higher plasma Hcy 
and lower antioxidant level were observed in AD patients 
when compared with control [114]. Also, higher levels of 
oxidative stress was found to be accompanied by increased 
Hcy in patients with panic disorder when compared with 
healthy individuals [115].

Additionally, experimental and human models highlight 
the association between inflammation and HHcy. Patho-
genic levels of Hcy affect inflammatory determinants such 
as adhesion molecules, endothelial dysfunction, oxidative 
stress, leukocyte adhesion, or reduced NO bioavailability 
[106]. Therefore, Hcy contributes to the conditions associ-
ated with inflammation, including cardiovascular or neu-
ronal dysfunctions [106, 115, 116]. Further, increased Hcy is 
considered a risk factor for developing CVD and atheroscle-
rosis in patients with rheumatoid arthritis. Yang et al. (2015) 
observed an increase in Hcy and associated immunological-
inflammatory and metabolic markers in rheumatoid arthritis 
patients suggesting these markers’ potential role in assessing 
CVD risk in rheumatoid arthritis [117]. In addition, Hcy 
induced inflammation in the mouse retina, brain, and cul-
tured human monocytes (U837). To this end, mild HHcy led 
to increased brain pro-inflammatory cytokines such as tumor 
necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and 
the chemokine monocyte chemotactic protein-1 (MCP-1) in 
Wistar rats [116]. Furthermore, Hcy treatment resulted in the 
elevation of pro-inflammatory and decrease of anti-inflam-
matory cytokines in a human retinal pigmented epithelial 
cell line (ARPE-19). Pro-inflammatory cytokines were 
also observed in human primary retinal endothelial cells 
(HRECs) treated with Hcy. These results support the role 
of Hcy-induced inflammation in the dysfunction of blood-
retinal barriers and blood–brain barrier and pathogenesis of 
diabetic retinopathy, age-related macular degeneration, and 
AD [106]. Last but not least, altered Hcy levels contribute 
to other conditions associated with inflammation, including 
diabetes mellitus or chronic kidney disease; elevated Hcy 

484 EPMA Journal (2021) 12:477–505



1 3

levels are observed in inflammatory diseases such as inflam-
matory bowel disease and psoriasis [106, 116]. Furthermore, 
a recent study highlights the association between Hcy, bone 
mineral density, and inflammation in postmenopausal osteo-
porosis [118].

In conclusion, the crucial role of Hcy in oxidative damage 
and inflammatory responses needs to be precisely evaluated 
in the management of CVD and neuronal dysfunctions or 
other pathologies affected by Hcy-mediated oxidative stress 
and inflammatory conditions.

Hcy and neurological disorders

Recent clinical studies strongly suggest that an elevated 
level of Hcy is an independent risk factor for neurologi-
cal disorders [119]. Additionally, the effects of a disbalance 
of plasma Hcy are observed in several medical conditions, 
including PD [120], dementia [121], AD [122], or multiple 
sclerosis [123]. This section describes the relation between 
Hcy and the pathologies mentioned above and analyzes the 
potential role of Hcy as a possible predictive factor for these 
neurological conditions.

PD is characterized by the loss of striatal dopaminergic 
neurons (motoric manifestation of PD) and nondopaminergic 
neurons (non-motoric manifestation of PD) [124]. Levodopa 
(precursor of dopamine) is the most used medication to treat 
PD [125]. Long-term intake of levodopa leads to an increase 
in Hcy levels and subsequent to the progression of diseases 
connected to the onset of neuropsychiatric symptoms and the 
concomitant development of comorbidities (e.g., vascular 
disease). The formation of Hcy is caused by the O-meth-
ylation of levodopa which is catalyzed by the catechol-O-
methyltransferase (COMT) [126]. Administration of COMT 
inhibitors effectively reduces Hcy but obtained data of sev-
eral studies that focused on inhibitors’ effect on levodopa-
induced HHcy are ambiguous [120, 127].

