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Abstract
Tenenbaum and Griffiths (Behavioral and Brain Sciences 24(4):629–640, 2001)
have proposed that their Bayesian model of generalisation unifies Shepard’s
(Science 237(4820): 1317–1323, 1987) and Tversky’s (Psychological Review 84(4):
327–352, 1977) similarity-based explanations of two distinct patterns of generalisa-
tion behaviours by reconciling them under a single coherent task analysis. I argue that
this proposal needs refinement: instead of unifying the heterogeneous notion of psy-
chological similarity, the Bayesian approach unifies generalisation by rendering the
distinct patterns of behaviours informationally relevant. I suggest that generalisation
as a Bayesian inference should be seen as a complement to, instead of a replacement
of, similarity-based explanations. Furthermore, I show that the unificatory powers of
the Bayesian model of generalisation can contribute to the selection of one of these
models of psychological similarity.

Keywords Generalisation · Similarity · Bayesian inference · Unification ·
Mutual informational relevance

1 Introduction

The problem of generalisation is that of explaining how humans and other animals
are capable to generalise their behaviour from old to novel instances. For example,
what enables us to treat apples and pears as fruit, but not mushrooms? One answer
to this question is, roughly, that the apple and the pear are more similar to each other
than the mushroom is to either of them, and so it makes sense to treat the apple and
the pear, but not the mushroom, as fruit.

Some psychologists (e.g., Rosch and Mervis 1975; Smith et al. 1984; Sloman and
Rips 1998; Hahn and Ramscar 2001) and philosophers (e.g., Shea 2014; Gärdenfors
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2000; Decock et al. 2016; O’Brien and Opie 2004) rely on well-defined notions
of similarity to answer a broad range of questions about such generalisation prob-
lems. However, at least some of these notions are classically opposing. One popular
example is the dispute between Shepard’s (1962, 1987) geometric-distance model
and Tversky’s (1977) feature-matching model of similarity. As far as such similarity-
based explanations are theoretically disconnected, it is currently unclear to what
extent they can render generalisation as a unified psychological phenomenon.

Other psychologists such as Tenenbaum and Griffiths (2001) (henceforth T&G)
argue that principles of Bayesian inference provide a more basic explanation of both
similarity and generalisation (see also Kemp et al. 2005; Lake et al. 2015; Ullman
and Tenenbaum 2020; Austerweil et al. 2019; Tenenbaum et al. 2011; Kemp et al.
2012). The idea is that we are more likely to treat the apple and the pear, as opposed
to the mushroom, as fruit because they are more likely to originate from a common
‘fruit’ concept. The Bayesian approach has generated novel hypotheses and experi-
mental investigations in domains such as word-learning and language development
(Xu and Tenenbaum 2007), communication (Frank et al. 2009) and causal learning
(Gopnik et al. 2004; Tenenbaum et al. 2006), to name but a few. The rising popular-
ity of Bayesian models in computational psychology and cognitive science illustrates
a tendency to substitute the earlier notion of similarity with the notion of Bayesian
inference of concepts in such explanations. For instance, T&G propose that the great-
est virtue of the Bayesian approach is that it unifies the heterogeneous approaches
to similarity and, thereby, best explains generalisation as a psychological capacity
underlying similarity judgments, but they do not defend this specific proposal in a
rigorous way.

The problem that this debate poses is that both Bayesian inference and similar-
ity remain key concepts in psychological explanations of generalisation, but it is
unclear how they fit together. How do Bayesian analyses stand to similarity-based
explanations of generalisation? Do Bayesian analyses supersede similarity-based
explanations of generalisation? In what sense do these approaches align in their
explanatory targets (i.e., inferences structured by similarity representations or prob-
abilistic inferences of concepts)? In how far does the Bayesian approach provide
an ‘alternative’ to similarity-based explanations of generalisation? To answer these
questions, conceptual clarifications are needed and a systematic investigation of the
basic assumptions associated with these frameworks.

This paper aims to contribute to a better understanding of the relationship between
similarity-based and Bayesian explanations of generalisation. In a first step, T&G’s
Bayesian approach will be systematically analysed and it will be clarified in which
sense it attempts to unify Shepard’s and Tversky’s classically opposing approaches to
similarity and generalisation. This analysis reveals that the earlier notion of similarity
remains important, alongside Bayesian inference, to explain the psychological capac-
ity of generalisation. In a second step, it will be shown that the implicit reliance on
similarity raises issues for the explanatory status of the Bayesian unification, which
only reconciles Shepard’s and Tversky’s specific definitions of similarity by virtue of
its agnosticism concerning assumptions about what similarity is. I subsequently pro-
pose a novel way to understand the unificatory contribution of the Bayesian model
of generalisation to similarity-based accounts. Specifically, I argue that an additional

878 N. Poth



virtue to the mathematical elegance and broad scope of T&G’s approach is that it uni-
fies distinct aspects of generalisation in a novel sense that has yet received only a little
attention in cognitive science: following Myrvold’s (2003, 2017) criterion, T&G’s
approach renders these distinct aspects mutually informationally relevant under a set
of coherent probabilistic assumptions. I argue that this unification is complemen-
tary to the earlier similarity-based explanation, and it fulfils a heuristic role in the
process of choosing between them for further inquiry into the psychology of general-
isation. Specifically, building on Myrvold’s approach to unification and an approach
to Bayesian model selection by Colombo and Hartmann (2017), I argue that the
Bayesian unification justifies a choice of the geometric approach to similarity as a
basis for a computational explanation of generalisation as an effect of internal simi-
larity computations. In this sense, T&G’s model functions as a case study illustrating
a successful unification in cognitive science.

Before proceeding, it is worth clarifying the terms ‘generalisation’, ‘similarity’
and ‘concept’. By ‘generalisation,’ I mean a pattern of behaviour that expresses the
capacity to treat one object in the same way as another. One can treat objects more
or less like another, and in this sense, generalisation is a graded phenomenon. In psy-
chological experiments, the degree of generalisation is often measured by subjects’
relative frequency to confuse a set of stimuli, compared to all trials of an experi-
ment, but it can also be assessed by recording explicit similarity judgements, whereby
subjects rate the similarity of two items on some scale (e.g., a Likert scale). By ‘sim-
ilarity,’ I mean a mental representation of the relation between a set of items. In the
current context, this relation is expressed in terms of the items’ shared or distinct
attributes or their geometric distance in a psychological space. It can be expressed in
other ways, for example in terms of the transformation distance (Hahn et al. 2003).
Finally, by ‘concept,’ I mean a mental representation of instances that fall under a cat-
egory, and this can (but does not have to) be a function of their similarities. Following
the common doctrine in cognitive science, concepts are the constituents of thought
and crucial for categorisation, inference and learning (Margolis and Laurence 1999).
In the current context, concepts constitute the contents of hypotheses in Bayesian
inference.1 Finally, these aspects hang together: generalisation patterns correspond
to the outputs of (internal) computations over similarity representations or concepts.

The structure of this paper is as follows. In Section 2, I outline the apparent con-
flict between Shepard’s and Tversky’s models of similarity and generalisation. In
Section 3, I assess T&G’s Bayesian approach to generalisation and concept learn-
ing, and its relationship to similarity-based explanations. In Section 4, I introduce
Myrvold’s informational-relevance criterion, based on which I justify the additional
unificatory power of T&G’s approach in Section 5. In Section 6, I discuss one possi-
ble contribution of this result to the selection of a similarity-based model. Section 7
summarises my findings and provides a brief conclusion.

1How exactly concepts are structured has been the focus of much debate in cognitive science (Margolis and
Laurence 1999). The Bayesian approach endorsed in this paper is not committed to any specific view on
this matter. Readers who adopt a specific view on concepts such as the prototype view, the theory-theory
view or conceptual atomism are free to adopt their preferred choice.
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2 Two ‘Opposing’ Approaches to Generalisation and Similarity

Although T&G describe Shepard’s (1987) Universal Law of Generalisation and
Tversky’s (1977) feature-matching model of similarity as “classically opposing”
(Tenenbaum and Griffiths 2001, p. 336), they are short on explaining in which way.
To motivate the need to unify these approaches in the first place, I want to call
attention to their different mathematical assumptions and empirical contents.

2.1 Different Mathematical Assumptions

The most fundamental assumption of Shepard’s model is that dissimilarity is a func-
tion, δ, that maps pairs of points, a, b, in a geometric space to a non-negative number,
in a way that satisfies the metric axioms.

1. Minimality: δ(a, b) ≥ δ(a, a) = 0, where a �= b.
The distance between an object and itself is zero, and is smaller or equal to

the distance between two non-identical objects.
2. Symmetry: δ(a, b) = δ(b, a).

The distance between two objects must be the same, regardless of the direction
in which it is measured.

3. Triangle inequality: δ(a, b) + δ(b, c) ≥ δ(a, c).
In a triadic comparison, one distance must always be shorter or equal to the

sum of the other two distances.

