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Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; 
female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, 
amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health 
conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, 
neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communi-
cable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and 
related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as

– a predictor of ageing and related pathologies,
– a sensor of lifestyle quality and progression of subopti-

mal health conditions to diseases for their targeted pre-
vention

– and as a potent target for cost-effective treatments tai-
lored to the person.
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edn1  Gene encoding ET-1
ERAs  Endothelin receptor antagonists
ET-1  Endothelin-1
ET-2  Endothelin-2
ET-3  Endothelin-3
ETA  Endothelin A receptor
ETB  Endothelin B receptor 
HELLP syndrome  Haemolysis, elevated liver enzymes 

and low platelets syndrome
i.c.v  Intracerebroventricularly
IL  Interleukin
LV  Left ventricle
MABs  Monoclonal antibodies
MMP  Metalloproteinase
MMP-2  Metalloproteinase-2
NO  Nitric oxide
NOS  NO synthase
OC  Ovarian cancer
OM  Olfactory mucosa
ORF  Oligomerisation of open reading 

frame
PAH  Pulmonary arterial hypertension
PDE  Phosphodiesterase
PDGF  Platelet-derived growth factor
PE  Preeclampsia
PG  Prostaglandin
PGE-2  Prostaglandin E2
PGl2  Prostacyclin
PH  Paedriatic hypertension
PHACTR1  Phosphatase and actin regulator 1
PPH  Paediatric pre-hypertension
Prepro-ET-2  Peproendothelin-2
Prepro-ET-3  Peproendothelin-3
RA63  Rendomab-A63
RB1  Rendomab-B1
RB4  Rendomab-B4
ROS  Reactive oxygen species
SAH  Subarachnoid haemorrhage
SARS-CoV-2  Severe acute respiratory syndrome 

coronavirus 2
SBP  Systolic blood pressure
SCD  Sickle cell Disease
SNP  Single-nucleotide polymorphism
TGF-β  Transforming growth factor-beta
TNF-α  Tumour necrosis factor-alpha
TS  Takotsubo syndrome
VCAM-1  Vascular adhesion molecule-1
VSMCs  Vascular smooth muscle cells
VSMCs  Vascular smooth muscle cells
vWF  Von Willebrand factor (vWF)
WH  Wound healing
WKY rats  Wistar–Kyoto rats
YAP  Yes-associated protein

Preamble

Endothelin (ET) is involved in the regulation and perfor-
mance of a myriad of processes, which physiologically 
occur in a healthy human body. To them belong:

– Maintaining versus diminishing physical well-being [1, 
2]

– Regulation of stress reactions and mental health: 
chronic as well as episodic psychosocial factors pro-
voke social, environmental and emotional stress reac-
tions; elevated plasma endothelin-1 (ET-1) influences 
individual differences in autonomic and hemodynamic 
responses to stress [3, 4]

– Female and male health [5–8]
– Pregnancy and embryonic development [9–12]
– Wound healing [13–16]
– Regulation of senses [17–20]
  amongst others.
  On the other hand, shifted ET homeostasis may influ-

ence and predict the development and progression of:
– Suboptimal health conditions [1, 18–24]
– Ageing and related pathologies [5, 25–28]
– Vascular stiffness and ageing, cardiovascular dis-

eases and “young” ischemic stroke [1, 29–35]
– Metabolic impairments with cascading complications 

[1, 36–38]
– Neurodegenerative disorders [39–42]
– Particularly aggressive subtypes of cancer such as 

metastasing breast and prostate malignancies [7, 20, 
43–50]

– ET-1 axes are involved in thermoregulation and attenu-
ate the heat loss, modulate pain and drug sensitivity 
[20, 51–55], therapy response [56–58] and individual 
outcomes of both non-communicable [59] and infec-
tious diseases, such as during the current COVID-19 
pandemic [60–63].

This article provides an in-depth analysis of the involve-
ment of ET-1 and related regulatory pathways in physi-
ological and pathophysiological processes and estimates 
its potential as the diagnostic, prognostic and treatment 
target in the framework of 3P medicine.

Historical notes

Endothelins were first described in 1985 by Hickey et al. 
as factors with vasoconstrictor actions acquired from a cul-
ture of bovine aortic endothelial cells [64]. They were sug-
gested to have a chemical composition similar to peptides, 
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due to the abolishing activity of trypsin [65]. Thereafter, 
Yanagisawa et al. defined the structure of these constrict-
ing factors as a 21-amino acid peptide named endothelin 
(designated endothelin-1 or ET-1), from a porcine aortic 
endothelial cell culture [66].

Shortly after, a similar peptide family named sarafotoxins 
was discovered in the cardiotonic venom of snakes and was 
seen to have a similar sequence to ET-1 [67, 68]. In humans, 
two further endogenous isoforms of endothelins were 
described while analysing the gene encoding ET-1 (edn1): 
endothelin-2 (ET-2) and endothelin-3 (ET-3). All isoforms 
consist of 21 amino acid residues, yet possess differential 
expression subject to their tissue or cell of origin [69]. In 
fact, due to differences in affinities for the three isoforms, in 
the upcoming year, two G protein-coupled receptors were 
identified, namely endothelin A receptor (ETA) [70] and 
endothelin B receptor (ETB) [71], where ET-1 and ET-2 
signal through ETA in a more potent manner than ET-3, 
while all three isoforms are equally efficient in receptor ETB 
[72]. In fact, endothelins are secreted by numerous different 
cells, such as endothelial cells (EC), vascular smooth mus-
cle cells (VSMCs), fibroblasts, renal medulla, leukocytes 
and macrophages [72]. The objective of this review is to 
summarise endothelin mediation in normal physiology and 
focus on its role in the pathogenesis of a number of affec-
tions and diseases.

Endothelin‑1 axes: function, physiology 
and measurement

After the discovery of ET-1, permanently increasing inter-
est for its potent and sustained vasoconstrictor action in the 
pharmaceutical industry and academia sectors has been 
monitored. Endothelin isoforms are synthesised by respec-
tive cell types and tissues in the human being and encoded 
by responsible genes located in different chromosomes (ET-
1, chromosome 6 and ET-2 and ET-3, chromosomes 1 and 
20 respectively) [69]. ET-1, the main and parent component 
of the endothelin family, is secreted by most cell types with 
an increased expression in vascular EC, smooth muscle 
cells, cardiac myocytes fibroblasts, podocytes, macrophages 
and fibroblasts [73–75]. ET-1 has been described to be a 
multifunctional peptide involved in many physiological (cell 
differentiation and growth), pathological processes (cancer 
development and inflammatory events) and cell functions 
[76]. It plays a crucial role in pulmonary physiology, autoim-
mune disorders, neurological function and fluid and electro-
lyte transport [66, 69, 77, 78].

Synthesis of the ET-1 bioactive 21-aa peptide is car-
ried out in multiple stages by the encoding gene edn1 via 
a proteolytic pathway [79]. Human gene edn1 transcription 
generates an mRNA that consequently encodes a 212-aa 

prepro-ET-1 [66]. Once prepro-ET-1 enters the endoplasmic 
reticulum furin-like peptidase split prepro-ET-1 into a 38-aa 
inactive peptide intermediate named big ET-1 [80]. Lastly, 
big ET-1 is converted by the endothelin-converting enzyme 
(ECE) to form the active form of ET-1 [81, 82]. ET-2 and 
ET-3 are also constituted from their inactive Big ET by ECE. 
Various ECE human isoforms have been described at dif-
ferent subcellular locations, ECE-1a, ECE-1b, ECE-1c and 
ECE-1d [83]. ET-1 plasma and circulating typical ET levels 
in numerous species is ∼ 1 pM suggesting that upon stand-
ard physiological conditions, endothelins are not circulating 
hormones but truly operate as paracrine and autocrine fac-
tors [84, 85].

ET-1 bioavailability regulation is described to happen 
mainly at a transcriptional level [86–88]. Proper reactivity 
of edn1 to stimuli is required for a correct regulation of ET-1 
expression within the systems of the human body. In fact, 
modifications in edn1 expression or genetic polymorphisms 
have described alteration and pathogenesis of numerous 
diseases such as diabetic retinopathy, cancer, heart failure, 
cardiomyopathy or asthma [89–93]. ET elevated circulating 
levels are often related to cardiovascular diseases (CVD) 
such as ischaemic heart disease, hypertension, chronic heart 
failure, ischaemic heart disease or pulmonary hypertension. 
Nevertheless, increased ET levels have also been reported 
in non-CVD [85]. An enhancement of ET-1 mRNA expres-
sion has been reported in numerous cells by transforming 
growth factor-beta (TGF-β), interleukins, insulin, angioten-
sin II (AngII), tumour necrosis factor-alpha (TNF-α) and 
norepinephrine [66, 94, 95]. In EC, an upregulation of ET-1 
mRNA is exerted by hypocapnia and downregulated by 
hypoxia [96].

As aforementioned, ET isoforms and ET receptors are 
distributed within a spectrum of tissues and by a variety 
of cells; hence, their interaction induces signal cascades 
promoting multifunctional outcomes. In fact, endothelium-
released ET-1 (mainly secreted to the basal face) interacts 
via ETA with the smooth muscle, prompting vasoconstric-
tion. In contrast, ET-1 coupling with ETB receptor regulates 
the secretion of relaxing factors such as prostacyclin (PGl2) 
and nitric oxide (NO) on neighbouring EC, inducing relaxa-
tion of smooth muscles [85]. Data suggests that endogenic 
ET-1 regulates peripheral blood flow via smooth muscle 
ETA, while diminution in blood pressure (BP) is regulated 
by endothelial cell ETB receptor [85, 97–100]. ET-1-ETA 
system has been described to be of importance in the car-
diac and cranial neural crest, whereas ET-3-ETB in enteric 
neuron and melanocyte development [101, 102].
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Characterisation of ET subtypes

ET-2 differs from ET-1 in humans and other mammals 
namely cats, dogs, cattle and monkeys by two amino acids, 
 Trp6 and  Leu7. Synthesis of ET-2 has been described to be 
comparable to that of ET-1. Edn2 gene is transcripted into 
peproendothelin-2 (Prepro-ET-2) which is then cleaved by 
a furin into Big ET-2. Then, ECE-1 and ECE-2 convert 
Big ET-2 into mature peptide ET-2 [82]. Gardiner et al. 
reported in an in vivo study how Big ET-2 was transformed 
to exert cardiovascular effects similarly to Big ET-1 [103]. 
However, there is still some controversy regarding the effi-
ciency of conversion of Big ET-2 by ECE, despite sharing 
an identical cleavable bond with ET-1; Big ET-2 conver-
sion rate by ECE-1 and ECE-2 was respectively 5–7 and 
7–10% as rapid as Big ET-1 transition [82]. A quantitative 
RT-PCR study on rats revealed ET-1 mRNA expression in 
all 16 analysed organs, though only detected ET-2 expres-
sion in lung, ovary, heart, stomach and intestine, being 
ET-2 distribution more organ restricted [104]. Increased 
levels were reported in ovary and in all intestine regions 
(duodenum, jejunum, ileum, colon and rectum) [105, 106]. 
Medulla oblongata and pituitary glands presented higher 
ET-2 mRNA levels than ET-1, though most brain areas 
(cerebellum and cerebrum) had low or undetectable levels 
of ET-2 [107].

ET-2 is synthesised in spectra of human tissues: their 
mRNA and/or peptide have been identified in the heart, 
lung, kidney, vasculature, intestine and ovaries, promoting 
intestinal contraction, ovulation, thermoregulation and lung 
alveolarisation [108–112]. Big ET-2 presented greater levels 
(∼ 2 pmol/l) than Big ET-1 in human plasma [113, 114]. 
Nevertheless, ET-2 concentration (∼ 0.9 pmol/l) is lower 
than ET-1 levels [115]. Both in mice and rats, ET-2 differs 
from ET-1 by three amino acids  (Asn4,  Trp6 and  Leu7) and 
is termed vasoactive intestinal contractor due to its original 
identification in contracting mice ileum [116].

ET-2 presents distinct physiological and pathophysiologi-
cal properties than ET-1. In fact, removal of the ET-2 gene 
in mice translates into a phenotype with severe hypothermia, 
growth deceleration, hypoglycemia and ketonemia [117]. 
ET-2 gene selective deletion in epithelial cells prompted 
great changes in mice lung morphology leading to low blood 
oxygen and elevated carbon dioxide levels. ET-2 function  is 
exerted in a paracrine manner, being ET-2 mRNA present 
in epithelial cells and receptor mRNA in the mesenchyme. 
Furthermore, ET-2 appears to have a significant role in ovar-
ian physiology [117].