Dementia is a progressive cognitive decline that reduces a 
person’s ability to function independently [128]. An elevated 
level of Hcy is an independent risk factor associated with 
dementia [121]. Increased Hcy levels promote dementia 
development by disturbing the methylation or increasing the 
redox stress resulting in neuronal death [119, 129].

AD represents the most common form of dementia, 
characterized by neuritic plaque and neurofibrillary tan-
gles [130]. A high concentration of Hcy is a risk factor 
for AD [122]. The association between Hcy and AD was 
intensely investigated, resulting in a better understanding 
of the different mechanisms by which Hcy contributes to 
its pathogenesis. Hcy can contribute to a disbalance in the 
neurological system resulting in AD through oxidative 
stress due to the generation of reactive oxygen species or 
suppression activity of antioxidants [122, 131]. Another 

way Hcy modulates cascades associated with AD involves 
demethylation of promoters (BACE-1 and Presenilin 1), 
leading to an elevated level of amyloid beta-peptide [132, 
133]. Further, Hcy can cause cerebrovascular impairments 
associated with cognitive deficits, as demonstrated in Hcy-
induced cerebrovascular disturbance in mice [134]. In addi-
tion, Hcy can affect amyloid beta-peptide and tau protein 
metabolism and thus accelerate changes that may result in 
AD [135, 136].

Multiple sclerosis is a chronic autoimmune-mediated 
inflammatory neurological disorder that affects the cen-
tral nervous system [137]. A meta-analysis evaluating the 
correlation between Hcy and multiple sclerosis identified 
a significant increase in serum Hcy of patients [138]. Data 
indicate that elevated levels of blood Hcy may contribute to 
the disease’s pathogenesis.

A broader understanding of the roles of Hcy in neuro-
logical disorders and underlying mechanisms by which Hcy 
contributes to their progression might result in promising 
strategies to decrease the global incidence of mentioned 
neurological conditions.

Association of Hcy‑axes with cancer 
development and progression

Impaired plasma Hcy level is closely related to malignant 
processes [139]. Recent evidence revealed an elevated level 
of plasma Hcy in a cohort of patients with different can-
cer types, including breast [140], colorectal [141], ovarian 
[142], or lung [143]. A high level of Hcy is associated with 
venous thromboembolism, one of the leading causes of 
death in cancer patients [144]. Patients with an advanced 
stage of cancer manifest both HHcy and venous thrombo-
embolism. On the other hand, patients with early-stage can-
cer have a low plasma Hcy, and venous thromboembolism 
is absent [139, 145]. In general, HHcy is a risk factor for 
venous thromboembolism after chemotherapy or surgery 
treatment [140, 146]. Patients undergoing surgery have an 
increased risk of venous thrombosis.

Similarly, the application of chemotherapy increased 
the risk of venous thromboembolism due to an increased 
level of Hcy [140]. Unfortunately, the exact mechanisms 
behind the relationship between elevated plasma Hcy and 
thromboembolism are not well understood. Hcy can act as 
a pro-oxidant that contributes to the generation of free radi-
cals; thus, a high level of Hcy promotes endothelial cells’ 
oxidative damage and affects their physiological function 
[147]. Furthermore, Hcy can form a Hcy thiolactone acting 
as a reactive intermediate that creates covalent adducts with 
amino acids (lysine or arginine) residues in proteins leading 
to protein aggregation [148]. Subsequently, accumulating 
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insoluble protein aggregates in the heart and blood can dis-
turb normal heart function and physiology [139].

