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Abstract
Objectives General chronic periodontitis (GCP) is a bacterial inflammatory disease with complex pathology. Despite extensive
studies published on the variation in the oral microbiota and metabolic profiles of GCP patients, information is lacking regarding
the correlation between host-bacterial interactions and biochemical metabolism. This study aimed to analyze the oral
microbiome, the oral metabolome, and the link between them and to identify potential molecules as useful biomarkers for
predictive, preventive, and personalized medicine (PPPM) in GCP.
Methods In this study, gingival crevicular fluid (GCF) samples were collected from patients with GCP (n = 30) and healthy
controls (n = 28). The abundance of oral microbiota constituents was obtained by Illumina sequencing, and the relative level of
metabolites was measured by gas chromatography-mass spectrometry. Full-mouth probing depth, clinical attachment loss, and
bleeding on probing were recorded as indices of periodontal disease.
Results The relative abundances of 7 phyla and 82 genera differed significantly between the GCP and healthy groups.
Seventeen differential metabolites involved in different metabolism pathways were selected based on variable influence
on projection values (VIP > 1) and P values (P < 0.05). Through Spearman’s correlation analysis, microorganisms,
metabolites in GCF, and clinical data together showed a clear trend, and clinical data regarding periodontitis can be
reflected in the shift of the oral microbial community and the change in metabolites in GCF. A combination of
citramalic acid and N-carbamylglutamate yielded satisfactory accuracy (AUC = 0.876) for the predictive diagnosis of
GCP.
Conclusions Dysbiosis in the polymicrobial community structure and changes in metabolism could be mechanisms underlying
periodontitis. The differential microorganisms and metabolites in GCF between periodontitis patients and healthy individuals are
possibly biomarkers, pointing to a potential strategy for the prediction, diagnosis, prognosis, and management of personalized
periodontal therapy.
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Introduction

General chronic periodontitis (GCP) is a bacterial inflam-
matory disease that is induced and maintained by
polymicrobial biofilm in subgingival areas; intricate inter-
actions of the microbial communities with the host sub-
vert the host’s homeostasis, disrupting tissue attachment
and destroying the supporting structures of the teeth [1,
2]. Periodontitis affects the majority of adults worldwide
and may cause various systemic diseases, including dia-
betes [3] and cardiovascular disease [4]. Therefore, a pre-
dictive medicine approach for GCP prevention at the early
stage is one of the leading directions of research, and
advanced measures for monitoring and analysis are nec-
essary for an in-depth understanding of molecular mech-
anisms and for the discovery of therapeutic targets for
predictive preventive personalized medicine (PPPM) in
GCP [5]. Recently, consistent and rigorous effort has been
devoted to investigating biomarkers of periodontal patho-
genesis through omics technology.

The various microbiota constituents inhabiting the mouth,
including at least 400 to 700 prevalent taxa [6, 7], contribute
significantly to maintaining the oral and extraoral health of the
host [8]. Currently, classification and prediction of host status
based on the human microflora has become an important goal
of human microbiome projects worldwide [9, 10].
Researchers have increasingly agreed with the hypothesis
from an ecological perspective to explain the mechanism of
periodontal disease occurrence and development [11], and
complicated interactions between oral health and multiple dis-
eases [12, 13]. Under this condition, next-generation sequenc-
ing (NGS) technology provides an advanced scientific tech-
nique in terms of detecting, identifying, and classifying the
oral microbial community [14], and has led to the validation
and enhanced understanding of periodontitis prediction
conforming to the ecological plaque hypothesis.

Metabonomics has shown interesting capabilities in diag-
nosing several diseases [15–18] and describing individual
metabolic phenotypes in humans [19, 20]. In recent years,
several studies have made significant contributions to under-
standing the biochemical network and pathway in periodontal
diseases, pointing out a series of recognized diagnostic bio-
markers: enzymes of host or bacterial origin, proteins, inflam-
matory mediators, collagen and bone degradation products,
and DNA of host or bacterial origin [21–26]. Oral metabolo-
mics has attracted much attention in the diagnosis of periodon-
titis since metabolites are the end products of biological pro-
cesses by which genomic information is implemented; there-
fore, they are considered to accurately reflect phenotype dif-
ferences [27].

At the interface of the epithelia and bacterial plaque is
plasma-derived gingival crevicular fluid (GCF). When the tis-
sue is inflamed, this fluid changes to an exudate [2]. Since

GCF can be collected noninvasively and is a low-stress,
cost-effective, and site-specific collection strategy, it is an ide-
al tool to detect host-bacterial interactions [28] and to reflect
the severity of periodontal inflammation originating from host
cells and the numerous microbes harbored in inflamed peri-
odontal pockets. Although there is a wealth of information
published on the variation in the oral microbiota and metabol-
ic profiles of GCP, respectively, the relationship between host-
bacterial interactions and biochemical metabolism has not
been identified. In this study, we conducted a case-control
multi-omics analysis of GCF samples from 58 participants
(28 healthy controls and 30 patients with GCP) using 16S
rRNA and gas chromatograph-mass spectrometry (GC-MS)
with multivariate statistical techniques. This study aimed to
broaden our understanding of the oral microbiome and metab-
olism in GCP patients and to provide an option for detailed
assessment of pathologic conditions. Integration of microbial
data and metabolomic data with useful clinical information
will offer more valuable information for PPPM in GCP.

Materials and methods

Experimental design and subject selection

This study was approved by the Institutional Ethics
Committee of Ninth People’s Hospital, Shanghai Jiao
Tong University School of Medicine (issuing number,
201841). All subjects were informed of the purpose of
the study and signed an informed consent form at the first
visit before enrolment.

A total of 58 subjects who were referred to the
Department of Preventive Dentistry, Ninth People’s
Hospital Affiliated with Shanghai Jiao Tong University
School of Medicine from October to December 2018 were
enrolled in this cross-sectional study. Thirty patients with
moderate and severe GCP were selected according to the
criteria outlined in the World Workshop in Periodontology
[29]. GCP was diagnosed with a full-teeth probing exam-
ination and panoramic X-ray. All patients had four or more
teeth showing at least one site with a probing depth (PD) ≥
4 mm, a clinical attachment level (CAL) ≥ 3 mm at the
same site, and the presence of bleeding on probing
(BOP). Twenty-eight healthy controls had a PD ≤ 3 mm
and CAL < 1 mm for all teeth. To be included in the study,
all subjects were required to fill in a questionnaire and have
a minimum of 20 natural teeth (excluding third molars).
The exclusion criteria were (a) systemic disease; (b) ortho-
dontic treatment before or periodontal therapy within the
past 3 months; (c) use of antibiotics within the past
3 months; (d) pregnant, nursing or taking hormonal con-
traceptives; and (e) smoking.
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Periodontal examinations and sample collection

Periodontal examination data were recorded on a clinical re-
cord for all teeth excluding third molars. PD (measurement
from the gingival margin to the total PD) and CAL (measure-
ment from the cemento-enamel junction to the total PD) were
assessed at six sites per tooth (mesiobuccal, buccal,
distobuccal, distolingual, lingual, and mesiolingual). BOP
was evaluated using a dichotomous index (presence or ab-
sence of bleeding) and was demonstrated as the percentage
of surfaces showing bleeding. The examinations were com-
pleted by one trained and calibrated examiner.