Many studies have emphasised an important role of 
ET-1 as a follicular development and luteal phase regula-
tor [118–120]; however, ET-2 expression in ovaries is in 
fact higher than ET-1 [121]. Both ET-2 and ECE-1 were 

transitorily expressed during ovulation in rat ovaries [122]. 
Palanisamy et al. reported ET-2 expression in the granulosa 
cells in pre-ovulatory follicles. After superovulation induc-
tion in mice, they observed a drastic enhancement of ET-2 
mRNA expression 11 h after, coinciding with follicular 
breach [108].

ET-2 also acts as a chemokine, being a chemoattract-
ant for neutrophils even at low levels [123]. Furthermore, 
ET-2 stimulated macrophage chemotaxis via ETB receptor 
through the MAPK pathway, displaying similar activity as 
CCL2 inflammatory chemokine [124].

ET-3 differs in 6 amino acids within the N-terminal loop 
when compared to ET-1 and ET-2, which confers ET-3 
with selectivity for ETB receptor [125]. The ET-3 synthetic 
pathway is primarily similar to that of ET-1 and ET-2. The 
transcription product of the edn3 gene, peproendothelin-3 
(Prepro-ET-3), is cleaved by the furin enzyme into the inac-
tive Big ET-3. The capacity of ECE-1 and ECE-2 to be able 
to cleave Big ET-3 has been argued. Data report a reduced 
conversion rate of Big ET-3 (1–3 and 4–9% respectively) 
when compared to Big ET-1 [82]. Nevertheless, Big ET-3 
induces vasoconstriction in vivo, suggesting the existence 
of cleaving enzymes [103, 126]. Indeed, a zinc-dependent 
endopeptidase with a similar ECE-1 sequence, Kell, effec-
tively cleaved Big ET-3, proposing an alternative synthetic 
enzyme for ET-3 [127, 128].

ET-3 is expressed in melanocytes, intestinal epithelial 
cells, renal tubular epithelial cells, placenta, melanocytes 
and brain neurons promoting the secretion of anti-inflam-
matory and vasodilating agents (particularly PGl2 and NO) 
[74, 129]. Furthermore, ET-3 has been detected in the heart, 
endometrium, brain and pituitary glands, where its levels 
were greater than ET-1 [130]. In human plasma, ET-3 was 
detectable at low ratios of ∼ 0.3 pmol/l, as well as Big ET-3 
at ∼ 6 pmol/l [113]. Human EC are unable to synthesise 
ET-3, thereby inactive circulating Big ET-3 may be origi-
nated in the adrenal glands [131]. Elevated concentration of 
immunoreactive ET-3 has been found in the lungs, brain, 
intestine and pituitary gland of rats [132]. Prepro-ET-3 
mRNA was detected in the submandibular gland, kidney, 
eye, stomach and spleen rat tissues [133], while Big ET-3 
was seen in mast cells and macrophages within the gastroin-
testinal tract of rats [134]. Significant increases in Big ET-3 
concentrations have been reported in haemodialysis patients 
(along with Big ET-1 and -2), even if their active peptide 
levels were moderately elevated [135]. Nevertheless, con-
centration changes related to disease have not been broadly 
researched.

268 EPMA Journal (2021) 12:265–305



1 3

Balanced release of ET‑1 and nitric oxide 
is crucial for health protection

NO is produced in the arterial wall and is one of the most 
effective vasodilator molecules, which arbitrate endothe-
lium-dependent relaxation [136]. NADPH-dependent NO 
synthase (NOS) generates NO through an enzymatic con-
version of l-arginine to l-citrulline [137]. NOS3 constitu-
tive expression promotes NO production by the endothe-
lium. NO functionality is extensive, due to which it acts 
as the main endothelium-derived relaxing factor, in order 
to maintain vascular homeostasis [136]. Endothelial cell-
produced factors, ET-1 and NO, exhibit opposing actions on 
smooth muscle cell contraction; however, when balanced, 
they regulate local vascular tone [136]. Studies have revealed 
that NO and ET-1 can be mutually regulated in order to 
reach vascular tone homeostasis. In fact, stimulation of NO 
production in EC exerted a reduction of ET-1 expression 
and secretion [138]. Another study showed ET-1 induction 
of eNOS uncoupling [139] and blockage of ETA receptor 
mends NO-dependent vascular function in mice with ath-
erosclerosis [140].

Endothelial dysfunction is characterised by a transition 
of the endothelium to a pro-inflammatory and reduced vaso-
dilation state, in which there is an alteration of vasoactive 
factor (NO, ET-1) equilibrium [141]. Several studies have 
suggested that decreased NO concentrations and elevated 
vasoconstrictive ET-1 and serotonin (5-HT) might have an 
impact on high BP onset. In fact, imbalanced expression of 
ET-1 versus NO, together with the impaired 5-HT release, 
has been reported in essential arterial hypertension (EAH) 
[142]. EAH pathogenesis is associated with the endothelium 
and constitutes a social burden [142]. Aflyatumova et al. 
studied the association between the plasma ET-1, serum NO, 
serum 5-HT and platelet 5-HT and BP in adolescent males, 
along with their use as preclinical biomarkers for endothelial 
dysfunction and EAH [142]. Plasma ET-1 and serum 5-HT 
concentrations were increased regarding the controls in both 
paediatric pre-hypertension (PPH) and hypertension (PH) 
children, although PH presented significantly higher lev-
els. NO serum levels on the other hand were higher in PPH 
than in PH patients, correlating negatively with BP values 
[142]. Thus, results suggest that ET-1, NO and 5-HT may be 
related to BP in adolescents and could potentially function 
as preclinical biomarkers of EAH. These results are in line 
with another study which described increased ET-1 plasma 
concentrations in hypertensive adolescents when compared 
to healthy subjects, combined with correlating ET-1 levels 
with systolic blood pressure (SBP) levels [143].

Gender differences in ET‑1 functionality

Numerous gender differences have been observed in the 
endothelin system; in fact, gonadal hormones play a crucial 
role in modulating gender-related disparities in the ET sys-
tem [144]. Sex steroids are crucial for vascular homeostasis 
regulation [145]. In both experimental and human hyperten-
sion models, plasma ET-1 levels were significantly higher 
elevated in males than females [146–148]. Female plasma 
ET-1 levels oscillate throughout the menstrual cycle, being 
lowest during the luteal and follicular phase and higher in 
the menstrual phase [149]. Female sexual hormones inhibit 
ECE action along with ET-1 mRNA expression and diminish 
ETB receptor expression, thus restraining ET-1 levels [144]. 
In a bilateral ovariectomy study on female Sprague–Dawley 
rats, oestrogen replacement treatment decreased lung expres-
sion of ETA receptor and renal inner medullar expression of 
ETB receptor [150]. Another study with oestrogen admin-
istration in transexual male patients reported a decrease in 
ET-1 levels [146]. Furthermore, in pregnancy, ET-1 levels 
are also decreased, concordant with elevated oestrogen lev-
els [151, 152]. The other significant female hormone, pro-
gesterone, was seen to inhibit in vitro ET-1 secretion both 
in resting and stimulated EC [153, 154].

Conversely, testosterone appears to increase ET-1 synthe-
sis both in vitro and in vivo [144, 154, 155]. Testosterone 
also modulates vascular reactions to exogenous ET-1 [156]. 
However, a rat orchidectomy analysis revealed elevated 
ET-1, ETA and ETB receptors in the portal veins, suggest-
ing that testosterone might act suppressing the ET system 
[157]. Erectile dysfunction may be an early indication of 
hypertension, being endothelial dysfunction often the link 
between these two conditions. Hypertension is strongly cor-
related with an increased release of procontracticle factors 
such as AngII, aldosterone and ET-1, which impacts vascu-
lar and erectile structures [6]. In the vasculature, ET-1 elic-
its reactive oxygen species (ROS), production by NADPH 
oxidase enzyme, which in turn releases ET-1, favouring a 
prohypertensive [158, 159]. Animal model studies reveal 
ET-1 to be essential in salt-sensitive hypertension-related 
ED [160, 161]. Furthermore, ET-1 generated  Ca2+ influx 
alteration, prompting smooth muscle contraction in isolated 
penile tissue [162]. An in vitro study showed increased ET-1 
 Ca2+ influence in human smooth muscle cells derived from 
corpus cavernosum from patients with ED when matched 
with healthy subjects [163]. These data propose gonadal 
hormones to have tissue-specified effects on the ET system; 
hence, an altered equilibrium in menopausal women between 
estrogens and testosterone might worsen ET-1 vascular-
related pathologies [5]. Regarding ET-1 sensitivity, males 
have been demonstrated to exert increased vasoconstriction 
than females in response to ET-1, which has been associated 
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with the increased expression of ETA and ETB receptor in 
the saphenous veins and in the renal medulla in males com-
pared to females [144, 164, 165]. Similarly, cultivated cer-
ebral arteries from women presented a decreased vascular 
sensitivity to ET-1 in comparison to those from men [166]. 
Clinical and basic research studies have demonstrated that 
females have reduced ETA-mediated vasoconstriction than 
men [164, 167–169]. Females also display great vascular 
endothelial smooth muscle ETB receptor-mediated ves-
sel enlargement, which counteracts the global constrictor 
vascular tone [169, 170]. In fact, a study in which an ETB 
receptor antagonist (BQ-788) was administered to healthy 
subjects revealed ETB receptor-mediated vasoconstriction in 
men and vasodilation in women [170]. This may indicate a 
leading role of ETB receptor function in women that in turn 
provide better outcomes in vascular-related disorders than 
in men. In a similar study, Stauffer et al. showed increased 
blood flow in men after administration with ETA receptor 
antagonist (BQ-123) when compared to women, indicat-
ing greater ETA receptor-related tonic constriction [169]. 
Indeed, specific patterns of ET-1 receptor subtype expres-
sion and localisation lead to gender disparities in vascular 
responsiveness to ET-1.

Gender difference within the ET-1 system has been also 
associated with vascular mediators in downstream cascades 
activated via ET receptor activation. Zimmerman et al. have 
reported gender differences concerning ET-1 mediation in 
oxidative stress generation, modulation of NO levels, inflam-
mation induction and Ang II hypertension [171]. It has been 
hypothesised that the activation state of the ETB receptor 
limits ET-1-induced increase in plasma within oxidative 
stress in females compared to males [172]. Furthermore, 
female rats that lack ETB receptors have been demonstrated 
to have diminished renal NOS activity relative to males 
[173]. Also, intramedullar ET-1 infusion increased diuretic 
and natriuretic responses in female but not male rats, pro-
posing larger ETA- and ETB-mediated increases in NO in 
females [174]. Further studies have described ET-1 effect on 
increasing calcium release from the inner medullar collect-
ing duct cells in males as compared to females [175].

ET‑1, age and ageing: is differential 
diagnostic approach feasible?

In developed countries, ageing entails an increased preva-
lence of a variety of non-communicable and chronic dis-
eases [176]. Amongst them are vascular diseases, myocar-
dial infarction, stroke, heart failure, diabetes, obesity and 
cancer, with an increased incidence in the course of ageing 
[25, 176].

Ageing is related to particular changes in both the innate 
and adaptive immune systems, promoting an increased 

inflammatory milieu and oxidative stress leading to altera-
tions in expression, release and increased ET-1 system 
activity [5, 26, 27]. Ageing along with chronic diseases 
are related to alterations in inflammatory processes and 
endothelial cell pathways, leading ultimately to disease 
development, being endothelial dysfunction an early result 
of vascular ageing [177]. In fact, healthy premenopausal 
women present a much favourable cardiovascular status than 
age-matched men associated with the vasoprotective effect 
of ovarian steroids. Hence, at menopause, an alteration in 
these circulating hormones increments women’s cardiovas-
cular profile risk [178]. It is worth mentioning that most 
studies regarding ET-1 system activity in ageing have been 
investigated in male participants.

In human brachial arteries, an increase in ET-1 expression 
was related to ageing along with alterations in ETA-ETB 
ratios [28]. Ageing men displayed an enhancement in ET-
1-dependent vasoconstrictor tone, being potentially allevi-
ated with aerobic exercise [179]. Donato et al. revealed an 
increased ET-1 expression in vascular EC of healthy elderly 
men, related to a decreased endothelium-dependent dilation 
(EDD). In old mice, ET-1 receptor A signalling suppresssed 
EDD [28]. Indeed, elevated endogenous ET-1 mRNA and 
protein levels in plasma and vascular tissue have been associ-
ated with ageing in both female and male rats [180, 181]. In 
studies with aged mice and rats, they observed ET-1 damp-
ened vasoconstriction (albeit increased ET-1 concentrations) 
potentially due to functional inability of endothelin receptor 
signalling pathways [179, 182, 183]. Furthermore, in aged 
male rats, ET-1 may prompt renal injury, which suggests an 
action of ET across vascular barriers into the kidney [184]. 
A study researching aged female mice hearts noted upregula-
tion of ET-1 expression in in vitro cultures of late passage 
cardiac fibroblasts, along with downregulation of oestrogen 
receptor-α (ER-α), important negative ET-1. Comparable 
results with in vitro cultures of senescent cardiac fibroblasts 
were reported, observing also an increased expression of 
fibronectin and collagens, which suggests that ageing-related 
cardiac fibrosis is in part subject to ET-1 upregulation [185].