The Hcy detoxification pathway involves many enzymes 
participating in Hcy metabolism. Therefore, it is not surpris-
ing that mutations in this enzymatic machinery contribute to 
cancer development [149]. Different mutations and polymor-
phisms in specific genes, including MTHFR, MTRR , MTR, 
MTHFD, BHMT, TCN 2, CBS, and TYMS were identified 
in thrombosis or NTD [150, 151]. Specific polymorphisms 
connected to cancer were detected in MTHFR. Meta-analysis 
of 19 260 patients and 23 364 controls revealed that the 
C677T variant is the most common in ovarian and breast 
cancer patients. This polymorphism significantly increases 
the risk of breast and ovarian cancer in Asians. Interestingly, 
C677T represents increased risk factors for breast cancer in 
Caucasians, but there was no significance between C677T 
and ovarian cancer in Caucasoid populations [152]. Fur-
thermore, other studies observed a significant association 
between MTHFR C677T polymorphism and esophageal can-
cer [153], neck cancer [154], and lung cancer [155]. Another 
MTHFR polymorphism, A1298C, is associated with breast 
[156] and bladder [157] cancer susceptibility. Molecular 
analysis of the MTRR  gene identified A66G polymorphism 
significantly associated with lung cancer in a Turkish popu-
lation [158]. Also, the A66G variant was determined as a 
risk factor for colorectal cancer in a Japanese population 
[159]. MTR A2756G polymorphism was recognized as a 
risk factor for breast [160], head, and neck squamous cell 
carcinoma [161], or acute lymphoblastic leukemia [162]. 
MTHFD1 G1958A polymorphism is described as a risk 
factor for head and neck cancer development [163]. BHMT 
is another essential gene contributing to Hcy metabolism. 
Substitution G to A on position 742 represents (G742A) a 
polymorphism raising risk of HNSCC.

As previously mentioned, folate has an inverse relation 
with Hcy. Folate contributes to nucleotide biosynthesis, Met 
biosynthesis as well as cellular methylation reactions [164]. 
In addition, folate is essential for converting deoxyuridine 
monophosphate (dUMP) to thymidylate catalyzed by thy-
midylate synthase (TYMS) [165]. This reaction involves 
the transfer of the methyl group from 5,10-methylenetet-
rahydrofolate, which is derived from folate. Under condi-
tions, when methyl donor 5,10-methylenetetrahydrofolate is 
absent due to folate limitation, dUMP accumulates, which 
results in excessive uracil incorporation into DNA instead of 
thymine. During the physiological condition are incorrectly 
incorporated uracils removed by DNA glycosylase. How-
ever, the DNA glycosylase repair system fails due to low 
folate concentration and high concentration of Hcy, result-
ing in chromosomal damage and subsequent promotion of 
carcinogenesis [166].

An elevated level of Hcy also correlates with alteration in 
DNA methylation machinery, which plays a crucial role in 

regulating gene expression [167]. As mentioned above, an 
increased Hcy level is related to folate concentration [168]. 
DNA methylation as an epigenetic mechanism requires a 
methyl donor, SAM, acquired from Met through the enzy-
matic reaction catalyzed by S-adenosyl synthetase. Subse-
quently, SAM is used as a methyl donor in DNA methylation 
reactions catalyzed by DNMTs [169]. Disbalance in SAM 
production due to the limitation of 5,10-methylenetetrahy-
drofolate (key substrate responsible for Met regeneration) 
results in impaired DNA methylation leading to extensive 
hypomethylation of the genome [139, 170]. Global hypo-
methylation represents a hallmark of various cancer that 
contributes to destabilizing chromosomal integrity and thus 
promotes carcinogenesis [171–173].

In summary, an elevated level of Hcy can contribute to 
cancer initiation, promotion, and progression. The specific 
polymorphisms in genes contributing to Hcy metabolism or 
diet deficiency in folate, vitamin B6, or cobalamin directly 
correlate with the Hcy level’s disbalance. Further, admin-
istration of drugs, including laxatives, birth control pills, 
or immunosuppressive drugs, is associated with elevated 
Hcy and subsequent folate reduction [174, 175]. A better 
understanding of mechanisms behind the role of Hcy in car-
cinogenesis will bring new opportunities in cancer-related 
research and accelerate novel therapies targeting disbalances 
in Hcy metabolism.

