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Ivana Vojnović2,4
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Abstract
A finite-dimensional RCD space can be foliated into sufficiently regular leaves, where
a differential calculus can be performed. Two important examples are given by the
measure-theoretic boundary of the superlevel set of a function of bounded variation
and the needle decomposition associated to a Lipschitz function. The aim of this paper
is to connect the vector calculus on the lower dimensional leaves with the one on the
base space. In order to achieve this goal, we develop a general theory of integration
of L0-Banach L0-modules of independent interest. Roughly speaking, we study how
to ‘patch together’ vector fields defined on the leaves that are measurable with respect
to the foliation parameter.
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1 Introduction

In the setting of metric measure spaces, the theory of L0-normed L0-modules was
introduced by Gigli in [27] and later refined in [26]. The goal was to develop a vec-
tor calculus in this nonsmooth framework, which could provide effective notions of
measurable 1-forms and vector fields. Indeed, one of the main objects of study in
[26, 27] is the cotangent module L0(T ∗X) over a metric measure space (X,d,m),
which is built upon the Sobolev space W 1,2(X) and comes naturally with a differ-
ential operator d : W 1,2(X) → L0(T ∗X). By duality, one then defines the tangent
module L0(TX). Both L0(T ∗X) and L0(TX) are L0(m)-Banach L0(m)-modules, see
Definition 2.13. The study of tangent and cotangent modules had remarkable ana-
lytic and geometric applications in the field of analysis on metric measure spaces,
especially in the fast-developing theory of metric measure spaces verifying synthetic
Riemannian Ricci curvature lower bounds, the so-called RCD spaces (see the survey
[2] and the references therein indicated). Due to this reason, the technical machinery
we develop in this paper is for L0-Banach L0-modules over a σ -finite measure space.
However, the language of L0-normed L0-modules is used in other research fields as
well. Let us give a brief historical account about other independent developments on
the theory of L0-normed L0-modules. The notion of L0(m)-normed L0(m)-module in
the sense of Gigli [27] is exactly the notion of a random normed module over R with
base (X , �,m) (RN module in short) that Guo introduced after the previous work on
probabilistic metric spaces by Schweizer and Sklar [47]. We refer the reader to Guo’s
contributions [31–36]. In these series ofworks aswell as inmany other papers,Guo and
his coauthors studied—in the case of σ -finite measure spaces—functional properties
of RN modules and random inner product spaces. Several topologies on the module
structure are studied. The concept of random inner product spaces shares similarities
with the functional-analytic machinery developed to study the modules L0(T ∗X) and
L0(TX) in the infinitesimal Hilbertian setting in [27]. For another independent work
see also the work by Haydon, Levy and Raynaud [37]. For the purpose of this paper,
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On the integration of L0-Banach L0-modules...

since our study is motivated by application to RCD theory and nonsmooth differential
geometry, we use the language in [27].

Let us consider a disjoint measure-valued map q �→ μq on a measurable space
(X, �). Roughly speaking, the measures μq are concentrated on pairwise disjoint
measurable subsets ofX andvary in ameasurablewaywith respect to the parameterq ∈
Q, where (Q,Q, q) is a given measure space; see Definition 2.3. In Definition 3.1 we
propose a notion of L0-Banach L0-module bundle ({Mq}q∈Q,�,�) consistent with
q �→ μq . Shortly said, eachMq is an L0(μq)-Banach L0(μq)-module, while� and�

are families of test sections and test functions, respectively, which are used to declare
which sections Q � q �→ vq ∈ Mq are measurable. The space of all measurable
sections of ({Mq}q∈Q,�,�) is then denoted by

´
Mq dq(q) and called the integral of

({Mq}q∈Q,�,�); seeDefinition 3.4. The space
´
Mq dq(q) has a structure of L0(μ)-

Banach L0(μ)-module, where we define μ := ´
μq dq(q). Conversely, it is also

possible to disintegrate a given countably-generated L0(μ)-Banach L0(μ)-module
M , thus obtaining an L0-Banach L0-module bundle whose integral is the original
space M ; this claim is proved in Theorem 3.8 (and see also Theorem 3.9).

We now discuss the applications of the above machinery to the vector calculus on
metric measure spaces verifying lower Ricci bounds. Let (X,d,m) be an RCD(K , N )

space, where K ∈ R and N ∈ [1,∞). We focus on two different classes of folia-
tions (of a portion) of X: the codimension-one level sets of a function of bounded
variation (BV function, for short) and, somehow dually, the one-dimensional needle
decomposition induced by a Lipschitz function. More in details:

(a) TheFleming–Rishel coarea formula proved byMiranda Jr. in [43] states that, given
a BV function f ∈ BV (X), the total variation measure |D f | coincides with the
‘superposition’

´
R

P({ f > t}, ·) dt of the perimeter measures of the superlevel
sets { f > t}; see Theorem 2.22. The fact that the level sets { f > t} can be
regarded as codimension-one objects is corroborated by the results of [1] (see also
[13]). Moreover, as shown in [21], the regularity of RCD spaces guarantees that
(sufficiently many) vector fields can be ‘traced’ over the essential boundary of a set
of finite perimeter E , thus obtaining the space L0

P(E,·)(TX). In particular, one can

define the unit normal νE ∈ L0
P(E,·)(TX) to E , as proved in [14]. More generally,

one can construct the space of |D f |-a.e. defined vector fields L0|D f |(TX)whenever
f ∈ BV (X), see [12]. With this said, in Theorem 4.4 we will prove that

L0|D f |(TX) ∼=
ˆ

L0
P({ f >t},·)(TX) dt for every f ∈ BV (X), (1.1)

once the family R � t �→ L0
P({ f >t},·)(TX) is made into an L0-Banach L0-module

bundle, in a suitable way. To be precise, (1.1) is not entirely correct as it is written,
since the measure-valued map t �→ P({ f > t}, ·) is not necessarily disjoint due
to the possible presence of the jump part of |D f |; this technical subtlety will
be dealt with in Proposition 4.3. Notice that one can regard (1.1) as a Fubini-
type theorem for measurable vector fields. Similar results, but without integrals
of L0(μ)-Banach L0(μ)-modules, previously appeared in [9] (for the squared
distance functions from a point) and in [12] (for arbitrary BV functions).
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(b) Klartag’s localisation technique [40] has been generalised from the Riemannian
setting to metric measure spaces verifying synthetic lower Ricci bounds, see the
survey [16] and the references therein. Given a 1-Lipschitz function u : X → R,
the so-called transport set Tu can be partitioned (up tom-null sets) into the images
Xα of suitable geodesics γα , which are the gradient flow lines of−∇u in a suitable
sense. The restriction m|Tu of the reference measure m to Tu can be disintegrated
as m|Tu =

´
mα dq(α), where each mα = hαH1 is a measure concentrated on

Xα . As proved in [18], the ‘needles’ (Xα,d, hαH1) are RCD(K , N ) spaces. The
intuition suggests that the tangent module L0(TXα) is one-dimensional and that
a Lipschitz function f : X→ R induces a vector field ∂α f ∈ L0(TXα), which is
obtained by differentiating f ◦ γα . This is made precise by Theorem 4.5, which
says that

ˆ
L0(TXα) dq(α) ∼= 〈∇u〉Tu , (1.2)

where 〈∇u〉Tu ⊆ L0(TX) is the L0(m|Tu )-Banach L0(m|Tu )-module gener-
ated by ∇u, and for any Lipschitz function f : X → R the superposition´

∂α f dq(α) ∈ ´
L0(TXα) dq(α) corresponds, via the identification in (1.2), to

the element −〈∇ f ,∇u〉∇u ∈ 〈∇u〉Tu .

Finally, in Theorem 4.9 we combine the two different foliations of X we described
above.Assumingm(X) < +∞ for simplicity andfixed a 1-Lipschitz functionu : X→
R with m(X\Tu) = 0, we know from Theorems 4.4 and 4.5 that

´
P({u > t}, ·) dt ∼=

L0(TX) and
´

L0(TXα) dq(α) ∼= 〈∇u〉X, respectively. Via these identifications, we
can prove that

´
∂αu dq(α) corresponds to − ´

ν{u>t} dt .

2 Preliminaries

Throughout the whole paper, our standing convention (unless otherwise specified) is
that

all the measures under consideration are σ -finite.

Moreover, in this paper a ring R is not assumed to have a multiplicative identity.
However, when the identity 1R exists, then we require that each R-module M verifies
1R · v = v for every v ∈ M .

Given a collection of non-empty sets A
 = {Aq}q∈Q , we define the space of its
sections as

S (A
) :=
∏

q∈Q

Aq .

In the case where each Aq is a ring (resp. a vector space), the product space S (A
)

is a ring (resp. a vector space) with respect to the componentwise operations.
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Remark 2.1 Let R
 = {Rq}q∈Q be a collection of commutative rings. For any q ∈ Q,
let Mq be a module over Rq . ThenS (M
) has a natural structure of module over the
ring S (R
). �

Let (Q,Q, q) be ameasure space. Let A
 = {Aq}q∈Q be rings (resp. vector spaces).
Then

Nq :=
{
v ∈ S (A
)

∣∣∣ {q ∈ Q : vq �= 0} ⊆ N for some N ∈ Q with q(N ) = 0
}

is a two-sided ideal (resp. a vector subspace) ofS (A
). Therefore, the quotient space

Sq(A
) := S (A
)/Nq

is a ring (resp. a vector space). We denote by πq : S (A
) → Sq(A
) the quotient
map.

According to this notation, we denote by Sq(R) the set of all the (possibly non-
measurable) functions from Q to R, quotiented up to q-a.e. equality.