Shepard (1962, 1987) models the perceived similarity of two objects as the inverse
of their geometric distance. This means that the objects are more similar to each
other whenever their vectors are located closer in similarity space (relative to a fixed
set of dimensions). Correspondingly, the first axiom says that the similarity between
an object (e.g., a specific apple) and itself must be greater or equal to the similarity
between two distinct objects (e.g., the apple and a banana). Following the second
axiom, the similarity between the apple and the banana must be the same as the
similarity between the banana and the apple; following the third axiom, the similarity
between the apple and a pear must be less than the joint similarities of the two pairs
{apple, banana} and {banana, pear} (unless the banana lies on a straight line between
the apple and the pear in which case the similarity between the apple and the pear is
equal to the joint similarities between {apple, banana} and {banana, pear}).2

In contrast, Tversky’s approach relies on set-theoretic relations; these are inde-
pendent of the metric axioms. A key assumption of this approach is that objects are
decomposable into sets of discrete features that take the form of atomic symbols. The
ratio model represents the similarity between two objects, a and b, as the ratio of the
set of their common features to the sum of their common features, the weighted set

2There are multiple ways to measure geometric distance. Two prominent examples are the city-block
metric and the Euclidean metric. See Gärdenfors (2000, pp. 18-24) for details and discussion.
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of features distinct to a and the weighted set of features distinct to b. Formally:

S(a, b) = f (A ∩ B)

f (A ∩ B) + αf (A − B) + βf (B − A)
, for some α, β ≥ 0, (1)

where f (A ∩ B) represents the features common to a and b, αf (A − B) repre-
sents the weighted features distinct to a and βf (B − A) represents the weighted
features distinct to b. A judgement of similarity, S, is a linear function of sets of
common and distinct features, and the output of this function depends on the direc-
tion of the comparison. S increases linearly with an increase in the number of
common features and decreases linearly with an increase of the number of distinct
features. When f (A − B) �= f (B − A) and α �= β, then changing the order of
the distinct sets of features with fixed weights in the model accommodates direc-
tionality, such that S(a, b) �= S(b, a). Similarity becomes non-directional when
either of these conditions is not met, so that S(a, b) = S(b, a) whenever α = β or
f (A − B) = f (B − A).3

2.2 Different Empirical Contents

Aside from their mathematical differences, the two models make conflicting pre-
dictions about how subjects (implicitly or explicitly) judge the similarity of pairs
of stimuli, and conflicting predictions about how probable subjects are to gener-
alise their behaviour towards them follow. Especially interesting are two distinct
phenomena, which I will refer to as ‘the exponential gradient’ and ‘directionality’.

The exponential gradient has become popular as the ‘Universal Law of Gen-
eralisation’ (Shepard 1987, henceforth ‘ULG’). It states that the probability of an
agent to generalise her behaviour (e.g., eating) from one stimulus (e.g., an apple)
to another stimulus (e.g., a pear, or a banana) is an exponentially decreasing func-
tion of the perceived stimulus dissimilarity. Specifically, the psychophysical function
characterising this effect maps confusion probabilities4 onto distances in a geometric
space. While geometric distances model subjects’ internal representations of stimu-
lus dissimilarity, it is assumed that dimensions model perceptual qualities, such as
the loudness of tones or the sweetness of fruit (Shepard 1962; Gärdenfors 2000).
The mapping is such that pair-wise distances in the geometric model are negatively
exponentially related to pairwise confusion probabilities. It is a robust result that this
mapping predicts generalisation patterns across a wide range of different conditions,
including different stimuli (e.g., colours, tones, geometric shapes, Morse code sig-
nals), modalities (e.g., loudness or brightness), and species (e.g., mammals and birds;
insects, fish, amphibians, reptiles (Ghirlanda and Enquist 2003, Cheng 2000)), Thus,
due to its generality, it is commonly understood as a psychological law.

3Other versions of feature-matching exist; most famously, Tversky’s contrast model. See Tversky (1977)
for details.
4A confusion probability can be measured as the percentage of errors associated with ‘same’ or ‘different’
judgements for a stimulus pair in an experiment. For example, if out of 100 trials a pair of two different
stimuli, {a, b}, is judged ‘same’ in 40 trials, then the confusion probability associated with that pair is 40.
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However, there is an important aspect of generalisation that the law seemingly
fails to predict and that may violate some of its basic assumptions. In particular, Tver-
sky’s (1977) charge against Shepard’s approach to similarity is that it cannot predict
effects of directionality, which occur when the pair (a, b) is judged more or less
similar than the pair (b, a). A popular example is Tversky’s (1977) observation that
people typically judge Tel Aviv as being more similar to New York than vice versa.
Such an effect is surprising under the geometric model: if asymmetries correspond
to directionality effects, then if the symmetry axiom would accurately describe how
people judge similarities, we should not expect people to display directionality in
how they judge similarities. Experimental evidence for directionality in human sim-
ilarity judgements has been found for both perceptual and conceptual stimuli. For
instance, Tversky and Gati (1978) conducted a set of studies on undergraduate stu-
dents whereby they tested similarity judgements on sets of schematic faces, cities and
countries. Additionally, Tversky (1977) found significant effects of directionality in
Rothkopf’s (1957) Morse-code data and Krantz and Tversky (1975) report evidence
for directionality in similarity-judgements of rectangles. Furthermore, Krumhansl
(1978) identifies evidence for directionality in the results of a study by Rosch (1975),
who tested similarity judgements of focal colours, and in a study by Rips (1975),
subjects were more likely to attribute a disease to an atypical species if the typi-
cal species carried the disease than to attribute the disease to a typical species if the
infected species was atypical. More recently, Hahn et al. (2009) provide further evi-
dence that similarity judgements are directional for animations morphing one object
into another from the same basic category. These findings suggest that directional-
ity effects are robust within the domain of human similarity judgement and inductive
generalisation.

Tversky explains these effects of directionality based on his alternative feature-
matching approach, according to which the same stimuli are sometimes judged to
be differently similar depending on their order of presentation and the salience asso-
ciated with their shared and distinct features. In the above example, New York is
commonly judged to be less similar to Tel Aviv than vice versa, for the following
reasons. First of all, these cities differ in how prominent they are, such that New
York can be associated with more distinct features than Tel Aviv. This introduces an
initial difference between the cardinalities of their sets of distinct features, so that
f (A − B) < f (B − A) in Eq. 1. Secondly, one can introduce a difference in the
weights associated with these sets of features, so that α > β, which Tversky justifies
with the assumption that the first and second stimuli of a comparison take different
grammatical roles in directional tasks of the form ‘how similar is a to b?’ (as opposed
to non-directional formulations like ‘how similar are a and b to each other?’); the
first stimulus plays the subject, and the second plays the object. Tversky assumes that
subjects pay more attention to the subject than to the object; hence, α > β.

Under these conditions, directionality can be derived with the ratio model. When
holding fixed the cardinalities of the sets of common and unequal distinct features
and associated unequal weights in Eq. 1, reversing the order of the comparison will
evoke a change in similarity. Correspondingly, Tel Aviv is judged to be more simi-
lar to New York than vice versa because, in the first direction, New York’s distinct
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features are weighted less, so that the ratio of the common to distinct features is over-
all greater than in the second direction. The directionality effect can be ‘cancelled’
by eliminating the initial inequalities, either those associated with the cities’ promi-
nence or those associated with their grammatical roles. Due to this flexibility, the
model accommodates a variety of other data sets that illustrate directionality effects,
including Morse-code signals, countries, faces and geometric objects (Tversky and
Gati 1978).

It should be noted that the geometric model can be expanded to in a sense accom-
modate directionality effects. For instance, Nosofsky’s (1986) biased-choice model
represents the dissimilarity between two objects as a sum of weighted geometric dis-
tances, dij = [ ∑

wk|xik − xjk|r
]1/r , where r = 1 for the city-block distance and

r = 2 for the Euclidean distance, and wk is the weight, w, attached to a dimension,
k, and 0 ≤ wk; ∑

wk = 1. Increasing and decreasing wk expands and shrinks the
metric scale, and so an initial distance between two points can be lengthened or short-
ened. Nosofsky (1986, pp. 54-55) thereby dissociates “similarity representations”,
which remain subject to metric constraints, from additional “rather complex attention
and decision processes” that operate on them by adding a weighting factor. However,
a worry with this approach is that overall, similarity might no longer monotonically
relate to metric distance because directionality is only accounted for by the addition
of other processes, which makes it a trivial generalisation in the sense that any data
can be accommodated by any model by just adding assumptions to the model. How-
ever, this does not show that the desired effect (i.e., directionality) comes out of the
core assumptions of the approach, which in the case of the geometric approach it
does not. Furthermore, accommodating changes in similarity judgements of objects,
depending on their order in this way in a geometric model does not seem to capture
the relevant sense of directionality because this derivation does not show that simi-
larity becomes asymmetric. Within the same perceptual space, the distance remains
the same. If what explains directionality effects is only the addition of weights to the
model, but not the fact that similarity is represented as a geometric distance function,
then this seems to not add justification for why similarity should be modelled as a
geometric distance function, as opposed to a function of weighted sets of features,
which is the actual point of dispute.5

2.3 Can generalisation be analysed as a unified psychological phenomenon?

Taken together, the two frameworks are classically opposed to each other because
they think about similarity in mutually incompatible ways, and they generate differ-
ent empirical predictions about how people generalise their behaviour depending on
the similarity of the objects targeted to this behaviour. Recall that Shepard models
dissimilarity in terms of geometric distance, and his ULG is a mathematical function
that maps the empirical generalisation probability onto geometric distance, predicting
that objects that are more similar are exponentially more likely to be confused by sub-
jects (i.e., the exponential gradient). In contrast, Tversky models similarity as a linear

5I am grateful to two reviewers for pointing me to this issue.
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function of the set-theoretic overlap of weighted features. Under the assumption
that subjects sometimes focus more on the second stimulus shown in a comparison
than the first, the feature-matching model accommodates the finding that people will
sometimes be more likely to generalise their behaviour from one object to another
than vice versa (i.e., directionality).
This shows that the two approaches are isolated from each other in the way they
predict different aspects of generalisation. On the one hand, the geometric account
of similarity implies that similarity is non-directional because it adheres to the sym-
metry axiom. Therefore, it does not (without additional assumptions) accommodate
directionality. On the other hand, the set-theoretic approach assumes that similarity is
a linear function of shared and distinct features. Therefore, it does not accommodate
the observation that the objective generalisation probability decreases exponentially
with a decrease in similarity.
This poses a problem: Given that two distinct approaches are required to derive both
predictions, it is not clear whether the two effects (i.e., the exponential gradient and
directionality) express a common underlying cognitive capacity. This is because the
disunity between the distinct definitions of similarity disconnects the evidence for
directionality from the evidence for the exponential gradient. Given this disconnec-
tion, there is currently little reason to assume that these distinct phenomena result
from the same underlying process of computing similarities, since they are associated
with two theoretically disconnected similarity-bases. Given either account, observ-
ing an exponential generalisation gradient gives us no reason to expect effects of
directionality and vice versa. However, the hypothesis that the exponential gradient
and directionality do not express one and the same cognitive capacity challenges the
claim that the psychology of generalisation studies a unified cognitive phenomenon.
So where to go next? Both models derive a large variety of phenomena about general-
isation, and a choice between these two different accounts is unavailable on objective
grounds, for none of them is clearly better supported by the total evidence than the
other. Should one give up on a unified study of generalisation?