Hcy metabolism‑associated eye disorders

As precisely described, an elevated level of Hcy affects 
the cardiovascular system [176] and increases the risk of 
acute ischemic stroke [107], pregnancy complications [177], 
impaired wound healing [178], neurological disorders [119], 
cancer development, and cancer-associated complications 
[139]. Further, current data identified a cross-connection 
between altered Hcy levels and ocular diseases such as retin-
opathy, cataract, maculopathy, optic atrophy, pseudo-exfo-
liative glaucoma, and retinal vessel atherosclerosis [179].

Diabetic retinopathy (DR) is a microvascular compli-
cation and the most common cause of blindness in people 
under 65 worldwide [180, 181]. Tawfik et al. (2019) meas-
ured Hcy levels in serum, vitreous, and retina of patients 
with diabetes. Additionally, they evaluated Hcy levels in 
serum and retina of animal models representing diabetes 
type 1 and type 2. They revealed an elevation of Hcy in 
serum, vitreous, and the retina in patients and animal mod-
els. Furthermore, intravitreal injection of Hcy caused reti-
nal changes in animals. These changes of the retina were 
more severe in diabetic mice than in wild type. Hcy can be 
used as a promising biomarker in patients with DR [181]. 
To this end, intravitreal injection of Hcy thiolactone, an 
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intramolecular thioester of Hcy, resulted in degeneration of 
photoreceptors in mice, which could lead to retinopathies 
[182].

Prolonged exposure to Hcy can result in a cataract forma-
tion in the eye lens [183]. An increased plasma Hcy level is 
associated with a higher prevalence of posterior subcapsular 
cataracts in patients [184]. A notable association between 
MTHFR polymorphisms and risk of age-related cataracts 
was investigated by Wang et al. (2015). They identified a 
correlation between variants of the MTHFR gene, which 
could be a risk factor for age-related cataracts. These poly-
morphisms can modulate MTHFR enzyme activity and sub-
sequent Hcy levels [185].

Age-related macular degeneration is the most common 
permanent vision loss affecting people aged 60 and older 
[186]. A correlation between age-related macular degen-
eration and increased levels of Hcy was documented in a 
meta-analysis [187]. In addition, elevated levels of Hcy thi-
olactone and Hcy are associated with the pathogenesis of 
age-related macular degeneration [188].

The pseudo-exfoliation syndrome (PEX) is a systematic, 
age-related disorder characterized by the accumulation of 
fibrinous material in the eye (most notably within the ante-
rior chamber of the eye) [189]. Additionally, PEX is the 
leading cause of pseudo-exfoliation glaucoma (secondary 
open-angle glaucoma) development [190]. A recent study 
revealed an association between the elevated level of plasma 
Hcy and pseudo-exfoliation glaucoma. Acquired data iden-
tified significantly increased plasma Hcy in patients with 
pseudo-exfoliation glaucoma compared to patients with 
primary open-angle glaucoma and healthy controls [191]. 
The retinal artery occlusive disease (ROA) is another patho-
logical condition of the eyes. It is defined as a loss of vision 
due to blockage of the retinal artery [192]. A relationship 
between ROA and elevated levels of Hcy was found in a 
meta-analysis of cohort studies. Results indicated that an 
increased level of plasma Hcy could act as an independent 
risk factor associated with ROA [193].

In conclusion, a direct correlation between HHcy and 
ocular disorders predicts Hcy as a promising biomarker. A 
more in-depth investigation into molecular secrets behind the 
role of Hcy in eye diseases can accelerate current research, 
bring new therapeutical strategies, and thus improve the 
overall life quality.

