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Abstract
In this note we give a re-interpretation of the algebraic fundamental group for proper
schemes that is rather close to the original definition of the fundamental group for
topological spaces. The idea is to replace the standard interval from topology by what
we call interval schemes. This leads to an algebraic version of continuous loops, and
the homotopy relation is defined in terms of the monodromy action. Our main results
hinge on Macaulayfication for proper schemes and Lefschetz type results.
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Introduction

The fundamental group π1(X , x0) of a topological space X with respect to a base point
x0 is an invariant of great significance, even more so as its definition is elementary
and intuitive: the elements are loops up to homotopy, where a loop is a continuous
morphism I → X from the standard interval I = [0, 1], such that the end points are
mapped to the base point x0. Roughly speaking, two loops are homotopic if one can
be deformed to the other, respecting the base point. For connected and locally simply-
connected spaces X , one may interpret the fundamental group also as the group of
deck transformations of the universal covering X̃ → X .

In the realm of algebraic topology, where one works with schemes rather than topo-
logical spaces, the first construction above makes little sense. However, Grothendieck
[9] realized that the second description has an analog in algebraic geometry. He intro-
duced the notion of a Galois category C, the objects of which should be considered
as abstract finite coverings, which admits a fiber functor � : C → (FinSet) to the
category of finite sets satisfying certain properties. These properties ensure that the
automorphism group of � is equal to the opposite group of the automorphisms of an
abstract pro-finite universal covering. The algebraic fundamental group π

alg
1 (X , x0) of

a connected scheme X with respect to a geometric point x0 is then defined by applying
this general construction to the category (FinEt /X) of finite étale coverings of X , with
fiber functor given by base-changing along x0.

If X is of finite type over the complex numbers, the group π
alg
1 (X , x0) equals the

pro-finite completion of the classical fundamental group of X(C), endowed with the
classical topology. If X = Spec(K ) is the spectrum of a field and x0 is given by some
separable closure, πalg

1 (X , x0) gives back the corresponding Galois group.
In this note we observe that the original construction of the fundamental group

using loops has a meaningful analogy for schemes, once the notions of intervals and
loops are interpreted in an algebraic manner. More precisely, the crucial properties of
the interval I = [0, 1] in the construction above are: I is connected, quasi-compact,
one dimensional, with no non-trivial coverings, and is endowedwith two distinguished
points. Translating these properties to algebraic geometry we define in Sect. 3 interval
schemes as reduced, connected, affine, one-dimensional schemes I , which have no
non-trivial finite étale coverings and contain two distinguished closed points with
separably closed residue fields. The latter are called end points. An algebraic loop on
a scheme X based at a geometric point x0 is a morphism of schemes I → X mapping
the end points to the base point.

Algebraic loops define monodromy transformations. We call two algebraic
loops homotopic if the resulting monodromies agree. The algebraic loop group
π0�

alg(X , x0) is defined as the set of homotopy classes of algebraic loops; the group
structure is induced by concatenating algebraic loops, see Sect. 4.

Interval schemes are very often non-noetherian. One example of an interval scheme
is the universal Galois covering (introduced by Grothendieck as a pro-object) of a
noetherian, connected, affine, reduced, and one dimensional scheme. Such universal
Galois coverings were systematically studied in [24], where Vakil and Wickelgren
define the fundamental group scheme using universal coverings, which are certain
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Loops on schemes and the algebraic fundamental group

pro-finite étale maps. The notion of interval scheme introduced above is also inspired
by their work. But there are many other examples of interval schemes, which are more
direct to obtain. For example, if R is an integral noetherian one-dimensional ring and
A is its integral closure in the separable closure of Frac(R), then the choice of two
closed geometric points in Spec(A) turns it into an interval scheme.

By construction, the monodromy induces an injective homomorphism

π0�
alg(X , x0)

op −→ π
alg
1 (X , x0), (1)

of groups, where “op” refers to the opposite group structure. The main result of this
note is the following, see Theorem 4.4:

Theorem Let X be a connected scheme that is separated and of finite type over a
ground field k, endowed with a geometric point x0 : Spec(ksep) → X. Then the
injection (1) has dense image. It is actually bijective, provided that X is proper.