3 T&G’s Bayesian Approach to Generalisation

T&G (2001) protest that generalisation can be analysed as a unified psychological
phenomenon. Specifically, they claim that their Bayesian approach to generalisation
can reconcile the geometric and feature-matching approaches under a unified expla-
nation of similarity and generalisation that is independently empirically-supported,
suggesting that their Bayesian approach should be preferred to explain these phe-
nomena. They put this claim forward along the following lines.

Here we recast Shepard’s theory in a more general Bayesian framework and
show how this naturally extends his approach to the more realistic situation
of generalizing from multiple consequential stimuli with arbitrary represen-
tational structure. Our framework also subsumes a version of Tversky’s set-
theoretic model of similarity, which is conventionally thought of as the primary

884 N. Poth



alternative to Shepard’s continuous metric space model of similarity and gen-
eralization. This unification allows us not only to draw deep parallels between
the set-theoretic and spatial approaches, but also to significantly advance the
explanatory power of set-theoretic models. Tenenbaum and Griffiths (2001, p.
629, emphasis added)

The phrases that are highlighted in this quote suggest various ways in which
T&G’s proposal can be understood; so it remains unclear what this unification
precisely amounts to and why it makes T&G’s Bayesian approach explanatorily
powerful. Philosophers have valued unifying explanations because they reduce the
number of independent phenomena that have to be accepted, thereby making the
explanatory target simpler and more comprehensible (Friedman 1974). Furthermore,
unifying explanations have been thought desirable because they obtain a great deal
of evidential support (Glymour 1980). Unification is often understood as the ability
to derive a large number of distinct phenomena from only a few argument patterns
(Kitcher 1989). However, others such asMorrison (2000) and Potochnik (2011) argue
convincingly that the term ‘unification’ has many disparate interpretations that are
often separate from the goals of scientific explanation. Generally, there is wide agree-
ment that unifying theories are worth having, but it is an unresolved issue what they
amount to.

In light of these debates, the unificatory status of T&G’s Bayesian approach calls
for qualification and more careful treatment. To this end, the following sections
justify this proposal and critically assess its improvement over similarity-based expla-
nations. Three questions are of special interest. Firstly, what is being unified? I will
argue that T&G’s model unifies the exponential gradient and directionality effects,
and not (as they seem to suggest) the mathematical assumptions of the geometric
and feature-matching models of similarity. Secondly, which criterion of unification
should be used to assess the success of this proposal? I will argue that this uni-
fication is achieved by rendering these phenomena probabilistically dependent, by
showing that they obey principles of Bayesian inference. Thirdly, should this perspec-
tive replace existing similarity-based explanations of generalisation? I will argue that
it should not replace similarity-based approaches because its unifying contributions
can be seen as being complementary to them.

3.1 Generalisation as a Bayesian Inference Task

At the heart of T&G’s model is a single scheme of Bayesian inference that specifies
the probability of a hypothesis in light of a piece of evidence following a version of
Bayes’ theorem:

Pr(H |E) = Pr(E|H)P r(H)
∑

H ′∈H Pr(E|H ′)P r(H ′)
,

where the posterior is the ratio of the product of the likelihood and prior associ-
ated with H to the sum of the products of likelihoods and priors for all alternative
hypotheses, H ′.
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This scheme can be used to analyse generalisation tasks of the following exem-
plary form. An agent sees a mushroom with a red head and white spots, and infers
that this mushroom is probably an instance of the concept FLY AGARIC MUSH-
ROOM. Upon observing another mushroom with a red head and white spots, they
must decide: given that the first mushroom is probably an instance of the concept FLY
AGARIC MUSHROOM, how probable is it that the second mushroom is an instance
of this concept as well? It is apparent from this example that T&G think of the gen-
eralisation task as one related to concept learning, where the inference about what
concept a set of instances belong to delivers the grounds to treat these instances as
the same kind of thing.

Following Bayes’ Theorem, learners should approach this task by combining the
likelihoods and priors to yield a posterior associated with a hypothesis about what is
the right concept that these pieces of evidence fall under. This task requires a hypothe-
ses space,H, with a set of (possibly infinite) hypotheses,H1, H2, ... . Each hypothesis
is a statement about what concept, C, a set of objects, x, y, ..., fall under; its asso-
ciated probability value expresses how strongly it is believed. As such, a hypothesis
expresses a belief (e.g., that there are edible mushrooms). To formally capture the
hypothesis that x is an instance of C, we write H : x ∈ C. The task of concept
learning is to find the hypothesis associated with the highest posterior probability or
a subset of hypotheses weighted by their posterior probabilities.

The prior probability function, Pr(H : x ∈ C), assigns a probability value to each
hypothesis without regard to the given instances. Which particular form the priors
should take in T&G’s model is an unresolved challenge (see Tenenbaum and Griffiths
(2001) and Shepard (1987) for details on the derivations of the exponential gradient
with different priors). However, here I follow the common doctrine in Bayesian cog-
nitive science and conceive of learning as the updating of the old probability value
associated with a hypothesis (e.g., about what is the correct concept) to a new value
that is obtained in light of new evidence (e.g., new instances for the concept). Then
what explains the most interesting aspects of concept learning is the likelihood term,
which formally relates the evidence to the hypothesis. For the likelihood associated
with the observation of x, given that the hypothesis that x is an instance of C is true,
we write Pr(x|H : x ∈ C). On T&G’s approach, the likelihood term is specified by
the size principle.

3.2 The Size Principle

The size principle says that the probability of the evidence, given the hypothesis
about a concept, C, is proportional to the ratio of the size of the concept. This means
that the evidence becomes more probable in light of hypotheses about concepts that
encompass relatively small sets of entities. The size principle also states that this
tendency increases exponentially with an increase in the number of instances, n, that
have been observed for the concept. Formally:

Pr(x|H : x ∈ C) ∝
[

1

|C|
]n

, (2)
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In Eq. 2, the likelihood of observing x given that x is sampled truly from C is
proportional to the inverse of the size of C, raised to the power of n examples.

How concept size should be defined is controversial. T&G assume that it is a
function of the concept’s extension (i.e., the number of entities falling under the con-
cept). Other authors (Gärdenfors 2000; Poth 2019) suggest that it is a function of the
concept’s intension (e.g., the possible respects an instance could be like). The follow-
ing is compatible with both interpretations. I use terms like ‘small concept’ and ‘big
concept’ as shorthands to refer to the size of the set of entities a given concept encom-
passes. In this sense, the size principle says that how well the hypothesis predicts the
evidence is a matter of the size of the set of instances or the region that is identified
with C, and hypotheses about small concepts make the evidence more likely. The
rationale for this is that inferences about concepts are justified to the extent that the
size of the concept matches the variation in the instances observed for it, so if only
a few very similar instances have been observed, then this is best predicted by the
narrowest concept that they fall under.

A major role of the size principle in T&G’s approach to concept learning is to help
learners choose among competing hypotheses that are a priori equiprobable. Suppose
x is a fly agaric mushroom. If H says that x is an instance of FLY AGARIC MUSH-
ROOM, and H ∗ says that x is an instance of MUSHROOM, then, following the size
principle, H makes x more likely, provided that FLY AGARIC MUSHROOM is smaller
than MUSHROOM. Why is H more probable, although both concepts are compatible
with x? Because learners should not infer just any concept compatible with the evi-
dence, but one that makes the evidence very likely. The rational relation between the
concept’s size and the likelihood associated with the hypothesis comes out of an addi-
tional assumption in T&G’s approach, which is strong sampling. Strong sampling
says that instances are chosen independently of each other but not independently of
the concept that they are chosen from.