Remark 2.2 Let (Q,Q, q) be a measure space and let R
, M
 be as in Remark 2.1.
Then the vector space Sq(M
) inherits a natural structure of module over the ring
Sq(R
). �

2.1 Integration and disintegration of measures

Let (X, �,μ)be ameasure space. Thenwedenote by L0(μ) the space of all real-valued
measurable functions onX, quotiented up toμ-a.e. identity. The space L0(μ) is a Riesz
space, where we declare that f , g ∈ L0(μ) satisfy f ≤ g if and only if f (x) ≤ g(x)

for μ-a.e. x ∈ X. Moreover, L0(μ) is Dedekind complete, which means that every
order-bounded set { fi }i∈I ⊆ L0(μ) admits both a supremum

∨
i∈I fi ∈ L0(μ) and

an infimum
∧

i∈I fi ∈ L0(μ) (see for instance [24]). We also denote by L0(�) the
space of all real-valued measurable functions on X, while πμ (or [·]μ) stands for the
canonical projection map L0(�)→ L0(μ). Given any E ⊆ X, we denote by 1E its
characteristic function. If E ∈ �, then we denote 1μ

E := [1E ]μ.
The space L0(μ) becomes a complete topological vector space and topological ring

if endowed with the topology that is induced by the following distance:

dL0(μ)( f , g) :=
ˆ
| f − g| ∧ 1 dμ̃ for every f , g ∈ L0(μ),

where μ̃ ≥ 0 is some finite measure on (X, �) with μ � μ̃ ≤ μ. When μ is finite,
we take μ̃ = μ.

We define a notion of a disjoint measure-valued map, which we will use throughout
the paper:

Definition 2.3 (Measure-valued map) Let (Q,Q, q) be a measure space and (X, �)

a measurable space. Let μ
 = {μq}q∈Q be a collection of measures on (X, �). Then
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we say that q �→ μq is a (measurable) measure-valued map from Q to X provided
the following conditions hold:

i) The function Q � q �→ μq(E) ∈ [0,+∞] is measurable for every E ∈ �.
ii) The measure μ := ´

μq dq(q) : �→ [0,+∞] is σ -finite, where we define

( ˆ
μq dq(q)

)
(E) :=

ˆ
μq(E) dq(q) for every E ∈ �.

We say that q �→ μq is a disjoint measure-valued map if there exists a family
{Eq}q∈Q ⊆ � of pairwise disjoint sets such that μq(X\Eq) = 0 for every q ∈ Q and⋃

q∈A Eq ∈ � for every A ∈ Q.

If f : X → [0,+∞] is measurable, then Q � q �→ ´
f dμq ∈ [0,+∞] is

measurable and
ˆ

f dμ =
ˆ (ˆ

f dμq

)
dq(q).

The verification of this claim can be obtained by using the monotone convergence
theorem.

Example 2.4 Let (Q,Q, q) be a measure space. Let us also consider the one-point
probability space ({o}, δo). Then q �→ δ(q,o) is a disjoint measure-valued map from
Q to Q × {o} and

q⊗ δo =
ˆ

δ(q,o) dq(q).

Notice also that the measure q⊗ δo can be canonically identified with q. �
Remark 2.5 Given any outer measure ν on X, the following implication holds:

μq � ν for q-a.e. q ∈ Q �⇒
ˆ

μq dq(q)� ν. (2.1)

Indeed, if N ∈ � satisfies ν(N ) = 0, then trivially
( ´

μq dq(q)
)
(N ) =´

μq(N ) dq(q) = 0. �
Definition 2.6 Let (Q,Q, q) be a measure space, (X, �) a measurable space, q �→
μq a disjoint measure-valued map from Q to X. Then we define L0(q; L0(μ
)) :=
πq

(
L0(q; L0(μ
))

)
, where L0(μ
) := {L0(μq)}q∈Q and

L0(q; L0(μ
)):=
{

f ∈ S (L0(μ
))

∣∣∣ ∃F ∈ L0(�) : [F]μq= fq for q-a.e. q ∈ Q
}
.

We have that, letting μ := ´
μq dq(q) for brevity, the following identification is in

force:

L0(q; L0(μ
)) ∼= L0(μ).
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The following result makes this assertion precise:

Proposition 2.7 Let (Q,Q, q) be a measure space, (X, �) a measurable space,
q �→ μq a disjoint measure-valued map from Q to X. Let us define the mapping
īq : L0(�)→ L0(q; L0(μ
)) as

īq(F̄)q := [F̄]μq for every F̄ ∈ L0(�) and q ∈ Q.

Moreover, letting μ := ´
μq dq(q), we define iq : L0(μ)→ L0(q; L0(μ
)) as

iq(F) := πq

(
īq(F̄)

)
for every F ∈ L0(μ) and F̄ ∈ L0(�) such that F = [F̄]μ.

Then iq is a linear and ring isomorphism. We denote by jq : L0(q; L0(μ
))→ L0(μ)

its inverse.

Proof The map iq is well-defined. Indeed, let F̄1, F̄2 ∈ L0(�) be such that [F̄1]μ =
[F̄2]μ = F . In particular, [F̄1]μq = [F̄2]μq for q-a.e. q. Hence, πq

(
īq(F̄1)

) =
πq

(
īq(F̄2)

)
. The fact of being a linear and ring homomorphism follows directly from

similar properties for [·]μ,[·]μq , πq. We check surjectivity. Let f ∈ L0(q; L0(μ
)) and
let f̄ ∈ L0(q; L0(μ
)) be such that f = πq( f̄ ). Hence, there exists F̄ ∈ L0(�) such
that [F̄]μq = f̄q for q-a.e. q ∈ Q. Define F := [F̄]μ. Then, it can be readily checked
that iq(F) = f . ��
Lemma 2.8 Let (Q,Q, q) be a measure space and (X, �) a measurable space. Let
q �→ μq be a disjoint measure-valued map from Q to X. Let (Fn)n∈N ⊆ L0(�)

and F ∈ L0(�) be given, where we denote μ := ´
μq dq(q). Then the following

conditions are equivalent:

i) F(x) = limn Fn(x) for μ-a.e. x ∈ X.
ii) For q-a.e. q ∈ Q, it holds that F(x) = limn Fn(x) for μq-a.e. x ∈ X.

Proof First of all, we point out that for any given set N ∈ � it holds that

μ(N ) = 0 ⇐⇒ μq(N ) = 0 for q-a.e. q ∈ Q.

The validity of this claim immediately follows from the identity μ(N ) = ´
μq(N ) dq

(q). In order to conclude, choose as N the set of all x ∈ X such that (Fn(x))n∈N does
not converge to F(x). ��
Remark 2.9 Let (Q,Q, q) be a measure space, (X, �) a measurable space, and q �→
μq a disjoint measure-valued map from Q to X. Fix a measurable function φ : Q →
(0, 1) such that

´
φ dq < +∞ and define q̃ := φ q. Next, fix any ρ : X → (0, 1)

measurable such that
´´

ρ dμq dq̃(q) < +∞. Therefore, letting μ̃q := ρμq , we
have that q �→ μ̃q is a disjoint measure-valued map and set μ̃ := ´

μ̃q dq̃(q). Since
(almost) all the measures we marked with a tilde are finite, and we have

q� q̃ ≤ q, μ� μ̃ ≤ μ, μq � μ̃q ≤ μq
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by construction, it will not be restrictive to assume that the measures q, μ, μq are
finite. �

2.2 The theory of L0-BanachA -modules

By an algebra we mean an associative, commutative algebra over the real field R that
is not necessarily unital. In particular, an algebra is both a vector space and a ring
(possibly without a multiplicative identity). By a subalgebra we mean a subset that is
closed under the vector space and ring operations. For example, given any measure
space (X, �,μ), the space L0(μ) is a unital algebra whose multiplicative identity is
1

μ
X. Our choice of this not-so-standard convention, but which is typical in analysis on

metric measure spaces (cf. for example [46]), is motivated by the fact that – due to
integrability issues when the reference measure is not finite – it is necessary to work
with algebras of functions (such as LIPbs(X) or Test(X)) that are not unital (unless
the metric space X is bounded).

Observe that if (X, �,μ) is a measure space andA is a subalgebra of L0(μ), then
the space

G(A ) :=
{∑

n∈N
1

μ
En

fn

∣∣∣∣ (En)n∈N ⊆ � partition of X, ( fn)n∈N ⊆ A

}

is a subalgebra of L0(μ). Moreover, the space ˆA is a subalgebra of L0(μ) as well,
where we set

ˆA := clL0(μ)

(
G(A )

)
.

Remark 2.10 Given any subalgebra A of L0(μ), one can easily check that

ˆA ∼= L0(μ|[A ]),

where [A ] ∈ � is (μ-a.e.) defined as the essential union of { f > 0} as f varies in
A . �

Example 2.11 The field R is canonically isomorphic to the subalgebra Rμ of L0(μ)

given by

Rμ :=
{
λ1

μ
X ∈ L0(μ)

∣∣ λ ∈ R
}
.

Observe also that R̂μ = L0(μ) thanks to Remark 2.10. �

Next, let us introduce a notion of L0-normedA -module that is a generalization of
[26, Definition 2.6] and can be seen as a special case of a RN space in the sense of [32,
Definition 3.1] with the additional assumption of module structure over an algebra
A ⊆ L0(μ).
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Definition 2.12 (L0(μ)-normed A -module) Let (X, �,μ) be a measure space. Let
A ⊆ L0(μ) be a subalgebra. Let M be both a module over A and a vector space
over R (with the same addition operator). Then we say that a map | · | : M → L0(μ)

is a pointwise norm if

|v| ≥ 0 for every v ∈M , with equality if and only if v = 0,

|v + w| ≤ |v| + |w| for every v,w ∈M ,

|λv| = |λ||v| for every λ ∈ R and v ∈M ,

| f · v| = | f ||v| for every f ∈ A and v ∈M ,

(λ f ) · v = λ( f · v) for every λ ∈ R, f ∈ A , and v ∈M ,

where all equalities and inequalities are intended in the μ-a.e. sense. WheneverM is
endowed with a pointwise norm | · |, we say thatM is an L0(μ)-normed A -module.

Notice that if 1μ
X ∈ A , then 1

μ
X · v = v for every v ∈M , whence it follows that

λv = (λ1
μ
X) · v for every λ ∈ R and v ∈M .

Each pointwise norm |·| : M → L0(μ) induces a distancedM onM , in the following
way:

dM (v,w) := dL0(μ)(|v − w|, 0) for every v,w ∈M . (2.2)

We consider M endowed with the distance dM (and the induced topology).

Definition 2.13 (L0(μ)-Banach A -module) Let (X, �,μ) be a measure space and
A ⊆ L0(μ) a subalgebra. Then an L0(μ)-normedA -moduleM is called an L0(μ)-
Banach A -module if dM is complete.

Notice that the L0(μ)-BanachA -modules withA = L0(μ) are exactly the L0(μ)-
normed L0(μ)-modules in the sense of [26, Definition 2.6] (indeed, in [26] L0(μ)-
normed L0(μ)-modules are assumed to be complete). Moreover, the L0(μ)-Banach
L0(μ)-module in Gigli’s axiomatization is precisely an RN module in the sense of
Guo and the topology induced by the metric dM is precisely the (ε, λ)-topology of
RN module (see [34]).