The main step in the proof of the above theorem for proper X is a Lefschetz type
result saying that for a proper and connected k-scheme X we find a closed connected
curve C ⊂ X such that the algebraic fundamental group of C surjects to the one of X ,
see Proposition 5.5. This is well-known in the case where X is Cohen–Macaulay and
projective over a field, see [10], Exposé XII. We reduce the general situation to this
using a van-Kampen-like argument andMacaulayfication, which was in a special case
constructed by Faltings [4] and in full generality by Kawasaki [18]. For further results
on Macaulayfication, see the recent work of Česnavičius [2]. The proof of Theorem
4.4 is given in Sect. 7. We do not expect the map (1) to be an isomorphism for affine
schemes of finite type over a field in general.

1 Monodromy

Let Y be a scheme, and write (FinEt /Y ) for the category of Y -schemes X whose
structure morphism f : X → Y is finite and étale. Note that such an f is proper,
affine, flat, of finite presentation, and for each point b ∈ Y the fiber f −1(b) is the
spectrum of some étale algebra over the residue field k = κ(b). For the following
result, see for example [20], Theorem 5.10 and Exercise 5.21.

Proposition 1.1 Suppose Y is connected, and f : X → Y finite and étale. Then there
is a surjective finite étale morphism Y ′ → Y such that X ′ = X ×Y Y ′ is isomorphic
over Y ′ to the disjoint union

∐r
i=1 Y

′ for some integer r � 0.

This has an immediate consequence:

Corollary 1.2 Suppose Y is connected, and f : X → Y finite and étale. Then X has
only finitely many connected components U ⊂ X, each of which is open-and-closed.
Moreover, the induced morphism U → Y is finite and étale.

Proof Take Y ′ → Y as in Proposition 1.1. Since the projection X ′ → X is surjective,
the connected components of X are images of the connected components of X ′, hence
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there are only finitely many. This implies that the connected components U of X are
open and closed and hence the composition U ↪→ X → Y is étale and finite. ��

The proposition tells us that the Y -scheme X is a twisted form of the disjoint union∐r
i=1 Y , with respect to the étale topology. It thus corresponds to a class in the non-

abelian cohomology set H1(Y , Sr ), with coefficients in the symmetric group Sr on
r � 0 letters ([8], Chapter III, Section 2.3). To summarize:

Proposition 1.3 If Y is connected, the following are equivalent:

(i) Every finite étale Y -scheme is isomorphic to some
∐r

i=1 Y , r � 0.
(ii) We have H1(Y , Sr ) = {∗} for all integers r � 0.
(iii) Each finite étale morphism X → Y from a non-empty connected scheme X is an

isomorphism.

Definition 1.4 We say a connected scheme Y is simply connected, if it satisfies the
equivalent conditions of Proposition 1.3.

Let X be a Y -scheme, with structure morphism f : X → Y , and a : A → Y be
some other morphism. To simplify notation, we write

X(A) = HomY (A, X) = {a′ : A −→ X | f ◦ a′ = a}

of liftings of a : A → Y with respect to f : X → Y .

Proposition 1.5 Suppose that Y is connected, with H1(Y , Sr ) = {∗} for all r � 0,
and f : X → Y is finite and étale. Let a : A → Y and b : B → Y be morphisms with
connected and non-empty domains. Then the sets X(A) and X(B) are finite, and for
each a′ ∈ X(A) there is a unique b′ ∈ X(B) such that the images a′(A) and b′(B) lie
in the same connected component of X.

Proof By Proposition 1.3, we may assume X = ∐r
i=1 Y , for some r � 0. The set

X(A) is in bijection with the set of sections of
∐r

i=1 A = X ×Y A → A, whence is
finite, and we see that every a′ ∈ X(A) corresponds uniquely to one of the maps

A ↪−→
∐

i

A
∐

a−−→
∐

i

Y = X

given by including A into one of the r summands. This implies the statement. ��
1.6. In the situation of Proposition 1.5 we obtain a mapping

μX : X(A) −→ X(B), a′ 
−→ b′,

which is called the monodromy, and will play a crucial role throughout. We regard
it as a natural transformation between X 
→ X(A) and X 
→ X(B), viewed as
functors (FinEt /Y ) → (FinSet). By Proposition 1.5, the monodromy μX is a natural
isomorphism, and is given as the composition of the following natural bijections

μX : X(A) −→ π0(X ×Y A) −→ π0(X) −→ π0(X ×Y B) −→ X(B),
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where π0(X) denotes the set of connected components of X .

