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Abstract Alzheimer’s disease (AD) presents one of the
leading healthcare challenges of the 21st century, with a
projected worldwide prevalence of >107 million cases by
2025. While biomarkers have been identified, which may
correlate with disease progression or subtype for the purpose of
disease monitoring or differential diagnosis, a biomarker for
reliable prediction of late onset disease risk has not been
available until now. This deficiency in reliable predictive
biomarkers, coupled with the devastating nature of the disease,
places AD at a high priority for focus by predictive, preventive
and personalized medicine. Recent data, discovered using
phylogenetic analysis, suggest that a variable length poly-T
sequence polymorphism in the TOMM40 gene, adjacent to the
APOE gene, is predictive of risk of AD age-of-onset when
coupled with a subject’s current age. This finding offers hope
for reliable assignment of disease risk within a 5-7 year
window, and is expected to guide enrichment of clinical trials
in order to speed development of preventative medicines.
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“An ounce of prevention is worth a pound of cure”

The ultimate goal of modern healthcare is to reduce the
burden and costs associated with disease risk, monitoring
and treatment by utilizing prevention programs in a cost-
effective manner. While it is considered common sense that
“an ounce of prevention is worth a pound of cure”, there
are few examples where active intervention strategies have
been successfully and systematically developed, with the
obvious exception of vaccines. The paucity of prevention
therapies is not surprising, given the high benefit-risk ratio
required when administering active drugs to (currently)
healthy individuals. It is therefore critical to develop
diagnostics that pinpoint the indicated subpopulation for
which the benefit-risk profile is maximized and the
intervention is clearly justified. Such diagnostics need to
demonstrate clinical utility, as well as rigorous technical
performance characteristics. The decisive test of such a
diagnostic hinges on its proven predictive value character-
istics, which would then be adopted into routine use by
practicing physicians and healthcare insurers. Therefore,
this review first evaluates the characteristics of clinically
useful diagnostics in general, and then focuses on genetic
markers and diagnostics for Alzheimer’s disease (AD).
Finally, we describe a novel genetic marker for AD and
discuss its application in the design of a prevention/delay of
disease onset clinical trial that may directly impact medical
practice.

Properties of clinically useful biomarkers

What transforms a biomarker into a clinically useful diagnostic?
Evidence-based medicine guidelines outline a sequence of
steps that establish the Analytical validity, Clinical validity,

I. Grossman :D. K. Burns :A. D. Roses
Cabernet Pharmaceuticals,
Durham, NC, USA

M. W. Lutz :D. G. Crenshaw :A. M. Saunders :D. K. Burns :
A. D. Roses (*)
Duke University,
Box 90344, Durham, NC 27708-0120, USA
e-mail: allen.roses@duke.edu

M. W. Lutz :D. G. Crenshaw :A. M. Saunders :D. K. Burns :
A. D. Roses
Deane Drug Discovery Institute,
Durham, NC, USA

EPMA Journal (2010) 1:293–303
DOI 10.1007/s13167-010-0024-3



Clinical utility and Ethical, legal and social aspects (ACCE)
of diagnostic and prognostic tests of a biological or genomic
nature [1, 2]. The evidence gathered throughout the ACCE
process should be conducted according to appropriately
documented good operational practices with respect to sample
collection, storage and handling. The initial and most
standardized step requires demonstration of high sensitivity,
specificity and reproducibility of the test’s results, in order to
ensure its technical accuracy in capturing the targeted genetic
polymorphisms. Once the analytical performance of the test
is validated in vitro, the biomarker is tested for clinical
validity versus endo-phenotypes or quantitative clinical end-
points. At this stage, the performance of the diagnostic is
tested for sensitivity, specificity and reproducibility in
accurately measuring the clinically relevant end-points.
Clinical validity can be studied retrospectively, using previ-
ously collected samples, as long as the appropriate samples
were collected from the vast majority of cohort participants
with the appropriate informed consent.