Definition 2.14 (Generators) Let (X, �,μ) be a measure space and M an L0(μ)-
Banach L0(μ)-module. Then a vector space V ⊆M generates M if G(V ) is dense
inM , where we set

G(V ) :=
{∑

n∈N
1

μ
En
· vn

∣∣∣∣ (En)n∈N ⊆ � partition of X, (vn)n∈N ⊆ V

}
. (2.3)

Moreover, we say that M is countably generated if it is generated by a separable
subspace.
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Example 2.15 Let ({o}, δo) be the one-point probability space. Then we have that

{
L0(δo)-Banach L0(δo)-modules

} = {Banach spaces},

in the sense which we are going to explain. First, observe that L0(δo) = Rδo can be
canonically identified with R. Given an L0(δo)-Banach L0(δo)-module M , we thus
have that the pointwise norm ‖ · ‖ := | · | : M → L0(δo) ∼= R can be regarded
as a norm. The resulting normed space M is in fact Banach, as follows from the
completeness of the distance dM (v,w) = ‖v − w‖ ∧ 1. �

We recall that, given two L0(μ)-Banach L0(μ)-modules M and N , an isomor-
phism of L0(μ)-Banach L0(μ)-modules is a map � : M → N that is L0(μ)-linear,
surjective and preserves the pointwise norm, i.e. |�(v)| = |v| as elements of L0(μ)

for every v ∈M .

Proposition 2.16 (Completion of an L0-normed A -module) Let (X, �,μ) be a mea-
sure space and A a subalgebra of L0(μ) such that ˆA = L0(μ). Let M be an
L0(μ)-normed A -module. Then there exists a unique couple (M̂ , ι) having the fol-
lowing properties:

i) M̂ is an L0(μ)-Banach L0(μ)-module,
ii) ι : M → M̂ is a linear map with generating image such that |ι(v)| = |v| for

every v ∈M .

The couple (M̂ , ι) is unique up to a unique isomorphism: given any couple (N , ι̃) with
the same properties, there is a unique isomorphism � : M̂ → N of L0(μ)-Banach
L0(μ)-modules such that

M M̂

N

ι

ι̃
�

is a commutative diagram. We say that M̂ is the completion of M .

Proof Recall Remark 2.10. The triple
(
L0(μ), L0(μ), L0(μ)

)
is a metric f -structure

in the sense of [42, Definition 2.24]; cf. with [42, Section 4.2.2]. Defining V :=M
and the map ψ : V → L0(μ)+ as ψ(v) := |v|, we obtain the statement by applying
[42, Theorem 3.19] to (V , ψ). ��
Remark 2.17 We point out that, although we consider L0(μ)-normed A -modules,
where A ⊆ L0(μ) is a subalgebra that does not have a unital element (for example
Test(X) in Theorem 4.4), this does not happen in the completion. Indeed, if (X,d, μ)

is an RCD(K , N ) space, we have that ˆTest(X) = L0(μ) (see Lemma 2.26 later and the
fact that μ � Cap). Thus, Proposition 2.16 gives that the completion has a module
structure over the algebra L0(μ), which has the unital element.

2.2.1 L0-Banach L0-modules with respect to a submodular outer measure

Let (X,d) be a metric space. We denote by B(X) the Borel σ -algebra of X. Fix an
outer measure ν on X. Given a Borel function f : X→ [0,+∞] and a set E ∈ B(X),
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one can define the integral of f on E with respect to ν via Cavalieri’s formula, i.e.

ˆ

E
f dν :=

ˆ +∞

0
ν({1E f ≥ t}) dt . (2.4)

Moreover, we say that:

• ν is boundedly-finite if ν(B) < +∞ for every B ∈ B(X) bounded.
• ν is submodular if ν(E ∪ F)+ν(E ∩ F) ≤ ν(E)+ν(F) for every E, F ∈ B(X).

It holds that the integral defined in (2.4) is subadditive, which means that

ˆ

X
( f + g) dν ≤

ˆ

X
f dν +

ˆ

X
g dν for every f , g : X→ [0,+∞] Borel,

if and only if ν is submodular. See [21] after [22].

Example 2.18 We are concerned with two types of boundedly-finite, submodular outer
measures:

i) The outer measure μ̄ induced via the Carathéodory construction, i.e.

μ̄(S) := inf
{
μ(E)

∣∣ E ∈ B(X), S ⊆ E
}

for every S ⊆ X,

by a boundedly-finite Borel measure μ ≥ 0 on a metric space (X,d).
ii) The Sobolev capacity Cap on a metric measure space (X,d,m).

We will introduce the Sobolev capacity in Sect. 2.3.1. �

Fix a metric space (X,d) and a boundedly-finite, submodular outer measure ν on X.
Then we denote by L0(ν) the space of all Borel functions from X to R, quotiented up
to ν-a.e. equality. In order to define a distance on L0(ν), fix an increasing sequence
(Un)n∈N of bounded open subsets ofXwith the following property: for any bounded set
B ⊆ X, there existsn ∈ N such that B ⊆ Un . In particular,wehave thatX =⋃

n∈N Un .
Then we define

dL0(ν)( f , g) :=
∑

n∈N

1

2n(ν(Un) ∨ 1)

ˆ

Un

| f − g| ∧ 1 dν for every f , g ∈ L0(ν).

The submodularity of the integration with respect to ν ensures that dL0(ν) is a distance.
Even though the distance dL0(ν) depends on the chosen sequence (Un)n , its induced
topology does not and makes L0(ν) into a topological vector space (see [21, Prop.
2.11]). Given a Borel measure μ on X such that μ� ν, we denote by πμ : L0(ν)→
L0(μ) the canonical projection map and by [ f ]μ ∈ L0(μ) the equivalence class of
a function f ∈ L0(ν). Moreover, in the framework of Example 2.18 i), we have that
L0(μ̄) = L0(μ) as topological vector spaces.

The following definition is adapted from [21, Definition 3.1]:
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Definition 2.19 Let (X,d) be a metric space and ν a boundedly-finite, submodular
outer measure on X. Let M be a module over L0(ν). Then | · | : M → L0(ν) is a
pointwise norm if

|v| ≥ 0 for every v ∈M , with equality if and only if v = 0,

|v + w| ≤ |v| + |w| for every v,w ∈M ,

| f · v| = | f ||v| for every f ∈ L0(ν) and v ∈M ,

where all equalities and inequalities are intended in the ν-a.e. sense. Whenever M is
endowedwith a pointwise norm |·|, we say thatM is an L0(ν)-normed L0(ν)-module.
When the distance

dM (v,w) := dL0(ν)(|v − w|, 0) for every v,w ∈M

is a complete distance on M , we say that M is an L0(ν)-Banach L0(ν)-module.

In view of Example 2.18 i), the above notion of a L0(ν)-normed/Banach L0(ν)-
module generalises Definitions 2.12 and 2.13 with A = L0(μ). Generalising
Definition 2.14, we say that a vector subspace V ⊆ M generates M if G(V ) is
dense inM , where G(V ) is defined as in (2.3) (with ν in place of μ).

In the case where μ � ν and M is a given L0(ν)-Banach L0(ν)-module, we can
‘quotientM up toμ-a.e. equality’, i.e. there is a natural L0(μ)-Banach L0(μ)-module
structure on the quotient

Mμ :=M / ∼μ, where v ∼μ w if and only if |v − w| = 0 holds μ-a.e. on X.

(2.5)

In analogy with (and, in fact, generalising) the notation for the spaces of functions,
we denote by πμ : M → Mμ the canonical projection map and by [v]μ ∈ Mμ the
equivalence class of v ∈M .

2.3 Calculus onmetric measure spaces

By a metric measure space (X,d,m) we mean a complete, separable metric space
(X,d) equipped with a boundedly finite Borel measure m ≥ 0. We denote by LIP(X)

(resp. LIPloc(X), resp. LIPbs(X)) the space of all Lipschitz (resp. locally Lipschitz,
resp. boundedly-supported Lipschitz) functions from X to R. The asymptotic slope
lipa( f ) : X→ [0,+∞) of f ∈ LIPloc(X) is defined as

lipa( f )(x) := lim
y,z→x

| f (y)− f (z)|
d(y, z)

for every accumulation point x ∈ X

The local Lipschitz constant lip( f ) : X→ [0,+∞) of f ∈ LIPloc(X) is defined as

lip( f )(x) := lim
y→x

| f (y)− f (x)|
d(y, x)

for every accumulation point x ∈ X.
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In both cases, we use the convention that lipa( f )(x) := 0 and lip( f )(x) := 0 for
every isolated point x ∈ X. The Cheeger energy of (X,d,m), which was introduced
in [4] after [20], is the functional Ch : L2(m)→ [0,∞] given by

Ch( f ) := 1

2
inf

{
lim

n→∞

ˆ
lip2a( fn) dm

∣∣∣∣ ( fn)n∈N ⊆ LIPbs(X), πm( fn)→ f in L2(m)

}

for every f ∈ L2(m). The Sobolev space H1,2(X) is then defined as

H1,2(X) := {
f ∈ L2(m)

∣∣ Ch( f ) < +∞}
.

Given any f ∈ H1,2(X), there exists a unique non-negative function |D f | ∈ L2(m),
which is called the minimal relaxed slope of f , providing the integral representation

Ch( f ) = 1

2

ˆ
|D f |2 dm.

It holds that πm(LIPbs(X)) ⊆ H1,2(X) and |D f | ≤ lipa( f ) in them-a.e. sense for all
f ∈ LIPbs(X). The Sobolev space is a Banach space if endowed with the norm

‖ f ‖H1,2(X) :=
(‖ f ‖2L2(m)

+ ‖|D f |‖2L2(m)

)1/2 for every f ∈ H1,2(X).

However,
(
H1,2(X), ‖ · ‖H1,2(X)

)
needs not be a Hilbert space. Following [25], we say

that

(X,d,m) is infinitesimally Hilbertian if H1,2(X) is a Hilbert space.