HHcy as a risk factor of impaired healing

HHcy is considered to be a risk factor of delayed and 
impaired healing. To this end, Type 2 diabetic patients with 
chronic bilateral, medial ankle venous ulcers, and elevated 
serum Hcy level have been demonstrated as not responding 
to treatment with a topical human fibroblast-derived dermal 

substitute; however, after normalization of Hcy level by 
folic acid, vitamin B6, and B12, the reapplication of the 
same treatment led to an improved healing process [194]. To 
this end, Hcy-lowering therapy by application of folic acid 
accelerates wound healing in patients with chronic venous 
ulceration that underwent compression therapy and surgical 
procedures. HHcy patients that received basic treatment and 
were administered folic acid (1–2 mg/day for 12 months) had 
a higher healing rate than non-HHcy patients who received 
only basic treatment [195]. For example, in a 26-year-old 
man with chronic leg ulcers, the administration of B vita-
mins (B1, B2, B6, and B12), trimethyl-glycine, mecobala-
mine, folic acid, and povidone-iodine dressings with culture-
directed antibiotic therapy was associated with improved 
healing of ulcers over 1 month [196]. Another example is 
a male patient (60 years old) with HHcy and MTHFR het-
erozygosity in segments C677T and A1298C had deterio-
rating healing of leg ulcers that can lead to the evolution of 
verrucous elephantiasis nostra. Six months of treatment with 
vitamin B complex and oral folic acid improved the Hcy 
level and healed the dermatological lesions [197].

Several preclinical studies also focused on the association 
between HHcy and impaired healing. Elevated Hcy level 
was associated with the impaired/slow downed femoral 
fracture healing in mice on Hcy-supplemented diet (n = 12) 
compared to mice on standard diet (n = 13) [198]. On the 
contrary, an in vivo study revealed that folate and vitamin 
B12 deficiency in diet did not affect bone repair in mice 
[199]. To this end, HHcy inhibited tibial fracture healing 
in rats by suppressing PI3K/AKT signaling pathway and 
enhanced apoptosis and level of pro-inflammatory TNF-α 
[200]. Interestingly, higher Hcy levels and decreased vitamin 
B12 were observed in Hcy-treated rats than in control rats. 
In Hcy-treated rats, the elevated Hcy level also reduced the 
bone’s blood flow, which contributed to compromised bone 
biomechanical properties [201].

Furthermore, patients with inflammatory bowel disease 
have a higher risk of HHcy due to vitamin B deficiency. The 
administration of B vitamins (B6, B9, and B12) was associ-
ated with the worsened colitis in rodents due to increased 
serum Hcy level related to the absence of injury-induced 
elevation of  H2S synthesis. However, the administration of 
IL-10 with an ability to increase  H2S synthesis ameliorated 
the severity of colitis, reduced serum Hcy levels, and inflam-
mation, thereby promoting healing [202].

As was mentioned above, several studies focused on the 
association between HHcy and impaired healing. To miti-
gate the adverse effects of HHcy to wound healing, the sup-
plementation of cofactors (B vitamins, folic acid) or other 
agents (IL-10) seems to be perspective in the treatment 
of several diseases, especially in type 2 diabetic patients, 
patients with various types of ulcers, fractures, or inflamma-
tory bowel diseases. This supplementation has the potential 
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to significantly decrease the Hcy level and facilitate/acceler-
ate wound healing. Table 1 provides an overall summary of 
the results of the above-mentioned studies of which HHcy 
were associated with various complications, including oxi-
dative stress, inflammation, CVD, pregnancy, neurological 
and eye disorders, cancer, and healing.

Nutritional recommendations to prevent 
HHcy and associated pathologies

HHcy is associated with mutations of relevant genes 
or nutritional depletion of related vitamins [203]. A 
healthy diet rich in vitamins and antioxidants plays an 
essential role in the organisms, thus ensuring the proper 
Hcy metabolism function. This paragraph underlines 
the importance of low-Met diet, dietary intake rich in 
B vitamins, as essential cofactors for Hcy metabolism, 
their synthetic forms such as folic acid or betaine in 
patients with HHcy.