The third component of the guidelines focuses on clinical
utility and is the ultimate test of impact of the diagnostic on
health outcomes. While during the course of clinical validity
testing the value of the diagnostic is projected based on
technical performance and market estimates, the “clinical
utility” step is designed to test these hypotheses in the context
of healthcare management. This has become a pivotal
component of clinical decision making, whether as part of a
drug development pipeline or in the context of medical
practice. Clinical utility studies are designed to optimize
testing conditions and quantify the predictive value of the
novel diagnostic in the context of controlled clinical settings.
Once validated, further studies may be conducted to assess
cost-effectiveness and adoption characteristics in real-world
clinical settings and may employ comparative effectiveness
models in order to weigh the novel, biomarker-integrated
treatment algorithms against standard-of-care [3]. Other aspects
that need to be considered in addition to demonstrating validity
and utility of a biomarker include Ethical, Legal and Social
Issues (ELSI) that arise when introducing the diagnostic to the
market. Eventually, the success of a diagnostic relies on the
successful implementation of each of the above ACCE model
components [2], as reflected via endorsement by regulators,
incorporation into practice guidelines, influence on physician
behaviors and adoption into reimbursement policies [4].

A direct method for demonstrating the most significant
component of the ACCE framework – the clinical utility of
a biomarker - utilizes a prospective study design in parallel
to a drug development trial. To this end, the FDA issued a
concept paper that proposes a framework for the co-
development of drugs and diagnostics via an integrated
combination regulatory path [5]. A pioneering example for
drug/diagnostic (Rx/Dx) co-development in the AD thera-
peutic area is outlined in the following sections.

The challenge of Alzheimer’s disease management

AD has become an area of considerable unmet medical
need in recent decades. Currently, over 5 million Americans,
or more than 10% of citizens 71 years of age or older, suffer
from AD and estimates are that 1 new case of AD develops
every 7 seconds, with a higher rate of increase in developing
countries [6, 7]. Unless effective therapies for preventing or
delaying AD onset are developed, it is projected that >16
million Americans and >107 million people worldwide will
suffer from AD by 2050. Delaying AD onset by as few as
one or two years is speculated to decrease the worldwide
disease burden in 2050 by 12 million or 23 million cases,
respectively [8]. In addition to the devastating losses of
quality of life and productivity experienced by AD patients,
their care-givers spend greater than $94 billion annually
(last updated in 2004) in the US on AD-related healthcare
costs [9]. These numbers are expected to increase substan-
tially with the anticipated growth in both population and
life expectancy, particularly as the “baby-boom” generation
ages. The increased burden, however, cannot be offset by
effective medical management using currently available
AD healthcare strategies. There are currently no long-
term, effective treatments for AD, and no life-style changes
have been proven to substantially delay or prevent its
onset [10].

Why does AD present such a formidable challenge to
healthcare management and novel drug discovery? AD is a
neurological disorder that presents as decline in domains of
cognition, memory and activities of daily living. The
typical pattern of memory loss involves impaired recall of
learned or previously known information, reflecting medial
temporal lobe (and possibly basal forebrain) dysfunction.
While overlapping, this pattern is distinct from normal aging,
where learning efficiency, working memory and psychomotor
speed (activities related to frontal lobe function) are reduced
[11]. The two histopathological hallmarks of AD brains are:
(1) intracellular neurofibrillary tangles (NFT) resultant from
the aggregation of hyperphosphorylated tau proteins; and (2)
extracellular senile plaques, composed primarily of amyloid
beta (Aβ) protein. Unfortunately, clinical characterization of
the disease, through impaired behavioral autonomy or
learning and cognition deficits, is complex, subjective and
includes a range of possible differential diagnoses, deeming
definitive AD diagnosis contingent on autopsy. The gradual
progression of the disease has allowed researchers to identify
an intermediate phenotype entitled mild cognitive impairment
(MCI) that may allow for early diagnosis and development of
predictive and preventive models targeted at arresting or
delaying the progression to AD stages. By focusing research
efforts on the phenotypic definition of MCI, researchers may
eventually be able to prevent or delay conversion into AD in
this at-risk population. However, it is important to note that
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the annual rate of AD diagnosis among MCI subjects is only
10-15%. Moreover, individuals with MCI tend to develop
AD, but they may also develop other forms of non-AD types
of dementia, such as frontotemporal dementia (FTD). MCI
patients can also maintain a steady level of impairment
without any progression in severity [12]. Overall, the late
onset of AD and its intermediate phenotype, the heteroge-
neous presentation patterns and the sporadic manifestation
make research, diagnosis and prognosis challenging.