Other age-associated diseases such as glaucoma or age-
related macular degeneration (AMD) presented increased 
ET-1 which suggested its role in the diagnosis and patho-
genesis of AMD [186, 187]. Enhanced levels of ET-1 were 
found in AMD patients treated with angiogenesis inhibitors 
(bevacizumab), yet its implication has not yet been deter-
mined [188]. Glaucoma patients have revealed increased 
ET-1 circulating and intraocular levels and anterograde-ret-
rograde axonal transport [189–193]. ET-1 levels were able to 
predict postsurgery intraocular pressure in patients undertak-
ing primary open-angle glaucoma eye surgery [194].
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ET‑1 relevance for endocrine status 
and multi‑faceted hormonal regulation

Diseases related to physiological ageing leading to endo-
crine changes, such as menopause, are enhanced with age, 
presenting constraints of the arterial vascular bed, arterial 
hypertension, insulin resistance and diabetes [195–197].

In fact, as previously described, premenopausal women 
are more advantageous than age-matched men regarding the 
cardiovascular phenotype, largely on account of the vaso-
protective role of female sex hormones [198]. However, 
significant hormonal alterations are associated with meno-
pause such as decreased levels of progesterone and oestro-
gen [199, 200]. Furthermore, estradiol (E2) also declines 
while follicle-stimulating hormone elevates, increasing the 
androgen:oestrogen ratio in postmenopause women [201]. 
Together with the ageing process, this may have implica-
tions on vascular and endothelial function, transitioning to 
a high-risk cardiac profile [199, 200]. It is known that E2 
affects NO production and secretion in a direct manner via 
ERα, which might promote endothelial dysfunction due to 
a decrease in NO accessibility [202]. In a study with post-
menopausal women, they found lower expression of ERα 
receptors and eNOS in peripheral vein-derived endothelial 
cells in comparison to young subjects, which suggest flow-
mediated vasodilation to be dependent on their expression 
[203]. This indicates that endothelial function deterioration 
is partially dependent on reduction of ERα expression and 
eNOS, in turn affecting NO secretion.

The endothelin system and ET-1 are crucial in vascu-
lar dysfunction pathogenesis and have been seen to be 
affected by ageing. In fact, studies have shown an increase 
of endothelin in plasma in postmenopausal women [204, 
205] along with elderly men [28] in comparison with young 
adults. In a menopause rat model, they observed greater 
mesenteric artery reactivity to ET-1 precursor, Big ET-1, 
compared to young females, which improved with oestrogen 
treatment [206]. Moreover, in studies with ovariectomised 
rats, the treatment with oestrogen neutralises ET-1 expres-
sion, suggesting a vital role of oestrogen on ET-1 regula-
tion [147, 168, 207]. In contrast, testosterone is known to 
elevate ET-1 expression in both in vivo and in vitro condi-
tions, thereby modulating responses to external ET-1 [154, 
156]. In a Brazilian study on postmenopausal women, they 
revealed a direct relation between ET-1 and testosterone lev-
els in serum [208].

Indeed, in postmenopausal women, ET-1 promotes the 
deterioration of endothelial function. However, a study with 
ETB antagonist BQ-788 has demonstrated the involvement 
of ETB receptor in restoring vasodilation in ageing women 
[204]. Contrarily, in the same study, the ETA antagonist 
showed no changes in vasodilator capacity, suggesting the 

loss of endothelial function to be associated with a decline 
in ETB receptor-mediated dilation [204].

Furthermore, in other endocrine defects such as thy-
roid diseases (Hashimotos’s thyroditis, Graves’ disease), 
they have also detected increased ET-1 plasma levels when 
compared to healthy controls [209]. Other studies have also 
described elevated ET-1 plasma levels in Graves’ disease 
[210, 211]. Nevertheless, patients suffering from endemic 
goitre did not present increased ET-1 levels [209]. They 
failed to observe a relation between ET-1 and thyroid disease 
parameters (thyroxine, thyroid volume, thyroid-stimulating 
hormone) [209]. Letizia et al. also reported a lack of correla-
tion between the ET-1 levels and thyroid hormones [211]. 
Another study has observed that thyrocytes from Graves’ 
disease patients were stimulated by ET-1 to proliferate to a 
higher extent than healthy subjects [210]. Molet et al. dem-
onstrated that after 24-h treatment with beta chemokines 
(macrophage inflammatory protein 1-alpha and monocyte 
chemotactic protein 1), EC elevated ET-1 mRNA in vitro 
secretion [212]. Thus, beta chemokines are involved in 
inducing ET-1 release in autoimmune and inflammatory 
diseases namely, Graves’ disease and Hashimotos’s thy-
roiditis [209]. In a study with hyperthyroidism patients, they 
observed increased plasma ET-1 concentration as opposed to 
control subjects [213]. They further discovered serum trii-
odothyronine and free thyroxine to be positively correlated 
to plasma ET-1 levels, along with a decrease in ET-1 levels 
after hyperthyroidism treatment compared to pretreatment 
values [213].

ET-1 has also been described to regulate the develop-
ment and secretion of the adrenal gland [214]. The involve-
ment of the ET system was detected both in human and 
rat adrenal cortex and in vitro carcinoma cells [215, 216]. 
Preproendothelin-1, ECE-1 and ETA and ETB mRNA were 
found in normal rat and human adrenal cortex [214]. In vivo 
studies with ET-1 administration to rats and dogs revealed 
an increase in blood pressure and plasma aldosterone lev-
els [217], speculating the influence of ET-1 on the adrenal 
cortex [217]. Furthermore, this was supported by increased 
plasma aldosterone levels due to subcutaneous ET-1 infusion 
in rats [218]. Altogether, the ET system has an important 
function in the regulation of adrenal cortex function and 
potential contribution in adrenal gland pathogenesis like 
Conn’s adenoma [214].

ET‑1 association with adverse health effects 
related to abnormal body weight

Studies investigating endothelin mediation in low BMI 
subjects are currently limited. However, an epidemio-
logic study aimed to determine the correlation between 
BMI (comprising low BMI) and endothelial dysfunction 
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[38]. Physiological control of vascular tone needs for an 
equilibrium between vasoconstricting and vasodilating 
factors [219]. Indeed, endothelin-1 and AngII circulat-
ing levels were similarly increased in low BMI, normal, 
obese and extremely obese groups. Levels of oxidative 
stress were analogous in low BMI, normal and obese 
subjects, although significantly greater when compared 
to normal BMI. Thus, results suggest that besides obe-
sity, low BMI may also present a risk factor for dimin-
ished endothelium-dependent vasodilation in subjects, 
as a result of reduced NO bioavailability, with potential 
CVD prevalence [38]. Moreover, subjects with abnor-
mally low BMI (underweight) have reported an increased 
risk of breast cancer with a poor prognosis [220]. Ferri 
et al. have reported increased plasma ET-1 levels in lean 
patients with essential hypertension, hyperlipemia and 
glucose intolerance compared to normotensive or subjects 
lacking these metabolic disorders [221]. Fasting insulin 
levels in plasma were also correlated to elevated ET-1 
plasma levels, referred to as a risk factor for hyperten-
sion [221]. Another study tested leptin vascular actions 
on ET-1 system and NO pathway balance in both lean and 
obese individuals and tested the effects of ETA receptor 
antagonist, BQ123 and NOS inhibitor, NG-monomethyl 
l-arginine (l-NMMA) [222]. Leptin circulating levels 
were significantly greater in obese patients than in lean 
subjects, as previously observed [223, 224]. After infusion 
of BQ123 and l-NMMA, hyperleptinemia lean subjects 
revealed enhanced vasodilator responsiveness and greater 
vasoconstrictor response to l-NMMA during ETA recep-
tor antagonism [222]. These data suggest that in healthy 
subjects, leptin supports vascular homeostasis by balanc-
ing both the ET-1 system and NO pathway, whereas exog-
enous leptin actions are absent in hyperleptinemic patients 
with obesity-related metabolic syndrome (MetS) [222]. 
Besides, increased production of ET-1 vasoconstrictor 
protein, impaired NO-dependent endothelial function and 
oxidative stress have been related to increased abdominal 
fat and body mass index [225].

Subjects with elevated body mass index (BMI) (both 
overweight and obese) present a chronic metabolic disorder 
with a distinct detriment of their cardiovascular health along 
with increased morbidity and mortality [226, 227]. Charac-
terised by an increased BP and an incidence of hypertension 
[228], this threat may result from endocrine and paracrine 
dysregulation and chronic inflammatory state that derive 
from irregularities in adipose tissue function [229]. This 
consequently elicits an instability amidst the NO pathway 
and ET-1 system resulting from a disruption in vascular 
homeostasis [229].

Endothelial dysfunction is marked by diminished NO 
levels in obesity as presented by Steinberg et al. [230]. In 
patients with elevated BMI, they observed a dampened 

increase in leg blood flow in reaction to intra-arterial 
delivery of muscarinic receptor agonist methacholine, 
compared to lean subjects [230]. These results were 
reproduced by several groups [231, 232]. A further study 
revealed an impairment of brachial artery flow-mediated 
dilation (FMD) in obese patients. This suggests obesity-
related metabolic abnormalities to prompt brachial artery 
endothelial dysfunction [233]. Furthermore, Woo et al. 
reported an association between brachial artery EDD 
impairment and mild to moderate obesity [234, 235]. 
Nutrition adjustments have been seen to partially restore 
vascular abnormalities specifically when combined with 
physical activity [234].

Moreover, increased ET-1 vascular action in pathologic 
conditions such as obesity, hypertension, diabetes mel-
litus and insulin resistance lead to BP abnormalities [36, 
37, 236, 237]. Levin et al. revealed a key role of ET-1 
in the pathophysiology of vasomotor morbidities linked 
to the formation of atherosclerotic plaque and endothe-
lial dysfunction [238]. This knowledge was supported 
by a study investigating ET-1 and NO system interaction 
in obese patients, where the addition of selective ETA 
blocker (BQ-123) compensated the limitation in endothe-
lium-dependent vasodilation, confirming ET-1 contribu-
tion to abnormal vascular homeostasis in such patients 
[239]. Indeed, increased ET-1-mediated vasoconstriction 
in insulin-resistant conditions was identified in obesity and 
diabetes subjects [240]. Yoon et al. performed a study with 
obese patients, observing increased peripheral vasodila-
tion in this group when compared to lean subjects. This 
revealed endothelin as a potent vasoconstrictor affecting 
vascular tone and diastolic blood pressure [228]. Another 
study investigated the relationship between elevated ET-1 
activity in hypertensive subjects and increased body index. 
Increased vasodilator responses to ETA blockage in over-
weight and obese patients were seen when compared to 
lean hypertensive subjects [241]. This ETA-dependent 
vascular reaction in a hypertensive and increased BMI set-
ting may suggest an increased vasoconstrictive response 
to ET-1 or an enhanced ET-1 synthesis at the receptor site 
[241]. In a study researching ET-1-mediated vasoconstric-
tive tone, they revealed a dampened forearm constrictor 
response to external ET-1 in obese and overweight patients 
in relation to lean subjects [242]. Moreover, selective ETA 
receptor blockage elicited an increased forearm vasodila-
tor response in subjects with higher BMI [242]. Shortly, 
ET-1 vascular action increased in overweight and obesity 
along with diminished endothelium-dependent vasodila-
tion which may lead to an enhanced risk of hypertension 
and atherosclerosis disease. Physical activity and lifestyle 
changes can indeed improve endothelial function and 
reduce selective markers of endothelial activation [243]. 
In fact, a study carried out with obese men revealed a 
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direct correlation between the percentage of weight loss 
and decline in plasma ET-1 concentration upon the con-
clusion of a low-caloric diet, which may improve obesity-
induced endothelial dysfunction [244].