Whole-grain intake is inversely associated with Hcy 
in healthy men and women — the mean Hcy concentra-
tion was 17% lower in subjects with the highest whole-
grain consumption compared with the lowest [204]. To 
reduce Hcy levels and associated deaths in patients, sup-
plementation with the activated forms of B6, folate, B12, 
or betaine should be used [21]. Co-supplementation of 
folic acid and vitamin B12 exerts a synergistic effect in 
lowering blood Hcy [205]. Interestingly, the Mediter-
ranean diet can also decrease Hcy levels. A 19% decline 
in Hcy level after 2 weeks happened after administration 
of a fiber-rich diet [206]. Dietary intake of vitamin B12 
and folate is essential for Hcy metabolism. Therefore, 
deficiency in these vitamins can cause the HHcy and 
associated diseases. The intake of dairy and meat prod-
ucts is vital to achieving the daily B12 intake of 3.0 μg 
to prevent HHcy [50]. Vitamin B12 is commonly found 
in dairy and meat products [50], legumes, and green 
leafy vegetables [207]. Asparagus, beef liver, legumes, 
and egg yolk are rich in folate [208]. Furthermore, rec-
ommended daily intake of folate (400 μg) can also be 
achieved by the supplementation of folic acid, a syn-
thetic version of folate with the ability to convert to 
folate by the body, that is important in vegetarians and 
older adults as the risk groups of folate deficiency [209]. 
A randomized clinical trial demonstrated the capacity of 
high-dose folic acid (5 mg/day) supplements adminis-
tered throughout pregnancy to decrease Hcy concentra-
tions at the time of delivery [210]. Similarly, high-dose 
folic acid supplement from 3 months before pregnancy 
until the entire pregnancy reduced recurrent PE [211].

Vegetables and fruits are rich in phytochemicals that 
exert many health benefits and thus play an essential role 

in preventing and treating chronic diseases such as CVDs 
[212]. The supplementation with genistein (5, 7-dihy-
droxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) 
reduced plasma Hcy levels significantly. For this reason, 
genistein is considered as a potential substance for the pre-
vention and treatment of CVDs and reduction of cardiovas-
cular mortality [213]. Further, epigallocatechin-3-gallate 
(EGCG) prevents Hcy-induced apoptosis in endothelial 
cells by upregulation of SIRT1/AMPK and Akt/eNOS cell 
signaling. These data indicate that EGCG might have some 
benefits for HHcy-induced endothelial dysfunction and by 
this mechanism can prevent CVDs [214]. Also, curcumin 
demonstrated antagonistic activity to Hcy. In preclinical 
research, curcumin had protective effects against endothe-
lial dysfunction via upregulation of eNOS expression and 
reduction of oxidative DNA damage in cardiomyocytes 
[215]. Furthermore, coffee intake of 1–3 cups/day contain-
ing polyphenols is linked to decreased levels of Hcy. Based 
on these data, it is rational that moderate coffee consump-
tion has preventive effects against some cardiovascular risk 
factors [216].

Quercetin exerted protective effects on Hcy-induced oxi-
dative stress in a rat model demonstrated through higher 
plasma levels of erythrocyte catalase, an enzyme of the 
antioxidant defense system, and decreased plasma malon-
dialdehyde (MDA), a product of lipid peroxidation [108]. 
Similarly, the administration of melatonin and vitamin E 
could exert beneficial effects in preventing the effects of 
Hcy on plasma antioxidant enzymes, as demonstrated by 
the impeded decrease of plasma antioxidant enzyme activity 
in Hcy-treated male rats [217]. The citrus flavonoid hesperi-
din protects against HHcy by abrogating oxidative stress, 
endothelial dysfunction, and neurotoxicity in male Wistar 
rats [218]. As discussed above, current evidence supports 
the role of oxidative stress in AD [219], while increased Hcy 
and lower antioxidant levels are observed in AD patients 
[114]. However, a multicenter, randomized, double-blind 
controlled clinical trial stated that regular intake of poly-
phenols in the antioxidant beverage might be beneficial in 
the decrease of tHcy plasmatic concentrations in AD [219]. 
Quercetin also exerted protective effects on Hcy-injured 
human umbilical vein vascular endothelial cells (ECV304) 
by antioxidant and anti-inflammatory activity demonstrated 
through decreased MDA, endothelin release, and NF-κB and 
increased SOD activity, NO, and 6-keto-prostaglandin F1al-
pha release. These findings suggest the potential of quercetin 
as a preventive or therapeutic agent in CVD [220].