A standard random-sampling experiment from Perfors et al., (2011, pp. 306-307)
illustrates the idea. Bag A is small and contains a red and green marble; bag B
is bigger and contains a red, green and yellow marble. Given these proportions,
it is more likely to blindly pick a red marble from A than from B because the
probability of picking a red marble given that one reaches from A is .5, while the
probability of picking a red marble given that one reaches from B is .33. Now an
experimenter randomly samples a sequence of a red, green, red and green marble
(with replacement after any pick) from A or B; the subject’s task is to guess which
bag is the correct one. Considering the sizes of the bags (which are known to the
subject—it is just not known which bag the sequence has been taken from), A is
correct. It would be surprising to observe this sequence, were the observations in
fact independently sampled from B. In that case, one would expect also a yellow
marble to occur in the sequence. The lesson to be learned is that smaller concepts
allow fewer variation in the outcome of a random sampling experiment; so if we
observe a sample with a small variation, it is likely to be a consequence of a small
concept.
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3.3 The Exponential Gradient Revisited

Equation 2 accounts for the exponential gradient because it predicts that a preference
for H over H ∗ will increase exponentially with an increase in the number of fly
agaric mushrooms observed. However, the size principle by itself does not account
for generalisation from x to y, it only describes the task of learning a concept from
a few examples. What is missing is an account that explains why and under which
conditions a learner would generalise a concept that has been inferred for a known
instance to a novel instance. To formally capture this problem, T&G (2001) introduce
a generalisation function. My version of this function is slightly different from theirs
to emphasise that hypotheses are statements about the membership of instances to
concepts, as opposed to non-conceptual predictions. Formally, the generalisation task
can be captured as follows:

Pr(Hy∈C |Hx∈C, Ex,y) =
∑

H :x,y∈C

P r(H |E) (3)

Equation 3 characterises the task of inferring whether y falls under C, given that
x falls under C. More specifically, the task is to infer how probable it is that the con-
cept C that y falls under is the same concept C that x falls under. The variable Ex,y

stands for the total evidence, that is, the observations of x and y jointly taken into
account. This evidential statement says that “there is an x and there is a y”. This task
is modelled as a function of the sum of the posterior probabilities associated with all
hypotheses about C under which these pieces of evidence fall. T&G suitably call the
computation of this function “hypothesis averaging”, “because it can be thought of
as averaging the predictions that each hypothesis makes about y’s membership in C,
weighted by the posterior probability of that hypothesis” (Tenenbaum and Griffiths
2001, p. 631). All predictions about concept membership, H ∈ H, constitute a mutu-
ally exclusive and exhaustive set of possibilities and their posteriors are normalised
to sum to 1, and generalisation lies in the interval [0,1]6.

Following Eq. 3, generalisation from x to y becomes more probable with an
increase in the number of hypotheses that subsume x and y under the same concepts.
Generalisation is perfect (i.e., equal to 1) only if every concept that has x as a mem-
ber also has y as a member. This result coincides with Shepard’s (1987) conclusion
that generalisation probability increases with an increase in the similarity between y

and x. Assuming that x and y are each likely to fall under small concepts (follow-
ing Eq. 2), then holding fixed the sizes of C, the number of concepts that subsume
them both is likely to decrease with an increase in their ‘distance’ in psychologi-
cal space. In other words, the further y ‘moves away’ from x, the less probable it
is that they fall under identical concepts. Furthermore, under the assumption of the
size principle (2), the generalisation function will have an exponential shape. This
means that generalisation decreases exponentially with a decrease in the number of
concepts that subsume them both. For example, if x falls under FLY AGARIC MUSH-

6Readers are referred to T&G (2001, pp. 630-631) for additional details on the assumptions about the
abstract structure of the hypothesis space.
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ROOM and y falls under BICYCLE, then there are very few concepts (e.g., THING IN

THE UNIVERSE) that subsume them both. Consequently, it is highly improbable that
the concept C that y falls under is the same concept C that x falls under, and so there
is little reason for a learner to generalise their behaviour from x to y.

Despite the resemblance to Shepard’s approach and the exponential form of the
function under the size principle, this result is independent of the geometric axioms;
it is only constrained by the axioms of probability and set theory. This result is due
to the summing of probabilities over the space of hypotheses and not merely by the
method for determining the specific content of the hypotheses (i.e., concepts). The
content of the hypotheses could be determined by distance in geometric space, sets of
features, or in some other way. The important aspect of hypotheses and their relation
to probabilities is that they are mutually exclusive, in the sense that if one hypoth-
esis obtains probability .7, alternative hypotheses in H cannot obtain a greater total
probability of .3, since the probabilities assigned to all hypotheses sum up to 1 (a
constraint that follows from the third axiom of probability). Adopting the size prin-
ciple, learners prefer hypotheses about the most specific concept that these things
belong to, e.g., “they are both mushrooms”, as opposed to “they are both things
in the universe”. Correspondingly, the inference towards the smallest common con-
cept coincides with the inference towards the most similar instances, but this obtains
regardless of whether similarity and concepts themselves are defined in geometric
terms or in another way. It obtains due to the preference of hypotheses about smaller
concepts, and its exponential increase in strength with multiple examples.

3.4 Directionality Revisited

To encompass Tversky’s directionality results, T&G (2001) provide another version
of Eq. 3:

Pr(Hy∈C |Hx∈C) = 1/

[
1 +

∑
Hx∈C,y /∈C

P r(H, x)
∑

Hx,y∈C
P r(H, x)

]
, (4)

where Hx∈C,y /∈C stands for a subset of hypotheses which say that x, but not y, falls
under C, and Hx,y∈C stands for a subset of hypotheses, which say that both x and y

fall under C. Subsets of hypotheses are weighted according to their joint probabilities
with the evidence, Pr(H, x). It is apparent that Eq. 4 formally resembles the ‘inverse’
of Tversky’s ratio model (Eq. 1); so T&G stipulate that the term Hx∈C,y /∈C represents
sets of features distinct to x but not y, Hx,y∈C represents sets of features common to
x and y, and their corresponding probabilities represent feature weights.

A two-step argument can be made for the claim that T&G’s model accounts for
directionality effects. The first step is to see that a change in the direction of the
inference can produce a change in the weighted probabilities associated with distinct
subsets of hypotheses. Consider what happens when Eq. 4 is reversed:

Pr(Hx∈C |Hy∈C) = 1/

[
1 +

∑
Hy∈C,x /∈C

P r(H, y)
∑

Hx,y∈C
P r(H, y)

]
, (5)
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where Hy∈C,x /∈C says that y but not x falls under C. In Eq. 5, generalisation depends
only on the probabilities associated with hypotheses distinct to y; in Eq. 4, it only
depends on the probabilities associated with hypotheses distinct to x. Directionality
depends on whether these sets of probabilities are different. Insofar as the probabili-
ties associated with each hypothesis in the generalisation task (i.e., that x falls under
C; that y falls under C) differ, a change in the direction of the inference can produce
a change in the weighted probabilities associated with these hypotheses. For exam-
ple, assume that Hx,y∈C says that both x and y fall under CITRUS FRUIT and assume
that Hx∈C,y /∈C says that x but not y falls under PHYSALIS and Hy∈C,x /∈C says that y
but not x falls under ORANGE. Equations 3 and 1 produce different results whenever
the probability that x falls under PHYSALIS but not under ORANGE is different from
the probability that y falls under ORANGE but not under PHYSALIS.

The second step is to make explicit that this sort of directionality comes out of the
definition of conditional probability.

Definition 3.1 (Conditional probability.) The probability of one proposition, A, to
be true, conditional on the truth of another proposition, B, is a ratio of their joint
probabilities and the unconditional probability of B. Formally:

Pr(A|B) = Pr(A ∩ B)

P r(B)
; Pr(B) > 0.

Conversely,

Pr(B|A) = Pr(A ∩ B)

P r(A)
; Pr(A) > 0.

Definition 3.1 reveals that conditional probabilities are directional, depending on
differences between the constituting unconditional probabilities. For example, the
probability that a dice lands 3, given that it lands odds, is 1/3, but the probability
that a dice lands odds, given that it lands 3, is 1. But the probability that a dice lands
odds, given that it lands even is zero, and so is the probability that it lands even,
given that it lands odds. The order in which these events are related in the condi-
tional is relevant to a difference between the conditional probabilities if and only if
their unconditional probabilities are different, so Pr(A|B) �= Pr(B|A) if and only
if Pr(A) �= Pr(B). This illustrates that the link to directionality in T&G’s gen-
eralisation function consists fundamentally in its probabilistic structure. Following
definition 3.1, the results of Eqs. 4 and 5 will be unequal whenever the unconditional
probabilities, Pr(Hx∈C,y /∈C) and Pr(Hy∈C,x /∈C), are unequal, and symmetries will
occur whenever these probabilities are the same.
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Taking stock, the foregoing sections have introduced T&G’s Bayesian approach
to concept learning and shown how its central ingredients, the size principle
(Eq. 2) and the generalisation function (Eq. 3) accommodate both the exponential
gradient and directionality. The next section reviews the unificatory status of this
approach, and the sense in which it reconciles the initial dispute between Shepard and
Tversky about how similarity is to be defined to explain these generalisation effects.
I will argue that T&G’s Bayesian approach to concept learning unifies the cognitive
task that is common to the two kinds of generalisation effects (i.e., the exponen-
tial gradient and directionality), but it is agnostic about issues that concern questions
about similarity. Thus, what is reconciled are not the two similarity-based explana-
tions under dispute, but, instead, the two generalisation effects, and these are now
traced back to a single underlying capacity of concept learning.

3.5 Compatibility with Shepard’s and Tversky’s Approaches

At first sight, T&G’s approach carries typical characteristics that are sometimes taken
to be sufficient for unification: in line with T&G’s proposal, the account is mathe-
matically elegant and broad in scope. Instead of two distinct approaches to similarity
we only need one approach to generalisation as Bayesian inference to predict the
exponential gradient and directionality. To this end, T&G (2001) themselves draw
analogies between their unification and Newton’s unification of gravity and astron-
omy. In both cases, the two original frameworks—in Newton’s case, Galileo’s laws
of terrestrial mechanics and Kepler’s laws of celestial bodies and in T&G’s case,
Shepard’s ULG and Tversky’s feature-matching function—are difficult to reconcile
instantly but are subsequently shown to be compatible with a single mathematical
framework that subsumes each as a special case. They argue that the gain from this
unification is an increase in the mathematical elegance and predictive scope of the
resulting theory—in Newton’s case, the theory of universal gravitation and in T&G’s
case, the Bayesian approach to universal generalisation. Thereby, essentially the same
predictions about phenomena of gravity and astronomy, in the case of Newton, and
about the exponential gradient and directionality, in T&G’s case, can be obtained by
adding more specific assumptions to the general mathematical theory. This warranted
the choice of Newton’s theory over competing alternatives that were less elegant and
of a narrower scope.