Genetic markers of Alzheimer Disease

Genetic diagnostics measure DNA polymorphisms that are
associated with biological or clinical traits. Genetic markers
originating from germ line polymorphisms (as opposed to
somatic mutations) can be detected in samples of blood,
saliva or differentiated non-cancerous tissues at any time-
point because they are static in nature. Such measurements
can serve as predictive diagnostics early on in life, and when
combined with other dynamic markers (such as serum protein
levels or even age) may provide reliable and accurate
composite scores for probability of disease risk, progression
or treatment response within a short window of time. Such
composite predictors are expected to contribute substantially
to the development of medical management guidelines [13].

AD has a strong genetic component, with up to 80%
heritability as estimated from twin-concordance studies
[14]. The disease is roughly categorized into two main
subtypes: 1) autosomal dominant, early onset AD, defined
by disease presentation before the age of 61, is accounted
for by familial AD (FAD) and 2) “sporadic” (non-familial)
AD, most commonly termed late onset AD (LOAD), where
symptomatic presentation generally starts after the age of 55.
For research purposes LOAD is usually defined as >60 years
of age to avoid overlap with the familial early-onset forms.
Most of the successes registered for AD genetic research
have been reported for the Mendelian forms of the disease,
the autosomal dominant FAD. Rare mutations have been
identified in three different (yet biologically associated)
genes: amyloid precursor protein (APP) [15], presenilin-1
(PSEN1) [16], and presenilin-2 (PSEN2) [17, 18]. However,
FAD is rare and accounts for approximately 10% of early-
onset AD and less than 1% of all AD cases [19]. The most
common form of AD is LOAD [20], and the only firmly
established genetic risk factor for LOAD is the E4 allele of
the APOE gene [21], as detailed below. Collectively, genetic
variations in APP, PSEN1, PSEN2 and APOE are estimated
to account for only 25-50% of the overall genetic risk for AD
[22, 23]. It is therefore clear that other susceptibility genes
remain undiscovered, including the possibility of finding a
single genetic variation with a higher positive predictive
value.

APOE and Alzheimer’s disease

The apolipoprotein E (APOE) gene encodes a major
apolipoprotein that is synthesized chiefly in the liver, but
also in a range of other organs, including the brain [24]. The
protein product, apoE, acts primarily as a transporter of
cholesterol and lipids among various cells of the body, but it
has also been proposed to serve other important functions in
both physiology and pathology [24]. The discovery of
APOE’s involvement in LOAD and the identification of the
E4 at-risk allele were first reported in 1993 [21, 25]. It is
important to note, that the discovery of the association
between sequence variations in the APOE gene and clinically
meaningful variability in AD risk pinpointed the pivotal role
that apoE plays in the pathogenesis of AD, which had not
been fully explored beforehand. In fact, apart from age,
APOE4 status is the most validated AD risk factor. Con-
versely, the rare E2 allele has been associated with protection
against LOAD compared with both the E4 allele and the
more common E3 allele [21]. Overall, it has been reported
that heterozygotes for the E4 allele are three to four times as
likely to develop AD than non-carriers [26], and the number
of copies (one or two alleles) of E4 carried is proportional to
level of risk [27, 28]. As seen in the initial reported finding
depicted in Fig. 1 [28], the Kaplan-Meier survival graph
shows a characteristic curve for each one of the genotype
carrier groups: the number of E4 copies carried is signifi-
cantly associated with disease manifestation age, with E4/E4
carriers showing the earliest disease onset. This association
of APOE4 with the lower age of disease onset, in addition to
its association with overall disease risk, has also been
repeatedly confirmed by independent groups [21, 29–35].