2 Galois categories

In this section we recall the notion of Galois categories, which were introduced by
Grothendieck to unify Galois theory from algebra and covering space theory from
topology ([9], Exposé V).
2.1. Recall that a category C is called a Galois category if there exists a functor
� : C → (FinSet) such that the following six axioms hold:

(G1) Fiber products and final objects exist in C.
(G2) Finite sums and quotients by finite group actions exist in C.
(G3) Every morphism X ′ → X in C factors into a strict epimorphism X ′ → U and

the inclusion of a direct summand U ⊂ X .
(G4) The functor � commutes with fiber products and final objects.
(G5) It also commutes with finite direct sums and forming quotients by finite group

actions, and transforms strict epimorphisms into surjections.
(G6) If for a morphism u : X ′ → X in C the resulting map �(u) is bijective, then u

is an isomorphism.

One calls � a fundamental functor or fiber functor for the Galois category C, and
denotes by π = Aut(�) the group of natural isomorphisms of the fundamental functor
to itself. In turn, we have an inclusion

π ⊂
∏

X∈C
S�(X)

inside a product of symmetric groups Aut(�(X)) = S�(X). These groups are finite.
We endow themwith the discrete topology, and the product with the product topology.
The latter becomes a topological group that is compact and totally disconnected.
Such topological groups are also called pro-finite groups. One easily checks that the
subgroup π is closed, and thus inherits the structure of a pro-finite group. Every fiber
functor on C is (non-canonically) isomorphic to � and hence, up to a uncanonical
isomorphism, the pro-finite group π depends only on the Galois category C, and not
on the choice of fiber functor �.

Now write (π -FinSet) for the category of finite sets F endowed with a π -action
from the left, where the kernel of the canonical homomorphism π → SF is closed. In
other words, the action π × F → F is continuous, when the finite set F is endowed
with the discrete topology. With respect to the natural π -action on the �(X), X ∈ C,
the fundamental functor becomes a functor

� : C −→ (π -FinSet),

andGrothendieck deduced from the axioms (G1)–(G6) that the above is an equivalence
of categories. Conversely, ifG is a pro-finite group, the category (G-FinSet) is a Galois
category: The functor � that forgets the G-action is a fundamental functor, and the
resulting π = Aut(�) becomes identified with G.
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One should see π = Aut(�) as a common generalization of the opposite Galois
group Gal(F sep/F)op for fields F , and the pro-finite completion π̂1(Y , y0) of the
fundamental group, say for connected and locally simply-connected topological spaces
Y .
2.2. Let H : C → C′ be an exact covariant functor between Galois categories. By
[9, Exposé V, Proposition 6.1] the exactness is equivalent to the statement, that the
composition �′ ◦ H is a fiber functor for C, whenever �′ is a fiber functor for C′.
An exact functor H induces a morphism h : π ′ → π between the corresponding
fundamental groups with reversed direction, which is well-defined up to conjugation.
The following statements are equivalent (see [9, Exposé V, Proposition 6.9])

(1) H : C → C′ is fully faithful.
(2) h : π ′ → π is surjective.
(3) For each connected object X ∈ C, the object H(X) is connected.

2.3. Let Y be a connected scheme. Then C = (FinEt /Y ) becomes a Galois category:
For each morphism y0 : Spec(K ) → Y , where K is a separably closed field, we get a
fiber functor

�y0 : (FinEt /Y ) −→ (FinSet), X 
−→ X(K )

given by the set of morphisms b′ : Spec(K ) → X lifting the given b : Spec(K ) → Y .
The resulting group

π
alg
1 (Y , y0) = π = Aut(�y0)

is called the algebraic fundamental group of the connected scheme Y with respect to
y0. As in topology, the latter is called base point.

3 Interval schemes

In algebraic topology, the standard interval I = [0, 1] plays a central role. From our
perspective, the following are the crucial properties:

(i) The topological space I is connected and quasi-compact.
(ii) There are two distinguished points 0, 1 ∈ I .
(iii) The universal covering Ĩ → I is a homeomorphism.
(iv) The interval I is one-dimensional.

In this section we introduce a class of schemes with analogous properties. Fix a
separably closed field K .

Definition 3.1 An interval scheme with K -valued endpoints is a triple (I , a0, a1),
where I is a reduced, connected, simply connected, affine, and one-dimensional
scheme and ai : Spec(K ) → X are two closed embeddings.

The point a0 is called the left endpoint, whereas a1 is the right endpoint. By abuse of
notation, we usually write I for the interval scheme (I , a0, a1). The simplest example
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of an interval scheme is I = A
1
k where k is an algebraically closedfield of characteristic

zero, and the end points are the rational points a0 = 0 and a1 = 1. However, if k is not
algebraically closed or of positive characteristic, this will not be an interval scheme.
In fact, interval schemes are very often non-noetherian. The following gives the most
basic class of interval schemes:

Proposition 3.2 Let A be a one-dimensional integral ring that is normal and whose
field of fractions F = Frac(A) is separably closed, and suppose there are two sur-
jections ϕi : A → K. Then I = Spec(A) becomes an interval scheme, where the
endpoints ai correspond to the homomorphisms ϕi .