However, the analogy is not perfect. Even if the Bayesian approach is more elegant
and broad, this does not necessarily warrant its choice over Shepard’s or Tversky’s
approaches to similarity when explaining the observed effects of generalisation. This
is because, in contrast to the similarity-based approaches, T&G’s Bayesian approach
obtains these typical unificatory features only because it is agnostic about questions
concerning the contents of hypotheses, the structure of concepts and their relationship
to the evidence. Yet, these questions are still relevant when explaining why and how
learners compute the probabilistic inferences of concepts to solve the generalisation
task. To understand this point, it is helpful to adopt Marr’s (1982) levels-framework
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as a heuristic. The computational level of analysis specifies the task of generalisation,
why it is appropriate and the logic of its potential solution. The level of representa-
tion and algorithm identifies the format and contents of representations (e.g., zeros
and ones, in the case of a computer) and how these are manipulated by the system to
solve the problem. The level of implementation identifies how this solution is phys-
ically realised. For Marr, all three levels are important to explain cognition; none of
them suffices in isolation. Various revisions of the framework have been proposed
(Danks 2008; Love 2015; Hardcastle and Hardcastle 2015; McClamrock 1991; Pog-
gio 2012); and there is wide agreement that there can be multiple levels between the
initial ones.

I suggest that the proper domain of T&G’s unification lies at the computational
level, where generalisation is described as a task of inferring from a known object
whether an unknown object falls under the same concept, and the logic of its solu-
tion is the strong sampling assumption. This description is agnostic about issues at
lower levels because it excludes any particular assumptions about how concepts are
represented in learners’ minds and about what algorithm computes their sizes and
conditional probability functions. Likewise, Shepard’s ULG and Tversky’s feature-
matching function can be seen as residing at the computational level of analysis.
Especially Shepard (1987) characterises generalisation as an inductive inference
problem for intelligent agents, and the ULG formalises its ideal, invariant, structure.
Tversky’s feature-based approach focuses less on the problem of similarity judge-
ment as an inductive inference but likewise starts ‘top-down’ by identifying a set of
mathematical axioms that seem to be obeyed by people’s performance in similarity-
judgement tasks. As suggested by T&G’s model, Shepard’s initial derivations of the
law, based on the assumption of geometric space, can be generalised based on the
notion of a consequential subset. This shows that the form of the generalisation prob-
lem is independent of the additional assumptions about whether concepts and features
have a geometric or set-theoretic structure, thereby broadening the scope of the ULG
to accommodate cases outside the domain of a spatial analysis. Thus, at the compu-
tational level, we have a single description of the task of generalisation as a Bayesian
inference problem that combines the predictions of both the exponential gradient and
directionality effects.

However, while T&G’s model unifies Shepard’s and Tversky’s models of gener-
alisation at the computational level, there are at least two things it does not do that
motivate refining its contribution to the Shepard-Tversky debate about how similar-
ity is to be defined when explaining the effects of generalisation. Firstly, Shepard’s
and Tversky’s approaches also make additional distinct geometric and set-theoretic
assumptions about the structure of similarity representations and concepts that are not
entirely brought into agreement by T&G’s characterisation of the Bayesian inference
task. In particular, the geometric and set-theoretic models disagree in terms of their
more specific versions of how concepts (geometric regions or atomic features) and
similarity (geometric distance or set-theoretic overlap) can be understood. These ver-
sions reflect distinct theoretical perspectives on conceptual thought: the set-theoretic
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model understands features as conceptual atoms that have no internal structure (Fodor
1998, p. 121) and their set-theoretic ‘overlap’ constitutes the degree of similarity
among objects in their extension.7 The geometric model reverses this relationship
and defines concepts in terms of the dissimilarity among possible members. Blumson
(2018, p. 21) argues that these two conceptions of similarity are logically coher-
ent but also independent of each other.8 Specifically, they are “neither quivalent nor
inconsistent, and neither one entails the other” (ibid.).

Importantly, the Bayesian approach remains uncommitted to any of these per-
spectives. Bayesian norms of reasoning provide the constraints on how probability
assignments should be combined coherently, in the manner of Bayes’ theorem, but
it does not commit one to any specific view about how concepts are defined, and
how one measures the consistency between instances and hypotheses about concepts
when determining what probability value a specific hypothesis obtains. The charac-
terisation of generalisation as a Bayesian-inference task assumes some notion of a
concept to specify the content of a hypothesis in the model and some notion of con-
cept size to assess how well a hypothesis about that concept predicts the evidence.
However, the Bayesian framework is compatible with many different ways to under-
stand a concept and to measure its size to justify the inferences. Indeed, the elegance
and broader scope associated with the Bayesian approach arise from the fact that
which specific understanding of a concept one adopts is irrelevant to derive the expo-
nential gradient and directionality. For instance, some concepts might correspond to
discrete features, and others might correspond to geometrically structured regions, or
concepts might correspond to none of these, as long as how the inferences about con-
cepts are combined agree with the norms of Bayesian reasoning. Part of the reason
why the Bayesian model is compatible with both Shepard’s and Tversky’s approaches
is that it is agnostic about their additional independent assumptions about similarity
representations, even if it combines their separate predictions under a single formal
framework. This is how the Bayesian model might be said to ‘reconcile’ this appar-
ent disagreement. (It ‘reconciles’, rather than ‘resolves’ this disagreement, because
the disagreement reappears, once Shepard’s and Tversky’s specific commitments are
taken back on board.) In this sense, T&G’s unification shows that both effects of
directionality and the exponential gradient obey regularities that manifest unified
principles of Bayesian inference, but these principles are compatible with a variety

7In the current context, a feature corresponds to a simple concept. Simple concepts are those such as BLUE

or SQUARE, and these relate to complex concepts such as WHALE or HOUSE in the sense that the meaning
of complex concepts is composed of the meaning of simple concepts, while simple concepts cannot be
decomposed meaningfully into further conceptual parts. In other words, for the current purposes, I treat
features as specific kinds of concepts, while the notion of a concept more generally refers to either simple
or complex concepts.
8Blumson inspects this relation from a metaphysical perspective (where it traditionally concerns the rela-
tion between properties and resemblance), but his conclusions concerning the independence of the two
conceptions do not depend on whether one is committed metaphysically to similarity and concepts.
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of options for specifying a relevant notion of similarity to represent the concepts
inferred in the model.9

To clarify the distinct commitments of the Bayesian and similarity-based
approaches, it is helpful to relax Marr’s three-levels analysis and adopt the possibil-
ity of having levels between the levels. At the computational level, we have T&G’s
Bayesian analysis of the task of generalisation and concept learning, which is to com-
pute the conditional probability of some hypothesis given the evidence. Between the
level of computational analysis and the algorithmic level, we find the specification of
different kinds of similarity representations to individuate hypotheses in terms of a
particular structure of concepts. At this ‘level’, we can locate the geometric and fea-
ture matching models of concepts, where similarity and the size of concepts can be
measured either in terms of a measure of the overlap of discrete features or in terms of
a measure of geometric distance. We currently have no unification of the additional
assumptions about similarity representations at this level because the decision about
whether a measure of set-theoretic overlap or whether a measure of geometric dis-
tance should be used to specify the size of a concept and its relation to instances in the
generalisation task is independent of the analysis of the task as an inference problem
at the computational level. When asking questions about how concepts are compared
to the available evidence to compute the inference, these additional assumptions are
not fully reconciled by the Bayesian analysis, since the Bayesian approach resides
at the computational level, but these questions concern levels below, specifically
questions concerning the individuation of hypotheses about concepts and their rela-
tionship to perceptual instances. Once these concerns are re-introduced to explain

9That these conceptions are used to make representational claims about concepts, as postulated in expla-
nations of generalisation, is not an uncommon view in the cognitive science literature. For example, Hahn
and Chater (1998) analyse generalisation in terms of ‘representation-matching’, a process in which the
criterion for generalisation is the degree to which a previously stored set of items associated with a label
matches in similarity to novel items. A novel item should then be assigned the same label as the proto-
type or exemplar representation it is most similar to. They consider Tversky’s set-theoretic and Shepard’s
geometric models as special cases of matching representations in this way. At the philosophical end,
Gärdenfors (2000) develops the geometric conception into a framework of knowledge representation, with
concepts modelled as regions in a psychological space that is defined by continuous perceptual quality
dimensions (e.g., colour and shape) and with distances among points in a region modelling the dissimilar-
ity between instances of the concept. As a method for concept learning, Gärdenfors (2000, ch. 4) proposes
a function that maps regions onto central points to derive a Voronoi tessellation that carves up the phe-
nomenal space into discrete sets of concepts from experience. These authors keep a distinction between
similarity, concepts, and generalisation or concept learning to explain how this behaviour could arise as a
function computed over assumed internal mental representations. Similarly, Nosofsky (1992, p. 26) views
the contribution of the geometric conception as providing “scaling techniques [that] can be viewed as psy-
chological models for the mental representation of interobject similarity”, and “the role of discrete-feature
and network approaches as components in cognitive process models [as being] of equal importance.” It
should be noted that the status of these representations seems to be that of scientific instruments to sum-
marise data, perform experimental tests and predict behaviour, and so there is no commitment that this
is how people actually compute generalisation with concepts in their minds. This resonates with Shep-
ard’s (1963) view of the practical advantages associated with the geometric conception, which provides
a “spatial ‘map’ of the stimuli [... that] seems to reveal, in succinct and immediately assimilable form,
the latent psychological structure that was contained only obscurely in the initially much larger array of
[similarity-judgment] data.”
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generalisation, there remain two distinct options for how to specify similarity, in
terms of either a function of geometric distance or a function of feature matching.