In the infinitesimally Hilbertian setting, the carré du champ operator

H1,2(X)× H1,2(X) � ( f , g) �→ 〈∇ f ,∇g〉
:= |D( f + g)|2 − |D f |2 − |Dg|2

2
∈ L1(m)

is a bilinear operator. We say that a function f ∈ H1,2(X) has a Laplacian if there
exists a (necessarily unique) function � f ∈ L2(m) such that

ˆ
〈∇ f ,∇g〉 dm = −

ˆ
g � f dm for every g ∈ H1,2(X).

We denote by D(�) the space of all those functions f ∈ H1,2(X) having a Laplacian.
The following definition is essentially taken from [26, 27]:

Definition 2.20 (Tangent module) Let (X,d,m) be an infinitesimally Hilbertian met-
ric measure space. Then there exists a unique (up to a unique isomorphism) couple
(L0(TX),∇), where:

i) L0(TX) is an L0(m)-Banach L0(m)-module.
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ii) ∇ : H1,2(X)→ L0(TX) is a linear operator such that

|∇ f | = |D f | for every f ∈ H1,2(X),

{∇ f : f ∈ H1,2(X)} generates L0(TX).

The space L0(TX) is called the tangent module of (X,d,m) and ∇ the gradient
operator.

Thanks to the locality properties of theminimal relaxed slopes, the gradient operator
can be extended to all Lipschitz functions on X.

2.3.1 Functions of bounded variation on PI spaces

We recall the notion of function of bounded variation on a metric measure space. The
following definition was introduced in [3] after [43].

Definition 2.21 (BV space) Let (X,d,m) be ametricmeasure space and f ∈ L1
loc(X).

Given any open set U ⊆ X, we define the total variation of f on U as

|D f |(U ) := inf

{
lim

n→∞

ˆ

U
lipa( fn) dm

∣∣∣∣ ( fn)n∈N ⊆ LIPloc(U ) ∩ L1(U ),

fn → f in L1
loc(U )

}
. (2.6)

Then we say that f is of bounded variation if |D f |(X) < +∞. We define the space
BV (X) as

BV (X) := {
f ∈ L1(m)

∣∣ |D f |(X) < +∞}
.

Moreover,we say that E ⊆ XBorel is a set of finite perimeter if P(E) := |D1E |(X) <

+∞.

Given any function f ∈ L1
loc(X) of bounded variation, there exists a unique finite

Borel measure on X, still denoted by |D f |, which extends the set-function on open
sets we defined in (2.6). In the case where f = 1E for some set of finite perimeter
E ⊆ X, we write P(E, ·) := |D1E | and we call P(E, ·) the perimeter measure of E .
The following result is taken from [43]:

Theorem 2.22 (Coarea formula) Let (X,d,m) be a metric measure space and let
f ∈ BV (X). Then t �→ P({ f > t}, ·) is a measurable measure-valued map from R

to X. Moreover, it holds that

|D f | =
ˆ

R

P({ f > t}, ·) dt .
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Following [21, Definition 2.6] (which is a variant of [38, formula (7.2.1)]), we
define the Sobolev capacity on the space (X,d,m) as

Cap(E) := inf
f
‖ f ‖2H1,2(X)

for every set E ⊆ X,

where the infimum is taken over all functions f ∈ H1,2(X) satisfying f ≥ 1 m-a.e.
on some open neighbourhood of E . The Sobolev capacity Cap is a boundedly-finite,
submodular outer measure on X such that m� Cap. Moreover, it was proved in [12]
after [14] that

|D f | � Cap for every f ∈ L1
loc(X) of bounded variation, (2.7)

thus in particular P(E, ·)� Cap for every set of finite perimeter E ⊆ X.
Even though the basic theory of BV functions is meaningful on arbitrary metric

measure spaces, a much more refined analysis is available in the setting of PI spaces,
which we are going to introduce. We refer e.g. to [10, 38] for a thorough account of
this topic.

Definition 2.23 (PI space) Let (X,d,m) be a metric measure space. Then:

(i) We say that (X,d,m) is uniformly locally doubling if there exists a non-
decreasing function CD : (0,+∞)→ (0,+∞) such that

m(B2r (x)) ≤ CD(R)m(Br (x)) for every 0 < r < R and x ∈ X.

(ii) We say that (X,d,m) supports a weak local (1, 1)-Poincaré inequality if there
exist a constant λ ≥ 1 and a non-decreasing function CP : (0,+∞)→ (0,+∞)

such that for any function f ∈ LIP(X) it holds that

 

Br (x)

∣∣∣∣ f −
 

Br (x)

f dm

∣∣∣∣ dm ≤ CP (R) r
 

Bλr (x)

lipa( f ) dm

for every 0 < r < R and x ∈ X.
(iii) We say that (X,d,m) is a PI space if it is uniformly locally doubling and it

supports a weak local (1, 1)-Poincaré inequality.

Let (X,d,m) be a PI space. The upper density of a Borel set E ⊆ X at a point
x ∈ X is

�∗(E, x) := lim
r↘0

m(E ∩ Br (x))

m(Br (x))
∈ [0, 1].

The essential boundary of E is defined as the Borel set

∂∗E := {
x ∈ X

∣∣ �∗(E, x),�∗(X \ E, x) > 0
}
.
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Following [1], we define the codimension-one Hausdorff measure of a set E ⊆ X as

H(E) := lim
δ↘0

Hδ(E),

where for any δ > 0 we define

Hδ(E) := inf

{∑

n∈N

m(Brn (xn))

2rn

∣∣∣∣ (xn)n ⊆ X, (rn)n ⊆ (0, δ), E ⊆
⋃

n∈N
Brn (xn)

}
.

Both Hδ and H are Borel regular outer measures on X. If E ⊆ X is a set of finite
perimeter, then it was proved in [1] (and [6]) that the perimeter measure of E can be
written as

P(E, ·) = θEH|∂∗E ,

for some Borel density function θE : X → [γ, C], where the constants C ≥ γ >

0 depend exclusively on CD(·), CP (·), and λ. In particular, the perimeter measure
P(E, ·) is concentrated on ∂∗E .

Definition 2.24 (Precise representative) Let (X,d,m) be a PI space. Let f ∈ BV (X)

be a given function. Then the approximate lower limit f ∧ : X→ [−∞,+∞] and the
approximate upper limit f ∨ : X→ [−∞,+∞] of f are defined as

f ∧(x) := sup
{
t ∈ R

∣∣ �∗({ f < t}, x) = 0
}
,

f ∨(x) := inf
{
t ∈ R

∣∣ �∗({ f > t}, x) = 0
}

for every x ∈ X, respectively. We also define the Borel set X f ⊆ X as

X f := { f ∧ > −∞} ∩ { f ∨ < +∞}.

Finally, the precise representative f̄ : X f → R of f is the Borel function given by

f̄ (x) := f ∧(x)+ f ∨(x)

2
for every x ∈ X f .

Remark 2.25 Since { f > t} ⊆ { f ≥ t} ⊆ { f > s} for every s, t ∈ R with s < t , one
has that

f ∧(x) = sup
{
t ∈ R

∣∣ �∗({ f ≤ t}, x) = 0
}
,

f ∨(x) = inf
{
t ∈ R

∣∣ �∗({ f ≥ t}, x) = 0
}

for every x ∈ X. �
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It holds that m(X\X f ) = |D f |(X\X f ) = 0, so that |D f ||X f = |D f |, and that f̄
is an m-a.e. representative of f . The jump set J f ⊆ X f of f is defined as

J f :=
{

x ∈ X
∣∣ f ∧(x) < f ∨(x)

}
.

It holds that J f is contained in a countable union of essential boundaries of sets of
finite perimeter, thus in particular m(J f ) = 0. More precisely, for suitably chosen
(tn)n, (sn)n ⊆ R with tn �= sn ,

J f =
⋃

n∈N
∂∗{ f̄ > tn} ∩ ∂∗{ f̄ > sn}.

Furthermore, there exists a Borel function θ f : X→ [γ, C] such that

|D f ||J f = ( f ∨ − f ∧)θ f H|J f .

The following definition has been proposed in [5, Definition 6.1]. We say that the
metric measure space (X,d,m) is isotropic provided that, given two sets of finite
perimeter E and F , it holds that

θE = θF H-a.e. in ∂∗E ∩ ∂∗F . (2.8)

In the case where (X,d,m) is isotropic, we have that for any set G ⊆ X of finite
perimeter it holds

|D f ||J f ∩∂∗G = ( f ∨ − f ∧)P(G, ·)|J f . (2.9)

We refer to [8, 39] for the proofs of the above claims.

2.4 Calculus on RCD spaces

We assume the reader is familiar with the language of RCD(K , N ) spaces. Let us
only recall that an RCD(K , N ) space (X,d,m), with K ∈ R and N ∈ [1,∞), is
an infinitesimally Hilbertian metric measure space whose synthetic Ricci curvature
(resp. synthetic dimension) is bounded from below by K (resp. from above by N ),
in the sense of Lott–Sturm–Villani [41, 48]. Each RCD(K , N ) space is a PI space
(see [48] for the doubling condition and [44] for the Poincaré inequality). Moreover,
RCD(K , N ) spaces are isotropic. This has been observed in [11, Example 1.29]. For
more of this topic, see the survey [2] and the references therein.

Following [27] (after [45]), we consider the distinguished algebra of test functions
on X:

Test(X) := {
f ∈ LIP(X) ∩ D(�) ∩ L∞(m)

∣∣ |D f | ∈ L∞(m), � f ∈ H1,2(X)
}
.

The space Test(X) is dense in H1,2(X). Moreover, the following property holds:
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Lemma 2.26 Let (X,d,m) be anRCD(K , N ) space. ThenTest(X) generates L0(Cap).

Proof In fact, wewill prove the following claim, which is a stronger statement, namely
that if f : X → R is a Borel function and ε > 0 is given, then there exists a Borel
partition (En)n of X and ( fn)n ⊆ Test(X) such that

| f (x)− fn(x)| ≤ ε for every n ∈ N and x ∈ En . (2.10)

Indeed, from this claim the statement follows in the following way. Given F ∈
L0(Cap), let f be Borel such that [ f ]Cap = F . We fix ε > 0 and apply the claim hav-
ing En , fn as above. We define g :=∑∞

n=1 χEn fn and we have |G − F | ≤ ε Cap-a.e.
where G = [g]Cap. This gives dL0(Cap)(|G − F |, 0) ≤ ε, proving the statement. Let
us now prove the claim. First, we can find a Borel partition (En)n of X into bounded
sets and a sequence (λn)n ⊆ R such that | f −λn| ≤ ε on En . Using the results of [7],
for any n ∈ N we can find a test cut-off function fn ∈ Test(X) satisfying fn = λn on
an open ball containing En . Property (2.10) follows. ��

Given any f , g ∈ Test(X), we have that

〈∇ f ,∇g〉 ∈ H1,2(X).