ET‑1 as the trigger of pro‑inflammatory 
pathways

Numerous studies have proven the involvement of ET-1 in 
vascular inflammatory processes. ET-1 has been described 
to be related to inflammatory responses through activa-
tion of transcription factors (i.e. NF-κB) and expression 
of pro-inflammatory cytokines such as IL-1, IL-6 and 
TNF-α [245], which in turn stimulate secretion of ET-1 
[246]. In particular, TNF-α is known to enhance inflam-
matory responses by means of cytokine cascades and is 
involved in the pathogenesis of several diseases such as 
rheumathoid arthritis, sepsis, Crohn’s disease, diabetes 
and obesity [247]. TNF-α induces ET-1 secretion in vas-
cular EC [248, 249]. Besides, activated T cells release of 
TNF-α and IFN-γ induce monocytes to produce ET-1 in 
human peripheral blood mononuclear cells [250]. Other 
studies claim T cell-secreted TNF-α, IFN-γ, IL-4 and 
IL-10 to generate distinct macrophage types [251, 252]. 
Studies have proven that ETA receptor antagonists, namely 
BQ1232, have a favourable impact on TNF-α levels [253], 
lowering their concentration in patients after bypass graft-
ing [254]. TNF-α and IL-1β expressions were also inhib-
ited in an oxidative stress lung rat model by BQ123 (Chen 
et al. 2010). ETB receptor antagonist studies display some 
conflicting results. Tonari et  al. revealed inhibition of 
TNF-α expression by BQ788 antagonist in patients with 
optic nerve damage [255]. Nevertheless, another group 
stated no substantial reduction in TNF-α levels in rat 
hearts following BQ788 infusion [256].

Indeed, increased production of pro-inflammatory 
cytokines can trigger the production of prostaglandin (PG) 
in vascular endothelial and smooth muscle cells [257]. 
A number of pathways (NF-κB, cyclooxygenase (COX) 
and NADPH oxidase-dependent) have been seen to pro-
mote ROS production in different cell types [258–260]. 
COX is a key enzyme in PG synthesis [178], and stud-
ies have indicated that its expression can be induced by 
ET-1, together with prostaglandin E2 (PGE-2) release by 
NF-κB and MAPKs [257]. ET-1 stimulated surface expres-
sion of vascular adhesion molecule-1 (VCAM-1) in TNF-
α-stimulated vascular EC. This ET-1-promoted increase 
may be due to TNF-α concomitant inhibitory action on 
endothelin-induced NO production [261]. A further study 
with hypertensive patients revealed stimulation of arterial 
VCAM-1 by ET-1 [262]. VCAM-1 along with intercellular 
adhesion molecules prompt the adhesion of inflammatory 

cells to the vascular surface, involved in atherosclerosis 
evolution [263]. Anggrahini et al. investigated the effects 
of ET-1 on vascular inflammation and neointima forma-
tion in an ET-1-knockout mice model. They observed a 
decrease of ET-1 adverse effects, suggesting its participa-
tion in vasoconstriction and inflammatory cell recruitment 
to the vessels [264]. Moreover, ROS are critical physi-
ological molecules in vascular cells which overproduction 
leads to the development of atherosclerosis and endothelial 
dysfunction [265]. The increase in oxidative stress, mono-
cyte/macrophage infiltration and decrease in high-density 
lipoproteins are effects exerted by ET-1, leading to the pro-
gression of atherosclerosis and aneurysms [266]. Further-
more, overexpression of ET-1 in the endothelium of ath-
erosclerotic mice was marked by a reduction of endothelial 
signalling pathways in charge of endothelium-dependent 
relaxation [267]. ET-1 receptor antagonist might be ben-
eficial in preventing numerous vascular-related diseases 
[268, 269].

ET‑1 functionality is linked 
to both physiologic and impaired healing

Chronic wounds (non-healing)/ulcers are wounds that have 
not completed the physiologic wound healing (WH) pro-
cess in an effective manner, arresting usually at early inflam-
matory stages [13]. Some chronic wound features include 
neutrophil infiltration, extended inflammatory phase and 
consistent infections [270, 271]. Risk factors related to the 
chronic wound-deficient healing process are both modifiable 
(smoking, malnutrition, obesity, diabetes, alcohol consump-
tion, CVD) and non-modifiable (genetic traits and ageing) 
[13]. Wound-associated pain comprises both physiologic 
and psychologic factors, involving also stress and anxiety 
[15]. The immune system might be compromised by cor-
tisol overproduction, and catecholamine-induced poor tis-
sue oxygenation affecting WH in a direct manner [15]. In 
fact, individuals suffering from Flammer syndrome present 
elevated ET-1 levels causing systemic hypoxia as a result 
of improper vasoconstriction or deficient vasodilation [18, 
272]. Wound healing in the liver is an integrated process that 
involves remodelling, fibrogenesis and disruption of liver 
structure, and accumulation of extracellular proteins leads 
to the conversion of the liver to fibrotic and even cirrhotic 
state [14]. ET is of great importance for WH in the liver; in 
fact, ET-1 and -3 circulating levels were seen elevated both 
in cirrhosis patients and in preclinical hepatic WH models 
[273, 274]. Immunoreactive ET-1 levels in the liver might be 
related to liver disease severity [275]. Sinusoidal EC usually 
produce ET in a healthy liver, although following an injury, 
ET-1 synthesis transitions to hepatic stellate cells [276–279]. 
Furthermore, ET-1’s primary aims in the liver are stellate 
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cells, which possess a greater number of ET receptors and 
enhance their binding sites upon activation [280–282]. Acti-
vation of stellate cells is exerted by numerous factors such as 
cytokines, chemokines, growth factors, oxidative stress and 
ET-1 [283, 284]. ET-1 also interacts with TGF-β in modu-
lating hepatic stellate cell activation and increases TGF-β1 
mRNA besides stimulating the release of TGF-β1 in these 
cells. Inhibition of ET signalling by the ET receptor antago-
nists has decreased hepatic fibrogenic response [284–287]. 
In a chronic liver injury model, bosentan was able to inhibit 
ET-1-induced fibrogenesis [284].

ET‑1 is involved in the regulation of senses

Olfactory-sensitive neurons and their axons are enveloped 
by glia-like cells called sustentacular cells, which help to 
sustain the olfactory mucosa (OM) structure and ionic integ-
rity [17]. A group demonstrated that sustentacular cells were 
sensitive to ET-1 and thereby able to uncouple gap junc-
tions [288, 289]. Moreover, endothelin has been described 
to inhibit gap junctional communication effectively in astro-
cytes [290]. ET receptors were also greatly expressed in the 
OM, being ETB receptor mostly expressed in the olfactory 
sensory neurons, while most non-neuronal cells mainly 
express ETA receptors [288, 289]. Another investigation 
found ET-1 acted as a neuroprotective for olfactory cells 
[291]). In a recent study, they evaluated if OM-produced 
ET-1 could have an effect on olfactory processing in young 
rats [17]. OM responses to odorant stimulation following 
local ET-1 application revealed no modification of response 
amplitude but slowed treatment recovery. The maternal 
odour recognition orientation test was decreased after ET-1 
treatment, which overall suggests ET-1 olfactory response 
regulation only partly via gap junction uncoupling [17].

Relation between increased levels of ET-1 levels in 
blood serum in retinitis pigmentosa and FS has also been 
described [292]. In accordance, a case report described how 
a female patient suffering from FS presented significantly 
elevated serum endothelin levels [19]. ET-1 effect on PGE-2 
increased production could potentially suppress the feeling 
of thirst in such individuals [19].

ET‑1 modulates pain and drug sensitivity

Endothelins contribute to numerous pain-related pro-
cesses, namely, pain caused by cancer, inflammation or 
Sickle cell disease (SCD). In the central nervous system 
(CNS), administration of ET-1 intracerebroventricularly 
(i.c.v) was formerly reported to present antinociceptive 
actions, which suggests ET-1 involvement in pain trans-
mission [293, 294]. In fact, in a study, they investigated 

the ET-1 mediation of antinociceptive actions in mice that 
received acute thermal pain testing by examining their 
threshold variations [51]. They confirmed dose-dependent 
antinociceptive action of ET-1 following i.c.v administra-
tion, suggesting that ET-1 effects implicate a descending 
pain inhibiting system. Moreover, they observed a block-
age of antinociceptive events due to the ETA receptor 
antagonist, indicating it being mediated by ETA receptor 
activation [51].

In addition, ET-1 has been described to be overex-
pressed in breast carcinoma patients and is associated with 
poor prognosis, as well as displaying a strong link between 
both preoperative and postoperative pain sensitivity [20]. 
The younger age breast cancer patient cohort  might be at 
increased risk for elevated pain sensitivity [53]. In another 
study, ET-1 administration to study participants elicited 
dose-dependent effects regarding spontaneous pain and 
temperature perception [54]. Furthermore, in SCD patients 
and mouse models, ET-1 blood plasma levels have been 
described to be elevated, resulting in acute and chronic pain 
episodes. It is thought that ETA receptors support SCD-
derived pain by primary sensory neuron NF-κB-triggered 
upregulation of Nav1.8 [55]. In a study, they investigated 
the mechanism by which ET-1/ETA receptors participate 
in SCD-associated pain. They showed that ET-1 and ETA 
receptor levels were elevated in the dorsal root ganglia of 
humanised mouse SCD models, but pharmacologic inhibi-
tion of ETA receptors (in primary sensory neurons) by ABT-
627 [295] mitigated basal and post-hypoxia pain hypersen-
sitivities [55]. These findings suggest the ETA receptor as a 
potential target for SCD pain management, although further 
clinical research must be performed.

ET-1/ET-1R axis activation gives cells the potential to 
exert changes in cell fate and accomplish deleterious fea-
tures [296]. ET-1 expression has been detected in numerous 
malignancies such as in advanced tumoral contexts [297, 
298], where elevated ET-1R indicated worsened prognosis 
[296]. Within tumours, ET-1 generates signals which induce 
pro-survival transcriptional answers, securing tumoral cells 
from cancer therapy-induced apoptosis [297, 299, 300]. 
Indeed, ovarian cancer (OC) patients have poor survival 
rates due to late diagnosis at clinical stages along with recur-
rence of the disease due to failure of platinum-based chemo-
therapy [301]. Chemotherapy resistance consists of adaptive 
signalling pathways which develop specific transcriptional 
profiles [302]. Platinum-resistant OC tumours have been 
seen to express greater levels of ETA receptor, being linked 
to worse disease prognosis [300]. It was revealed that the 
ET-1/ETA receptor axis hinders the yes-associated pro-
tein (YAP) pathway in platinum-resistant OC cells, which 
crosstalk hinders chemotherapy-induced apoptosis [52]. 
Tocci et al. effectively described co-therapy of ET-1 recep-
tor antagonist and cisplatin to achieve sensibilisation of 
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platinum-based therapy-resistant cells, reducing in turn their 
metastatic potential [52]. Conclusively, blocking the ET-1 
receptor enhances platinum-induced apoptosis and ham-
pers adaptive systems, constituting a favourable therapeutic 
approach to enhance OC patient drug sensitivity.

ET‑1 modulates stress reactions and mental 
health

Psychological social risk factors such as social environ-
ment (job or family stress, low socioeconomic status, det-
rimental life events) and emotional factors (depression, 
anxiety, exhaustion) have been known to strongly relate 
to a higher risk of CVD [3, 303]. In the INTERHEART 
study, they evaluated crucial standard CVD risk factors 
and a series of psychosocial factors (depression, finan-
cial stress) related to acute MI. Results revealed an odds 
ratio in women of 3.49 and 2.58 in men, independent of 
ethnicity and geographic origin [304]. Notably, these odd 
ratios were comparable to CVD risk factors such as dia-
betes, hypertension or smoking [305]. This suggests an 
overall contribution of psychosocial factors to an increased 
prevalence of CVD, being ET-1 balance disruption directly 
linked to these psychosocial-induced mechanisms [3]. 
Yammime et al. thoroughly reviewed studies dealing with 
the relation between these factors and found studies prov-
ing heterogeneous findings [3]. Studies on young men and 
women with CVD family history revealed ET-1 higher 
levels in African Americans compared to European Ameri-
cans, following psychological challenges [306]. Sex differ-
ences in ET-1 stress reactivity were evaluated, observing 
significantly increased ET-1 plasma levels in males com-
pared to females [307]. However, there was great variabil-
ity in protocols used for ET-1 assessment, time of sample 
collection, laboratory detection procedures and the type 
and duration of mental/psychological challenges, making 
it challenging to draw clear conclusions [308–311]. Evi-
dently, ET-1 measurements  have to be obtained at regular 
intervals during a post-stress recovery period in order to 
elucidate ET-1-specific kinetics [308]. Vascular dementia 
follows Alzheimer’s disease (AD) as the most common 
type of dementia worldwide, caused mainly by ischaemic 
or hemorrhagic cerebrovascular (CVS) disease; they cause 
cognitive detriment and neurodegeneration [312–314]. A 
recent study focused on examining whether a combina-
tion of Shenmayizhi formula and Ginkgo extract positively 
impacts mild to moderate VaD [4]. Serum indexes of vas-
cular endothelial function, namely, ET-1, NO, VEGF and 
von Willebrand factor (vWF) were measured. Posttreat-
ment serum ET-1 and vWF levels had decreased, whereas 
VEGF and NO levels increased in the SMYZF group, pre-
senting more significant changes than the Ginkgo group 

[4]. This suggests that SMYZF administered with Ginkgo 
tablets may potentially improve vascular endothelial func-
tion, assisting with cognitive improvement and neurologi-
cal functions in VaD patients. Other studies also described 
an association between vascular cognitive impairment 
severity and ET-1 levels [315, 316]. Furthermore, ET-
1-induced vasoconstriction prompts cerebral ischaemia 
and hypoxia which in turn promotes dementia develop-
ment [317].