GCF samples were collected twice from the patients with
GCP at the deepest PD site of every quarter. For the healthy
controls, the buccal site of the 4 first molars was the specified
collection points. A total of 8 strips were collected from each
subject. Before sample collection, the supragingival plaque
was gently removed, and the tooth surface was air-dried and
isolated using clean cotton rolls. A Periopaper® (Oraflow
Inc., NY, USA) filter strip was inserted gently, the strip was
held in the gingival sulcus for 30 s, and volume was deter-
mined by a precalibrated Periotron 8000® (Oraflow Inc.,
Plainview, NY, USA). The strips were stored separately in
two 1.5 mL Eppendorf (EP) tubes and stored at − 80 °C until
further use. One was used for 16S rRNA sequencing, and the
other was used for metabolic assessment.

Sample preparation and 16S rRNA amplicon
sequencing

To prepare the internal standard, 10 μL of 2-chloro-l-
phenylalanine (0.3 mg/mL) was added into EP tubes with
the samples and dissolved in methanol. Afterwards, an ice-
cold mixture of methanol and water (methanol:water = 4:1)
was added. After 5 min of vortexing, the solution was centri-
fuged (20,000×g, 10 min) at 4 °C. The remaining steps were
carried out as described in the literature [30]. Eventually, the
solutions were incubated at room temperature for 30 min.

Total bacterial genomic DNA samples were isolated using
Fast DNA SPIN extraction kits (MP Biomedicals, Santa Ana,
CA, USA) following the manufacturer’s instructions and
stored at − 20 °C prior to further analysis. The quantity and
quality of extracted DNAwere tested using a NanoDrop ND-
1000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) and 1% agarose gel electrophoresis, respectively.

PCR amplification of the bacterial 16S rRNA gene V3–V4
region was conducted using universal primers (338F: 5′ -
GTACTCCTACGGGAGGCAGCA-3 ′ , 806R: 5 ′ -
GTGGACTACHVGGGTWTCTAAT-3′). Sample-specific 7-
bp barcodes were incorporated into the primers for multiplex
sequencing. Thermal cycling consisted of initial denaturation
at 98 °C for 2 min; followed by 25 cycles consisting of dena-
turation at 98 °C for 15 s, annealing at 55 °C for 30 s, and

elongation at 72 °C for 30 s; with a final extension at 72 °C for
5 min. PCR products were purified with Agencourt AMPure
Beads (Beckman Coulter, Indianapolis, IN, USA) and quanti-
fied using a PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA). After the individual quantification step,
amplicons were pooled in equal amounts, and pair-end 2 ×
300 bp sequencing was performed at Shanghai Personal
Biotechnology Co., Ltd. (Shanghai, China) using the
Illumina MiSeq platform with a MiSeq Reagent Kit v3.

Sample preparation and metabolic analysis of GCF

One piece of the sample paper was placed into a 2 mL EP tube,
GCF was extracted with 300 μL of methanol, and 10 μL of
adonitol (0.5 mg/mL stock in dH2O) was added as an internal
standard. Samples were oscillated for 5 min, ultrasound-treated
for 10 min (incubated in ice water), and centrifuged for 15min at
12,000 rpm and 4 °C, and the supernatant (280 μL) was trans-
ferred into a fresh 1.5mLEP tube. Then 300μLofmethanolwas
added, and the previous steps were repeated. The supernatants
were then combined and vortex mixed for 30 s before 500 μL of
the supernatant was transferred into a fresh 1.5 mL EP tube;
60 μL from each sample was taken and pooled as a quality
control (QC) sample. The remaining sample was dried complete-
ly in a vacuum concentrator without heating; 20 μL of
methoxyamination hydrochloride (20 mg/mL in pyridine) was
added and incubated for 30 min at 80 °C; 30 μL of the BSTFA
reagent (1% TMCS, v/v) was added to the sample aliquots and
incubated for 1.5 h at 70 °C; and 5μL of FAMEs (in chloroform)
was added to the QC sample when cooling to room temperature.
All samples were analyzed by a gas chromatograph system
coupled with a Pegasus HT time-of-flight mass spectrometer
(GC-TOF-MS). The system utilized aDB-5MS capillary column
coated with 5% diphenyl cross-l inked with 95%
dimethylpolysiloxane (30 m× 250 μm inner diameter, 0.25 μm
film thickness; J&W Scientific, Folsom, CA, USA).

Statistical analysis

16S rRNA sequence data analyses were performed using
mainly the QIIME and R packages (v3.2.0). Operational tax-
onomic unit (OTU)–level α diversity indices were calculated
using the OTU table in QIIME. α diversity indices, including
abundance-based coverage estimator (ACE), the Chao1 rich-
ness estimator, Shannon-Wiener diversity index, and
Simpson’s index, were calculated to compare the microbial
communities based on their diversity and phylogenetic struc-
ture. β diversity analysis was performed using UniFrac dis-
tance metrics and visualized via nonmetric multidimensional
scaling (NMDS). Partial least squares discriminant analysis
(PLS-DA) was also introduced as a supervisedmodel to reveal
the microbiota variation among groups, using the “plsda”
function in the R package “mixOmics.” The significance of
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differentiation of the microbiota structure among groups was
assessed by permutational multivariate analysis of variance
(PERMANOVA) and analysis in Adonis. The taxonomy com-
positions and abundances were visualized using GraPhlAn.
Taxon abundances at the phylum, class, order, family, and
genus levels were statistically compared among samples or
groups by Metastats and visualized as violin plots. Microbial
functions were predicted using phylogenetic investigation of
communities by reconstruction of unobserved states
(PICRUSt, http://huttenhower.sph.harvard.edu/galaxy) with
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database.