The way in which T&G (2001) understand the Bayesian model as reconciling
the geometric and set-theoretic assumptions concerning similarity representations is
by identifying concepts with their extension, such that every concept corresponds
to a set of points or values representing stimuli10. However, there remains a differ-
ence between these assumptions that motivates not always defining hypotheses about
concepts in this way. An advantage associated with the geometric representation is
that it expresses additional useful information about the (rich) structure of concepts
that get lost under the interpretation of sets. In particular, the geometric model adds
information about the structural relation (i.e., distance) between individual points to
approximate the size of a region. Modelling concepts as mere sets of points does not
cover this additional information. (The difference is between an ordinal and a ratio
scale.) The additional information is useful for modelling concept learners that are
non-omniscient and that cannot know the actual number of instances falling under
a concept, that is, learners to which the extension is epistemically inaccessible. For
example, it is plausible that one cannot know the instances that have in the past, do,
and ever will in the future fall under the concept MUSHROOM. Concepts are forward-
looking and have an open-ended character in this sense. Since the exact number of
mushrooms is not known to the agent who has only limited experience with the
instances that fall under a concept, it makes sense to approximate this quantity by
representing the relationship between individual perceptual experiences. The notion
of similarity as a geometric distance is instrumental in modelling these relationships,
and it accounts for the possibility of inference under limited knowledge about the
concept’s true extension. Thus, for reasons of epistemic plausibility, one might not
always want to identify a concept with its extension, and so the geometric model
remains a reasonable option aside from using only sets of points.

The second point to motivate refining T&G’s approach is that it is currently
unclear how their model’s greater unifying power supports the explanatory advance-
ment that they envision over similarity-based approaches. There is an ongoing debate
about whether unifying Bayesian models of cognition bear obvious relations to better
scientific explanations than available alternatives. One line of this debate criticises
Bayesian models at the computational level for failing to deliver computational
details relevant to understanding the psychological mechanisms that underlie the
many kinds of behaviours that they predict so elegantly (Bowers and Davis 2012;
Jones and Love 2011; Colombo and Seriès 2012; see Griffiths et al. (2012) for a
response).11 Admittedly, similarity-based approaches might be no more explanatory
in this sense, but this does not seem to warrant replacing them with a Bayesian
approach. Decock and Douven (2011) defend the scientific usefulness of the notion of
similarity to explain inductive inferences, against Goodman’s (1972) earlier charges

10I am grateful to a reviewer for pointing this out to me.
11Morrison (2000) makes a similar point to dissociate Newton’s unification from an adequate explanation
of celestial and terrestrial processes. She demands that such an explanation should go beyond correct,
elegant, predictions and provide information about true mechanical causes.
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that this notion would be too slippery for that purpose. They (p. 73) consider the geo-
metric and set-theoretic conceptions as “the two best such accounts” to make this
notion precise.

Instead of contrasting the explanatory success of Bayesian and similarity-based
approaches, it might be more appropriate to see them as complementary. Bayesian
unification does not rely on any specific assumptions about similarity. However,
Bayesian unification also does not supersede similarity-based accounts because these
can be helpful to interpret the notions of ‘hypothesis’, ‘concept’ and ‘size’ in the
model. Insofar as it is assumed that generalisation is computed using concepts, the
geometric and set-theoretic models (or some other similarity-based alternative) offer
possible ways of specifying their semantic contents. Furthermore, if generalisation
depends on the number of hypotheses that subsume x and y under the same concepts
(as suggested by Eq. 3), then the notion of similarity can be used to identify under
what conditions concepts are the same (e.g., concepts that have x as a member might
have y as a member if and only if these concepts are sufficiently similar according to
some threshold).12

An example illustrates this point. Following the size principle (Eq. 2), given an
encounter of a portobello mushroom, the hypothesis that the concept EDIBLE MUSH-
ROOM is correct should be preferred over the hypothesis that the concept MUSHROOM

is correct in the inference because, intuitively, the size of the concept EDIBLE MUSH-
ROOM is smaller than the size of the concept MUSHROOM. The point about keeping
similarity-based accounts to explain generalisation and concept learning is that the
notion of similarity specifies in what sense EDIBLE MUSHROOM has a smaller size
than MUSHROOM. Intuitively, the concept MUSHROOM subsumes a variety of less
similar objects than the concept EDIBLE MUSHROOM, and in this sense, the latter
has a narrower extension. Proponents of exemplar and prototype accounts have used
the notion of similarity in similar ways to define concepts and their relations to the
statistics associated with their perceptual instances. For instance, on the account by
Rosch and Mervis (1975), the function of a prototype representation is to maximise
the similarity among instances of a concept. Intuitively, this is easier for narrow con-
cepts, which combine on average fewer dissimilar objects than concepts with broader
extensions.

Similarity-based accounts also provide useful ways to elaborate why the size prin-
ciple accounts for learning that is intuitively ‘rational’. In the marbles illustration
(Section 3.2), agents should prefer the smaller concept because it better predicts the

12One can understand concept size in terms of the area of a region in geometric space or, for complex
concepts, the inverse of the number of features combined. But one could also understand a concept as
taking the form of a Gaussian probability distribution that is defined by its mean and variance, and one
could compute the similarity between two concepts by measuring their probabilistic overlap (e.g., using
Kullback-Leibler divergence). However, it is important to keep this conception of similarity distinct from
the methodological project of unifying generalisation as a Bayesian inference task. The former specifies
a way to represent similarities but the latter is a research method to analyse the task at the computational
level. One can be Bayesian about the task analysis while being non-Bayesian about similarity representa-
tions. Therefore, defining similarity and concept size in terms of probabilities is not contrary to my claim
that Bayesian unification fulfils a role for understanding the psychology of generalisation that can be seen
as complementary to similarity-based accounts.
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small variation in the red-green sample. But how can one specify the conditions
of predictive success when justifying this inference? Bayesian confirmation the-
ory recommends studying the confirmatory relations between the evidence and the
hypothesis (see Fitelson 1999, for a review). However, this link is currently missing
in the size principle; the right-hand side of Eq. 2 does not explicitly relate instances
and concepts.

A notion of similarity is helpful to explicate this relationship. For instance, the
degree of confirmation of a hypothesis by some perceptual observation can be
assessed based on the degree to which the content of the concept ‘matches’ the con-
tent of the perceptual experience, where matching is a similarity-based condition for
the correctness of the concept postulated in the inference (see Brössel (2017) and
Hahn and Chater (1998) for two perspectives on this proposal). On this basis, the
preference of the hypothesis that EDIBLE MUSHROOM is correct over the hypothe-
sis that MUSHROOM is correct can be justified by citing that the evidential statement
“there is a brown-looking, round, short, ... mushroom” is more closely predicted by
the hypothesis “there is an edible mushroom”, as opposed to the hypothesis “there
is a mushroom” since, intuitively, the former two statements are more similar in
their meaning than the evidential statement and the latter hypothesis. These exam-
ples are not exhaustive, but they illustrate that the greater simplicity and generality
of the Bayesian model do not fully compensate for the added value from similarity-
based explanations in answering questions about concept individuation (i.e., about
the conditions under which one concept is identical or smaller, or matches observa-
tions better than another). Thus, their replacement is currently not warranted on the
grounds of explanatory unification.

How, then, can one understand the contribution of T&G’s unification for investi-
gating the psychology of generalisation? I suggest that neither the apparent lack of
integration nor the inconclusiveness of explanatory improvement is fatal for the suc-
cess of T&G’s unification. Several authors, such as Dennett (1987), Zednik and Jäkel
(2016), Colombo and Hartmann (2017), and Simon (1977) have emphasised that
computational-level analyses can play a useful heuristic role in constraining mod-
elling decisions and discoveries that are typically associated with questions at lower
levels in Marr’s framework13. As McClamrock (1991, p. 187) notes, “we often need
to know the function of complex system being analyzed to know what aspects of
structure to look at.”

I think that a similar role can be attributed to T&G’s unificatory framework. T&G
seem to assume (but do not defend) such an influence when arguing that “from the
standpoint of reverse-engineering the mind and explaining why human similarity or
generalization computations take the form that they do, a satisfying theory of sim-
ilarity is more likely to depend upon a theory of generalization than vice versa”
(Tenenbaum and Griffiths 2001, p. 637). In the subsequent sections of this paper,

13While Marr (1982, p. 329) also emphasises the importance of the computational-level analysis for inves-
tigations at other levels and agrees that the levels “are logically and causally related”, he also says that
“the three levels are only rather loosely related” (Marr 1982, p. 25). In contrast, recent approaches seem
to place a tighter connection between the levels.
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I elucidate a novel way in which T&G’s unification can be analysed by focusing,
not only on its compatibility with the set-theoretic and geometric approaches, but
additionally on its evidential support, and I suggest that the value of this unification
is that it can facilitate a choice between these approaches. In particular, instead of
focusing on simplicity and generality as T&G do, I suggest focusing on Myrvold’s
(2003, 2017) mutual-informational-relevance criterion, which better captures the
sense in which the Bayesian unification of the exponential gradient and directionality
contributes to further investigations with a similarity-based model.