Functional research heralded by the 1993 discovery has
identified multiple pathways in which apoE is involved in
LOAD pathoetiology [36]. Indeed, abnormality in these
processes has been shown to associate with the sequence,
structure and biochemical distinctions between E4 and E3
or E2 alleles. In fact, apoE4 is the only molecule that has
to-date been associated with the entire spectrum of biochem-
ical disturbances characteristic of AD: Aβ deposition, tangle
formation, oxidative stress, lipid homeostasis deregulation,
synaptic plasticity loss and cholinergic dysfunction [36, 37].
Given the fact that the APOE4 allele frequency is quite high
(∼0.15 in Caucasians [38]), asymptomatic carriers have long
been studied as a convenient and informative AD research
model. In this way, AD-like structural and physiological
changes have been discovered and shown to exist years
before the symptomatic onset of memory loss and dementia
[39]. This has been a key component in the discovery and
development of disease biomarkers, including neuroimaging.
However, the usefulness of these biomarkers andAPOE testing
in clinical practice does not meet clinical utility criteria due to
insufficient sensitivity, specificity and cost-effectiveness [40].
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Due to this fact and to the lack of preventative or curative
measures many believe that prediction in healthy individuals
is unethical and the consensus recommendation discourages
genetic testing outside research settings.

Genome-wide association studies of Alzheimer’s disease

Genome-wide association studies (GWAS) use screening
technology to test a pre-defined set of common single
nucleotide polymorphisms (SNPs) and large copy number
variations (CNVs) across the entire genome against various
phenotypic traits in a statistical association model. Overall,
GWAS conducted in large cohorts have proven successful
in suggesting a number of genetic variants of moderate and
small effect sizes for complex diseases, including neurological
disorders such as schizophrenia, autism spectrum disorders
and AD [41, 42]. These reports have been most useful in
confirming discoveries made in the last few decades based
on linkage and candidate gene studies and have suggested
novel regions of interest for further in-depth research, as has
been successfully demonstrated in the field of diabetes
susceptibility research, particularly with respect to TCF7L2
[43, 44]. However, several limitations hinder the translation
of GWAS findings from bench to bedside: (1) these
technologies screen binary SNPs that serve also as proxies
for some large CNVs, but are less suitable for the study of
other smaller structural variation (e.g. polymononucleotide
tracts, trinucleotide repeats, small insertion/deletions, etc);
(2) markers selected for inclusion in these off-the-shelf high-

throughput chips are based on co-occurrence probability (i.e.
Linkage Disequilibrium, LD) and common allele frequency
(5% or higher for the most part). As a result, polymorphisms
with low frequency and high LD to a common SNP are
excluded. However, it is becoming evident that often these
less common polymorphisms are the major, if not sole, source
of association signal [45] (see further discussion below); (3)
coverage of regions is generally even across the genome, but
specific candidate genes of interest are often insufficiently
represented; (4) rare, yet functionally validated markers in
candidate genes of interest are often not included; (5)
statistical approaches focus mainly on single markers,
yielding results that are less robust due to multiple testing.
Moreover, the effect sizes generally reported for common
disease GWAS are marginal and their projected clinical
utility has been particularly disappointing [46]. In summary,
GWAS serve to highlight blocks of genetic regions of
interest for association research. However, the pinpointing of
causal variants, gene-gene and gene-environment interaction
effects warrants increased resolution of the genetic variation
within a candidate gene region, as well as more powerful
and biologically plausible approaches to their analysis [47].