The modulation role of diet affecting specific molecu-
lar pathways associated with cancer is currently intensively 
studied. An observational study identified that high folate 
status led to a decreased plasma Hcy level and subsequently 
increased DNA methylation in colon tissue in a cohort of 
patients with colorectal cancer and colorectal adenoma. 
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Their observation revealed a cross-connection between low 
folate intake and DNA hypomethylation with an increased 
risk of colorectal neoplasia [221]. Further, higher folate 
intake (folate has an inverse relation with Hcy) is associated 
with decreased risk of developing different tumors such as 
colorectal or esophageal cancer in the Uruguay population 
[222]. Notably, phytochemicals, naturally occurring non-
nutritional compounds of plants, exert beneficial features 
for human health, including modulation of key molecular 
cascades associated with Hcy metabolism. Their additional 
intake is promising to prevent carcinogenesis but further 
research in cancer chemoprevention, mediated by phyto-
chemicals, is needed [223].

The regular consumption of vitamins (i.e., B12) and 
other dietary supplements is associated with the prevention 

of numerous pathological conditions, including HHcy 
affecting normal ocular function. Vitamin B12 deficiency 
is a common cause of various health problems [224]. There 
is a correlation between the decreased vitamin B12 and 
increased age of the probands in both genders. Similarly, a 
low folate level is associated with an elevated level of Hcy 
in the elderly population. Daily dietary intake of vitamins 
B12 and folic acid was required for patients with glaucoma 
to reduce the level of Hcy [179].

Similar to the aforementioned pathological conditions, 
low dietary intake of vitamins, including B6 and B12, leads 
to increased Hcy levels, affecting the pathogenesis of vari-
ous neurological disorders [225]. Several case–control and 
prospective cohort studies tried to confirm the association 
between low riboflavin, folate, and vitamins B6 and B12 

Table 2  Nutritional recommendations for targeted prevention of HHcy and associated systemic effects

HHcy associated with disease/complications Supplement/diet Recommend dose Ref

Risk of diabetes and ischemic heart disease Whole-grains Median intake: 22.3 g/day [204]
Risk of vascular disease and associated 

deaths
Folic acid + vitamins B12 Folic acid: 0.5–5 mg/day, vitamin B12: 

0.5 mg/day
[205]

Risk of CVDs Fiber-rich diet (a low-calorie, high-fiber, 
fruit-based nutrient-dense bar rich in 
vitamins, minerals, fruit polyphenolics, 
β-glucan, docosahexaenoic acid)

Bar intake (107 kcal/≈25 g bar): twice-daily [206]

Elderly people, vegatarians, and vegans Folic acid 400 μg/day [209]
Pregnancy Folic acid 5 mg/day [210]
Preeclampsia Folic acid High-dose folic acid (4 mg/day) from 

3 months before pregnancy until the entire 
pregnancy

[211]

CVDs and cardiovascular mortality Genistein - [213]
Endothelial dysfunction and associated 

CVDs
Epigallocatechin-3-gallate - [214]

Endothelial dysfunction and associated 
CVDs

Curcumin - [215]

CVD risk Coffee intake containing polyphenols 1–3 cups/day [216]
Oxidative stress Quercetin 50 mg/kg body weight daily [108]
Oxidative stress Melatonin and vitamin E Melatonin: 1 mg/kg/day, Vitamin E: 

125 mg/kg/day
[217]

Oxidative stress, endothelial dysfunction, 
and neurotoxicity

Hesperidin 100 mg/kg [218]

AD Intake of polyphenols 200 mL/person/day of antioxidant drink 
(with polyphenolic antioxidants)

[219]