In particular, we deduce that for any f ∈ Test(X) the function |D f | admits a
quasi-continuous representative QCR(|D f |) ∈ L0(Cap), cf. with [21]. Therefore,
the following result, which is taken from [21, Theorem 3.6], is meaningful:

Theorem 2.27 (Capacitary tangent module) Let (X,d,m) be an RCD(K , N ) space.
Then there exists a unique (up to a unique isomorphism) couple (L0

Cap(TX), ∇̄), where:

i) L0
Cap(TX) is an L0(Cap)-Banach L0(Cap)-module.

ii) ∇̄ : Test(X)→ L0
Cap(TX) is a linear operator such that

|∇̄ f | = QCR(|D f |) for every f ∈ Test(X),

{∇̄ f : f ∈ Test(X)} generates L0
Cap(TX).

The space L0
Cap(TX) is called the capacitary tangent module of (X,d,m).

The space Test(TX) ⊆ L0
Cap(TX) of test vector fields is then defined as

Test(TX) :=
{ n∑

i=1
gi ∇̄ fi

∣∣∣∣ n ∈ N, ( fi )
n
i=1, (gi )

n
i=1 ⊆ Test(X)

}
.

The space Test(TX) generates L0
Cap(TX). Given a Borel measure μ on X with μ �

Cap, we set

L0
μ(TX) := L0

Cap(TX)μ,
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where the right-hand side is defined as in (2.5). One can readily check that

L0
m(TX) ∼= L0(TX), with πm ◦ ∇̄ = ∇|Test(X).

Thanks to (2.7), we can consider L0|D f |(TX) whenever f ∈ L1
loc(X) is of bounded

variation.

3 Integration of L0-Banach L0-modules

In this section, we introduce a notion of L0-Banach L0-module bundle consistent with
a disjoint measure-valued map, which generalises the notion of strong Banach bundle
studied in [29].

First, we introduce a useful shorthand notation. Let (Q,Q, q) be a measure space,
(X, �) a measurable space, and q �→ μq a disjoint measure-valued map from Q to
X. Given any collection M
 = {Mq}q∈Q , where Mq is an L0(μq)-Banach L0(μq)-
module, and for any element v of S (M
) or of Sq(M
), we denote by

|v
| ∈ Sq(L0(μ
))

the (q-a.e. equivalence class of the) map sending q ∈ Q to |vq | ∈ L0(μq).

Definition 3.1 (L0-Banach L0-module bundle) Let (Q,Q, q) be a measure space,
(X, �) a measurable space, and q �→ μq a disjoint measure-valued map from Q to
X. Let (M
,�,�) be such that:

a) M
 = {Mq}q∈Q and each space Mq is an L0(μq)-Banach L0(μq)-module.
b) � is a subalgebra of L0(q; L0(μ
)) such that the subalgebra Gq(�) is dense in

L0(μ), where

Gq(�) :=
{∑

n∈N
jq(1

q
Sn

fn)

∣∣∣∣ (Sn)n∈N ⊆ Q partition of Q, ( fn)n∈N ⊆ �

}

⊆ L0(μ).

In particular, it holds that ĵq(�) = L0(μ).
c) � is a vector subspace of Sq(M
) that is also a module over jq(�) and verifies

|v
| ∈ L0(q; L0(μ
)) for every v ∈ �.

Then we say that (M
,�,�) is a L0-Banach L0-module bundle consistent with
q �→ μq .

Remark 3.2 Let us clarify why the elements of Gq(�) are well-posed. Fix a partition
(Sn)n ⊆ Q of Q and a sequence ( fn)n ⊆ �. Let Fn ∈ L0(μ), with representative
F̄n ∈ L0(�) be such that iq(Fn) = fn . Then iq(1

μ
Un

Fn) = 1
q
Sn

fn ∈ L0(q; L0(μ
)),
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where Un :=⋃
q∈Sn

Eq ∈ � and (Eq)q∈Q is the family from Definition 2.3. Further-

more, (Un)n are pairwise disjoint,
∑

n∈N 1Un F̄n ∈ L0(�), and
∑

n∈N jq(1
q
Sn

fn) =[∑
n∈N 1Un F̄n

]
μ
. �

One can readily check that the mapping | · | : �→ L0(μ), which we define as

|v| := jq(|v
|) ∈ L0(μ) for every v ∈ �,

is a pointwise norm on �. Therefore, the space � is an L0(μ)-normed jq(�)-module.

Remark 3.3 Each strong Banach bundle (in the sense of [29]) is in particular an L0-
Banach L0-module bundle, in the sense we are going to describe. Given a measure
space (Q,Q, q) and strong Banach bundle (B
,T) over (Q,Q, q), we can regard
(thanks to Example 2.15) each space Bq as an L0(δ(q,o))-Banach L0(δ(q,o))-module,
where ({o}, δo) is the one-point probability space. Recall also from Example 2.4 that
q �→ δ(q,o) is a disjoint measure-valued map from Q to Q × {o} and q ⊗ δo =´

δ(q,o) dq(q). Moreover, Rq ⊆ L0(q) ∼= L0(q ⊗ δo) ∼= L0(q; L0(δ(
,o))). There-
fore, up to the above identifications, (B
,T, Rq) is a L0-Banach L0-module bundle
consistent with q �→ δ(q,o). �

Definition 3.4 (Integral of an L0-Banach L0-module bundle) Let (Q,Q, q) be a mea-
sure space, (X, �) a measurable space, and q �→ μq a disjoint measure-valued map
from Q to X. Let (M
,�,�) be a L0-Banach L0-module bundle consistent with
q �→ μq . Then we define

´
Mq dq(q) as

ˆ
Mq dq(q) := completion of the L0(μ)-normed jq(�)-module �.

The L0(μ)-Banach L0(μ)-module
´
Mq dq(q) is referred to as the integral of

(M
,�,�). Given an element v ∈ ´ Mq dq(q), wewill often denote it by
´

vq dq(q).
Whenever we want to make explicit the choice of the classes � and �, we write
�(M
,�,�) instead of

´
Mq dq(q).

Theorem 3.5 (Identification of the integral) Let (Q,Q, q) be a measure space, (X, �)

a measurable space, and q �→ μq a disjoint measure-valued map from Q to X. Let
(M
,�,�) be an L0-Banach L0-module bundle consistent with q �→ μq . Let us
denote by �̄(M
,�,�) the space of all those elements v ∈ S (M
) satisfying the
following properties:

i) The element |v
−w
| ∈ Sq(L0(μ
)) belongs to L0(q; L0(μ
)) for every w ∈ �.
ii) There exists a countable set Cv ⊆ � such that vq ∈ clMq ({wq : w ∈ Cv}) for

q-a.e. q ∈ Q.

Then � ⊆ πq(�̄(M
,�,�)) and
(
πq(�̄(M
,�,�)), | · |) is (isomorphic to) the

integral
´
Mq dq(q).
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Proof Set � := πq(�̄(M
,�,�)) for brevity. The inclusion � ⊆ � is immediate.
We define

Gq(�) :=
{∑

n∈N
1
q
Sn

wn
∣∣∣∣ (Sn)n∈N ⊆ Q partition of Q, (wn)n∈N ⊆ �

}
⊆ Sq(M
),

We have that Gq(�) is a vector subspace of Sq(M
), a module over Gq(�), and a
dense subset of �.
Step 1. Let us verify that Gq(�) ⊆ �. Take arbitrary v =∑

n∈N 1
q
Sn

wn ∈ Gq(�) and

wn ∈ �. Since wn ∈ �, for every n ∈ N it holds that |wn

 − w
| ∈ L0(q; L0(μ
)).

Hence, there exist F̄n ∈ L0(�), n ∈ N such that |wn
q − wq | = [F̄n]μq q-a.e. on Q.

Further, q-a.e. on Q it holds that

|vq − wq | =
∣∣∣∣∣
∑

n∈N
1Sn (q)wn

q − wq

∣∣∣∣∣ =
∑

n∈N
1Sn (q)|wn

q − wq |

=
q∈Snq

|wnq
q − wq | =

[
1Eq F̄nq

]
μq
=

⎡

⎢⎢⎣
∑

n∈N
1⋃

q∈Sn

Eq
F̄n

⎤

⎥⎥⎦

μq

.

(3.1)

Thanks to the disjointness ofmeasure-valuedmap q �→ μq , we have
∑

n∈N 1∪q∈Sn Eq

F̄n ∈ L0(�), whencewededuce that |v
−w
| ∈ L0(q; L0(μ
)), and thus i) is satisfied.
To prove that ii) holds, it is enough to define Cv = {wn | n ∈ N}. This concludes
the proof that Gq(�) ⊆ �. Similarly, one can also readily check that |v
 − z
| ∈
L0(q; L0(μ
)) for every v ∈ � and z ∈ Gq(�).
Step 2. We claim that

∀v ∈ � ∃(zk)k∈N ⊆ Gq(�) : jq(|v
 − zk

|)→ 0 in L0(μ). (3.2)

In order to prove it, notice that for any k ∈ N we can find a partition (Sk
n )n∈N ⊆ Q of

Q and a sequence (wk,n)n∈N ⊆ Cv such that zk :=∑
n∈N 1

q

Sk
n
wk,n ∈ Gq(�) satisfies

dMq (vq , zk
q) ≤ 1

k for q-a.e. q ∈ Q. Let us explain this in more details. Fix arbitrary
v ∈ � with Cv = {wn | n ∈ N} ⊆ �. For every k, n ∈ N we define

S̃k
n :=

{
q ∈ Q |dMq (vq , wn

q ) ≤ 1

k

}
.