Since the association of APOE with AD was discovered,
nearly 1,000 papers have been published reporting and
refuting associations of AD with hundreds of genetic
variants in different genes [42]. Recently, a meta-analysis
study suggested that no more than a dozen reproducible
associations between genomic regions and AD risk have
actually been found [42]. Furthermore, about a dozen
GWAS of sporadic LOAD have been published to date.
The papers confirm that markers in the vicinity of APOE
represent the major susceptibility genomic region for the
disease. As illustrated in Table 1, no other AD association
in the human genome remotely approaches the same level
of statistical significance or effect size as the genomic
region containing APOE [29, 30, 33, 48–56]. It should be
emphasized that the two SNP determinants for APOE
genotype are not included on the commercial platforms
commonly used for GWAS, and the major SNPs that have
extraordinarily statistical significance in the AD GWAS
publications are located in the TOMM40 gene region and
not in APOE. In other words, although findings are usually
referred to in the literature as associated with the AOPE LD
region, the measurements commonly defining this region
are rather TOMM40 polymorphisms.

TOMM40 variable length polymorphism: increasing
diagnostic prediction power and enabling a disease
prevention trial

The hypothesis that abnormal energy metabolism is a funda-
mental feature of AD pathology was proposed in the 90’s [28,
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Fig. 1 Alzheimer’s disease age of onset curves by APOE genotype, based
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LOAD, sporadic AD and control subjects as published in 1994 [28]. The
age-of-onset is scored as a function of the individual’s APOE genotype.
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57–59]. Indeed, cerebral metabolic rate abnormalities precede
any evidence for functional impairment by neuropsychological
testing or for brain atrophy as seen in neuroimaging by several
decades [60]. Evidence is amassing to support the hypothesis
that defective mitochondrial metabolism and function is the
instigating event of pathological changes that result in AD
[61]. For instance, mitochondrial dysfunction in AD brains
correlates with accumulation of Aβ [62–64] and APP [65],
as well as presence of apoE4 fragments, in mitochondria,
causing loss of dynamic functions resulting in decreased
synaptodendritic regeneration and subsequent neuronal cell
death [65, 66]. Deposition of these proteins is also associated
with decreased glucose and oxygen utilization [67, 68].
Furthermore, it has been shown that in the mitochondrion
APP forms stable complexes with the translocase of the outer
mitochondrial membrane 40 (TOM40) import channel
[69], and that the transport of Aβ into the mitochondrion is
mediated by the same TOM40 pore, further promoting
neurotoxicity.

The significant genetic finding discussed in detail by
Roses et al. [70] and outlined below is that a variable-length,
deoxythymidine homopolymer (poly-T) in the gene encoding
TOM40 (TOMM40) is associated with age-of-onset of AD,
the major endo-phenotype of the disease. It is critical to
note that the TOMM40 gene is adjacent to, and in high LD
with, APOE, and the evolutionary relationship between the
two genes inherited together on the same strand dictates
that some specific TOMM40 variants are uniquely associated
with each of the APOE alleles. APOE4 alleles are linked to
long poly-T variants of the rs10524523 locus approximately
98% of the time, while phylogenetic analyses clearly demon-
strate a separate genetic origin of APOE3 strands, linked to
either very long or short poly-T variants. Thus, a poly-T
variant in the TOMM40 gene sub-divides APOE3 variants into
high risk (very long) alleles and low risk (short) alleles,
challenging the commonly accepted hypothesis that APOE3 is
AD risk-neutral. This finding explains the current heteroge-
neity in AD age-of-onset registered within APOE3 carriers
(Fig. 1), and offers the potential to predict the 5-7 year risk
of disease onset in individuals carrying the APOE3/3,
APOE3/4 and APOE4/4 genotypes, making up ∼85% of all

AD cases. Additionally, the functional relevance of genetic
polymorphisms in the TOMM40 gene region has been
discussed recently: First, a combined set of three SNPs
within the TOMM40 gene, one APOE promoter SNP and
two SNPs within distal APOE enhancer elements was
recently reported to predict CSFAPOE levels [71]. Second,
overlapping or linked SNPs spanning the entire APOE and
TOMM40 region were reported to be associated with
sporadic AD case-control analyses in all published GWAS
with extraordinarily significant p-values, as clearly demon-
strated in Table 1 [29, 49–54]. The three SNPs with the
highest significance were all from TOMM40.