ET‑1 and cardiovascular diseases

ET-1 levels have been reported to be elevated in a number of 
CVD such as acute myocardial infarction (AMI) [318], coro-
nary artery disease, hypertension, atherosclerosis and con-
gestive heart failure (CHF), amongst others [29]. On account 
of its vascular tone and contractive potential, ET-1 has been 
suggested to be involved with hypertension development in 
humans [29]. In murine models of hypertension, ET-1 levels 
were increased only if accelerated hypertension is displayed 
[319, 320]. Studies comparing ET-1 expression in blood 
vessels from deoxycorticosterone acetate (DOCA)–salt rats 
and normotensive Wistar–Kyoto (WKY) rats revealed larger 
amounts in the former, which indicated strain-related dif-
ferences in ET-1 production, responsiveness or proportion 
of ETA and ETB vessel receptors [321]. Human studies 
also revealed an increase in BP after infusion of ET-1 to 
healthy subjects [322]. ET-1 blocking with bosentan led to a 
decrease in BP in hypertensive patients [323]; nevertheless, 
it also diminished BP in essential hypertension subjects with 
normal ET-1 levels [324], potentially indicating that plasma 
ET-1 levels do not show the real state of endothelin action.

Hypercholesterolemia is linked with elevated ET-1 levels 
in human tissues and plasma [325]. It has been hypothesised 
that ET-1 may be relevant for atherosclerosis formation at all 
stages, even at the outset [326, 327] seen that ET receptor 
blockade decreased premature atherosclerosis [328]. More 
recent animal studies have described how oxidised low-den-
sity lipoprotein prompt mRNA expression and release of 
ET-1 from EC, proposing a key role of ET-1 in atheroscle-
rosis progression [329]. ET receptor antagonist was also able 
to hinder early atherosclerosis formation in hyperlipidemic 
hamsters [328]. In humans, there are many factors that can 
influence atherosclerosis such as hypertension, obesity, 
diabetes mellitus or hypercholesterolemia [330], and even 
cytokine release and inflammation may promote atheroscle-
rosis [331]. Furthermore, ET-1 increased levels induce plate-
let-derived growth factor (PDGF), fibroblast growth factor, 
TGF-β1 and vascular adhesion molecules synthesis [332].

Ischaemic heart disease is the primary mortality cause 
worldwide [333]. In experimental models, coronary vessel 
constriction was induced by ET-1 [333], demonstrating that 
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coronary vasosparm is related to ET-1 hyperactivity. ET-1 
activation impeded NO-mediated dilation, which might 
promote vasospam in coronary arteries [334]. ET receptor 
antagonist extended rat long-term survival following AMI 
[335]. Coronary artery disease patients might eventually 
develop acute coronary syndrome (ACS) or AMI. In fact, 
AMI patients presented elevated plasma ET-1 levels [336] 
correlating with 1-year mortality [337]. Further studies have 
shown how endogenous ET-1 exerted vasoconstrictor on 
arteries, demonstrated by the increased coronary flow fol-
lowing ET-1 receptor blockade in both coronary artery dis-
eased [338] and common coronary patients [339]. Patients 
with ACS presented enhanced myocardium and left ven-
tricular tissue perfusion following selective ETA blocker 
therapy [340]. In accordance with these results, ETA and 
ETB receptor blockage evidenced vasodilation in coronary 
atherosclerosis patients [338].

The endothelin system is also involved in chronic heart 
failure pathophysiology, being ET-1 plasma levels higher 
in patients with CHF, and resting values almost twofold/
threefold greater than in healthy subjects [341]. This raise 
is thought to be primarily due to an increased big ET-1 and 
ET-1 production [342], supported by the release by the lungs 
and myocardial cells [343]. CHF patients’ symptoms and 
hemodynamics have been correlated to circulating ET-1 lev-
els [31], being big ET and ET-1 independent survival predic-
tors [344, 345]. Other investigators also showed how plasma 
ET-1 in CHF was related to more severe disease [346].

Laboratory studies reveal that ET-1 might cause arrhyth-
mic effects in CHF settings [33], besides being involved in 
cardiac remodelling via fibroblast activation, inflammation 
of the heart and activation by renin–angiotensin–aldoster-
one system stimulation [34, 347]. In fact, ECE inhibition 
promoted the inactivation of the renin–angiotensin–aldos-
terone system in the CHF milieu [348]. Human studies   
prompted to clarify the functional link between CHF and 
ET system activation and progression to be a compensatory 
neuro-humoral adaptation [342, 344, 349], being patients 
with the highest ET-1 levels the ones with worse prognosis 
[344]. Blocking the ET system has turned into a main target 
for therapeutical treatments.

Preclinical studies with rats demonstrated the use of 
ERA, namely, BQ-123 to enhance myocardial function and 
viability [350, 351]. In humans, intravenous administration 
of BQ-123 [352] or bosentan [353] diminished systemic and 
pulmonary vascular resistance and BP. Although CHF treat-
ment with ERA was promising, none of the four multicenter, 
controlled randomised clinical trials was prosperous [354]. 
Dhaun et al. thoroughly review the discontinued trials [355]. 
Moreover, acute heart failure portrayed similar results. Ini-
tial studies with ERA did in fact propose a haemodynamic 
advantage, ultimately showing no major effect [356–358]. 
Whether lower drug doses would have displayed beneficial 

effects, currently remains unknown [359]. Jankowich et al. 
have thoroughly reviewed the potential use of ET-1 as 
CVD prognosis on account of more personalised treatment 
schemes [30]. In stable angina patients, big ET-1 high levels 
were indicative of cardiovascular events such as non-fatal 
myocardial infarction and stroke, showing a diminished 
event-free survival [360]. ET-1 may also predict post-myo-
cardial infarction phenomena, namely, the absence of tissue 
perfusion after percutaneous coronary intervention therapy 
or even mortality [361]. However, C-terminal proET-1 levels 
anticipated heart failure in high-risk cardiovascular subjects 
but not in low-risk patients [362]. Other studies of coronary 
revascularisation or cardiac catheterisation have also failed 
to determine cardiovascular-related events [363, 364]. Thus, 
even if ET-1 peptide levels may support the prediction of 
cardiovascular events in patients with stable coronary artery 
disease, this requires further study in multiple cohorts and 
populations in order for ET-1 to allow more personalised 
therapy regimens.

ET‑1 and Takotsubo syndrome

A group of Japanese cardiologists identified a disease char-
acterised by akinesia/hypokinasia of the distal LV areas 
with basal normokinesia, which they named “Takotsubo 
syndrome” [365]. Years later, the event of Takotsubo syn-
drome (TS) was confirmed [366] as a syndrome caused 
by microvascular dysfunction resulting in temporary wall 
motion irregularities with a characteristic ballooning in the 
LV [365]. It is also referred to as stress cardiomyopathy 
[367] or “broken heart syndrome” [368]. It is rather a rare 
disease, estimated in 2% of patients with an early diagnosis 
of ACS [369], 90% of which are postmenopausal women 
with normal coronary arteries [370–372]. Major clinical 
indications of TS are contractile dysfunction commonly 
affecting the apical heart section, in the absence of coronary 
thrombosis [365]. Moreover, cardiac contractility unusual 
disruption influences 28–40% of TS patients, affecting other 
heart areas [373–376]. Aetiology of TS is normally physical 
or emotional stress, reporting 39–55% physical stress-related 
cases compared to 17–33% emotional stressors [377, 378]. 
Indeed, norepinephrine serum levels were increased in TS 
patients suffering from emotional stress [379]. Taken that 
stress prompts TS, cortisol and catecholamine levels should 
be investigated. In fact, TS patients’ plasma epinephrine lev-
els were increased in the subacute phase [380]. Furthermore, 
an increase in norepinephrine levels was more evident in TS 
patients during a mental stress exam than in control subjects 
[381]. Also, epineprhine blood levels in TS patients were 
increased compared to ACS patients [382]. Further groups 
have reaffirmed increased levels of both norepinephrine 
and epinephrine in TS patients’ plasma [383], in addition 
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to elevated cortisol levels in TS patients [384]. Besides the 
catecholamine apparent trigger of TS, other humour factors 
such as ET-1 may also be implicated in TS pathogenesis. It 
has been described that ET-1 causes coronary artery spasm 
[385–387], being the small diameter arteries the most sen-
sitive [385]. It also contributes to microvascular myocar-
dial dysfunction [388, 389]. Moreover, ET exerts a positive 
inotropic effect [390, 391] and has been seen to reduce the 
contractile function of isolated mouse cardiomyocytes [392]. 
In a study, ET-1 levels in blood plasma were twofold higher 
than in healthy volunteers, a signature of circulating micro-
RNAs differentiates takotsubo cardiomyopathy from AMI; 
however, other investigators claim no differences in ET-1 
levels in TS patients compared to their matching age, gender 
and risk factor group between comparable groups, as seen in 
a clinical study [393]. Furthermore, administration of ERA 
has reported an increased survival rate in heart failure rats 
[351, 394], suggesting ET-1 as a trigger for TS, although 
further research must be conducted.

ET‑1 and pregnancy complications

ET receptor expression is changing during normal preg-
nancy as revealed by the increased expression of ETA and 
ETB receptors in the uterus of pregnant versus non-pregnant 
women [395–397]. However, most studies addressing ET-1 
functional role in BP control originated from animal studies. 
ET-1 supports utero-placental vasculature contractile tone, 
which decreases near pregnancy term [398]. Activation of 
ETB receptor in rats is required for optimal pregnancy out-
comes [399]. During normal pregnancies, endogenous pro-
gesterone and oestrogen levels are increased, while circulat-
ing ET-1 levels are reduced [152]. ET-1 plays an important 
role in embryonic development, as disruption of the edn1 
gene or endothelin receptor A may result in a hypomor-
phic pharyngeal skeleton or skeletal element fusions [12]. 
Endothelin ligands and receptors are exclusive to vertebrates 
and manage to control neural crest cell development [12].

Pregnancy-related hypertension includes many disorders 
such as eclampsia and preeclampsia (PE) (attenuated proges-
terone levels), gestational hypertension (GH) and haemoly-
sis, elevated liver enzymes and low platelets (HELLP) syn-
drome [9, 11, 400]. PE is a multisystem disorder associated 
with increased renal vascular resistance and elevated BP, 
and endothelial dysfunction is one main cause of both mater-
nal and foetal morbidity and mortality worldwide, whose 
underlying mechanisms are hardly understood [9, 401]. The 
hypoxic placenta releases anti-angiogenic factors (sFlt-1 and 
soluble endoglin), cell-free nucleic acids, free radicals and 
proinflammatory mediators and major effector ET-1 [402], 
which disturb the balance between endothelium-derived con-
stricting (TXA2, angiotensin and ET-1) and relaxing factors 

(PGl2 and NO) [9]. These circulating cytokines stimulate 
further ET-1 production by EC [10]. Many groups reported 
increased ET-1 plasma levels of preeclamptic women in 
comparison to normotensive pregnancy controls [403, 404]. 
ET-1 umbilical vein concentrations in PE were higher than 
in normal pregnancies [405]. In fact, progesterone comple-
mentation to umbilical vascular EC exposed to serum from 
preeclamptic women weakened secretion of ET-1 in humans 
[406]. Other studies have shown increased plasma ET-1 lev-
els in umbilical cord cells and renal tissues throughout late 
PE, suggesting that ET-1 is involved in the progression of 
PE rather than in the initial phases [10, 407]. Many studies 
have shown similar ET-1 levels in normal pregnancies and 
PE, presenting high levels just in severe PE and HELLP 
syndrome [408]. PE represents a risk for long-term diseases 
for mothers and their babies, such as renal, cardiovascular, 
CVS or neurological diseases [11].