The GC-MS data were exported by Chroma TOF 4.3X
software (LECO, St Joseph, MI, USA); the LECO-Fiehn
Rtx5 database was used for raw peak exaction, data baseline
filtering and calibration of the baseline, peak alignment,
deconvolution analysis, peak identification, and integration
of the peak area. Both the mass spectrum match and retention
index match were considered in metabolite identification.

QC samples were removed. The resulting data were analyzed
by SIMCA-P (version 14.0; Umetrics, Umeå, Sweden). The
population distribution among all samples and the stability of
the overall analysis process were assessed using principal
component analysis (PCA). Orthogonal partial least squares
discriminant analysis (OPLS-DA) was used to evaluate the
total differences among the groups. Variable influence on pro-
jection (VIP) values larger than 1.0 and P values (2-tailed
Student’s t test) less than 0.05 were used to determine differ-
ential metabolic profiles. The quality of the PCA and OPLS-
DA was evaluated by the values of R2X or R2Y and Q2.
Values for the area under the curve (AUC) of the receiver
operating characteristic curve (ROC) were used to assess the
diagnostic ability of candidate metabolites for diagnosis of
moderate or severe periodontitis.

A heat map of Spearman’s rank correlation coefficient was
used to illustrate the relationships among microbial commu-
nities, metabolites and clinical indices.

Data availability

The raw sequences of human GCF samples were deposited at
the NCBI Sequence Read Archive under SRA Accession no.
SRP226726.

Results

General demographic and clinical characteristics
of the subjects

A total of 58 individuals were enrolled in this study. There was
no significant difference in age or sex between the two groups.

The PD, the CAL, and the prevalence of BOP of patients were
significantly higher in the GCP group than in the control
group (P < 0.01, Table 1).

Changes in phylogenetic composition and structure
in periodontal microbial communities of GCF

Following 16S rRNA gene sequencing of 116 GCF samples
from 58 individuals (60 samples from 30 chronic periodontitis
individuals and 56 samples from 28 controls), 2,290,279 high-
quality reads were obtained after quality filtration. An ultimate
total of 5681 OTUs were found at a 97% identity cut-off
among all samples.

According to the given sample distribution information and
species abundance matrix, the community structure data were
discriminated and analyzed by PLS-DA. If samples belonging
to the same group are closer to each other and the points
belonging to different groups are farther from each other, then
the classification model is better. The results demonstrated
that the sample grouping model was effective (Fig. 1a).

To characterize dysbiosis in the oral microbial communities of
periodontal disease patients compared to those of healthy indi-
viduals, we analyzed α and β diversities of the microbiota to
evaluate their overall compositional richness and structural fea-
tures. To illustrate the microbial community richness, evenness,
and species diversity, α diversity indices, including the Chao1
index, ACE index, Shannon index, and Simpson index, were
used, with no significant differences between the two groups
(Supplementary Fig. S1, P > 0.05). However, β diversity analy-
sis according to NMDS and based on unweighted and weighted
UniFrac distances at the OTU level demonstrated a statistically
significant separation of the two groups (Adonis, P < 0.01; Fig.
1b, c), suggesting different overall microbial community struc-
tures. The closer the distance between samples shown in the
picture, the more similar the microbial community structures
are. The results demonstrated that the GCFmicrobial community
structure changed significantly between healthy controls and
periodontitis patients.

By analyzing of all the GCF samples, a total of 13 phyla, 23
classes, 40 orders, 85 families, and 177 genera were detected.
From the overall GCF samples, the dominant phyla included

Table 1 Demographic and clinical characteristics of the subjects

Clinical parameters Healthy control Moderate-severe periodontitis

Number of participants 28 30

Age (range) 35.7 (24.0–46) 39 (28–51)

Gender, female 19 17

PPD (mm)a 2.5 ± 0.4 3.7 ± 0.5

CAL (mm) a 0.5 ± 0.4 1.9 ± 0.6

BOP (%)a 30 ± 19 73 ± 25

aP < 0.01, Student’s t test
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Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria,
Fusobacteria, Spirochaetes, and Synergistetes (> 99% of the
overall abundance). Ralstonia, Streptococcus, Porphyromonas,
Prevotella, Neisseria, Fusobacterium, Haemophilus,
Sphingomonas, Leptothrix, Leptotrichia, Kocuria, Treponema,
Corynebacterium, Lactobacillus, Veillonella, Escherichia,
Actinomyces, Aggregatibacter, Rothia, Selenomonas,
Lachnospiraceae[G-2], and Bacteroidetes[G-5] were the top 22
most abundant genera, which composed 74.5% of the overall
abundance (Supplementary Fig. S2a). A phylogenetic tree con-
structed with GraPhlAn at various classification levels is shown
in Fig. 2, which can quickly identify dominant microbial taxa
from phylum to genus. When the two group samples were ana-
lyzed separately, the precise proportion of dominant taxa was
somewhat different between periodontitis samples and healthy
samples (Supplementary Fig. S2b).

Metastats analysis was performed to compare the differ-
ences in taxa (absolute abundance) between the two groups
at the phylum and genus levels. A total of 7 phyla and 82
genera revealed different abundances (Supplementary
Table S1). Samples are displayed in the form of violin dia-
grams combined with box-line diagrams, and violin diagrams
can visually display the distribution characteristics of data. At
the phylum level, the relative abundances of Chloroflexi,
Synergistetes, Tenericutes, Bacteroidetes, and Fusobacteria
in GCP patients were significantly higher than those in the
healthy controls. However, a relatively higher abundance of
Firmicutes and Chlamydiae was observed in healthy controls
compared with that in periodontal patients (Fig. 3a). At the
genus level, the top 20 taxa with the most significant differ-
ences between the two groups are listed in Fig. 3b.
Arcanobacterium, Bacteroides, Dietzia, Chloroflexi_[G-1],
Mycobacterium, Mobiluncus, Mycoplasma, Parascardovia,
Peptostreptococcaceae_[XIII][G-1], and Kytococcus were
significantly enriched in the periodontal disease patients com-
pared with those in the healthy controls. In contrast, several
genera, namely, Proteus, Lachnospiraceae_[G-7],
Lac t obac i l l u s , Lac t o coccus , B i f i dobac t e r i um ,
Clostridiales_[F-1][G-2], Enterobacter, Erysipelothrix,
Erysipelotrichaceae_[G-1], and Eubacterium_[XI][G-1], ex-
hibited lower proportions in periodontal disease patients than
in the controls. Together, these data reveal microbial changes
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�Fig. 1 Comparisons of the phylogenetic structure and composition
between the microbial communities of patients with GCP (Group P)
and healthy controls (Group N). Statistical significance was examined
using the Adonis method with 999 permutations. a Partial least squares
discriminant analysis (PLS-DA) consisted of a supervisedmodel to reveal
microbiota variation among groups. The results demonstrated that the
sample grouping model was discriminatory. b Nonmetric multidimen-
sional scaling (NMDS) based on unweighted UniFrac distances for bac-
terial communities between the two groups, P = 0.001. cNMDS based on
weighted UniFrac distances between the two groups, P = 0.002
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in the GCF microbiome in periodontal disease individuals,
suggesting a state of microbial dysbiosis.