The TOMM40 finding was enabled by a research approach
that combined both intensive high resolution Sanger sequenc-
ing and the employment of phylogenetic statistical methodol-
ogy. This combined strategy is likely to be successful in the
study of other traits for which heritability has been shown to be
high but the complex genetic architecture leading to, or
modifying, the disease phenotypes hinders the effectiveness
of conventional statistical and technological approaches.
Similar approaches to the one employed herein are routinely
used to study the evolution of simpler genomes, such as those
of viruses and bacteria, and are particularly useful in annual
vaccine production against flu viruses. However, it had not
been commonly used as a method for complex disease
susceptibility investigations, due to the size and complexity
of the human genome. Currently the method is only
practical if there are other indications that a particular
genomic locus or region is involved in the phenotype of
interest. In order to maximize the power of the method and
our ability to discover the “missing heritability” residual to the
APOE4 carriage effect, the entire region spanning the APOE-
TOMM40 genes was interrogated by deep Sanger sequenc-
ing. In other words, sequencing was performed in long
DNA stretches that permitted incontrovertible assembly of
co-occurrence combinations (also termed haplotypes) with
specific APOE alleles. Deep sequencing also reliably detected
small repeat elements such as poly-T variants. The resultant
polymorphic map of common and rare, binary and multi-
variate polymorphisms was then analyzed using phylogenetic
methods.

About a dozen GWAS of sporadic LOAD have been published to date. The papers
confirm that markers in the vicinity of APOE represent the major susceptibility genomic
region for the disease. As illustrated in Table 1, no other AD association in the human
genome remotely approaches the same level of statistical significance or effect size as the
genomic region containing APOE. It should be emphasized that the two SNP determinants
for APOE genotype are not included on the commercial platforms commonly used for
GWAS, and the major SNPs that have extraordinarily statistical significance are located
in the TOMM40 gene region and not in APOE. In other words, although findings are
usually referred to in the literature as associated with the AOPE LD region, the
measurements commonly defining this region are rather TOMM40 polymorphisms.
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Phylogenetic (or genealogical) methods define the rare
and common genetic variants on each strand of DNA in a
region of interest, often selected based on its LD
properties. This strategy significantly decreases the num-
ber of tests for an association study by clustering
haplotypes according to sequence similarity. This similar-
ity is assigned based on inference of the ancestral relation-
ships between the various variants. Once variants are
assigned into initial groups (referred to as clades), an
iterative procedure of inferring subgroupings is employed
until all variants are interconnected into a tree-like spatial
structure. This overall process of tracking back the
sequence of events, from present genetic make-up to
ancestral configuration, and the phasing of polymorphisms
into a branching tree structure is termed “coalescence”.
The assumption is that, due to patterns of inheritance,
haplotypes that contain ‘causal’ variants will be more
related to each other than to haplotypes that do not contain
the causal variant(s) and will therefore cluster into a
distinct clade(s). These risk haplotypes will therefore be
embedded into the tree resultant from the analysis [72]. In
this fashion, it is possible to shrink the overall set of
polymorphisms present in a genomic region (often
amounting to dozens or hundreds) into those that
distinguish between “disease associated” clades and
“control associated” clades. Thus, it is easily possible to
reduce the complexity, multiplicity and computational
burdens typical of conventional association methodology.

The discovery of the LOAD poly-T variant (rs10524523)
was based on a series of experiments conducted sequentially
in Caucasian cohorts, so as to discover genetic variants of
interest in one cohort and confirm the results in independent
datasets. Full details of the discovery and its confirmation,
and the study designs that led to the identification of the
specific genetic variants, were published elsewhere [70].
Overall, these data suggested that a significant genetic
component of AD risk was due to the effect of a co-
dominant variable repeat variant in TOMM40, acting cis to
APOE3 and modifying the function of TOMM40 and/or
APOE genes or gene products in some way that impacts
onset of AD. Cis-regulatory elements and structural variants
have previously been implicated in human evolution,
variation, disease susceptibility and complex traits, so this
outcome is not without precedence [73, 74]. In fact, it
has been shown that even few mononucleotide repeat
differences can alter gene expression in yeast [75] and
humans [76], as well as modify RNA splicing in mice and
humans [77]. Perhaps the most famous example of a poly-
T tract and its involvement in human disease has been
reported for Cystic Fibrosis. The number of T residues
present in the intron8-exon9 junction in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene
affects splicing efficiency, resulting in reduced amounts