Experimental models of PE have also revealed increased 
ET-1 tissue levels in both the kidney and placenta [404]. 
Aggarwal et al. reported a link between the elevation of sFlt-
1, sEng and ET-1 in PE maternal circulation which suggests 
the secondary mediation of ET-1 in PE pathogenesis to these 
anti-angiogenic factors released by the placenta [409]. ET-1 
precursor, pepro-ET-1 mRA elevated tissue levels, has also 
been associated with PE in experimental models. Placental 
ischaemic rats expressed increased pepro-ET-1 in the renal 
cortex and medulla as opposed to normal pregnancy animals 
[410]. Moreover, infusion with pro-inflammatory cytokine, 
TNF-α, mediated hypertension by inducing pepro-ET-1 gene 
expression in the placenta, kidney and maternal vasculature 
of pregnant rats [411]. An additional proposed mechanism 
for elevated ET-1 levels in PE is through activation of matrix 
metalloproteinase (MMP). MMP has been reported to be 
increased in women affected by PE and increased MMP-2 
expression increased an increase in big ET-1 conversion, 
hence increasing vasoconstriction [412]. Another study 
revealed increased vascular and serum MMP-1 in women 
with PE, which might promote hypertension development 
in the mother [413]. Considerably, ETA receptor blockade 
enables protection against PE [414–417]. ETA receptor 
antagonist was infused in a rat model of PE, resulting in a 
rise in BP, demonstrating the key role of ET-1 [410]. Nev-
ertheless, ETA receptors are vital for foetal development 
during the first trimester; thus, their use should be restricted. 
ETA receptor antagonists that do not transgress the placental 
barrier would be an alternative.

Furthermore, endothelial dysfunction, characterised by 
imbalances of vasoconstrictor/vasodilator factors, involves 
increases in blood coagulation potential (hypercoagulation) 
leading to uterine vessel vasoconstriction, platelet aggre-
gation activation and resulting in final miscarriage [418]. 
Dubyk et al. compared ET-1 and NO serum levels in preg-
nancies with a risk of miscarriage, spontaneous abortion and 
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non-developing pregnancies versus physiological pregnan-
cies [418]. They reported a significant increase in ET-1 and 
decreased NO levels in all groups compared to the control 
group. This indicated that endothelial dysfunction was likely 
the cause of miscarriage in these women, serving ET-1 and 
NO as potential markers for endothelial dysfunction [418].

Prenatal death increases with the presence of pregnancy 
complications such as polyhydramnios or oligohydramnios 
[419, 420]. Oligohydramnios refers to a diminished volume 
of amniotic fluid than anticipated for gestational age which 
may have a foetal, placental or maternal cause or even be 
idiopathic [421]. Pregnancies with oligohydramnios com-
plications might be at risk of pulmonary hypoplasia, foetal 
deformation or umbilical cord compression [421]. Elevated 
ET-1,2 concentrations were observed in pregnancies affected 
by oligohydramnios [422]. Moreover, studies measuring 
ET-1,2 levels in umbilical venous blood collected at delivery 
revealed increased levels in oligogydramnios infants [423]. 
Thus, increased levels of ET-1 in the feotus can result in oli-
gohydramnios. A study observed lower ET-1 levels in oligo-
hydramnios twins in respect of twins with polyhydramnios, 
suggesting a critical role of this hormone in amniotic fluid 
volume regulation [424]. No correlation between gestational 
age and ET-1 amniotic fluid [424] nor foetal ET-1,2 [423, 
425] concentration was observed. Other studies revealed 
higher ET-1 levels at pregnancy term compared to at mid-
trimester pregnancy [426, 427]. ET-1 might affect amniotic 
fluid volume regulation by causing the release of vasopres-
sin, natriuretic peptide, aldosterone and diminishing renal 
perfusion [422]. Further investigations would elucidate the 
exact ET-1 implications in pregnancy complications.

Multi‑faceted involvement of ET‑1 
in migraine attacks

Migraine is a neurovascular disorder acknowledged since 
olden times which is greatly prevalent in society, affect-
ing 1 in 10 people worldwide [428–430]. Migraine patho-
physiology theories are very vast. Thus, whether the 
vasculature plays a primary role in the inception and main-
tenance of migraines remains uncertain [431–433]. Most 
studies emphasise vasodilatory mediators when research-
ing migraines; however, vasoconstrictors and their effects 
must be considered. In particular, diminished levels of NO 
vasodilatant metabolites and an enhancement of ET-1 have 
been detected in migraine patients [434]. Studies report 
elevated baseline levels of ET-1 compared to control sub-
jects [434–437]. ET-1 regulated cerebral blood flow and 
its receptors have been identified in the endothelium and 
VSMCs across the CNS and in the arterial system [70, 71]. 
Interestingly, plasma levels of ET-1 were found to be ele-
vated in the early stages of migraine attacks and promptly 

diminished at the onset of the headache [435]. Gallai et al. 
also observed increased ET-1 plasma levels in the ictal phase 
of migraine [438]. However, contradicting data were found, 
revealing no significant ET-1 concentration changes during 
migraines [439, 440]. All studies demonstrated increased 
levels in venous blood during migraine attacks. Hypoxia 
has also been seen to increase ET-1 expression, eliciting 
migraine attacks with and without aura [441, 442]. One 
of the primary factors for migraine aura might be cortical 
spreading depression [443, 444], along with the cause for 
migraine headache [445, 446]. ET-1-induced CSD may be 
mediated by microinfarction on account of vasoconstric-
tion [447]. CSD can be triggered by ischaemia or mechani-
cal, electrical and chemical cortical stimulation [448], and 
has been detected in association with vascular responses 
throughout migraine attacks with aura [443, 449]. Moreo-
ver, migraine aura attacks are improbably linked to neuronal 
damage [450], as well as neuroimaging data to be clear from 
sublicinal infarcts or white matter hyperintensities [451]. 
Furthermore, ET-1 is related to nociception in the nervous 
system [452], and it is seen to induce pain and cause sensiti-
sation to distinct nociceptive stimuli in the human peripheral 
nervous system [115]. It triggers the release of endogenous, 
migraine-inducing molecules such as NO [453] and calci-
tonin gene-related peptides [454], which have been shown to 
initiate migraine attacks in clinical studies [455]. ET-1 might 
influence and generate migraines with aura by originating a 
cascade comprising migraine-triggering substances. Broadly 
recognised migraine prophylaxis drugs are beta-blockers and 
the ACE inhibitor lisinopril which reduce both ET-1 synthe-
sis and release in human EC [456, 457]. An AngII type 1 
receptor blocker decreases ET-1 concentration in essential 
hypertension patients [458]. A randomised clinical trial with 
combined ETA/ETB receptor antagonist bosentan was inef-
fective in the acute treatment of migraine [459]. This study 
failed during migraine attacks, but ET-1 antagonists might 
be effective in migraine prophylaxis or when administered 
at the outset of attacks.

ET‑1 in ischaemic stroke

In humans, ischaemic stroke is the second leading cause 
of death and disability globally [460]. Based on the area 
and size of the brain injury, patients normally suffer from 
lifetime impairments, affecting from cognitive, sensory and 
motor to behavioural and communicative functions [461]. 
The majority of stroke cases results from transient or per-
manent obstruction of the cerebral blood vessel, depriving 
the brain of energy and oxygen [462]. The ischaemic cas-
cade initiates the formation of ROS, accumulates calcium 
intracellularly, releases glutamate and induces inflamma-
tory processes, resulting in tissue injury (infarction) [462]). 
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ET-1 also induces neuronal damage [463], augments 
blood–brain barrier permeability and enhances vasospasm 
related to subarachnoid haemorrhage (SAH) [464]. ET-1 
levels were seen to be elevated in both plasma and brain 
tissue in ischaemic stroke patients [236, 463, 465, 466]. In 
acute ischaemic stroke patients, plasma ET-1 levels were 
increased, being more marked within the initial 24 h after 
stroke onset, correlating to neurological damage severity 
[466]. Another study observed a correlation between Big 
ET concentrations and their specific clinical outcome (high 
levels: poor prognosis/low levels: more favourable outcome) 
[467]. ET-1, as the potent and long-lasting vasoconstrictor 
that it is, has been used to induce focal ischaemia in animal 
models, resulting in afflicted pure-motor and sensorimotor 
conducts which are reliant on the area of ischaemic insult 
in these models [468–471]. ET-1 can be applied to corti-
cal surfaces [25], resulting in the dose-dependent ischaemic 
lesion with marginal ischaemic edema [468, 472], or directly 
onto exposed middle cerebral artery [473] as an intracranial 
injection [472]. Increased potential of ET-1 when delivered 
to conscious rats in relation to anesthesised ones has been 
proven [474]. Models of anterior cerebral artery occlusion 
and white matter ischaemia in the internal capsule have also 
been conducted with ET-1 [475, 476]. Furthermore, some 
studies utilising ET-1 to induce cerebral ischaemia models 
have been developed in non-human primates, in specific in 
marmoset monkeys [477, 478]. Its administration generated 
dose-dependent decreases of vessel calibre in middle cer-
ebral arteries, succeeded by progressive reperfusion [477]. 
ET-1-treated marmosets displayed pronounced contralat-
eral motor deficits in grip force [477]. Dai et al. revealed 
ET-1 potential to induce transient ischaemic stroke in rhesus 
monkeys and generate focal ischaemia in non-human pri-
mates, making it a compelling stroke and post-stroke brain 
repair model [479]. In fact, ET receptor antagonists have 
been reported to exert protective effects in animal models 
of stroke [93, 480, 481].

ET-1 model advantages are the low mortality rates, less 
invasive technique and conceivable induction of direct 
focal ischaemia in both superficial and deep brain areas. 
In contrast, the ET-1 model presents limitations related to 
astrocytes and neuron production of ET-1 receptor and ECE 
[482], which may induce astrocytosis [483]. Thus, it is sug-
gested that ET-1 may be involved in CVS disease pathogen-
esis, pointing future directions towards the employment of 
endothelin as an early predictive factor for patients undergo-
ing an ischaemic stroke.

ET‑1 and neurodegenerative disorders

Neurodegenerative diseases such as AD are characterised 
by a loss of neurons in the brain, which may result in loss 
of memory and cognitive function deficits [484]. There are 
a number of factors involved in AD neuronal degenerative 
alterations such as beta-amyloid deposition, pro-inflamma-
tory cytokine/chemokine secretion and microtubule desta-
bilisation [485]. Vascular dysfunction plays a main role in 
AD progression [486], and ET-1 has been described to be 
increased in the cerebral cortex and cerebral blood vessels 
in AD [39, 486, 487]. Increases in amyloid beta-protein (Aβ) 
indirectly stimulate ET-1 production [486, 488, 489]. Cer-
ebral vasculature of mice infused with Aβ increased ET-1 
production [490], and human neuroblastoma and brain 
microvascular EC exposed to Aβ increased ECE-1 and -2 
secretion, resulting in elevated ET-1 secretion [39, 486, 
491]. Astrocytes also regulate ET-1 expression in AD and 
other brain disorders [39, 40, 492]. Furthermore, increased 
ET-1 has been reported in a number of neurodegenerative 
diseases, such as multiple sclerosis, Parkinson’s disease or 
amyotrophic lateral sclerosis [41, 492, 493]. For instance, 
ALS is characterised by progressive loss of motor neurons 
and astrogliosis. In ALS, a neuro-inflammatory reaction 
takes place in glial cells, namely astrocytes and microglia 
[41]. Ranno et al. examined the expression of ET-1 in both 
spinal cords of SOD1-G93A mouse model of familiar ALS 
and ALS patients and reported increased ET-1 expression in 
both cases. In their in vitro mixed spinal cord culture model 
with reactive astrocytes, ET-1 exposure exerted harmful 
effects on MNs which were concentration and time depend-
ent [41]. The following study investigated the underlying 
mechanisms of ET-1 toxic effects on MNs cultures. Their 
results suggest that ET-1 toxicity does not directly result 
from oxidative stress or COX-2 activation but requires NO 
and is mediated by phosphoinositide 3-kinase (PI3K) dimin-
ished pathway activation [493]. They also observed that 
microglia cells are not involved in ET-1 detrimental effects 
on MNs [493]. Thus, ET-1 signalling may be a fitting thera-
peutic approach to hinder MN degeneration in ALS disease.