CVDs Quercetin - [220]
Colorectal cancer and colorectal adenoma High folate status - [221]
Colorectal and esophageal cancer Higher folate intake Mean: 184.1–225.7 μg/day [222]
Glaucoma Vitamin B12 and folic acid - [179]
PD Folic acid 5 mg/day [226]
PD Vitamin B6 Mean: 1.63 mg/day [228]
Met adenosyltransferase I or III, SAH 

hydrolase, and adenosine kinase deficiency 
patients

Low-Met diet if plasma Met concentrations 
exceed 800 μmol/L

- [230]

CBS deficiency patients Low-Met diet and betaine Betaine: 50 mg/kg/day twice (children), 3 g/
day twice (adults)

[231]

496 EPMA Journal (2021) 12:477–505



1 3

intake with increased risk of PD. Interesting results showed 
periodic supplementation with folic acid leading to reduc-
tion of Hcy level in a cohort of patients with PD [226–228]. 
A lower level of vitamin B12 and a higher level of Hcy 
cause a reduction in mobility and more cognitive decline in 
a cohort of patients with PD [229].

Nutritional recommendations for maintaining normal Hcy 
levels are usually focused on patients with specific muta-
tions in enzymes associated with Hcy metabolism. If the 
plasma Met concentrations exceed 800 μmol/L, a low-Met 
diet could be beneficial, especially in patients with Met 
adenosyltransferase I or III, SAH hydrolase, and adenosine 
kinase deficiencies [230]. In patients with CBS deficiency, 
the treatment with a low-Met diet and betaine is highly rec-
ommended to maintain plasma Hcy concentration below 
120 μmol/L [231]. Table 2 summarizes the nutritional rec-
ommendations, their recommended doses for the prevention 
of HHcy, and associated impairments.

Concluding remarks and expert 
recommendations in the framework of 3P 
medicine

Hcy metabolism is crucial for regulating methionine avail-
ability, protein homeostasis, and DNA-methylation pre-
senting; therefore, key pathways in post-genomic and epi-
genetic regulation mechanisms. Consequently, impaired 
Hcy metabolism leading to elevated concentrations of Hcy 
in the blood plasma is linked to the overproduction of free 
radicals, induced oxidative stress, mitochondrial impair-
ments, systemic inflammation and increased risks of eye 
disorders, coronary artery diseases, atherosclerosis, myocar-
dial infarction, ischemic stroke, thrombotic events, cancers 

development and progression, osteoporosis, neurodegenera-
tive disorders, pregnancy complications, and delayed healing 
processes, among others.

Figure 2 summarizes systemic effects by an impaired 
homocysteine metabolism relevant for a big number of 
pathological conditions. However, accurate risks assessment 
and individualized patient stratification are essential for the 
cost-effective targeted prevention and treatment algorithms 
tailored to the person. Innovative strategies in the frame-
work of 3P medicine consider Hcy metabolic pathways as 
the specific target for in vitro diagnostics, predictive medical 
approaches, multi-parametric patient stratification, advanced 
screening programs, and preventive measures in the popula-
tion as well as optimal treatments tailored to the individual-
ized patient profiles in primary, secondary and tertiary care 
[63, 232–235]. To this end, in the context of severe COVID-
19 complications, blood plasma Hcy was suggested as an 
important biomarker indicative for systemic vasculitis and 
inflammation, both crucial for disease outcomes prediction 
and targeted prevention under pandemic conditions [236]. 
A genetic predisposition to the altered Hcy metabolism may 
play a role, since there is a clear trend toward the worldwide 
prevalence of MTHFR 677 T and COVID-19 incidence and 
mortality. Statistical analysis revealed a correlation between 
C677 T and death from coronavirus [237].

The above highlighted facts argue in favor of innova-
tive population screening and prevention programs involv-
ing Hcy metabolism pathways as a powerful predictive 
and prognostic tool as well as the cost-effective target for 
treatments in the framework of 3PM that is strongly recom-
mended for updated health policy and guidelines.
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