4 Mutual Informational Relevance

On Myrvold’s (2003, 2017) approach, unificatory power is measured by how well a
theory makes a set of phenomena14 mutually inform each other. He uses a Bayesian
notion of information, according to which the degree of information that one propo-
sition, p, yields about another proposition, q, is a matter of how probabilistically
dependent q is on p (or vice versa), that is, “how much we learn about whether or
not q is true when we learn that p is true” (Myrvold 2003, ibid.)15.

More specifically, the unificatory power, UP , of a theory, T , associated with two
descriptions of phenomena, p1 and p2, is a measure of the informational relevance,
I , between p1 and p2, in light of T , in contrast to how informationally relevant
p1 and p2 are to each other without regards to T . Formally: UP(p1, p2; T ) =
I (p1, p2|T ) − I (p1, p2) (cf. Myrvold, 2003, Eq. 8)16. In particular, the degree to
which p2 is informationally relevant to p1 is defined in terms of probabilistic depen-
dencies. When a theory, T , renders p2 informationally relevant to p1, then given T ,
learning that p2 is true makes it either more or less probable that p1 is true. Con-
versely, T fails to unify p1 and p2 when the truth of p2 makes it no more or less
probable that p1 is true. To contrast the unificatory power of T with an alternative the-
ory, T ′, the comparative measure,UPc(p1, p2; T , T ′) = I (p1, p2|T )−I (p1, p2|T ′),
can be used (cf. Myrvold, 2017, Eq. 7)17. For additional formal details, the reader is
referred to Myrvold (2003).

14Myrvold’s original notation involves multiple uses of the variable p, which sometimes refers to either
a ‘proposition’ or a ‘phenomenon’, a ‘hypothesis’, a ‘sub-theory’ or a ‘body of evidence’. Henceforth, I
use p to represent a proposition describing a phenomenon because the relevant degree-of-belief function,
Pr(·|·), takes propositions (i.e., not phenomena themselves) as its arguments.
15An equivalent account of unification has been independently proposed by McGrew (2003), although he
calls it ‘theoretical consilience’.
16In his original notation, Myrvold includes a variable representing a theoretical background, b. It is com-
mon to assume that the background is already accepted as a rational agent’s total knowledge, so that
Pr(b) = 1. I adopt this assumption for matters of simplicity, and avoid explicit mention of b when
explaining Myrvold’s proposal to identify unificatory power with a measure of informational relevance or
probabilistic dependence.
17Myrvold (2003) extends this towards multiple phenomena, but the basic principle of unification is the
same. Brössel explicates this measure based on Keynes’s coefficient of dependence. He characterises UP

as a “deviation from [conditional] independence” (Brössel 2015, p. 522).
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To figure out how much more T can render two propositions informationally rele-
vant to each other, as opposed to T ′, one needs to consider the extent to which p1’s
and p2’s being mutually informationally relevant under T exceeds the extent of p1’s
and p2’s being mutually informationally relevant under T ′. This can be measured by
UPc. In terms of probabilistic dependence, what UPc says is that the degree to which
T is more unifying than T ′ depends on how much more probabilistically dependent
p1 and p2 are given T , as opposed to how probabilistically dependent they are in
light of its theoretical alternative, T ′.

Myrvold’s (2003) example is the shift from a bare-bones geocentric hypothesis
to a heliocentric hypothesis. The important difference is that there are aspects of
apparent planetary motion that can be anticipated by the latter but not by the former.
On the bare-bones geocentric hypothesis, there is no explanatory relation between a
planet’s motion on its epicycle and the motion of the Sun, since each planet’s epicycle
travels along a separate circle near Earth; so features of one planet’s apparent motion
give little to no information about the features of other planet’s apparent motions
(i.e., I (p1, p2|hp) = 0). In contrast, on the heliocentric hypothesis, all planets orbit
around the sun. Due to the additional consideration of the motion of the observer’s
vantage point from Earth around the Sun, features of one planet’s apparent motion
become informative about features of the apparent motions of other planets (i.e.,
I (p1, p2|hc) > 0). Therefore, the heliocentric hypothesis unifies statements about
the motions of the Sun and statements about the motions of other planets better than
the bare-bones geocentric hypothesis (i.e., UPc(p1, p2; hc, hp) > 0).

5 Unifying Generalisation

In this section, I rely on Myrvold’s approach to identify more precisely in what sense
T&G’s (2001) Bayesian model of concept learning has unificatory merit. Let p1 be
Shepard’s observational statement, that the probability of a subject to confuse x and
y decreases exponentially with an increase in the dissimilarity between them. Let
p2 be Tversky’s observational statement that subjects are sometimes more or less
likely to confuse the pair (a, b) than the pair (b, a). Let T be T&G’s Bayesian model
of concept learning, T ′ Shepard’s geometric model and T ′′ be Tversky’s feature-
matching model. From the previous section, we know that if T renders p1 more
probabilistically dependent on p2 than either T ′ or T ′′, then it unifies them better.

First of all, when considered in isolation, p1 and p2 seem to be probabilistically
independent of each other. Knowing that patterns of generalisation take an exponen-
tial shape does not make it more or less probable that patterns of generalisation will be
directional. Likewise, knowing that patterns of generalisation behaviours are some-
times directional does not seem to make it more or less probable that generalisation
is exponential. Therefore, p1 and p2 are mutually informationally irrelevant.

With regards to Shepard’s approach, the two descriptions of the exponential
and directionality patterns of behaviour remain disunified because the additional
assumption that dimensions obtain weights remains informationally irrelevant to the
exponential form of the distance function. Changing the weight of the dimension
will produce a change in geometric distance between any two points on it, but such
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a change does not bear upon the exponential form of the generalisation function.
In other words, knowing that dimensions obtain feature weights provides no reason
to expect that generalisation decreases exponentially with an increase in geomet-
ric distance. Furthermore, adjustments in weights and directionality do not naturally
follow from adjustments in geometric distance; so it cannot be anticipated that gen-
eralisation will be directional if it is an exponential function of geometric distance.
Correspondingly, p1 and p2 remain probabilistically independent in light of T ′.

With regards to Tversky’s approach, p1 and p2 become negatively probabilisti-
cally dependent because the relationship between similarity (i.e., generalisation) and
matching features in Eq. 1 is linear; this naturally lowers the expectation that gen-
eralisation will have an exponential shape. Correspondingly, given Tversky’s model,
the truth of p2 makes it less probable that p1 is true.

Considering T , the dependencies are different. Recall that T predicts p1 by replac-
ing the likelihood function in Bayes’ theorem with the size principle (2). If we adopt
the size principle as a specification of the likelihood function when computing pos-
terior probabilities, we can expect that the sum in Eq. 3 decreases exponentially with
an increase in the size of a consequential subset. Furthermore, T predicts p2, since
the posterior probabilities in Eq. 3 are defined as conditional probabilities, and so
they are likely to be different from the posterior probabilities in Eq. 5. T renders p1
positively probabilistically relevant to p2, since the occurrence of p1 makes it more
likely for p2 to occur, insofar as p1 is a feature of the size principle and associated
with the likelihood function in Bayes’ theorem, which implies the definition of condi-
tional probability and therefore makes directionality likely. The exponential gradient
becomes more informationally relevant to directionality under the Bayesian analysis
than it was before because now p2 can be anticipated when p1 is the case.

Considering Myrvold’s (2003, 2017) comparative measure of unification, UPc,
we have:

UPc(p1, p2; T ′′, T ′) = I (p1, p2|T ′′) − I (p1, p2|T ′) < 0;
UPc(p1, p2; T , T ′) = I (p1, p2|T ) − I (p1, p2|T ′) > 0;
UPc(p1, p2; T , T ′′) = I (p1, p2|T ) − I (p1, p2|T ′′) > 0.

Thus, T&G’s model unifies p1 and p2 better than Shepard’s and Tversky’s models
do because T ’s unificatory power is always greater than the unificatory power of its
competitors.

One might wonder in how far the two empirical propositions are more related in
the Bayesian framework than by the addition of a weighting scheme on a geomet-
ric space18 since the exponential gradient follows only from the specific version of
the likelihood function, the size principle, which is in a sense symmetric19 while
directionality only follows from hypotheses averaging in Eq. 3, which is subject to
conditional probabilities but not to the size principle as such. In response, recall that
directionality is built into the Bayesian framework based on the definition of condi-

18I am grateful to an anonymous reviewer for asking me to clarify this point.
19Although likelihoods can be different for different concepts, it follows from the formal structure of Eq. 2
that, when holding fixed the size of C, having x (or y) in one direction will be equally likely as in the other
direction of the comparison.
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tional probability, and so directionality comes out necessarily as a result of adopting
the Bayesian framework. It is an analytic result. In contrast, adding weights to the
dimensions in a geometric model is in a sense ad hoc, since it does not follow from
the geometric approach; it just makes the accommodation of directionality work.
In other words, adding weights is not a core part of the geometric model, but the
definition of conditional probability is a core part of the Bayesian framework. Fur-
thermore, the rationale that motivates the size principle comes out of an analogy to
Bayesian confirmation theory, where the confirmatory effect on a hypothesis is com-
monly greater upon the discovery of surprising evidence (as opposed to unsurprising
evidence). Whether E confirms H depends on whether E is more probable condi-
tional on H than unconditionally so that E is more expected if it were known that H
was true. E confirms H if E is unexpected without H , but would be expected if H

was true. This condition identifies with the size principle. It is surprising to randomly
observe a particular fly agaric mushroom since there are many more different kinds
of mushrooms to be found. However, finding a fly agaric mushroom would not be
surprising if it was known that it was sampled as an example from the concept FLY
AGARIC MUSHROOM. Or, at least, it would be a less surprising observation than if it
was known that it was sampled as an example from the concept MUSHROOM. This
is because the latter concept allows for many more possibilities of a mushroom to be
like than this particular fly agaric mushroom. As a consequence of the confirmatory
effect of surprising evidence, the observation of the fly agaric mushroom will con-
firm the hypothesis that it was sampled from FLY AGARIC MUSHROOM significantly
more than the hypothesis that it was sampled from MUSHROOM. This coincides with
the size principle, according to which a piece of evidence imposes a greater confir-
matory effect on a hypothesis about a smaller concept, as opposed to a hypothesis
about a larger concept, and generally, that the increase in the degree of confirmation
is inversely proportional to the increase in the size of the concept.

