Skip to main content

Advertisement

Log in

Organic cultivation of sugarcane restores soil organic carbon and nitrogen

  • Published:
Organic Agriculture Aims and scope Submit manuscript

Abstract

Sugarcane cultivation in the Cerrado biome causes changes in soil attributes and affects the sustainability of agricultural production. The organic system may constitute an alternative to the conventional system. We have hypothesized that (i) the replacement of native Cerradão vegetation to sugarcane cultivation in a conventional system modifies the physical and chemical attributes of the soil and that (ii) organic cultivation may contribute to restoring physical and chemical properties that have been degraded by conventional cultivation. The study consisted of the following areas: (a) Cerradão, (b) pasture, (c) sugarcane in an organic system (organic sugarcane), (d) sugarcane in a conventional system with straw burning before harvest (burned sugarcane), and (e) sugarcane in a conventional system without burning the straw before harvest (raw sugarcane). The soil carbon and nitrogen contents and total soil density and porosity were evaluated. Six soil layers were sampled: 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, 40–50 cm, and 50–60 cm depth. The results have showed that the sugarcane cultivation altered all the evaluated attributes when compared to Cerradão soil. The most significant changes, with a reduction in carbon and nitrogen contents, total porosity and soil bulk density, occurred in conventional cropping systems. In the organic system, there were few changes in the evaluated attributes when compared to the Cerradão ecosystem. In this paper, we show that a reduction in the total nitrogen in the 0–10 cm layer was the only observed decline. Organic sugarcane proved to be a viable alternative for production in the Cerrado biome as it restores soil attributes similar to those of the Cerradão ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anaya CA, Huber-Sannwald E (2015) Long-term soil organic carbon and nitrogen dynamics after conversion of tropical forest to traditional sugarcane agriculture in East Mexico. Soil Tillage Res 147:20–29. https://doi.org/10.1016/j.still.2014.11.003

    Article  Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res 86:237–245. https://doi.org/10.1016/j.still.2005.02.023

    Article  Google Scholar 

  • Blake GR, Hartge KH (1986a) Bulk density. In: Klute A (ed) Methods of soil analysis: part 1, 2nd edn. ASA, Madison, pp 363–375

    Google Scholar 

  • Blake GR, Hartge KH (1986b) Particle density. In: Klute A (ed) Methods of soil analysis: part 1, 2nd edn. ASA, Madison, pp 377–382

    Google Scholar 

  • Borges LAB, Ramos MLG, Vivaldi LJ, Fernandes PM, Madari BE, Soares RAB, Fontoura PR (2014) Impact of sugarcane cultivation on the biological attributes of an oxisol in the Brazilian savannah. Biosci J 30:1459–1473 ISSN 1981-3163

    Google Scholar 

  • Borges LAB, Madari BE, Leandro WM, Fernandes PM, Silva EA, Silva MR, Silva MAS (2015) Nutritional state and productivity of organic sugarcane in Goias, Brazil. J Agron 14:6–14. https://doi.org/10.3923/ja.2015.6.14

    Article  Google Scholar 

  • Brady NC, Weil RR (2013) The nature and properties of soils. Pearson, Essex ISBN-13: 9780132279383

    Google Scholar 

  • Bullock LR III, Brosius M, Evanylo GK, Ristaino JB (2002) Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl Soil Ecol 19:147–160

    Article  Google Scholar 

  • Bustamante MM, Corbeels M, Scopel E, Roscoe R (2006) Soil carbon storage and sequestration potential in the cerrado region of Brazil. In: Lal R, Cerri CC, Bernoux M, Etchevers J (eds) Carbon sequestration in soils of Latin America, 1st edn. Haworth Press, Binghamton, pp 285–304

    Google Scholar 

  • Carvalho JLN, Avanzi JC, Silva MLN, de Mello CR, Cerri CEP (2010) Potencial de sequestro de carbono em diferentes biomas do Brasil. Rev Bras Ci Solo 34:277–289. https://doi.org/10.1590/S0100-06832010000200001

    Article  CAS  Google Scholar 

  • Cherubin MR, Karlen DL, Franco ALC, Tormena CA, Cerri CEP, Davies CA, Cerri CC (2016) Soil physical quality response to sugarcane expansion in Brazil. Geoderma 267:156–168. https://doi.org/10.1016/j.geoderma.2016.01.004

    Article  Google Scholar 

  • Cherubin MR, Franco ALC, Guimarães RML, Tormena CA, Cerri CEP, Karlen DL, Cerri CC (2017) Assessing soil structural quality under Brazilian sugarcane expansion areas using visual evaluation of soil structure (VESS). Soil Tillage Res 173:64–74. https://doi.org/10.1016/j.still.2016.05.004

    Article  Google Scholar 

  • Conab (2016) Acompanhamento da safra brasileira - Cana-de-açúcar - Safra 2016/2017 Terceiro Levantamento. Cia Nac Abast 3:1–74 ISSN: 2318-7921

    Google Scholar 

  • Dignac MF, Derrien D, Barré P, Barot S, Cécillon L, Chenu C, Chevallier T, Freschet GT, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, Maron PA, Nunan N, Roumet C, Basile-Doelsch I (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron Sustain Dev 37:14. https://doi.org/10.1007/s13593-017-0421-2