Proof Let X → I be a connected finite étale covering. It follows that X is an affine
connected normal scheme, and thus is integral, see [14], Proposition (17.5.7). In par-
ticular the function field L of X is a finite separable field extension L/Frac(A). Since
Frac(A) is separably closed we find L ∼= Frac(A). Hence X → I is an isomorphism.
Thus I has no non-trivial finite étale covering and therefore defines an interval scheme.

��
Example 3.3 Rings as in Proposition 3.2 easily occur as follows: Suppose that R is
a one-dimensional noetherian ring, endowed with two integral homomorphisms ψi :
R → K . The latter means that each λ ∈ K is the root of a monic polynomial with
coefficients from R. Choose a separable closure F sep for the field of fractions F =
Frac(R), and write A = Rsep for the integral closure of R ⊂ F sep. By construction
A is integral and normal, with field of fractions F sep, and the ring extension R ⊂ A
is integral. According to the Going-Up Theorem, the map Spec(A) → Spec(R) is
surjective, thus the ψi : R → K extend to some homomorphisms ϕi : Rsep → K .
Proposition 3.2 yields that the scheme I = Spec(Rsep) in an interval scheme, where
the endpoints ai correspond to the homomorphisms ϕi .

Recall that a local ring R is called strictly henselian if each factorization P ≡ P1P2
into coprime polynomials over the residue field k = R/mR of a monic polynomial
P ∈ R[T ] is induced by a factorization over R, and moreover the residue field is
separably closed. See [14], Proposition (18.8.1) for the next example of an interval
scheme, for which the image points of the two end points agree.

Proposition 3.4 Let A be a one-dimensional local ring that is strictly henselian, and
whose residue field is isomorphic to K , and let ϕi : A/mA → K be two isomorphisms.
Then I = Spec(A) becomes an interval scheme, where the endpoints ai correspond
to the homomorphisms ϕi .

3.5. Let I , J be two interval schemes, with K -valued endpoints a0, a1 and b0, b1,
respectively. We write I ∗ J for the concatenation of I and J with respect to the right
endpoint on I and the left endpoint on J . In other words, we have a cocartesian square
in the category of schemes

Spec(K )
b0−−−−→ J

a1

⏐
⏐
�

⏐
⏐
�

I −−−−→ I ∗ J .

(3.1)
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Note that the cocartesian square above exits in the category of schemes by [6],
Théorème 5.4, and is in fact also cartesian. The scheme I ∗ J comes with closed
embeddings of I and J , and we take a0 ∈ I ⊂ I
J as new left endpoint, and
b1 ∈ J ⊂ I ∗ J as new right endpoint.

Lemma 3.6 In the above situation, the concatenation I ∗ J is an interval scheme, with
endpoints a0 and b1.

Proof Write I = Spec(A) and J = Spec(B). Then I ∗ J = Spec(A ×K B) is affine
and reduced. Here the fiber product is formed with respect to the homomorphisms
A → K ← B corresponding to the morphisms a1 and b0. By construction we
have I ∗ J = I ∪ J and I ∩ J = Spec(K ), where the latter can be viewed as the
image of both a1 and b0. Hence I ∗ J is also one-dimensional and connected. Let
X → I ∗ J be a finite étale covering. Set X(Z) = Hom I∗J (Z , X), where Z is an
I ∗ J -scheme. By [14], Corollaire (17.9.4), the set X(I ∗ J ) is in bijection with the
connected components of X . By construction of I ∗ J the set X(I ∗ J ) is the pushout
of the maps X(I ) ← X(I ∩ J ) → X(J ) induced by the morphisms a1 and b0. Since
I , J , and Spec(K ) are simply connected the monodromy (see 1.6) induces bijections

X(I ) ∼= X(a1) ∼= X(I ∩ J ) ∼= X(b0) ∼= X(J ).

Hence |X(I ∗ J )| = |X(I ∩ J )| = deg(XI∩J → I ∩ J ) = deg(X → I ∗ J ), where
XI∩J → I ∩ J denotes the base change of X → I ∗ J along I ∩ J ↪→ I ∗ J .

Thus any finite étale covering of I ∗ J is trivial and hence I ∗ J is an interval
scheme. ��

4 The algebraic loop group

Fix some separably closed field K and let Y be a scheme, endowed with two K -valued
points yi : Spec(K ) → Y . We may regard this as an object in the category (K 2/Sch)
of schemes endowed with two K -valued points.