Functional variation in the periodontal microbiota

Another focus of this study was to disclose the functional
variation in the periodontal GCF microbial community.
Therefore, the microbiota-derived pathways were predicted
by the PICRUSt algorithm with the KEGG database, and
functional abundance was compared between the periodontal
disease patients and healthy control groups. In total, 41 de-
tailed pathways were characterized in the present study. For
the study of microbial ecology, the metabolic function of the
microflora is the most important. According to the predicted
abundance distribution of each functional group in each sam-
ple, a violin diagram was drawn (Supplementary Fig. S3).
Specifically, the functional changes in periodontal samples
included an increase in basic metabolism (e.g., energy, cofac-
tor, and vitamin metabolism), enzyme families, glycan bio-
synthesis and metabolism, and biosynthesis of secondary me-
tabolites. In contrast, a loss of carbohydrate metabolism was
observed in periodontal communities. In conclusion, the

results not only demonstrated compositional dysbiosis but al-
so predicted metabolic functional disturbance.

Shifts in metabolomic profiles of GCF samples

To investigate the extent to which the altered microbiome in
the periodontal disease patients was associated with metabo-
lites, we performed nontargeted metabolomics profiling of
174 GCF samples from cases and controls.

After removing the internal standards and pseudopositive
peaks and combining the peaks from the same metabolite, a
total of 147 qualitative metabolites were obtained. Both the
plot of PCA scores (Fig. 4a) and the OPLS-DA model (Fig.
4b, c) demonstrated satisfactory modeling and predictive abil-
ities. Compared with controls, periodontal disease individuals
displayed pronounced metabolic alterations. Among them, 17
metabolites were selected based on standards among the dif-
ferential variables with VIP values > 1 in the OPLS-DA and P
values in Student’s t test < 0.05 (Table 2). The GCF metabo-
lites that differed most significantly in periodontal disease
individuals relative to those in healthy controls included ele-
vated glycine-d5 (fold change (FC) = 20.38) , N-
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B:c__Actinobacteria 
C:o__Actinomycetales 
D:p__Firmicutes 
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N:o__Fusobacteriales 
O:p__Proteobacteria 
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Q:c__Betaproteobacteria 
R:o__Burkholderiales 
S:f__Ralstoniaceae 
T:g__Ralstonia

Fig. 2 Visualization of taxa on a
phylogenetic tree from phylum to
genus levels (arranged from the
inner circle to the outer circle), as
analyzed using GraPhlAn. The
node size reflects the mean
relative abundance of the taxon.
The top 20 dominant taxa are
identified in the legend
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Fig. 3 Taxon abundances at the phylum (a) and genus (b) levels were statistically compared between patients with GCP (Group P) and healthy controls
(Group N) by Metastats. The violin plots show all phyla and the top 20 genera with significant differences



carbamylglutamate 2 (FC = 9.83), and fructose 1 (FC = 5.92)
and depleted lactamide 2 (FC = 0.65), O-phosphoserine 1
(FC = 0.71), and 1-monopalmitin (FC = 0.72).

Complex metabolic reactions and their regulation in organ-
isms are not carried out independently. Their interaction and
mutual regulation eventually lead to systematic changes in
metabolites. To further characterize the signatures of the me-
tabolites, we conducted metabolite set enrichment analysis
(MSEA) and topology analysis, which was able to identify
which pathways are overrepresented among differential me-
tabolites in reference to a metabolite set list created on the
basis of the KEGG database (Supplementary Table S2). As
shown in Fig. 5, pyrimidine metabolism and D-glutamine and
D-glutamate metabolism were identified as significantly over-
represented pathways in the periodontal disease group (P =
0.000488027 and 0.031594, respectively), which might re-
flect the metabolic signatures of disease-associated communi-
ties. Vitamin B6 metabolism, propanoate metabolism, histi-
dine metabolism, and tyrosine metabolism were also related
pathways with no significant difference. Differential metabo-
lites, namely, uracil, thymidine, and methylmalonic acid, were
involved in pyrimidine metabolism. Glutamic acid was in-
volved in D-glutamine and D-glutamate metabolism.

Associations among the microbiota, metabolites,
and periodontal clinical indices

Through Spearman’s correlation analysis, the correlations be-
tween clinical data for periodontitis, the microbiota, and me-
tabolites were reviewed.

After analysis, the genera with significant correlations with
clinical data are shown in a heat map as ordinates (Fig. 6a). As
shown in the figure, there was a strong statistically significant
correlation between the bacterial genera detected in the oral
cavity and the clinical data of periodontitis, including BOP,
CAL, and PD. This result indicated a positive relationship
between the periodontal disease patient–enriched genera and
the clinical detection data and a negative correlation between
the healthy control–enriched genera and the clinical data.

To further explore whether the altered abundance of
metabolites correlated with the altered GCF microbiota,
covariation between the 82 genera and 17 metabolites that
differed between cases and controls was investigated by
Spearman’s correlation. Notably, most metabolite levels
that were elevated in periodontal disease individuals, in-
cluding citramalic acid, 2-butyune-1,4-diol, glycine-d5, 4-
hydroxyphenylacetic acid, N-acetyl-β-D-mannosamine 1,
5 -d ihydroco r t i so l 3 , u r ac i l , f r uc tose 1 and N-
carbamylglutamate 2, were positively correlated with the
majority of periodontal disease–enriched genera and nega-
tively correlated with the majority of healthy control–
enriched genera. In contrast, metabolite levels that were
depleted in periodontal disease individuals, consisting of

methylmalonic acid and O-phosphoserine 1, exhibited pos-
itive correlations with many healthy control–enriched gen-
era and negative correlations with periodontal disease–
enriched genera. Thymidine 3 and 1-monopalmitin, metab-
olites whose levels were also depleted in periodontal dis-
ease individuals, had a negative correlation and significant
difference with most periodontal disease–enriched genera.
Specifically, the genera of putative periodontopathic bac-
teria, such as Porphyromonas, Prevotella, Fusobacterium,
and Filifactor, demonstrated a close relationship with dif-
ferential metabolites (Fig. 6b). Taken together, these results
suggest that the altered oral microbiota are related to
subgingival metabolism to some extent and that the levels
of GCF metabolites may reflect changes in the abundance
of these bacterial species.