However, this only shows that the proportionality component of the size princi-
ple (i.e., the fact that smaller concepts are relatively better confirmed by the limited
evidence than larger concepts) draws analogies to Bayesian confirmation theory. The
exponential component (i.e., the condition that the mapping from concept size to
degree of confirmation increases exponentially with an increase in the number of
instances) is an empirically motivated assumption, and not part of Bayesian confir-
mation theory itself. The sense in which the empirical propositions characterising the
exponential gradient and directionality are more related in the framework of Bayesian
inference is that, if one assumes the Bayesian framework and the exponential compo-
nent, then one expects both directionality and exponential gradient effects to occur,
while one would not do so when adopting only either Shepard’s or Tversky’s models.

6 A Possible Contribution toModel Selection

The implication for the heuristic value of this approach can be precisely stated by
focusing on the indirect confirmation of two competing models that initially obtain
equal evidential support. The idea, borrowed from Colombo & Hartmann (2017), is
that by having available a Bayesian model that unifies them in some sense, a choice
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can be made in virtue of the relations between the competing models and the unifying
Bayesian model. Let T ′ and T ′′ be Shepard’s and Tversky’s competing models, and
T is T&G’s unifying Bayesian model. Following Colombo & Hartmann, T ′ will be
indirectly better confirmed than T ′′ when the following conditions are jointly met.

1. T ′ is more coherent with T than T ′′.
2. T is itself better confirmed by the total evidence than either T ′ or T ′′.
3. There is an asymmetry in the a-priori plausibility of T ′ and T ′′.
4. There is an asymmetry in how well T ′ and T ′′ are directly supported by the

independent pieces of evidence.

If (1)-(4) are jointly met, then due to the greater coherence with T , T ′ obtains
additional indirect support over T ′′, despite the lack of greater direct support by the
evidence.

There are reasons to think that these conditions are met. Basically, (2) seems to be
met, since, due to its unificatory power, T&G’s model is overall better confirmed. On
Myrvold’s approach, unification is inherently related to evidential support, if, on the
one hand, the pieces of evidence are independent, so that I (p1, p2) = 0 (and this is
the case in our example), and assuming, on the other hand, they are additive, so that
I (q, p1) = I (q, p1&p2)+ I (q, p2). Under these conditions, Myrvold (2003, p.412)
defines the mutual support by a set of pieces of evidence, e1 and e2, as follows:

Definition 6.1 (mutual evidential support) I (T , e1&e2) = I (T , e1) + I (T , e2) +
UP(e1, e2; T ).

Thus, unificatory power acts in favour of the theory by adding the quantity UP

to the degree of support obtained from e1 and e2 individually20; so the degree to
which T unifies the evidence better than competing approaches coincides with the
degree to which it is thereby better confirmed. As a consequence, since T&G’s model
unifies the exponential gradient and directionality more than Shepard’s and Tversky’s
models do, it is overall better confirmed.

Furthermore, (3) seems to be met because T ′ and T ′′ are a priori unequally prob-
able, depending on the paradigm one adopts to model similarity representations. It
is commonly assumed that perceptual contents have a continuous structure because
perceptual experiences seem to have contents that often cannot be clearly differen-
tiated from one another (Beck 2019; Haugeland 1981). For example, the perceptual
experience associated with two blue colour shades allows for more fine-grained dis-
tinctions than a distinction between the concepts AQUAMARINE and TURQOISE. On

20T ’s obtaining additional evidential support by conjoining the information from e1 and e2 is due to a
formal correspondence between UP and the probability ratio measure of confirmation: Pr(H |E)/P r(H)

(Keynes 1921). Accordingly, H is confirmed by E if and only if the prior probability of H conditional on
E is greater than the prior unconditional probability of H , such that Pr(H |E) > Pr(H). So E confirms
H only if E is positively probabilistically dependent on H .
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the one hand, continuous dimensions can express such information about how much
more or less similar a pair of objects is because they have a natural zero point. In
contrast, the decomposition of objects into discrete sets of entities that either share a
target feature (e.g., being turquoise) or not fails to account for the continuous struc-
ture of perception (Barsalou 2008). On the other hand, discrete representations have
proven practical to model conceptual similarities and their sensitivity to contextual
changes (Shepard and Arabie 1979; Tversky and Gati 1978; Gati and Tversky 1984).
For instance, Tversky (1977) explains the greater similarity between Switzerland and
Italy within an expanded context including Uruguay and Brazil by appealing to the
greater influence of categorical background knowledge about their continental loca-
tion. Furthermore, Shepard and Arabie (1979, p. 89) find that “continuous spatial
representations [...] may not fully and explicitly reveal the discrete or categorical
nature of consonant phonemes [...], of kin and other category-specific terms [...], of
social structures or even, possibly, of continuously variable stimuli that are neverthe-
less psychologically ‘analyzable’ [...].” As these examples illustrate, the preference
for either paradigm to model similarity representations might find its origin in
what stimulus domain is targeted. For perceptual stimuli, the geometric paradigm is
often preferred, but to model conceptual stimuli, the set-theoretic approach might be
preferable.21

With regards to (4), there is reason to be optimistic, since there seem to be asym-
metries in the direct support that Shepard’s and Tversky’s models receive. Tversky’s
model is supported by observations of directionality effects, but not by the finding
that generalisation has an exponential shape (which is not accommodated). Con-
versely, finding an exponential gradient intuitively confirms Shepard’s model more
than finding directionality because Shepard’s model predicts the exponential gradi-
ent but its extended version merely accommodates directionality. Overall, none of
the independent pieces of direct support is clearly worth less than the other. Although
the discovery of directionality seems to be less general than the exponential gradi-
ent with regards to different species and modalities, it is robust and strongly verified
within the domain of human similarity judgement for both perceptual and conceptual
stimuli (Tversky 1977, 1978; Gati and Tversky 1984, 1987; Krumhansl 1978; Rosch
and Mervis 1975; Rips 1975). At the same time, evidence for exponential gradients
abounds in the domain of perception (Shepard 1987; Ghirlanda and Enquist 2003;
Cheng 2000; Frank 2018), but it is, to the best of my knowledge, sparse in the domain
of language. Although these asymmetries do not exactly resemble the perfect asym-
metries required by Colombo & Hartmann, they provide intuitive reasons to think
that a more complex account of indirect model selection covers the case at hand.

With regards to (1), the desired imbalance in the coherence-relations between
T&G’s model and either of the two competing models depends on how coherence is

21It is interesting to note the different perspective from Gärdenfors (2000), who sees as a major advantage
of the geometric approach that it links the continuous structure of perceptual representations with the
discrete structure of conceptual thought.
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interpreted. Colombo and Hartmann (2017, p. 472) understand coherence in terms of
fruitfulness, “where the fruitfulness of a model measures the number and importance
of theoretical and practical results it can produce.” Being coherent with a unifying
Bayesian model means being positively influenced in this way by seeing the cognitive
task as one of Bayesian inference.

It seems to be the case that Tversky’s directionality is less coherent with T&G’s
task description than Shepard’s exponential gradient in this sense. On the one hand,
Tversky’s model is not driven by analysing generalisation or similarity judgement
tasks as a Bayesian inference problem, and analysing the task in this way seems
to furnish no theoretical insight and/or practical application of Tversky’s approach
to directionality. This is because these approaches to directionality are unrelated.
Feature weights in Tversky’s account change due to the objects’ relative order and
prominence, but inferences change due to changes in the unconditional probabilities.
As previous applications have already shown, Shepard’s approach is very coherent
with the Bayesian analysis, which proves fruitful. The advantage of framing the prob-
lem of generalisation in terms of Bayesian inference and strong sampling is that
it allows a generalisation of Shepard’s law of generalisation outside the domain of
perception, such as word learning (Xu and Tenenbaum 2007).

If this analysis is correct, then on the basis of its greater coherence with T&G’s
unifying Bayesian model, the geometric model receives additional indirect evidential
support over the competing feature-matching model. This provides reasons to choose
the geometric model over the set-theoretic model to specify the conditions of hypoth-
esis individuation in the generalisation task and inference over concepts, while such
a choice could not be arrived at by considering the empirical evidence alone.

7 Conclusion

Bayesian models of cognition are often said to unify a variety of different aspects
of cognition. In this paper, I have focused on an influential Bayesian model by
Tenenbaum and Griffiths (2001) and two aspects associated with the capacity of
generalisation—the exponential gradient and directionality effects. Previously, Shep-
ard (1987) and Tversky (1977) had explained these aspects concerning two distinct
conceptions of similarity. From a Bayesian perspective, however, these aspects are
instances of one and the same Bayesian inference task. Tenenbaum and Griffiths
suggest that the virtue of this unification lies in its unbounded scope or simplicity. I
have argued that it bears an additional heuristic value in terms of Myrvold’s (2003)
informational-relevance criterion of unification.

This novel way of understanding the virtues of generalisation as a Bayesian infer-
ence task reveals its complementary relation to similarity-based explanations of
generalisation. I have only sketched one possible way in which these relationships
can be fruitful, based on their confirmatory import and coherence. Other possibilities
may be discovered.
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