Definition 4.1 An algebraic path in Y starting at y0 and ending in y1 is an interval
scheme (I , a0, a1) with K -valued endpoints, together with a morphism

w : (I , a0, a1) −→ (Y , y0, y1)

of schemes endowedwith two K -valued points.An algebraic pathw is called algebraic
loop if y0 = y1.

By abuse of notation, we often write w : I → Y for the algebraic path w :
(I , a0, a1) → (Y , b0, b1). For each finite étale map X → Y , the base change induces
a finite étale map X ×Y I → I , which takes the form

∐r
i=1 I , for some r � 0, and

we have an identification X(yi ) = (X ×Y I )(ai ) of fiber sets. In turn, the monodromy
gives a transformation

μw : X(y0) = (X ×Y I )(a0) −→ (X ×Y I )(a1) = X(y1)

123



Loops on schemes and the algebraic fundamental group

that is bijective, and natural in the objects X ∈ (FinEt /Y ). In other words, the mon-
odromy μw attached to the path w : I → Y from y0 to y1 is a bijective natural
transformation between fiber functors

�y0 ,�y1 : (FinEt /Y ) −→ (FinSet).

We now use this monodromy to give an algebraic version of homotopy:

Definition 4.2 We say that two algebraic paths w : I → Y and v : J → Y from y0 to
y1 are homotopic if μw = μv as natural transformations from �y0 to �y1 .

4.3. We denote the class of algebraic loops in Y based at the geometric point y0 by

�alg(Y , y0) = {w : (I , a0, a1) −→ (Y , y0, y0) | (I , a0, a1) interval scheme } .

Let w : (I , a0, a1) → (Y , y0, y0) and v : (J , b0, b1) → (Y , y0, y0) be two loops
based at y0. It follows from the pushout diagram (3.1) and Lemma 3.6 that we can
concatenate these loops to get a new loop

w ∗ v : (I ∗ J , a0, b1) −→ (Y , y0, y0).

The monodromy transformation corresponding to w ∗ v can be factored, for X ∈
(FinEt /Y ) as

X(y0)
μw∗v �� X(y0)

(X)I∗J (a0)

�
��

� �� (X)I∗J (b1)

�
��

XI (a0)

�
��

� �� XI (a1) ∼= (X)I∗J (a1) = (X)I∗J (b0) ∼= X J (b0)
� �� X J (b1),

�
��

where we use the notation XZ = X ×Y Z , the vertical maps in the upper square
are induced by base change of w ∗ v, and the isomorphisms XI (ai ) ∼= XI∗J (ai )
and X J (bi ) ∼= XI∗J (bi ), for i = 0, 1, are induced by the natural closed immersions
I ↪→ I ∗ J and J ↪→ I ∗ J . The upper square commutes by the definition of μw∗v ,
the lower square commutes by the construction of the isomorphisms, see the proof of
Proposition 1.5. Thus the whole square commutes and by definition of themonodromy
we obtain the equality

μw∗v = μv ◦ μw (4.1)

of automorphisms of the fiber functor �y0 : (FinEt /Y ) → (FinSet). Furthermore
if u : (I , a0, a1) → (Y , y0, y0), v : (J , b0, b1) → (Y , y0, y0), and w : (L, c0, c1) →
(Y , y0, y0) are three loops based at y0, then the universal property of pushout diagrams
yields a canonical isomorphism τ : I ∗ (J ∗ L) → (I ∗ J ) ∗ L and an equality

(u ∗ v) ∗ w ◦ τ = u ∗ (v ∗ w) in (Sch/Y ). (4.2)
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Clearly, homotopy between paths defines an equivalence relation w ∼ v and we
denote by

π0�
alg(Y , y0)

the set of homotopy classes of algebraic loops based at y0. We denote by [w] the
homotopy class of a loop w : I → Y at y0. According to (4.1) we obtain a well
defined operation

∗ : π0�
alg(Y , y0) × π0�

alg(Y , y0) −→ π0�
alg(Y , y0), ([w], [v]) 
−→ [w ∗ v].

This operation is associative by (4.2) and clearly any constant loop I → y0 → Y has
the same homotopy class denoted by e, which defines a neutral element for ∗. More-
over, for a loop w : (I , a0, a1) → (Y , y0, y0) we define the loop w′ : (I , a1, a0) →
(Y , y0, y0) by switching the end points of I . Clearly [w]∗ [w′] = e. Hence concatena-
tion of algebraic loops defines a group structure on π0�

alg(Y , y0), which we therefore
call the algebraic loop group.