Thanks to Remark 2.9, we can assume that q and (almost) allμq ’s are finite. Therefore,
we can deduce that for q-a.e. q ∈ Q it holds that

dMq (vq , wn
q ) = dL0(μq )(|vq − wn

q |, 0) =
ˆ

X
min{Gn, 1} dμq ,
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where Gn ∈ L0(�) are such that |vq − wn
q | = [Gn]μq for q-a.e. q ∈ Q. Since

Gn ∈ L0(�), it follows that the map γn : Q � q �→ ´
X min{Gn, 1} dμq ∈ [0,+∞]

is measurable. Moreover, for every n ∈ N we have that there exists Sn
Q ∈ Q, such that

q(Sn
Q) = 0 and γ n = dMq (v·, wn· ) on Q \ Sn

Q . Now we conclude that

S̃k
n =

(
S̃k

n ∩ (Q \ Sn
Q)

)

︸ ︷︷ ︸
:= ˜̃Sk

n=(γ n)−1([0,1/k])∈Q

∪ (S̃k
n ∩ Sn

Q)
︸ ︷︷ ︸
q-negligible

, for every n, k ∈ N.

Let Qv ∈ Q be such that q(Qv) = 0 and for every q ∈ Q \ Qv it holds that
vq ∈ cl({wn

q | n ∈ N}). Hence, for every q ∈ Q \ Qv and every k ∈ N there exists
n ∈ N such that dMq (vq , wn

q ) ≤ 1/k. We deduce that for every k ∈ N it holds

Q \
(

Qv ∪
(
⋃

n∈N
Sn

Q

))

︸ ︷︷ ︸
q-negligible

=
⋃

n∈N

( ˜̃Sk
n \ Qv

)
.

Further, for every k ∈ N set Sk
1 := ˜̃Sk

1 \ Qv , Sk
n :=

(⋃n
i=1(
˜̃Sk
i \Qv)

)\Sk
n−1, n ≥ 2. In

other words, a collection {Sk
n }n∈N is a partition of Q up to q-negligible set, for every

k ∈ N. Define zk := ∑
n∈N 1

q

Sk
n
wn . Obviously zk ∈ Gq(�), k ∈ N. Moreover, for

every k ∈ N it holds that dMq (vq , zk
q) ≤ 1

k for q-a.e. q ∈ Q. Then

dL0(μ)

(
jq(|v
 − zk


|), 0
) =

ˆˆ
|vq − zk

q | ∧ 1 dμq dq(q)

=
ˆ

dMq (vq , zk
q) dq(q) ≤ q(Q)

k
,

whence the validity of (3.2) follows, concluding Step 2.
Having (3.2) at disposal, we can prove the following facts:

• Thanks to
∣∣|v
| − |zk


|
∣∣ ≤ |v
− zk


|, we obtain that |v
| ∈ L0(q; L0(μ
)) for every
v ∈ �.

• If v, ṽ ∈ � are given, then we can find (zk)k∈N, (z̃k)k∈N ⊆ Gq(�) such that
jq(|v
 − zk


|)→ 0 and jq(|ṽ
 − z̃k

|)→ 0 in L0(μ). Since for any w ∈ � we have

zk + z̃k − w ∈ Gq(�) and

∣∣|v
 + ṽ
 − w
| − |zk

 + z̃k


 − w
|
∣∣ ≤ ∣∣(v
 + ṽ
)− (zk


 + z̃k

)
∣∣

≤ |v
 − zk

| + |ṽ
 − z̃k


|,

by letting k →∞we deduce that |v
+ ṽ
−w
| ∈ L0(q; L0(μ
)) and v+ ṽ ∈ �.
• If v ∈ � and f ∈ L0(μ) are given, then we can find (zk)k∈N ⊆ Gq(�) and

( fk)k∈N ⊆ Gq(�) such that jq(|v
 − zk

|) → 0 and fk → f in L0(μ). Since for

any given element w ∈ � we have that fk · zk − w ∈ Gq(�) and
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∣∣|( f · v)
 − w
| − |( fk · zk)
 − w
|
∣∣ ≤ ∣∣( f · v)
 − ( fk · zk)


∣∣

≤ | f − fk ||v
| + | fk ||v
 − zk

|,

by letting k →∞ we deduce that |( f · v)
−w
| ∈ L0(q; L0(μ
)) and f · v ∈ �.

From the previous observations, we proved that � is an L0(μ)-normed L0(μ)-module
and Gq(�) is dense in�. It remains to prove that� is complete, which we ensure in the
next Lemma 3.6. Therefore, by the uniqueness statement in Proposition 2.16, which
can be applied since � verifies both item (i) and (ii) of Proposition 2.16, we conclude
that � is isomorphic to

´
Mq dq(q) in the sense of L0(μ)-Banach L0(μ)-module. ��

Lemma 3.6 Let (Q,Q, q) be a measure space, (X, �) a measurable space, and
q �→ μq a disjoint measure-valued map from Q to X. Let (M
,�,�) be an
L0-Banach L0-module bundle consistent with q �→ μq . Let us denote S :={
v ∈ Sq(M
) : |v
| ∈ L0(q; L0(μ
))

}
. Then S is endowed with a structure of an

L0(μ)-Banach L0(μ)-module. Further, the L0(μ)-normed L0(μ)-module � from The-
orem 3.5 is a closed submodule of S , whence � is complete as well.

Proof It is straightforward to show thatS is an L0(μ)-normed L0(μ)-module, where
we set |v| := jq (|v
|) ∈ L0(μ), for every v ∈ S . To prove that it is complete we
can assume without loss of generality, up to passing to a subsequence, that a Cauchy
sequence (zk)k∈N inS satisfies

∞∑

k=1

ˆ ˆ
min{|zk

q − zk+1
q |, 1} dμq dq(q) <∞.

Thus, we have that

∞∑

k=1

ˆ
min{|zk

q − zk+1
q |, 1} dμq <∞

for q-a.e. q and in particular (zk
q)k is a Cauchy sequence in L0(μq) for such q’s. Since

Mq is an L0(μq)-Banach L0(μq)-module, we have that there exists zq ∈ Mq such
that

´
min{|zk

q − zq |, 1} dμq → 0 for q-a.e. q. We consider the q-a.e. defined map z,
defined as Q � q �→ zq ∈Mq .

We check that z ∈ S . Since
´
min{|zk

q − zq |, 1} dμq → 0 for q-a.e. q, by trian-
gle inequality, we get that |zk

q | converges to |zq | in L0(μq) for q-a.e. q. Moreover,
since

∣∣|zk | − |zk+1|∣∣ ≤ |zk − zk+1| holds μ-a.e., it is clear that (|zk |)k∈N is a Cauchy
sequence in L0(μ), whence it is convergent. We call its limit F = [F̄]μ ∈ L0(μ),
with F̄ ∈ L0(�). This proves, using Lemma 2.8, that |zq | = [F̄]μq for q-a.e.
q and thus z ∈ S . Moreover, by dominated convergence theorem, we get that´ ´

min{|zk
q − zq |, 1} dμq dq(q)→ 0, so zk → z inS .

We now prove that � is a closed submodule of S . By Theorem 3.5 it is clear that
� ⊆ S . Fix an arbitrary sequence (vk)k∈N ⊆ � that converges to v ∈ S . Let us
prove that v ∈ �. Since for any given w ∈ � we have that vk − w ∈ � and
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∣∣|v
 − w
| − |vk

 − w
|

∣∣ ≤ |v
 − vk

 |,

by letting k → ∞ we deduce that |v
 − w
| ∈ L0(q; L0(μ
)). Thus, v satisfies i).
To prove that ii) holds as well, let us denote the sequence (vk

n)n∈N ⊆ Gq(�) which
converges to vk , where vk

n =
∑∞

j=1 1
q

Sn,k
j

w
n,k
j and (w

n,k
j ) j∈N ⊆ �, (Sn,k

j ) j∈N ⊆ Q

for every k, n ∈ N, that can be done by Theorem 3.5. Then we can set Cv := {wn,k
j :

j, n, k ∈ N}, which concludes the proof of the validity of item ii) in the definition of
� in Theorem 3.5 and the proof of the closedness of �. ��
Remark 3.7 If M
 = L0(μ
) and � = � = L0(q; L0(μ
)), then L0(q; L0(μ
)) ∼=´
Mq dq(q). �

3.1 Disintegration of a module with respect to a disjoint measure-valuedmap

The next two theorems assert that, starting from an L0(μ)-Banach L0(μ)-moduleM
and a disjoint measure-valued map, we can associate a L0-Banach L0-module bundle
such that its integral is isomorphic toM . We have to assume somethingmore either on
M or on the disjoint measure-valued map. Indeed, in the first theoremM is assumed
to be countably-generated, in the second one the measures μq ’s are all absolutely
continuous with respect to a background boundedly-finite, submodular outer measure
ν. Regarding the tools involved in the proof of Theorem 3.8, we refer the reader to
[23], where the concepts of Banach B-bundle E and of �̄(E) are presented.

Theorem 3.8 (Disintegration of an L0-Banach L0-module) Let (X, �,μ) be a σ -finite
measure space and letM be a countably-generated L0(μ)-Banach L0(μ)-module. Let
(Q,Q, q) be a measure space and let Q � q �→ μq be a disjoint measure-valued map
from Q to X such that μ = ´

μq dq(q). Then there exists an L0-Banach L0-module
bundle (M
,�,�) consistent with Q � q �→ μq , such that

M ∼=
ˆ

Mq dq(q).

Proof Let B be a universal separable Banach space. Then [23, Theorem 4.13] ensures
that there exists a separable Banach B-bundle E, such that �μ(E) ∼=M , where �μ(E)

is the quotient space of the space �̄(E) of all measurable sections of E, under μ-a.e.
equivalence relation. Recall that the elements of �̄(E) are everywhere defined, so that
for anyq ∈ Q wecan consider an L0(μq)-Banach L0(μq)-module�μq (E). Denote the
projections on quotient spaces with πμ : �̄(E)→ �μ(E) and πq : �̄(E)→ �μq (E),
for all q ∈ Q. Define Mq := �μq (E), q ∈ Q and

�̄ := {Q � q �→ πq(v̄) ∈Mq | v̄ ∈ �̄(E)}, � := πq(�̄).

Further, let � := L0(q; L0(μ
)). Then Gq(�) = L0(μ), � is a vector subspace of
Sq(M
) and a module over �. Denote with v the q-a.e. defined equivalence class of
the map q �→ πq(v̄), then
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|v
| = iq
(|πμ(v̄)|) ∈ L0(q; L0(μ
)), for every v̄ ∈ �̄(E),

since |πμ(v̄)| and |πq(v̄)| are μ-a.e. and μq -a.e. equivalence classes of the map X �
x �→ ‖v̄(x)‖B ∈ R, respectively. Hence, (M
,�,�) is an L0-Banach L0-module
bundle consistent with q �→ μq . Moreover, we obtained that � is an L0(μ)-normed
L0(μ)-module. Further, we define

J(πμ(v̄)) :=
ˆ

πq(v̄) dq(q), for every v̄ ∈ �̄(E).