Regarding metabolites, uracil, N-carbamylglutamate 2, N-
acetyl-β-D-mannosamine 1, fructose 1, citramalic acid, 5-
dihydrocortisol 3, and 4-hydroxyphenylacetic acid were
found to be significantly positively linked to increased BOP,
CAL, and PD, while the opposite trends were observed for
thymidine 3 and O-phosphoserine 1. Furthermore,
methylmalonic acid and 1-monopalmitin were negatively cor-
related with CAL, PD, and BOP, with CAL being significantly
negatively correlated (Fig. 6c). Therefore, it is obvious that
increased metabolite levels in periodontitis cases were posi-
tively correlated with clinical data of periodontitis, while de-
creased metabolite levels were negatively correlated with clin-
ical data. That is to say, the more the level of increased or
decreased metabolites changes, the greater the clinical data
and the more obvious the clinical features of periodontitis will
be. This result enhanced the change in metabolites in response
to the clinical condition of periodontitis.

The strong positive contribution of the abovementioned 9
metabolites to the prediction of BOP, CAL, and PD suggests
their possible application as indicators of periodontal inflam-
mation severity. ROC curves also indicated that the combina-
tion of citramalic acid and N-carbamylglutamate 2 yielded
satisfactory accuracy for the diagnosis of moderate or severe
periodontitis (AUC = 0.876; Fig. 7a, b, Table 3), which may
indicate that citramalic acid and N-carbamylglutamate 2 are
effective biomarkers in GCF for periodontitis. In sum, these
results provide insight intometabolic signatures of periodontal
dysbiotic communities and identify potential biomarkers of
inflammatory status.

�Fig. 4 Typical gas chromatography-mass spectrometry scores plots. a
Principal component analysis (PCA) plot model of gingival crevicular
fluid (R2X = 0.508). b The orthogonal least square-discriminative analy-
sis (OPLS-DA) model for the GCP group (P) and healthy group (N)
(R2Y = 0.823, Q2 = 0.676). c OPLS-DA 200 permutation testing:
(R2Y = 0. 37, Q2 = − 0.93). The generated explained variation values
and the predictive capability indicate the excellence in modeling and
prediction, with clear discrimination between the GCP and healthy
groups
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Discussion

Use of 16S rRNA gene sequencing and GC-MS
technologies in periodontitis

Periodontitis is an infectious disease with a complex etiology
and is especially relevant to the objectives of PPPM due to its
huge impact on people’s social lives [31]. For many years, the
study of the bacterial etiology of periodontitis has continued,
as a variety of microorganisms have been seen as the most
important factor involved in the disease. To promote a reliable
method for efficient clinical management, exploring the com-
plex etiology of periodontal disease is imperative [32]. A com-
prehensive understanding of the ecology of the subgingival
microbiota and the interplay between the microbiome compo-
sition and metabolomic condition could enable the develop-
ment of novel prevention and treatment strategies for
periodontitis.

Using 16S rRNA gene sequencing and GC-MS technolo-
gies, we showed significant phylogenetic differences in
subgingival microbial communities and metabolite signatures
of host GCF between periodontitis patients and healthy indi-
viduals. In general, the 16S rRNA analysis illustrated that the
phylogenetic composition and structure of the oral
microbiome were distinctly different between periodontal dis-
ease and healthy individuals. According to the metabolomic
profile analysis, the discrimination obtained from GCF sam-
ples demonstrates the existence of a metabonomic signature of
GCP disease in GCF. Moreover, the association of the altered

microbiota, metabolites, and clinical indices was consistent
between the two groups, which indicated that bacteria and
metabolism in the subgingival environment were closely re-
lated and that this correlation and difference between peri-
odontitis and the health of the microecology were also shown
in clinical data. Therefore, the result provided a possible ap-
proach to predict and distinguish periodontitis, as metabolites
were an indicator of inflammatory status.

Achievements in the current study: results
interpretation of microbial communities

In the current study, α diversity did not identify clear differ-
ences between healthy individual samples and periodontitis
individual samples. One possible explanation is that the com-
mon phyla in the GCF are relatively constant because the
major phyla were similar in previous studies. In addition, all
individuals in this study came from the same living area,
which led to nonsignificant differences in bacterial α diversity
between the two groups due to the high similarity of diet and
living habits. The β diversity comparisons exhibited signifi-
cant differences in the microbial community between the peri-
odontitis and healthy groups. As the health status of periodon-
tal tissue changes, the composition of the subgingival plaque
community shifted in periodontitis.

At the phylum level, the microbiota from periodontitis had
higher proportions of Bacteroidetes, Actinobacteria,
Fusobacteria, Spirochetes, and Synergistetes, while the pro-
portions of Proteobacteria and Firmicutes were higher in the

Table 2 Differential metabolites between periodontitis and healthy controls

Peak Mean P Mean N VIP P value Q value Fold change Log_foldchange

Glycine-d5 0.051333284 0.002518903 2.686654583 1.49E-07 3.65352E-06 20.37922203 4.349027073

N-Carbamylglutamate 2 0.001037846 0.000105564 2.630242979 4.21401E-09 2.5869E-07 9.831450847 3.297404334

Fructose 1 0.002357247 0.000398217 2.398089278 0.001428095 0.017702445 5.919500674 2.565475486

2-Butyne-1,4-diol 0.006857957 0.001194529 2.879871275 7.8385E-09 3.84952E-07 5.741140703 2.521337413

5-Dihydrocortisol 3 0.000558885 9.8688E-05 1.227185617 0.002842353 0.027874389 5.663150523 2.501604876

N-Acetyl-beta-D-mannosamine 1 0.000319463 6.02506E-05 2.178661077 0.001755285 0.020494345 5.302237027 2.406601165

4-Hydroxyphenylacetic acid 0.002672063 0.000709054 1.96772351 0.003112315 0.029393691 3.768488233 1.913985888

Citramalic acid 0.002650632 0.000758167 2.984629212 9.68575E-08 2.91543E-06 3.49610666 1.8057492