By definition of the algebraic fundamental group, our homotopy relation, and the
relation (4.1) the algebraic loop space�alg(Y , y0) induces an injective homomorphism

π0�
alg(Y , y0)

op −→ π
alg
1 (Y , y0), w 
−→ μw (4.3)

of groups, where we use the opposite group structure on the left hand side. We regard
this as an inclusion of groups.

The following is the main result of this note.

Theorem 4.4 Let X be a connected scheme that is separated and of finite type over
a field k, endowed with a geometric point x0 : Spec(ksep) → X. Then the canonical
injection (4.3) has dense image. It is actually bijective, provided X is proper.

The proof of Theorem 4.4 requires some preparations and will be given in Sect. 7.
We remark that we do not expect (4.3) to be an isomorphism for non-proper schemes.

5 A Lefschetz type theorem

The Lefschetz Hyperplane Theorem gives a strong relation between the homology
of a projective complex manifold X of dimension n � 2 and the homology of an
ample divisor D ⊂ X . The original arguments appear in [19], Chapter V, Section
III. Analogous statements for fundamental groups were first obtained by Bott [1]:
The induced map π1(D, x0) → π1(X , x0) is bijective provided n � 3, and at least
surjective if n � 2.

The latter statement extends to projective schemes X over arbitrary ground fields
k: According to [10], Exposé XII, Corollary 3.5 the map π

alg
1 (D, x0) → π

alg
1 (X , x0)

is surjective provided that depth(OX ,a) � 2 for each closed point a ∈ X . If X is
additionally Cohen–Macaulay, i.e., at every point a ∈ X the equality dim(OX ,a) =
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depth(OX ,a) holds, the above can be iterated and one finds a connected curve C ⊂ X

such that πalg
1 (C, x0) → π

alg
1 (X , x0) is surjective.

In this section we generalize the latter statement to arbitrary proper k-schemes.
5.1. Let X be a non-empty connected noetherian scheme. We consider the following
property:

(C) For each closed subscheme Z ⊂ X with dim(Z) � 0, there is a connected closed
subscheme C ⊂ X with 0 � dim(C) � 1 and Z ⊂ C such that, for each finite
étale covering U → X with connected total space, the restriction CU = C ×X U
remains connected.

Remark 5.2 We remark that property (C) does not hold for affine schemes in general,
as the following simple example shows (confer Lemma 5.4 in [3]): Let k be a ground
field of characteristic p > 0, and C be an connected affine plane curve inside A

2 =
Spec(R), defined by some non-constant polynomial f = f (x, y) inside the ring
R = k[x, y]. Then there exists a connected finite étale covering X → A

2 whose
restriction to C becomes trivial. To see this, take any h ∈ ( f ) not of the form gp − g
with g ∈ R. Via the identification

H1
et(A

2
k, Z/p) = R/{gp − g | g ∈ R}

coming from the Artin–Schreier sequence, the polynomial h corresponds to a non-
trivial Z/p-torsor X → A

2
k , in particular it is a connected finite étale covering of A

2
k .

On the other hand h maps to zero in R̄/{a p − a | a ∈ R̄}, where R̄ = R/( f ). In other
words, the restriction of X to C is trivial.

Lemma 5.3 Let X be a non-empty connected noetherian scheme, f : X ′ → X be
a proper and surjective morphism, and X ′

v ⊂ X ′ be the connected components. If
property (C) holds for all X ′

v , then it also holds for X.

The proof of this lemma is inspired by the Seifert–van Kampen Theorem from [23],
but is more elementary. Note that even if one wants to use property (C) on X with
Z = ∅, the proof for the lemma relies in an essential way on property (C) on X ′

v with
non-empty Z ′. We first gather some basic material on graphs.
5.4. Let f : X ′ → X be as in the statement of Lemma 5.3. Set X ′′ = X ′ ×X X ′
and write pr1, pr2 : X ′′ → X ′ for the two projections. The schemes X ′ and X ′′ are
noetherian, hence the sets of connected components π0(X ′) and π0(X ′′) are finite.
Consider the induced maps

pr1 × pr2 : π0(X
′′) −→ π0(X

′) × π0(X
′).