of functional transcripts, which in turn lead to variable
Cystic Fibrosis symptoms [78].

The discovery of the genetic variants responsible for the
majority of variability in age-of-onset of LOAD in itself
does not constitute any benefit to the clinical management
of the disease. In order to prove the clinical validity and
demonstrate clinical utility tailor-designed prospective
clinical trials need to be conducted. To this end, a clinical
trial is being designed, aiming to test the clinical diagnostic
validity of rs10524523 (with or without APOE subtyping)
as a predictor of AD risk and onset in a prospective fashion.
The underlying premise of the study is that the TOMM40
rs10524523 marker, when modeled together with APOE
subtype and age will translate into a more precise prediction
of risk at a particular age than predictions based on APOE
subtype alone. This should be reflected in improved
resolution of the various age-of-onset Kaplan-Meier curves
seen in Fig. 1. In particular, overlapping of the non-E4/E4
carrier curves in Fig. 1, may be due to low sample sizes of
the less common genotype-carrier groups. Alternatively, the
overlap may suggest the existence of additional important
factors, such as other genetic variants or environmental
factors that are involved in the development of the disease
but are unevenly distributed across non-E4/E4 carriers. It is
hypothesized, and remains to be proven in the planned
prospective validation study, that the separation between
Kaplan-Meier curves will improve based on the composite
TOMM40-APOE diagnostic, mainly due to redefinition of
the APOE3-carrier curves according to their haplotypic
relationship to rs10524523 (Fig. 2). The study design
testing this hypothesis presents a pioneering Dx/Rx co-
development approach: the predictive diagnostic validity
study is conducted simultaneously with a prevention (delay
of onset) clinical trial employing a therapeutic agent in
unaffected individuals (http://www.opalstudy.org). Further
details on the possible design of this combination trial as
discussed at the FDA’s Voluntary Exploratory Data
Submission discussions in October 2009 are detailed
elsewhere [79].

Diagnostic utility: genetic and other biomarkers

Plasma, CSF and neuroimaging biomarkers of AD have
been developed to serve as important surrogates of dynamic
changes characteristic of AD progression [59, 80, 81]. They
have been useful in research settings as means to measure
protein-aggregation in plaques, to indicate abnormalities in
metabolism of APP or to pinpoint neuronal degeneration.
Much progress in understanding pathological processes at
early and presymptomatic stages can be gained by
recording changes in hippocampal volume and glucose
metabolism. However, these dynamic biomarkers have
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limited application as stand-alone predictive markers in
healthy individuals prone to develop MCI and later AD,
and their utility in prevention studies is limited to
monitoring changes over time during the course of the
trial. These biomarkers are unlikely to serve as personalized
indicators for early clinical intervention to prevent (or
delay) incipient AD in and of themselves. In addition, the
costs and complexity of these tools prohibit their utility in
population-wide screening programs. By contrast, genetic
tests are suitable for use as high-throughput population-
wide screens, and have already been employed in a
multitude of prevention programs, including those screen-
ing for newborn [82] and prenatal genetic disorders [83],
various cancers [84, 85] and HIV drug-induced adverse-
events [86]. The ease of sample collection (blood, saliva or
buccal swabs), the stable nature of the information
captured, and the low assay costs make genetic tests
uniquely suitable for prediction and prevention applica-
tions. Moreover, genetic tests are widely used in routine
clinical practice, therefore logistics of sample collection and
testing, return of results and reimbursement infrastructure
are in place. In principal, combining various types of
biomarkers together with genetic indicators would likely
yield the optimized positive and negative predictive value
of AD disease onset, MCI conversion and related pheno-
types. However, as outlined above, cost effectiveness and

clinical utility analyses strongly favor diagnostics com-
prised of genetic and demographic data as the core test
components in the vast majority of cases.