Uracil 0.007927636 0.003428043 1.617699878 0.000549653 0.008165377 2.312583439 1.20950542

beta-Glutamic acid 1 0.002995735 0.002020754 1.293178024 0.020879645 0.099659996 1.48248402 0.568016553

Monoolein 0.007769257 0.005862759 1.627516713 0.02848719 0.117778288 1.325187884 0.406196919

Methylmalonic acid 0.029476006 0.033940995 1.664596792 0.018708654 0.094957487 0.868448476 −0.203487837
Thymidine 3 0.001377672 0.001740672 1.096219131 0.009559978 0.066454136 0.791459902 −0.337411835
Octadecanol 0.001733205 0.002235684 1.739203072 0.03129264 0.123639982 0.775245838 −0.367274219
1-Monopalmitin 0.000614955 0.000854443 1.157584723 0.008945999 0.063789651 0.719715264 −0.474501838
O-Phosphoserine 1 0.00071198 0.001001571 1.001597189 0.010134474 0.068828752 0.710863854 −0.492354816
Lactamide 2 0.000382039 0.000585076 1.755482094 0.009031916 0.064170744 0.652973669 −0.614903278
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microbiota from healthy individuals, which showed that most
taxa concurred with previous studies but not at the exact same
propor t ion [33–35] (Supp lementa ry F ig . S2b) .
Porphyromonas, Prevotella, Neisseria, Fusobacterium,
Treponema, etc., some included well-known destructive peri-
odontal pathogens (Porphyromonas gingivalis, Treponema
denticola, and Prevotella intermedia), presented at a higher
abundance at the genus level in periodontitis individuals,
while Ralstonia, Streptococcus, and Haemophilus showed
higher proportions in healthy individuals. Moreover, a
Metastats analysis indicated that Porphyromonas, Prevotella,
Filifactor, Fusobacterium, etc. were significantly enriched in
periodontal disease patients (Supplementary Table S1). Our
result was in agreement with reported studies. The taxonomic
enrichment in these taxa may contribute to the differences in
the diversity of GCF samples and, to a certain extent, to the
function of the subgingival microbial community between
periodontitis and healthy subjects. Some new microorganisms
prevalent and strongly associated with disease need further
study because they may play a significant role in the develop-
ment of periodontitis. For instance, researchers proved that
Filifactor alocis has common characteristics with established
periodontal pathogens and potential to cause periodontal tis-
sue destruction [36, 37].

For the study of microbial ecology, we are most con-
cerned about the metabolic function of the microflora.
With the development of data analysis technology, we
can now predict the metabolic function of bacteria based
on the results of 16S rRNA gene sequencing to match the

“identity” of species to their “function.” According to this
prediction, we can obtain a glimpse of the outline of mi-
crobial function and the possible effect of the biochemical
activities of bacteria on the host. In our study, metabolic
activities, including basic metabolism (e.g., energy, cofac-
tor, and vitamin metabolism), enzyme families, glycan
biosynthesis and metabolism, and biosynthesis of second-
ary metabolites, were upregulated in the microbiota of
periodontal disease individuals compared to those in the
microbiota of healthy controls. Nevertheless, a decrease in
carbohydrate metabolism was observed in periodontal
communities. Previous studies found that functional car-
bohydrate metabolism genes were relatively similar be-
tween periodontitis and healthy individuals [38, 39].
Based on our results, it is hypothesized that the commu-
nity of the periodontal group might utilize sugars
absorbed directly instead of biosynthesizing them, so they
show a relatively decreased carbohydrate metabolism. In
conclusion, the results not only demonstrated composi-
tional dysbiosis but also predicted metabolic functional
disturbance.

Achievements in the current study: results
interpretation of metabolites

We successfully screened 17 differential metabolites in GCF
samples by GC-MS possibly separating patients with GCP
from healthy controls. Many metabolic changes implicated
an association with periodontal disease progression.

Fig. 5 Bubble plot of metabolite
set enrichment analysis (MSEA)
and topology analysis of differ-
ential metabolites. The abscissa
and bubble size indicate the
influencing factor of the pathway
in the topology analysis (the larg-
er the size is, the larger is the
influencing factor); the Y-axis and
bubble color indicate the P value
in enrichment analysis (the darker
the color is, the smaller is the P
value)
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The synthesis, degradation, and interconversion of DNA,
RNA, lipids, and carbohydrates all require the involvement of
pyrimidine metabolism. The nucleic acid of periodontal cells
can be released when cells are impaired directly by periodon-
tal microbiota or indirectly by the host immune system.
Nucleosides and nucleobases are an important nutrient source

for bacteria and can be used for nucleic acid biosynthesis or
decomposition into carbon and energy sources. As the result
of MSEA and topology analysis, pyrimidine metabolism was
found to be the most significant pathway involved in GCP
(Fig. 5). The elevated level of uracil and the decreased levels
of thymidine and methylmalonic acid indicated that
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Fig. 6 Associations among the microbiota, metabolites, and periodontal
clinical indices. a Heat map of microbial genera with clinical indices.
Spearman’s rank correlation between 80 genera and 3 clinical indices
(only genera correlating with at least one clinical index with P < 0.05
are shown). b Heat map of microbial genera with differential
metabolites. Spearman’s rank correlation between 81 genera and 17

differential metabolites. Genera in green and red classes denote control
enrichment and periodontitis enrichment, respectively. c Heat map of
clinical indices with differential metabolites. Spearman’s rank
correlation coefficient between 3 clinical indices and 17 differential
metabolites. Metabolites in green and red classes denote downregulated
and upregulated in the periodontitis group, respectively. *P < 0.05
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pyrimidinemetabolism inGCP patients was different than that
in healthy controls. Furthermore, uracil had a positive corre-
lation with the periodontal disease–enriched genera and a neg-
ative correlation with the healthy control–enriched genera.
This relationship between thymidine, methylmalonic acid,
and genera was the opposite. It is known that when pathogens
invade host cells, they can affect pyrimidine metabolism in the
host to create advantageous conditions for proliferation [40].
This finding suggests that the pathogens associated with GCP
may alter the metabolism of infected hosts by an as yet un-
known mechanism.