This defines an oriented graph � = (E, V , pr1 × pr2) in the sense of Serre [21],
Section 2.1: the set of vertices is V = π0(X ′), and the set of oriented edges is
E = π0(X ′′). The endpoints of an edge e ∈ E are the images vi = pri (e). The
orientation is given by declaring v1 as the initial vertex, and v2 as the terminal vertex.
We usually write X ′

v ⊂ X ′ and X ′′
e ⊂ X ′′ for the connected components corresponding

to a vertex v and an edge e.
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Note that edges could have the same initial and terminal vertices, and several edges
could share their initial and terminal vertices. By abuse of notation, we also write
v ∈ � and e ∈ � to denote vertices and edges of the graph, if there is no risk of
confusion. A morphism f : � → �′ between oriented graphs comprises compatible
maps V → V ′ and E → E ′. We simply say that f is a map of oriented graphs. Also
note that the graph� constructed above is connected, since the scheme X is connected.

Proof of Lemma 5.3 Since f : X ′ → X is proper, the image f (Z) of a closed sub-
scheme Z ⊂ X ′ is closed and satisfies dim f (Z) � dim(Z). In particular, closed
points are mapped to closed points. The assertion is trivial for dim(X) � 1. We now
assume dim X � 2. We use the notation from 5.4. Let Z ⊂ X be a zero-dimensional
closed subschemeor the empty set. For each edge e ∈ � choose a closed point xe ∈ X ′′

e .
Set

xe,i := pri (xe) ∈ X ′
vi

, where vi = pri (e) ∈ �, i = 1, 2.

Since� is finite we find for each vertex v ∈ � a 0-dimensional closed subset Z ′
v ⊂ X ′

v ,
such that

(a) Z ∩ f (X ′
v) ⊂ f (Z ′

v) and
(b) xe,i ∈ Z ′

v , for all edges e ∈ � with v = pri (e) for i = 1 or 2.

Condition (b) is immediate, and one can achieve (a) by picking a closed point in each
of the finitely many schemes f −1(z) ∩ X ′

v , with z ∈ Z ∩ f (X ′
v). By the surjectivity

of f we have
Z ⊂

⋃

v

f (Z ′
v). (5.1)

Applying (C) to X ′
v and Z ′

v we find an at most 1-dimensional closed subscheme
C ′

v ⊂ X ′
v containing Z ′

v , such that the pullback of any connected finite étale covering
of X ′

v to C ′
v stays connected. Then C = ⋃

v f (C ′
v) is closed, at most 1-dimensional,

and contains Z , by (5.1). It remains to show that for each connected finite étale covering
U → X the pullback U ×X C remains connected (then C is connected as well).

To this end fix such a finite étale covering u : U → X , with U non-empty and
connected. Denote by �U the graph defined by pr1 × pr2 : π0(U ′′) → π0(U ′) ×
π0(U ′), where U ′ = U ×X X ′ and U ′′ = U ×X X ′′ = U ′ ×U U ′. We obtain a
surjection of graphs u : �U → � and for each edge ε ∈ �U we obtain a finite
and étale morphism between connected schemes U ′′

ε → X ′′
u(ε) which therefore is

surjective. Thus for each edge e ∈ � and edge ε ∈ �U mapping to e we can choose a
closed point xU ,ε ∈ U ′′

ε with u(xU ,ε) = xe.
For a vertex w ∈ �U mapping to v ∈ � denote by Iw the image of U ′

w ×X ′
v
C ′

v

under the map

U ′ ×X ′ C ′
v = U ×X C ′

v −→ U ×X Cv, where Cv = f (C ′
v).
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The map is induced by the base change with the composition C ′
v ↪→ X ′

v ↪→ X ′ f−→ X ,
and therefore is closed and surjective. Hence

U ×X Cv =
⋃

w∈u−1(v)

Iw and U ×X C =
⋃

w edge in �U

Iw, (5.2)

where each Iw is closed. By our choice of C ′
v the pullback of the connected étale

covering U ′
w → X ′

v over C ′
v remains connected. Thus Iw is the image of a connected

scheme and is hence connected. Let w1 and w2 be the initial and the terminal vertices
of an edge ε ∈ �U , then xU ,ε ∈ U ′′

ε maps via the i th projection to points pri (xU ,ε)

in U ′
wi

×X ′
u(wi )

C ′
u(wi )

, i = 1, 2, and these points map to same point in U . Thus the

intersection Iw1 ∩ Iw2 is non-empty, if w1 and w2 are linked by an edge in �U . Since
the graph �U is connected so is the scheme U ×X C . This completes the proof. ��
Proposition 5.5 Let X be a connected scheme that is proper over a field k. Then X
has property (C).