ET‑1 in cancer

ET-1 participates in tumour growth, cell proliferation and 
other aspects of cancer progression in a variety of tumours 
[494]. In cancer types such as breast, colon, pancreatic 
and prostate cancer and human oral squamous carcinoma 
cell lines, ET-1 protein or mRNA secretion was increased 
[495–497]. Two distinct classifications of endothelin-derived 
tumours have been described. Both tumour groups hyper-
secrete ET-1; however, one upregulates ETA receptors and 
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downregulates ETB receptors slightly, such as ovarian, 
colon, prostate, pancreatic and renal cell carcinoma, whereas 
the other upregulates ETB receptors and downregulates ETA 
receptors, like breast and lung cancers [494]. The endothelin 
axis results in activation of atypical proliferation, alteration 
of nociceptive stimuli, apoptosis evasion, angiogenesis, cell 
proliferation, immune modulation and metastasis invasion, 
by triggering multiple signalling pathways [44]. ET-1 mito-
genic activity may be increased by the interplay with growth 
factors such as EGF, insulin, insulin-like growth factor, TGF, 
PDGF, basic fibroblast growth factor and IL-6 [44].

Ovarian carcinoma ET-1 and ETA are overexpressed in a 
great number of primary and metastatic ovarian cancers, 
relating also with progressive stages of cancer. In fact, 
increased ET-1 levels were found in ascites of patients with 
epithelial OC, in which ETA exerts pleiotropic effects such 
as survival, migration and invasion [45]. Gene expression 
analysis studies revealed ETA as a metastasis-related gene 
[498] greatly expressed in post-chemotherapy specimens 
in relation to untreated primary ovarian carcinomas [499]. 
Besides ETA, EGFR is also overexpressed in OC, being usu-
ally linked to poor prognosis and related to tumour resistance 
to chemotherapy, thus making it a prominent therapeutic tar-
get [500, 501]. This knowledge promoted the investigation of 
EGFR inhibitor gefitinib (ZD1839, Iressa) along with ETA 
antagonist ZD4054, which revealed an enhanced efficacy, 
resulting in partial or complete tumour regression of ovarian 
carcinoma xenografts followed by decreased vascularisation, 
VEGF, MAPK, EGFR, matrix metalloproteinase-2 (MMP-
2) and Ki-67 [502]. Kajiyama et al. observed how ovarian 
carcinoma cells overexpressing neutral endopeptidase (cell 
surface aminopeptidase that degrades ET-1 amongst other 
peptides) presented diminished ET-1 levels, cell prolifera-
tion, viability and invasiveness [503]. Overexpression of 
NEP in vivo showed reduced tumorigenesis, suggesting the 
use of NEP as a suppressor of ovarian carcinoma progres-
sion by targeting ET-1. In another study, patient-derived 
xenografts treated by dual ET-1R antagonist macitentan in 
combination with cisplatinum showed shutting down of the 
β-arr1-mediated YAP/mutp53 transcriptional programme 
(its activation correlates with the worst cancer prognosis) 
accompanied with anticancer effects in high-grade serous 
OC [504]. Chellini et al. (2019) evaluated signalling net-
work for adhesion components, cytoskeletal remodelling 
and ECM degradation in OC. It has been concluded that 
the ET-1 receptor regulates extracellular matrix degradation 
and consequent metastatic spread in OC via β-arr1/IQGAP1 
signalling pathway [46].

Breast carcinoma Increased expression of ET-1 and its 
receptors correlates with the progression of the disease and 
its malign potential [505]. Also, ECE-1 overexpression in 

breast cancers has been linked to adverse outcomes [506], 
whereas increased expression of ETA relates to low disease-
free survival and overall survival. Increased ETA expres-
sion in breast cancer relates to chemotherapy resistance, 
thus serving ETA as a predictive marker for chemotherapy 
therapy outcomes [505]. Overexpression of ET-1 has been 
detected in numerous diseases [20]; indeed, in breast car-
cinoma, its increased expression has been associated with 
poor disease prognosis [507]. High levels of blood ET-1 
result in overall hypoxic effects, which consecutively lead to 
metastatic disorders [47, 48, 508]. Additionally, ET-1 blood 
patterns are not well understood in regard to the distinct 
breast cancer subtypes.

A recent work reported increased circulating levels of 
ET-1 in breast cancer also correlated to LV remodelling 
in this patient cohort compared to healthy controls [509]. 
In vitro studies have reported a correlation of ET-1 axis 
expression levels and breast cancer cell line invading poten-
tial [510]. Grimshaw et al. established an in vitro invasive 
breast tumour cell phenotype by exposing tumour cells to 
ET-1, through the action of ETA and ETB receptors and 
elevated MMP activity [511]. In a model of breast carci-
noma, the use of dual endothelin receptor antagonist (ERA), 
bosentan, inhibited bone metastasis, as well as tumour 
growth and vascularisation [512]. Another study reported 
high relevance of the ETB receptor in breast carcinogenesis. 
Silencing the EDNRB gene modulates invasiveness in breast 
cancer cells towards ET-3. ETB receptor isoform specific 
controls breast cancer cell invasiveness and isoform- and 
subtype-specific dissimilarities in patient survival [513]. 
Consequently, knockdown of the ETB receptor by a spe-
cific shRNA significantly suppresses the proliferation and 
metastatic parameters in MDA-MB-231 and BT549 cells 
and upregulates apoptosis [49]. In consensus, suppression 
of ETB receptor expression inhibited cancer growth in the 
mice xenograft model.

Prostate carcinoma The ET axis has been described to con-
tribute to prostate cancer pathophysiology. ET-1 in healthy 
prostate subjects is produced by epithelial cells and maxi-
mum levels are detected in seminal fluid. In prostate carci-
noma, ET-1 local levels are increased due to a decrease in 
ET-1 clearance pathway constituents [514]. ETA increased 
expression is seen in primary and metastatic prostate car-
cinomas, correlating with tumour development and grade, 
where ET-1 exerts cancer progression actions. In a study 
where ETA antagonist atrasentan was administered to pros-
tate cancer patients, they revealed a reduction in pain and 
prostate cancer progression biomarkers [515]. Another ETA 
orally active antagonist has been researched in phase II clini-
cal trial, revealing general improvement when administered 
to metastatic hormone-refractory prostate cancer patients 
[516]. Silencing ET-1 by RNAi significantly suppresses 
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the progression and invasion of PC-3 prostate cancer cells. 
These effects affect several signalling pathways including 
Erk1/2/Bcl-2/Caspase-3, PI3K/Akt/Caspase-3 and MMPs 
(MMP-2 and MMP-9) [517]. To this end, the role of the 
proteasome inhibitor bortezomib in ET-1 was evaluated, 
observing an induction of cell signalling in prostate can-
cer. ET-1 supplement to PC-3 cells decreased Bad, p53, p21 
and p27 expression, and increased IL-8, VEGF, proteasomal 
activity and NFkappaB levels. Furthermore, these pro-neo-
plastic effects of ET-1 in PC-3 cells were reversed by the 
treatment with bortezomib which suggests its distinct role 
in the regulation of cancer cell proliferation and apoptosis 
[518].

Colon carcinoma ET-1, ETA and ECE-1 are actively 
expressed in colon adenocarcinoma cells in comparison to 
non-cancerous cells [519]. ET-1 expression is elevated in 
the majority of primary human colon cancers [520]. Moreo-
ver, ET-1 by inhibiting β-catenin signalling is capable of 
recovering colon cancer cells from growth arrest and apop-
tosis, revealing ET-1 oncogenic function in colon carci-
noma [520]. In vitro studies revealed upregulation of ETA 
expression in all cell sorts compared to healthy colon cells 
and described ET-1 as a mitogen for colorectal cancer cells. 
Cancer-associated blood vessels and fibroblasts revealed 
increased ETA binding while having downregulated ETB, 
which prevailed in the non-cancerous colon [519]. This shift 
might induce ETA-related ET-1 colorectal cancer growth 
and neovascularisation, suggesting the benefit of ETA recep-
tor antagonist as colon carcinoma adjunct therapy [521]. 
Wang et al. [522] reported that the ETA receptor stimulates 
colon tumorigenesis via an increase in cell proliferation and 
migration. Mechanistic evaluation of this effect revealed ET-
1-induced YAP/TAZ dephosphorylation and transcriptional 
activation in multiple colon cancer cells. In detail, ETA 
receptor activation stimulates G protein Gαq/11 and Rho 
GTPase pathway and suppresses the Hippo pathway that col-
lectively leads to ETA receptor-induced carcinogenesis via 
YAP/TAZ activation. The role of the ET axis and its down-
stream signalling in metastatic colon carcinogenesis was 
investigated in a clinical study [50]. The authors evaluated 
the mRNA expression of 36 genes linked with the ET axis 
using 18 non-metastatic and 20 metastatic colon carcinomas 
in comparison with normal colon mucosa. Data showed that 
the majority of genes in the ET axis are overexpressed (17 
from 36) in malignant colon tissue. It has been concluded 
that suppression of PTEN expression may boost a malignant 
phenotype in colon carcinogenesis.

Other cancers ET-1 has also been detected in the lungs, 
cervix, colon, melanoma, pancreatic, glioblastoma, neu-
roblastoma and bladder cancers. In this regard, the ETB 
receptor represents a potential prognostic marker for lung 

adenocarcinoma patients. ETB receptor may act via regula-
tion of the ERK signalling pathway in lung adenocarcinoma 
[523]. In aggressive cervical squamous cell carcinoma, 
overexpressed ET-1 contributes to the angiogenesis sig-
nalling pathways [43]. Clinical data indicate that a MAPK 
pathway inhibitors combined with ETB receptor antago-
nists could have a synergistic anticancer effect in mela-
noma patients with upregulated MAPK signalling [524]. 
It has been documented that ET-1 stimulates MAP kinase 
and AP-1 signalling pathways, increasing the expression 
of MMP-9 and MMP-13 and consequently activating cell 
migration in human glioblastoma [525]. Pancreatic ductal 
adenocarcinoma  is related to increased levels of ET-1 [526, 
527], revealing likewise overexpression of ET axis compo-
nents such as ETB, in PDAC tissues [528]. A recent study 
observed the expression of ET axis constituents in pancreatic 
acinar and islet cells compared to the minor levels in pancre-
atic ducts of control mice [298].

Many investigations were carried out with ET-1 receptor 
antagonists, range from preclinical to clinical trials reach-
ing phases II and III with either selective or specific ETA 
or dual ETA/ETB antagonists or even selective ETB ago-
nists IRL-1620 [297, 529, 530]. ERAs’ action is exerted 
firstly on ET-1, which in turn blocks autocrine and paracrine 
pathways, hampering tumour growth and angiogenic effects, 
making them promising tools for cancer therapeutics [531]. 
IRL-1620 may be employed to enhance drug delivery (in 
chemotherapy and radiation therapy) due to the increase 
in tumour perfusion which leads to enhanced therapeutical 
effectiveness [297, 529]. Given that ETA-specific antago-
nists in cancer have portrayed unfavourable results, a poten-
tial combination of ETA/ETB blockage with macitentan may 
be advisable for cancer, as observed in preclinical studies 
[297]. In fact, the concomitant enhancement of antimumoral 
immune reactions and suppression of tumour cell invasive-
ness would make macitentan a strong candidate for cancer 
therapy [297]. It is critical to comprehend the entire range 
of molecules and pathways activated by ET-1 in order to 
design targeted therapies. Additionally, investigating novel 
combination strategies by merging macitentan with other 
molecular target therapies, chemotherapy or radiation ther-
apy is required.

ET‑1 and individual COVID‑19 outcomes

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) poses a hazard to individuals with chronic 
health afflictions which are more prone to progress to a life-
menacing stage characterised by inflammatory lung pro-
cesses and cytokine outbursts [61].
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Recent findings hypothesise receptor-interacting pro-
tein kinase 3 [532] oligomerisation of open reading frame 
(ORF)-3a to drive necrotic cell death, leading to tissue 
injury and detrimental inflammation [60]. More precisely, 
ET-1 production in the dendritic cell has been seen to be 
stimulated by necroptosis (regulated necrosis) [533]. Abdul 
et al. described that blockage of ET receptors with bosen-
tan impaired the necroptosis pathway along with increased 
brain microvascular endothelial cell migration, proposing 
that ET-1 activates programmed cell death pathways under 
inflammatory stimuli [533].