Periodontal tissues are rich in proteins. As shown inMSEA
and topology analysis, D-glutamine and D-glutamate metabo-
lism, histidine metabolism, and tyrosine metabolism were re-
lated pathways involved in the GCF of periodontitis

individuals, which affirms findings of previous work that re-
ported increased degradation of macromolecules, including
proteins, in individuals with periodontitis [41, 42].
Periodontal microorganisms and host-derived inflammatory
proteases can degrade host periodontal proteins into peptides
and amino acids that would serve as an abundant energy pool
and nutritional resource for microbes [43, 44], ultimately af-
fecting microorganisms and functional structure. Li et al. [39]
indicated that subgingival microbiomes might directly absorb
some ammonia for physiological activities instead of
biosynthesizing it because of oral microbiome genes involved
in amino acid synthesis showed a reduced relative abundance
in periodontitis. Since periodontal inflammation gives rise to
destruction of the connective tissues, it is likely that the

a

b

Fig. 7 a Receiver operating
characteristic (ROC) curve of 9
differential metabolites for
distinguishing the general chronic
periodontitis group from the
healthy group. b Citramalic acid
and N-carbamylglutamate 2 were
selected and validated as putative
biomarkers, with an area under
the curve (AUC) 0.876
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elevated level of glycine-d5 and β-glutamic acid in GCF was
produced by tissue breakdown.

Reactive oxygen species participate in periodontal destruction
during inflammatory periodontal diseases. The imbalance be-
tween oxidant and antioxidant activity can be a key factor in
the destructive effect of reactive oxygen species [45].
Considering the results, an increased antioxidant activity was
observed in the GCF of periodontal individuals, as reflected by
the increased concentration of N-carbamylglutamate. Previous
evidence has indicated that N-carbamylglutamate can alleviate
oxidative stress by enhancing the activities of antioxidant en-
zymes [46] and improving the nonenzymatic antioxidant content
[47] in mammals. Additionally, N-carbamylglutamate can alle-
viate the inflammatory response by downregulating IL-1b and
TNF-a mRNA expression [46]. However, our result was incon-
sistent with previous studies, which confirmed that periodontal
inflammation is closely associated with oxidative stress [48, 49].
An explanation is that in patients suffering different degrees of
periodontitis, only those with advanced periodontitis have re-
duced total antioxidant activity and increased levels of reactive
oxygen species [50, 51]. Our samples were taken from patients
with moderate to severe periodontitis. Based on clinical data, the
average PD and CAL did not indicate severe periodontitis
indices.

The metabolism of GCF is closely related to bacterial bio-
chemistry. It is well known that most periodontitis-related
bacteria use sugar as an energy and carbon source. The result
showing that the level of fructose-1 was higher in patients with
GCP than in healthy controls was consistent with a previous
metabolomic study of oral biofilms showing elevated
fructose-6-phosphate content [52].

As reported, 4-hydroxyphenylacetic acid is produced by
Porphyromonas gingivalis, an indigenous bacterium in the

human oral cavity, as a metabolic end product during the
metabolism of phenylalanine and tyrosine [53]. In saliva
from healthy individuals, the concentration of 4-
hydroxyphenylacetic acid was below 10 μM [54], whereas
a 4-hydroxyphenylacetic acid concentration higher than
20 μM was found in periodontitis individuals [55]. The
increased population of Porphyromonas gingivalis in peri-
odontitis patients may contribute to this increase in 4-
hydroxyphenylacetic acid.

Microbiota and metabolites as tools for predicting
periodontal inflammatory status

From the results, there were distinct differences in clinical
data, subgingival microorganisms, and metabolites of GCF
between the periodontitis group and the healthy control group.
Furthermore, correlation heat map analysis of microorgan-
isms, metabolites, and clinical data suggested a concerted
trend among them (Fig. 6). Specifically, severe periodontal
cl inical data were posit ively correlated with the
periodontitis-enriched genera and periodontitis-upregulated
metabolites but were negatively correlated with the healthy-
enriched genera and periodontitis-downregulated metabolites.
Additionally, most periodontitis-upregulated metabolites
showed a significantly positive relationship with some
periodontitis-enriched genera and a significantly negative re-
lationship with healthy-enriched genera. Similarly,
periodontitis-downregulated metabolites had an opposite rela-
tionship with the genera. These results confirm that host and
oral microorganisms are closely related and interact in the
development of periodontitis. Given that the transition from
periodontal health to disease is linked to overall imbalance,
including altered metabolic signatures in the host and in the

Table 3 Area under the ROC
Test result variable Area Std. error a Asymptotic sig. b Asymptotic 95% confidence

interval

Lower
bound

Upper
bound

Uracil 0.76 0.063 0.001 0.636 0.883

N-Carbamylglutamate-2 0.815 0.062 0 0.694 0.937

N-Acetyl-beta-D-mannosamine
1

0.726 0.07 0.003 0.588 0.864

Fructose1 0.768 0.067 0 0.636 0.899

Citramalic acid 0.788 0.065 0 0.661 0.915

5-Dihydrocortisol 3 0.674 0.071 0.023 0.534 0.813

4-Hydroxyphenylaceticacid 0.73 0.069 0.003 0.594 0.866

Thymidine3 0.313 0.071 0.015 0.174 0.452

O-Phosphoserine1 0.315 0.07 0.016 0.178 0.453

Combine model 0.876 0.053 0 0.773 0.98

a Under the nonparametric assumption
bNull hypothesis: true area = 0.5
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periodontal microbial community at the same time, these find-
ings raise the possibility to help survey disease activity and
modulate complicated microbial interactions in the formation
of a periodontopathic community. In addition, clinical data of
periodontitis can be reflected in the shift of the oral microbial
community and the change in metabolites in GCF. This result
suggested that the microbiota and metabolites might be tools
for predicting periodontal inflammatory status. In the current
study, a ROC curve was also used to evaluate how these dif-
ferentially abundant metabolites indicate or further predict
periodontitis. A combination of citramalic acid and N-
carbamylglutamate yielded satisfactory accuracy (AUC =
0.876) for predictive diagnosis of periodontitis in our study,
whereas another study found totally different metabolites for
diagnosis [56]. This inconsistency among different studies
may be caused by different study samples and the inherent
biological diversity between individuals. These indicators re-
quire further investigation to prove clinical significance.

Association of oral microbiota of periodontitis
and global health

Numerous reports have demonstrated the involvement of oral
microbiota in the pathogenesis of systemic diseases, such as
cardiovascular diseases [57], rheumatoid arthritis [58], and
intestinal inflammation [59]. In an immunocompromised pop-
ulation, the entry of oral opportunistic or pathogenic bacteria
into the blood circulation through the oral mucosal barrier
could lead to abnormal local or systemic immune and meta-
bolic responses and nutrient digestion [60–62]. Conversely,
systemic multifactorial diseases could result in direct modifi-
cation of the oral microbiota.