    Article  CAS  Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Lata M (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int J Recycl Org Waste Agric 5:185–194. https://doi.org/10.1007/s4009

    Article  Google Scholar 

  • Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538 pubs.aic.ca/doi/pdf/10.4141/cjss95-075

    Article  CAS  Google Scholar 

  • Franco AC, Cherubin MR, Pavinato PS, Cerri CEP, Six J, Davies CA, Cerri CC (2015) Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Sci Total Environ 515–516:30–38. https://doi.org/10.1016/j.scitotenv.2015.02.025

    Article  CAS  PubMed  Google Scholar 

  • Guareschi RF, Pereira MG, Perin A (2012) Deposição de resíduos vegetais, matéria orgânica leve, estoques de Carbono e Nitrogênio e Fósforo remanescente sob diferentes sistemas de manejo no cerrado Goiano. Rev Bras Ci Solo 36:909–920. https://doi.org/10.1590/S0100-06832012000300021

    Article  CAS  Google Scholar 

  • Kottek M, Jürgen G, Christoph B, Bruno R, Franz R (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Littel RC, Millicen GA, Stroup WW, Wolfinger RD (2006) SAS system for mixed models. ISBN: 1555447791, 9781555447793

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. https://doi.org/10.1126/science.1071148

    Article  PubMed  Google Scholar 

  • Mello FFC, Cerri CEP, Davies CA, Holbrook NM, Paustian K, Maia SMF, Galdos MV, Bernoux M, Cerri C (2014) Payback time for soil carbon and sugar-cane ethanol. Nat Clim Chang 4:605–609. https://doi.org/10.1038/NCLIMATE2239

    Article  CAS  Google Scholar 

  • Mondelaers K, Aertsens J, Huylenbroeck G (2009) A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br Food J 111:1098–1119. https://doi.org/10.1108/00070700910992925

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, MA TI, Johnston CT, Sumner ME (eds) Methods of soil analysis (part 3), vol 3. SSSA, Madison, pp 961–1010

    Google Scholar 

  • Rahmann G, Ardakani MR, Bàrberi P, Boehm H, Canali S, Chander M, David W, Dengel L, Erisman JW, Galvis-Martinez AC, Hamm U, Kahl J, Köpke U, Kühne S, Lee SB, Løes AK, Moos JH, Neuhof D, Nuutila JT, Olowe V, Oppermann R, Rembialkowska E, Riddle J, Rasmussen IA, Shade J, Sohn SM, Tadesse M, Tashi S, Thatcher A, Uddin N, Niemsdorff PF, Wibe A, Wivstad M, Wenliang W, Zanoli (2017) Organic agriculture 3.0 is innovation with research. Org Agric 7:169–197. https://doi.org/10.1007/s13165-016-0171-5

    Article  Google Scholar 

  • Ribeiro JF, Walter BMT (1998) Fitosionomias do bioma cerrad. In: Sano SM, Almeida SP (eds.) Cerrado: Ambiente e Flora. Brasília pp 89–166. ISBN: 9788570750082

  • Sanchez-Navarroa A, Blanco-Bernardeau MA, Salas-Sanjuan MC, Sanchez-Romero JA (2013) Evolutin of soil chemical variables in an organic celery crop during the conversion period to organic farming. Soil Form Factors Process from Temp Zo 12:17–31. https://doi.org/10.15551/fppzt.v12i1.478

  • Searle SR, Casella G, CE, M (2003) Variance components. Institute. SAS STAT. Proc mix. Wiley.1992. ISBN1–58025–494–2

  • Slesak RA, Palik BJ, D’Amato AW, Kurth VJ (2017) Changes in soil physical and chemical properties following organic matter removal and compaction: 20-year response of the aspen Lake-States long-term soil productivity installations. For Ecol Manag 392:68–77. https://doi.org/10.1016/j.foreco.2017.03.005

    Article  Google Scholar 

  • Tivet F, De Moraes Sá JC, Lal R, Borszowskei PR, Briedis C, Dos Santos JB, Farias A, Eurich G, Cruz H, Junior MN, Bouzinac S, Séguy L (2013) Soil organic carbon fraction losses upon continuous plow-based tillage and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Geoderma 209–210:214–225. https://doi.org/10.1016/j.geoderma.2013.06.008

    Article  CAS  Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF, Batista R, Schultz N, Leite JM, Sá JM, Barbosa KP, de Resende AS, Alves BJR, Boddey RM (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356:5–21. https://doi.org/10.1007/s11104-011-1016-3

    Article  CAS  Google Scholar 

  • Vomocil JA (1965) Porosity. In: Methods of soil analysis: physical and mineralogical properties, including statistics of measurement and sampling, pp 499–510. https://doi.org/10.2134/agronmonogr9.1.c21

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the Jalles Machado Company for financing the project and providing the logistical support for soil sampling in order to execute the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lucrecia Gerosa Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo Barbosa Borges, L., Ramos, M.L.G., Fernandes, P.M. et al. Organic cultivation of sugarcane restores soil organic carbon and nitrogen. Org. Agr. 9, 435–444 (2019). https://doi.org/10.1007/s13165-018-0234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13165-018-0234-x

Keywords

Navigation