In addition to genetic involvement in the susceptibility to
AD and its onset, a significant amount of work has been
devoted to deciphering the genetic makeup associated with
response to AD treatments. The study of genetic determi-
nants associated with drug response phenotypes, including
favorable versus insufficient response, variable pharmaco-
kinetics and drug-induced adverse events, is termed
pharmacogenetics [87, 88]. All currently approved treat-
ments for AD offer temporary relief of some of the
symptoms to merely some of the patients, but they do not
arrest or alter the disease course. These drugs include three
choline esterase inhibitors (ChEIs) for use in mild to
moderate AD management. A fourth medication, an NMDA
(N-methyl-D- aspartate) receptor antagonist, is approved for
moderate to severe AD. Much research has thus been
devoted in recent years to elucidating the role of acetylcho-
linesterase (AChE) and butyrylcholinesterase (BChE) in AD
pathology and ChEI treatment response [89, 90]. Studies in
the last decade, while overall inconclusive, report association
of ChEI efficacy and safety with genetic determinants
located primarily in APOE [91, 92] and the cytochrome
P450 metabolizing enzyme gene CYP2D6 [93, 94]. In
addition, several pharmaceutical development programs of
disease modifying agents have reported response and/or
safety stratification by APOE genotype, although results
await validation. These include Wyeth/Elan’s Aβ antibody,
bapineuzumab [95, 96]; GlaxoSmithKline’s rosiglitazone
[97]; and Accera’s Ketasyn/Axona [98].

Understanding of the allele frequencies of variants
highly associated with both AD risk/age-of-onset (such as
markers in APOE and TOMM40) and/or pharmacogenetics
(such as markers in APOE or CYP2D6) is especially
important in the context of global clinical trials. Interpre-
tation of the results of the trial without incorporation of
pharmacogenetic data and ethnicity-specific allele frequen-
cy distribution could mask a successful outcome for a
clinical trial, deeming it a failure [99].

Concluding remarks and outlook

The novel approach reviewed above utilizes phylogenetic
methodology to collapse markers into the key polymor-
phisms that associate with complex human diseases. The
key markers are then combined with epidemiological
variables (e.g. age) to predict clinical outcomes. Once the
analytical and clinical validity of the markers are con-
firmed, the diagnostics are tested prospectively for clinical
utility in tandem with a phase-III prevention drug develop-
ment program. In this fashion, trial results are designed to
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be directly translatable to healthcare guidance. Overall, this
LOAD example serves as a ground-breaking implementa-
tion of the FDA’s Rx/Dx co-development concept and
paves the way for innovative application in other therapeu-
tic areas, particularly complex disorders and drug response
phenotypes with high estimates of heritability.

In conclusion, AD presents a pioneering example where
research will lead to implementation of every aspect of
predictive, preventive and personalized medicine. The
majority of currently available biomarkers serve as tools
during the investigation of disease progression, as well as
during novel drug discovery and development. However,
for the purpose of prediction and prevention the significant
variables are the co-localized genetic markers in TOMM40
and APOE, which account for the vast majority of
variability in both risk and age-of-onset of the disease. In
this fashion, the commonly accepted assumption that
LOAD is underlined by a complex and elaborate set of
genetic markers can potentially be refuted. The complexity
can in fact be disentangled and reduced into a clear and
minimal set of diagnostic markers. Moreover, an expedient
path has been set forth to establish whether or not, and to
what extent, these markers have clinical utility in support-
ing prevention therapy, paving the road for rational health
management and development of insurance reimbursement
programs. It is expected that this and similar approaches
will lead to real personalization of care in AD, as well as
other medical conditions, for the benefit of patients, care
givers and health systems globally.
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