On the side of immunity, the immune defense system, in-
cluding innate lymphoid cells and pattern recognition recep-
tors, as well as tolerance, is highly complex, and it is important
to preserve the proper microbiological and functional homeo-
stasis of the oral cavity. Inappropriate host response or insuf-
ficient immune response will either cause tissue damage or
permit microbial overgrowth and invasion. When oral patho-
genic bacteria overgrow due to poor oral hygiene, the re-
sponses of both innate and adaptive immunity increase, which
can also give rise to more extensive collateral tissue damage.
Periodontal diseases could appear as a result [2]. In turn, oral
diseases are linked to many immune-related diseases (e.g.,
systemic sclerosis, Sjögren’s syndrome, and rheumatoid ar-
thritis) [63, 64] via the microbiome of the oral cavity.

Systemic metabolic health is also closely related to peri-
odontal disease. Dental and oral bacteria are frequently early
indicators and risk factors for obesity [65]. Goodson et al. [66]
suggested that the oral bacteria may increase metabolic effi-
ciency and energy metabolism by facilitating insulin resis-
tance, affecting weight increase and the development of obe-
sity. Rostyslav et al. [67] found that (1) monosodium

glutamate–induced obesity triggers periodontal tissue alter-
ations; and (2) nanoceria contributes to the corrections of path-
ological changes in periodontal tissues via balancing protein-
inhibitory capacity and reducing the depolymerization of
fucosylated proteins and proteoglycans and antioxidative ac-
tivity in glutamate-induced obese rats.

The mouth, as the sole natural entrance for food, controls
the intake and initial interaction of what could become the gut
microbiota. Accordingly, the oral microbiome may have an
altered structure, composition, and function because of gut
microbiota changes due to host-microbiome interactions.
Some studies have described variation in the oral microbial
diversity and composition in human patients with inflamma-
tory bowel diseases [68–70]. Xun et al. [71] explored stratifi-
cation of patients and biomarkers indicative of inflammatory
bowel diseases depending on oral microbial profiles.
Furthermore, it is well known that probiotics and prebiotics
can manipulate the microbiota and/or their metabolic imprint
in the gut and then function at distant sites, including the skin,
airways, heart, brain, and metabolism [72]. Inspired by this
systemic behavior, the proper use of probiotics in the oral
cavity or gut could be a promising application in periodontitis
treatment.

Probiotics’ potential use in periodontitis

Factors such as diet, drug consumption, environment, host
genetics, mode of delivery, or phenotype can influence the
high microbial diversity [73]. Our results showed that micro-
biota and metabolites in the oral cavity change when people
have periodontitis. In this respect, efforts can be made to ex-
plore the use of probiotics to modulate the composition of
plaque as monotherapy for the prevention of chronic peri-
odontitis and gingivitis or as adjunctive therapy with scaling
and root planing in treatment for chronic periodontitis. Studies
showed that probiotics provide beneficial effects for periodon-
tal parameters, including plaque index, gingival index, bleed-
ing on probing, clinical attachment level, gingival crevicular
fluid volume, and host response factors [74]. As two known
classes of probiotics, lactic acid bacteria (LAB) and
bifidobacteria are most frequently and successfully used in
treatment of diseases related to the gut microbiota and oropha-
ryngeal infections [75]. However, their role in modulating
periodontal diseases is not fully understood. Rostyslav et al.
[76] studied specific properties of six LAB strains and two
bifidobacteria strains with respect to their resistance to antibi-
otics, resistance to biological agents (gastric juice, bile, and
pancreatic enzymes), and adhesive properties, providing us
with a comprehensive approach for assessing properties and
selecting the “best” probiotic strains for the treatment of
periodontitis.
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PPPM concept in the current study

GCP samples are noninvasively accessible and easily proc-
essed. In addition to pathophysiological roles, oral microflora
and metabolites in oral samples are valuable biomarkers for
patient stratification, disease monitoring, predictive diagnos-
tics, and targeted prevention [77, 78]. Predictive services
might then be provided considering several potential relative
diagnoses: directly for periodontal diseases and indirectly for
disorders of the digestive tract, obesity, immunity diseases,
and cancer.

Moreover, multi-omics might be a best choice for advanced
diagnostic tools specifically utilizing liquid biopsies since
these approaches are well justified by several recent studies
[79]. 16s RNA gene sequencing and GC-MS tools assist us in
determining how many bacteria species are present in a spec-
imen, the quantity and ratio of each species, and the imputed
functions and metabolic “fingerprint” of the gene expressions
detected, suggesting that any patient’s individual microbiome
and metabolic information can be identified [2].

For individuals, through the multi-omics analysis of GCF,
we can determine unique oral bacteria species and metabolite
information and then analyze the related molecular pathway in
global terms, which can predict whether there is any disorder
in periodontal tissue or system health. Specifically in terms of
the results of this study, if the most direct biomarkers
citramalic acid and N-carbamylglutamate in GCF both in-
crease greatly compared with the previous ratio or are at a
high level, the individual could be at risk of periodontitis or
already have periodontitis or other related latent diseases. This
forecasting then triggers targeted prevention early in life, such
as increased attention to oral hygiene, mastering the correct
method of brushing teeth, maintaining a healthy diet, adopting
a healthier life style, or receiving more regular physical exam-
inations [80]. If any disorder in oral microbiota appears or a
disease is diagnosed, it may also help people develop a per-
sonalized treatment strategy such as the selection of proper
individualized probiotic species. In populations, understand-
ing microbiome activity and characterizing commonly used
biomarkers for periodontitis are essential to developing future
strategies of public healthcare and potentially providing infor-
mation for probiotics development.

Strengths and limitations

Biological omics enable the research and treatment of diseases
to shift from a single-parameter model to a multiparameter
model [81]. At the same time, the PPPM strategy in oral health
requires multi-omics integration analysis to systematically ex-
plore the molecular mechanisms and detect effective bio-
markers [82].

However, the limitation of this study relates to sample collec-
tion from a single region at only one time. A further cohort

investigation with samples from patients with different extents
of periodontal destruction from a wide geographical area may be
required for a better understanding of the dynamic shifts in the
microbiome composition and function and the changes in me-
tabolism during disease development.

Conclusions

In conclusion, dysbiosis in the polymicrobial community
structure and changes in metabolism could be mechanisms
underlying periodontitis. Our findings provide scientific evi-
dence for an in-depth understanding of the relationship be-
tween the oral microbiota and metabolism and identify effec-
tive biomarkers in the GCF of periodontitis, pointing to a
potentially effective strategy for the diagnosis, prognosis,
and management of periodontal therapy.
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