The resulting operator J : �μ(E)→ � is an isomorphism of L0(μ)-normed L0(μ)-
modules. Let us verify this claim. Take v̄, ṽ ∈ �̄(E), such that πμ(v̄) = πμ(ṽ), which
means that v̄(x) = ṽ(x) μ-a.e. on X. Then, since μ = ´

μq dq(q), follows that
v̄(x) = ṽ(x) μq -a.e. on X for q-a.e. q ∈ Q, whence πq(v̄) = πq(ṽ) for q-a.e. q ∈ Q
and J(πμ(v̄)) = J(πμ(ṽ)), so J is well-defined. It is clear that J is L0(μ)-linear and
surjective. Furthermore,

|J(πμ(v̄))| = jq(|J(πμ(v̄))
|) = |πμ(v̄)|, for every v̄ ∈ �̄(E),

whence J preserves pointwise norm and thus it is an isomorphism. Thus, we conclude
that � is an L0(μ)-Banach L0(μ) module, which coincides with

´
Mq dq(q). ��

Another result in the same direction, which we will need in Sect. 4.1, is the follow-
ing:

Theorem 3.9 Let (X,d) be a complete, separable metric space. Let ν be a boundedly-
finite, submodular outer measure onX. Let (Q,Q, q) be a measure space. Let q �→ μq

be a disjoint measure-valued map from Q to X with μq � ν for every q ∈ Q, and set
μ := ´

μq dq(q) � ν. Let M be an L0(ν)-Banach L0(ν)-module. Fix a generating
subalgebra A of L0(ν), and a vector subspace V of M that is also an A -module
and generates M . Let us define Mμ
 := {Mμq }q∈Q,

� := {[v]μ
 ∈ Sq(Mμ
)
∣∣ v ∈ V

}
,

� := {[ f ]μ
 ∈ L0(q; L0(μ
))
∣∣ f ∈ A

}
.

Then (Mμ
,�,�) is an L0-Banach L0-module bundle consistent with q �→ μq .
Moreover, it holds that

Mμ
∼=
ˆ

Mμq dq(q),

the canonical isomorphism I : Mμ →
´
Mμq dq(q) being the unique homomorphism

satisfying

I([v]μ) =
ˆ
[v]μq dq(q) for every v ∈ V .
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Proof Since πμ(A ) is a generating subalgebra of L0(μ) and πμ(A ) ⊆ Gq(�), we
deduce that Gq(�) is dense in L0(μ). Moreover, � is a vector subspace ofSq(Mμ
),
is a module over �, and

|[v]μ
 | = iq(|[v]μ|) ∈ L0(q; L0(μ
)) for every [v]μ
 ∈ �. (3.3)

Therefore, (Mμ
,�,�) is an L0-Banach L0-module bundle consistent with q �→ μq .
Moreover, we define

Ĩ([v]μ) :=
ˆ
[v]μq dq(q) = [v]μ
 ∈ � ⊆

ˆ
Mμq dq(q) for every v ∈ V .

The resulting operator Ĩ : πμ(V )→ � is well-defined, πμ(A )-linear, and satisfying

|Ĩ([v]μ)| = jq(|[v]μ
 |) (3.3)= |[v]μ| for every v ∈ V .

Since πμ(A ) generates L0(μ), there exists a unique homomorphism I : Mμ →´
Mμq dq(q) that extends Ĩ and preserves the pointwise norm. Given that � =

Ĩ(πμ(V )) ⊆ I(Mμ) generates
´
Mμq dq(q), we can finally conclude that I is an

isomorphism, thus the statement is proved. ��

4 Applications to vector calculus on RCD spaces

This section deals with applications of the language developed so far to the coarea
formula for BV functions and to the 1D-localisation, in both cases in the setting of
RCD spaces.

4.1 Vector fields on the superlevel sets of a BV function

First, a preliminary lemma:

Lemma 4.1 Let (X,d,m) be a PI space and f ∈ BV (X). Then, denoting by f̄ the
precise representative of f (see Definition 2.24) it holds that

∂∗{ f̄ > t} ∩ (X f \ J f ) ⊆ { f̄ = t} for every t ∈ R. (4.1)

In particular, t �→ P({ f̄ > t}, ·)|X f \J f is a disjoint measure-valued map from R to
X.

Proof Let x ∈ ∂∗{ f̄ > t} ∩ (X f \J f ) be given. Since �∗({ f̄ > t}, x) = �∗({ f >

t}, x) > 0, we deduce that t ≤ f ∨(x). Since �∗({ f̄ ≤ t}, x) = �∗({ f ≤ t}, x) =
�∗(X\{ f > t}, x) > 0, we deduce that t ≥ f ∧(x). Since x ∈ X f \J f ensures that
f ∨(x) = f ∧(x) = f̄ (x), we can conclude that t = f̄ (x), proving (4.1). It follows
that

P({ f̄ > t}, ·)|X f \J f is concentrated on { f̄ = t}. (4.2)
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Now notice that we have { f̄ = t} ∩ { f̄ = s} = ∅ whenever t, s ∈ R and t �= s. This
observation, in combination with Theorem 2.22 and (4.2), implies that t �→ P({ f̄ >

t}, ·)|X f \J f is a disjoint measure-valued map. Therefore, the proof is complete. ��
Remark 4.2 In the next result, as indexing family we will consider the measure space
(Q,Q, q) given as follows. We define Q := (R× {0}) ∪ (N× {1}). We consider the
inclusion maps i0 : R → Q and i1 : N → Q defined as i j (q) = (q, j) for j = 0, 1.
We define the map π0 : Q → R as π0(q, j) := q for j = {0, 1}. We declare that a set
E ⊆ Q belongs toQ if and only if π0(E) is a Borel subset of R (in other words,Q is
the pushforward of the Borel σ -algebra of R under the map i0 : R ↪→ Q), and

q := i0#L
1 +

∑

n∈N
δ(n,1),

where L 1 stands for the one-dimensional Lebesgue measure on R. �

Proposition 4.3 Let (X,d,m) be an isotropic PI space and f ∈ BV (X). Fix a count-
able Borel partition (�n)n of J f with the following property: for any n ∈ N, there is
tn ∈ R such that { f̄ > tn} is of finite perimeter and �n ⊆ ∂∗{ f̄ > tn}. Let (Q,Q, q)
be as in Remark 4.2 and define

μ
f
q :=

{
P({ f̄ > t}, ·)|X f \J f

( f ∨ − f ∧)P({ f̄ > tn}, ·)|�n

if q = (t, 0) for some t ∈ R,

if q = (n, 1) for some n ∈ N.

Then q �→ μ
f
q is a disjoint measure-valued map from Q to X. Moreover, it holds that

|D f | =
ˆ

μ
f
q dq(q).

Proof It readily follows from Lemma 4.1 that q �→ μ
f
q is a disjoint measure-valued

map from Q to X. Moreover, using Theorem 2.22 and (2.9) we see that for any E ⊆ X
Borel it holds

|D f |(E) = |D f |(E ∩ (X f \ J f ))+ |D f |(E ∩ J f )

=
ˆ

R

P({ f̄ > t}, E ∩ (X f \ J f )) dt +
∑

n∈N

ˆ

E∩�n

( f ∨ − f ∧) dP({ f̄ > tn}, ·)

=
ˆ

μ
f
(t,0)(E) dL 1(t)+

∑

n∈N
μ

f
(n,1)(E) =

ˆ
μ

f
q (E) dq(q).

This proves that |D f | = ´
μ

f
q dq(q), thus accordingly the statement is achieved. ��

Theorem 4.4 Let (X,d,m) be an RCD(K , N ) space, with K ∈ R and N ∈ [1,∞).
Let f ∈ BV (X) be given. Let q �→ μ

f
q be defined as in Proposition 4.3. Let us also

define
(
L0

μ
f



(TX),� f ,� f
)

as
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L0
μ

f



(TX) := {L0
μ

f
q
(TX)}q∈Q,

� f :=
{[v]

μ
f


∈ Sq

(
L0

μ
f



(TX)
) ∣∣ v ∈ Test(TX)

}
,

� f :=
{[ f ]

μ
f


∈ L0(q; L0(μ

f

 ))

∣∣ f ∈ Test(X)
}
.

Then
(
L0

μ
f



(TX),� f ,� f
)

is an L0-Banach L0-module bundle consistent with q �→
μ

f
q . Moreover,

L0|D f |(TX) ∼=
ˆ

L0
μ

f
q
(TX) dq(q),

the isomorphism I f : L0|D f |(TX) → ´
L0

μ
f
q
(TX) dq(q) being the unique homomor-

phism satisfying

I f
([v]|D f |

) =
ˆ
[v]μq

f
dq(q) for every v ∈ Test(TX).

Proof It is enough to show that we are in position to apply Theorem 3.9 with suitable
choices of the objects involved. Indeed, with the notation therein let ν := Cap, μq :=
μ

f
q and notice that μ

f
q � Cap, as a consequence of (2.7). Let M := L0

Cap(TX),
A := Test(X), and V := Test(TX). With these choicesA is a generating subalgebra
of L0(Cap) and V is a vector subspace ofM and a module overA , which generates
the L0(Cap)-Banach L0(Cap)-module M . ��

4.2 Vector fields on the integral lines of a gradient

We recall here the theory of 1D-localisation, referring the reader to [15, 17–19]. In
particular, for the general construction we follow the presentation of [19], where it
is not assumed that m(X) = 1. Let (X,d,m) be an RCD(K , N ) space, with K ∈ R

and N ∈ [1,∞). Given any 1-Lipschitz function u : X → R, its transport set Tu is
defined as the Borel set

Tu :=
{

x ∈ X
∣∣ |u(x)− u(y)| = d(x, y) for some y ∈ X \ {x}}.

The transport set Tu can be written (up tom-null sets) as the union of a family {Xα}α∈Q

of transport rays (see [15, Theorem 5.5]). Each Xα is isometric to a closed real interval
Iα , i.e. we can find a surjective isometry γα : Iα → Xα . Given any α, β ∈ Q with
α �= β, we also have that

γα(
◦
Iα) ∩ γβ(

◦
Iβ) = ∅.