As previously noted, ET-1 detrimental action is exerted 
via ETA present on pulmonary smooth muscle cells and 
ETB in vascular wall muscle cells which are upregulated in 
the context of systemic and pulmonary hypertension [534]. 
Thus, in this context, ERAs have been validated to be used 
for treating cases of pulmonary arterial hypertension (PAH) 
[62]. This is the case of bosentan, known for decreasing 
profibrotic and pro-inflammatory cytokines (interleukin 
(IL)-2, -6, -8 and interferon-γ) in patients with scleroderma 
[535]. Furthermore, bosentan has proven efficacy against 
some viruses together with exerting anti-IL-6 effects [536, 
537]. In a case report of influenza A-related acute respiratory 
distress syndrome, bosentan administration led to symptom 
amelioration along with mechanical ventilation weaning 
[538]. Furthermore, other studies have also used ERAs as 
cancer therapeutic drugs, diminishing the effect of ET-1 on 
tumour progression, by constraining epidermal growth factor 
receptor and blocking angiogenic effects [531]. Also, ETA 
receptor antagonists like ERAs have been used for the treat-
ment of chronic kidney diseases along with hypertension 
by opposing ET-1 vasoconstricting effects [72, 531]. These 
results suggested a potential use of ERAs as a drug against 
SARS-CoV-2 inflicted hypertension and hypoxic vasocon-
striction [63]. However, further tools for improved identifi-
cation, intervention and prognosis of COVID-19 patients are 
needed, along with further research on potentially involved 
mechanisms.

ET‑1 as the target in the framework of 3P 
medicine: status quo and outlook

Depending on the pathway, the level of release and corre-
sponding targets, ET-1 is involved in the regulation of physi-
cal and mental well-being; female and male health; modu-
lation of senses, pain and stress reactions; drug sensitivity; 
healing processes; amongst others.

Endothelin in disease prediction

Shifted ET-1 homeostasis may influence and predict devel-
opment and progression of suboptimal health conditions, 

metabolic impairments with cascading complications, age-
ing and related pathologies, CVD, neurodegenerative pathol-
ogies and aggressive subtypes of cancer, such as metastas-
ing breast and prostate malignancies, thereby modulating 
individual outcomes of both non-communicable and infec-
tious diseases such as COVID-19 with versus without severe 
complications.

Endothelin in disease prevention early in life

The most prominent examples are vascular dysregulation, 
systemic vasoconstriction and arterial stiffness linked to 
elevated ET-1 levels, which individually may lead to cas-
cading pathologies discussed in this article. Physical training 
has proven to decrease BP and enhance endothelial func-
tion in hypertensive and healthy subjects [32, 539] and it 
has improved arterial stiffness by elevating vasodilation/
NO availability and reducing vasoconstriction/ET-1 level in 
adults [540]. Aerobic exercise reduces ROS and increases 
NO bioavailability improving the balance between NO and 
ET-1 [2]. Thereby, DNA methylation of EDN1, NOS2, 
ALU and TNF genes is crucial in reducing systemic BP, 
meanwhile implementing continuous aerobic physical train-
ing [2]. A study which examined the effect of combined 
resistance and aerobic exercise (CRAE) training in obese 
pre-hypertensive girls on BP, body composition, blood 
nitrite/nitrate (circulating NO marker) and ET-1 levels [1] 
has demonstrated that CRAE training managed to reduce 
SBP, arterial stiffness, increased total nitrite/nitrate and 
decreased ET-1 levels and decreased percentage of body fat 
and increased lean body mass in obese adolescent girls with 
pre-hypertension. These results convey that CRAE-mediated 
decrease in BP is possibly due to an improvement in vascu-
lar endothelial cell function, as evidenced by the elevated 
blood nitrite/nitrate and diminished ET-1 levels, and would 
be a potential therapeutic treatment for high BP, preventing 
prospective CVD [1]. In consensus, other studies demon-
strated how physical training decreases ET-1 and increases 
NO circulating levels collectively leading to reduced BP 
[541, 542]. To this end, increased vasodilatation by the NO 
bioavailability reduces arterial stiffness through a structural 
alteration of the endothelium that in turn reduces BP in pre-
hypertensive patients [1].

Endothelin in the prevention of accelerated ageing

Approaching disease prevention must be the initial phase 
to achieve a healthy/physiologic ageing [177]. Endothelin 
activation along with inflammatory processes is related to a 
greater incidence of chronic diseases in the elderly compared 
to the younger population [543]. Thus, endothelial therapy 
and physical exercise are preventive procedures enabling a 
favourable ageing process [91]. Physical activity has been 
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shown to have comparable effects as drug treatments [544], 
since it enhances the release and bioactivity of endothelial 
NO, which in turn reduces the production and biological 
activity of ET-1 [177, 545, 546]. Some other related effects 
are anti-hypertensive, anti-inflammatory and anti-diabetic 
functions [547, 548]. The term endothelial therapy com-
prises preventive efforts, physical training and potential use 
of endothelial factor treatment in an effort to improve stand-
ard endothelial homeostasis [177, 549, 550]. In fact, elderly 
women exposed to endurance training presented reduced 
ET-1 circulating levels [205]. Training also dampens ET-1 
vascular tone rise in the elderly [179, 551], along with a 
suppressed age-related BP increase [545, 546]. Indeed, there 
is a range of studies assessing ET-1-induced disease preven-
tion, and ERAs have specifically been studied to prevent 
severe disease progression, delay disease onset or as poten-
tial therapeutics. In fact, ETA-specific ambrisentan has been 
proven to be advantageous in preventing vasoconstriction 
and cellular proliferation mediated by VSMC ETA recep-
tors, concomitantly maintaining ETB receptor vasodilator 
function [552, 553]. Macitentan as dual ERA inhibits ET-1 
binding to both ETA and ETB, differing from bosentan and 
ambrisentan in its slow receptor dissociation characteristics 
at a cellular level [554, 555]. It appears that macitentan is 
able to block ET-1-promoted signalling in a more effective 
manner than other ERA [556]. ERA may be used for the 
prevention of fibrotic disease development. In fact, bosentan 
is known to inhibit ECM deposition and ET-1-induced fibro-
blast proliferation, besides being able to reduce pulmonary, 
cardiac, hepatic and renal fibrosis in many disease models 
by endothelin axis activation [557]. The hepatic fibrogenic 
response was also diminished in liver disease experimental 
models by inhibiting endothelin signalling with ERA [284, 
285]. Furthermore, ET-1 is believed to be an essential inter-
mediary in cerebral vasospasm subsequent to a SAH, given 
that animal and human studies report increased blood and 
cerebrospinal fluid ET-1 levels [558]. ET-1 and NO inter-
play is crucial in preserving cerebral vascular dilation and 
cerebral blood flow upon SAH. Vasospasm can be prevented 
by either ET-1 antagonist or ECE inhibitor administration, 
being ETA receptor antagonist clazosentan favourable in 
preventing or reversing cerebral vasospasm [559]. In SAH 
experimental animal models, clazosentan has been seen to 
decrease or reverse cerebral vasospam [560]. Further reports 
in experimental SAH rabbits, rats, dogs and monkey models 
have proven the prevention or reduction of vasospam fol-
lowing endothelin antagonist administration [561]. Despite 
ERAs are a promising therapeutical treatment for many dis-
eases, additional studies are required to assess the benefits 
and safety of ERA treatment along with the validity of com-
bination therapy schemes.

Endothelin, targeted therapy and personalised 
medicine

Since ET-1 discovery, the therapeutic strategy has evolved 
around the application of either ETA receptor (ambrisentan) 
or ETA/ETB dual blockage (bosentan and macitentan) by 
using orally administered small molecules antagonists [562]. 
There has been recent advancement in this field with the 
use of selective peptide agonists and antagonists along with 
monoclonal antibody antagonists, potentially broadening 
therapeutical extent to further pathophysiological settings. 
The use of ETA antagonist ambrisentan together with the 
phosphodiesterase (PDE) 5 inhibitor tadalafil was proven 
to enhance PAH treatment [563]. Combining two vasocon-
strictive sites such as angiotensin AT1 and ETA antagonist, 
sparsentan has become another innovative approach [564]. 
In addition, single-nucleotide polymorphism (SNP) has been 
studied to validate its genome implication, as it is related to 
numerous vascular diseases where elevated big ET precursor 
plasma levels have been identified [565]. This SNP would 
potentially enable patient stratification for assignation to ET 
treatment and allow for a more personalised therapy [565].

Monoclonal antibodies (MABs) MABs have been widely 
researched as they are extremely selective for their targeted 
protein and present an extended plasma half-life [566]. 
Although manufacturing costs of MABs are quite substan-
tial, they provide a broader range of treatment approaches 
compared to small molecules [567]. ETB receptor MAB, 
rendomab-B1 (RB1), was more effective than BQ788 com-
peting for ET-1 [568]. RB1 was tested in melanoma cells, 
exerting low affinity for ETB receptors displayed in this can-
cer, which suggests diversity in ETB tumour subtypes [56]. 
A novel MAB, rendomab-B4 (RB4), was reported to attach 
to ETB receptor from three distinct melanoma cell lines but 
not to ETB on human embryonic kidney or native receptors 
in human umbilical vein endothelial cells [56]. Thus, RB1 
and –B4 binding qualities present disparities that may be 
related to post-translational modifications [569]. ETA recep-
tor MAB, rendomab-A63 (RA63), presents a sub-nanomolar 
binding affinity, while not being modified by an excess of 
ET-1 [570]. RA63 also binds ETA present on glioma stem 
cell surface [571]. As a result of MAB increased half-life, 
they may be a suitable therapeutic scheme considering ET-1 
sustained vasoconstrictor activity, which has been suggested 
to bind irreversibly to ETA receptors. However, a study 
revealed that ET-1 binding cleavage from cloned ETA recep-
tors although slow compared to further vasoactive elements 
was not irreversible [572]. ET-1 prolonged effect could be 
reversed both in vivo and in vitro by small-molecule antago-
nists [573, 574].
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Fig. 1  A Schematic presentation of the endothelin-1 production and 
functionality. Abbreviations: ETA, endothelin A receptor; ETB, 
endothelin B receptor; ET-1, endothelin-1; PGI2, prostacyclin; eNOS, 
endothelial nitric oxide synthase, ECE-1, endothelin-converting 

enzyme 1; EDN1, endothelin 1 gene; NO, nitric oxide. B Endothe-
lin-1 involvement into a spectrum of pathophysiological processes 
and disorders
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Dual AT1/ETA receptor antagonist Preclinical studies dem-
onstrated how the combination of angiotensin AT1 and 
ETA receptor antagonist blockage resulted in more effec-
tive in reducing BP in hypertension animal models than each 
antagonist alone [575]. Thus, sparsentan (BMS-346567) is 
an orally active dual AT1/ETA antagonist, which presents 
a similar increased affinity for both receptors. Preclinical 
data seem to indicate an effective blockage of direct vas-
cular actions of both vasoconstricting molecules; however, 
their effects on downstream signalling and side effects 

comparison are not yet apparent [576]. Phase II trials with 
sparsentan are being conducted to evaluate focal segmental 
glomerulosclerosis treatment [577].

ETA antagonist and PDE5 inhibitor combination Usually, 
monotherapy utilising ET receptor antagonists or PDE5 
inhibitors is standard when treating PAH patients [578]; 
however, preclinical studies have revealed that a dual com-
bination may be advantagenous [579]. A murine study stated 
a mitigation of ET-1 constricted isolated rat pulmonary 

Fig. 1  (continued)
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arteries after treatment with ETA antagonist ambrisentan 
and PDE5 inhibitor tadalafil [579]. Translational studies 
reported a reduced risk of clinical-failure events when com-
pared to either monotherapy treatment [563, 580]. Never-
theless, increased frequency of undesirable adverse effects 
appeared with the inhibitor combination therapy, possibly 
being related to ETB receptor activation [581].

The aim of personalised medicine is to adjust drug thera-
pies and individualise patient treatment. SNP detection may 
result in an association between the patients’ genetics and 
a target against the presumed disease trigger. Gupta et al. 
determined an ordinary A/G SNP (rs9349379) in the Phos-
phatase And Actin Regulator 1 (PHACTR1) gene, which 
regulated edn1 gene expression of ET-1 along with being 
involved in endothelial cell survival and tubule formation 
[565]. They speculated that big ET-1 amounts would be 
more elevated in patients with the minor and most com-
mon allele (G/G) [582], intermediate in those with A/G and 
minimal with A/A at rs9349379, and revealed a consider-
able relation between G genotype and an increase of 20% 
in plasma levels. Thus, individuals with G/G allele would 
present increased ET-1 levels, leading to enhanced vaso-
constriction and contributing to angina and vasospasm in 
coronary artery disease patients [565]. Furthermore, G/G 
SNP allele patients are more susceptible to ETA antagonists 
than A/G or A/A. Thus, as demonstrated, SNP testing would 
be valuable in allowing patient stratification to allocate them 
with the optimal therapy and personalising endothelin treat-
ment within this field.

The involvement of endothelin-1 in physiologic processes 
and diseases relevant for predictive diagnostics targeted pre-
vention and personalisation of treatment algorithms are sum-
marised in Fig. 1A and B.
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