Moreover, one can find a σ -algebra Q on Q, a finite measure q ≥ 0 on (Q,Q), and
a disjoint measure-valued map α �→ mα from Q to X such that mα(X\Xα) = 0 for
every α ∈ Q and

123



On the integration of L0-Banach L0-modules...

m|Tu =
ˆ

mα dq(α).

In addition, it holds that mα = hα H1|Xα for some Borel function hα : Iα →
(0,+∞) (whereH1 stands for the one-dimensional Hausdorff measure) and the space
(Xα,d,mα) is an RCD(K , N ) space (see [18, Theorem 4.2]). In particular, the tan-
gent module L0(TXα) can be identified with L0(mα) via the differential operator
dγα : L0(mα)→ L0(TXα) of γα (in the sense of [30]).

Given any f : X→ R Lipschitz and α ∈ Q, we define

∂̃α f (x) := d

dt
( f ◦ γα)(t)

∣∣∣∣
t=γ−1α (x)

forH1-a.e. x ∈ Xα. (4.3)

The resulting function ∂̃α f : Xα → R is an element of L0(mα). We denote by ∂̃
 f the
map Q � α �→ ∂̃α f ∈ L0(mα) up to quotient q-a.e. It also follows from the results of
[19, Section 4.1] that ∂̃
 f ∈ L0(q; L0(m
)), and [19, Theorem 4.5] ensures that

∂̃ f := i−1q (∂̃
 f ) = −1m
Tu
〈∇ f ,∇u〉 ∈ L0(m|Tu ). (4.4)

Indeed, the infinitesimalHilbertianity assumptiongives D− f (−∇u) = D+ f (−∇u) =
−〈∇ f ,∇u〉 (cf. with [25]). From the very definition in (4.3) and the fact that given
t, s ∈ Iα with s > t , u(γα(t)) − u(γα(s)) = |s − t |, it follows that for q-a.e. α,
∂̃αu(x) = 1 forH1-a.e. x ∈ Xα . Thus

1m
Tu
|∇u| = |i−1q (∂̃
u)| = 1 (4.5)

holdsm-a.e. on Tu . We define L0(TX
) := {L0(TXα)}α∈Q and ∂
 f ∈ Sq(L0(TX
))

as

∂α f := dγα(∂̃α f ) ∈ L0(TXα) for q-a.e. α ∈ Q.

Given v ∈ L0(TX) and a Borel set A ⊆ X, we denote the L0(m)-Banach L0(m)-
module generated by v on A as

〈v〉A :=
{
1m

A f · v ∣∣ f ∈ L0(m)
}
.

Theorem 4.5 Let (X,d,m) be an RCD(K , N ) space, with K ∈ R and N ∈ [1,∞).
Let u : X→ R be a given 1-Lipschitz function. Let us define �u ⊆ Sq

(
L0(TX
)

)
as

�u :=
{∑

n∈N
1
q
En

∂
 fn

∣∣∣∣ (En)n∈N ⊆ Q partition of Q, ( fn)n∈N ⊆ LIP(X)

}
.
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Then
(
L0(TX
),�

u, L0(q; L0(m
))
)

is an L0-Banach L0-module bundle consistent
with α �→ mα . Also,

ˆ
L0(TXα) dq(α) ∼= 〈∇u〉Tu ⊆ L0(TX),

the canonical isomorphism Ju :
´

L0(TXα) dq(α)→ 〈∇u〉Tu being the unique homo-
morphism with

Ju

( ˆ
∂α f dq(α)

)
= −1m

Tu
〈∇ f ,∇u〉∇u for every f : X→ R Lipschitz.

Proof Since �u is a module over L0(q; L0(m
)) and for any v
 =∑
n∈N 1

q
En

∂
 fn ∈
�u we have

|v
| =
∑

n∈N
1
q
En
|∂
 fn| =

∑

n∈N
1
q
En
|∂̃
 fn| (4.4)∈ L0(m|Tu ),

we obtain that
(
L0(TX
),�

u, L0(q; L0(m
))
)
is an L0-Banach L0-module bundle

consistent with α �→ mα . Now let us define the operator J̃u : {∂
 f
∣∣ f ∈ LIP(X)} →

〈∇u〉Tu as

J̃u(∂
 f ) := −1m
Tu
〈∇ f ,∇u〉∇u for every f ∈ LIP(X).

Since {∂
 f : f ∈ LIP(X)} generates ´ L0(TXα) dq(α) and we can estimate

|J̃u(∂
 f )| = 1m
Tu
|〈∇ f ,∇u〉||∇u| (4.4)= |∂
 f | for every f ∈ LIP(X),

the map J̃u can be uniquely extended to a homomorphism Ju :
´

L0(TXα) dq(α)→
〈∇u〉Tu that preserves the pointwise norm. Finally, let us check that Ju is surjective.
Fix an arbitrary element of 〈∇u〉Tu , which can be written (uniquely) as h∇u for some
h ∈ L0(m|Tu ). Hence, we have that

Ju(−h · ∂
u) = −h · Ju(∂
u) = h1m
Tu
〈∇u,∇u〉∇u = h∇u,

thus proving the surjectivity of Ju . Consequently, the statement is achieved. ��
Remark 4.6 We point out that the above results hold in the more general setting of
essentially non-branching, infinitesimally Hilbertian MCP(K , N ) spaces. �

4.3 Unit normals and gradient lines

In this conclusive section, we combine the results of Sects. 4.1 and 4.2. First, we recall
the following result, which follows from [14, Theorem 2.4]:
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Theorem 4.7 (Gauss–Green) Let (X,d,m) be an RCD(K , N ) space. Let E ⊆ X be
a set of finite perimeter with m(E) < +∞. Then there exists a unique element νE ∈
L0

P(E,·)(TX) such that

ˆ

E
div(v) dm = −

ˆ
〈[v]P(E,·), νE 〉 dP(E, ·) for every v ∈ Test(TX).

The identity |νE | = 1 holds P(E, ·)-a.e. on X. Moreover, if ϕ : X → R is bounded
Lipschitz, then

ˆ

E
div(ϕv) dm = −

ˆ
ϕ〈[v]P(E,·), νE 〉 dP(E, ·) for every v ∈ Test(TX).

Remark 4.8 Let (X,d,m) be an RCD(K , N ) space withm(X) < +∞ and let u : X→
R be a Lipschitz function. Then we know from [28, Remark 3.5] that u ∈ BV (X) and
|Du| = lip(u)m. In particular, if Tu = X up to m-null sets, then |Du| = m and thus
m = ´

R
P({u > t}, ·) dt . Notice also that, since u is continuous, it holds that ū = u,

so that Xu = X and Ju = ∅. Therefore, we have that t �→ μu
t := P({u > t}, ·) is a

disjoint measure-valued map from R to X and Theorem 4.4 provides an isomorphism
of L0(m)-Banach L0(m)-modules Iu : L0(TX)→ ´

L0
μu

t
(TX) dt . �

Now we are in a position to state and prove the main result of this section:

Theorem 4.9 Let (X,d,m) be an RCD(K , N ) space with m(X) < +∞. Fix a 1-
Lipschitz function u : X → [0,+∞) such that Tu = X up to m-negligible sets.
Let Iu : L0(TX) → ´

L0
μu

t
(TX) dt and Ju :

´
L0(TXα) dq(α) → 〈∇u〉X be as in

Remark 4.8 and Theorem 4.5, respectively. Then

(Iu ◦ Ju)

( ˆ
∂αu dq(α)

)
= −

ˆ

R

ν{u>t} dt ∈
ˆ

L0
μu

t
(TX) dt .

Proof For brevity, we denote ∂
u = ´
∂αu dq(α) and V := (Iu ◦ Ju)(∂
u) ∈´

L0
μu

t
(TX) dt . Fix a countable dense subset C of Test(X). Notice that the family F of

those elements of Test(TX) of the form
∑n

i=1 gi ∇̄ fi for some fi , gi ∈ C generates
L0
Cap(TX). If ϕ ∈ LIPbs(R) and f , g ∈ C, then

ˆ +∞

0
ϕ(t)

ˆ
g〈[∇ f ]μu

t
, Vt 〉 dP({u > t}, ·) dt

=
ˆ +∞

0

ˆ [〈ϕ ◦ u g∇ f , Ju(∂
u)〉]
μu

t
dP({u > t}, ·) dt

= −
ˆ
〈ϕ ◦ u g∇ f ,∇u〉 dm =

ˆ
u div(ϕ ◦ u g∇ f ) dm

=
ˆ +∞

0

ˆ

{u>t}
div(ϕ ◦ u g∇ f ) dm dt
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= −
ˆ +∞

0

ˆ
ϕ ◦ u g〈[∇ f ]μu

t
, ν{u>t}〉 dP({u > t}, ·) dt

= −
ˆ +∞

0
ϕ(t)

ˆ
g〈[∇ f ]μu

t
, ν{u>t}〉 dP({u > t}, ·) dt,

where we used Remark 4.8, the layer cake representation formula, Theorem 4.7, and
the fact that the measure μu

t = P({u > t}, ·) is concentrated on ∂{u > t} ⊆ {u = t}.
Thanks to the arbitrariness of ϕ ∈ LIPbs(R), we deduce that for every f , g ∈ C it
holds that

ˆ
〈g[∇ f ]t , Vt 〉 dP({u > t}, ·)

= −
ˆ
〈g[∇ f ]t , ν{u>t}〉 dP({u > t}, ·) for L1-a.e. t ∈ R.

Since F is countable, we can find a L 1-null set N ⊆ R such that
´ 〈w, Vt 〉 dμu

t =
− ´ 〈w, ν{u>t}〉 dμu

t holds for every t ∈ R\N andw ∈ F. It follows that Vt = −ν{u>t}
for L1-a.e. t ∈ R, so that accordingly (Iu ◦ Ju)(∂
u) = V = −ν{u>
}. Therefore, the
proof of the statement is complete. ��

Observe that Theorem 4.9 applies, for example, to u := d(·, x̄) for any point x̄ ∈ X.

Remark 4.10 We point out that Theorem 4.4 can be generalised to functions of local
bounded variation, thus in turn the finiteness assumption onm in Theorem 4.9 can be
dropped. However, we do not pursue this goal here, since the results are already quite
technically demanding. �
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