Proof We proceed by induction on n = dim X . There is nothing to prove for n � 1.
Assume n � 2 and that (C) holds for all connected schemes that are proper over k and
have dimension � n − 1. Using Lemma 5.3 we can make the following reductions:

(i) X reduced (using the proper bijection Xred → X );
(ii) X projective over k (using Chow’s Lemma);
(iii) X integral (using the proper surjection

∐
Xi → X , with Xi the irreducible com-

ponents of X ).

According to Kawasaki’s result ([18], Theorem 1.1) there is a proper birational X ′ →
X such that the scheme X ′ is Cohen–Macaulay. Moreover, this Macaulayfication
arises as a sequence of blowing-ups. Hence applying Lemma 5.3 one more time, we
are reduced to consider the case that X is projective, integral, and Cohen–Macaulay
over a field k. Let Z ⊂ X be a closed subscheme with dim(Z) � 0. By, e.g., [7],
Theorem 5.1, we find an effective ample divisor D ⊂ X containing Z . By induction
the following claim implies that X satisfies (C):

Claim 5.6 Let X ′ → X be an étale covering whose total space is connected. Then the
restriction D′ = X ′ ×X D remains connected.

The argument to prove the claim is similar to [15], Chapter II, Corollary 6.2. Let
us recall it for the sake of completeness: Consider the ample invertible sheaf L =
OX (D). Since X ′ → X is finite and surjective, the inclusion D′ ⊂ X ′ remains
an effective Cartier divisor, and the corresponding invertible sheaf is the pullback
L ′ = L |X ′, which is still ample. Since X is projective and Cohen–Macaulay, so is
X ′. Let ωX ′ be the dualizing sheaf over k. Then h1(L ′⊗−t ) = hn−1(ωX ′ ⊗ L ′⊗t )

for every integer t . The right hand side vanishes for t sufficiently large, because L ′
is ample and n − 1 � 1. Replacing D by t D, we may assume H1(X ′,L ′⊗−1) = 0.
The short exact sequence 0 → L ⊗−1 → OX ′ → OD′ → 0 thus gives a surjection of
rings H0(X ′,OX ′) → H0(D′,OD′). The term on the left is a finite extension of the
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ground field k because X ′ is integral and proper. Hence the above map is bijective,
and D′ must be connected. ��

In view of 2.2 we obtain the following corollary.

Corollary 5.7 Let k be a field and set K = ksep. Let X be a connected scheme which
is proper over k and let x0 : Spec(K ) → X be a geometric point. Then there exists
a connected, reduced, affine, and 1-dimensional scheme C of finite type over k and a
k-morphism C → X, such that x0 factors via C and the induced map

π
alg
1 (C, x0) −→ π

alg
1 (X , x0)

is surjective.

Proof By Proposition 5.5 and 2.2 we find a connected closed subscheme C1 ⊂ X of
dimension at most 1, such that x0 factors via C1 and the induced map

π
alg
1 (C1, x0) −→ π

alg
1 (X , x0)

is surjective. Since passing to the reduced subscheme does not change the fundamental
group, we may assume C1 reduced. If dim(C1) = 0, then C1 = Spec(L) with L a
subfield of K . In this case we can takeC := A

1
L withmapA

1
L → Spec(L) = C1 → X

and factorization of x0 given by the composition of Spec(K ) → Spec(L) with the
inclusion of the zero section Spec(L) ↪→ A

1
L .

Assume dim(C1) = 1. Note that C1 is quasi-projective, hence we find an affine
openU ⊂ C1 which is connected and contains the singular locus of C1 and the image
point of x0. In particular we remove from C1 only finitely many regular closed points,
whose local rings are therefore discrete valuation rings. Hence it follows from [22,
Tag 0BSC] that πalg

1 (U , x0) → π
alg
1 (C1, x0) is surjective and we can take C = U . ��

6 The non-proper case

In view of Remark 5.2, we consider the following weaker variant of condition (C) in
this section.
6.1. Let X be a non-empty connected noetherian scheme. We consider the following
property:

(C*) For each closed subscheme Z ⊂ X with dim(Z) � 0 and each finite étale
covering U → X with connected total space there exists a connected closed
subschemeC ⊂ X with 0 � dim(C) � 1 and Z ⊂ C , such thatCU = C×X U
remains connected.

Lemma 6.2 Let X be a non-empty connected noetherian scheme. Let f : X ′ → X
be a universally closed and surjective morphism from a noetherian scheme X ′, with
connected components X ′

v . If property (C*) holds for all X
′
v , then it also holds for X.

We remark, that besides proper maps, all integral morphisms are universally closed,
see [11, Proposition (6.1.10)]. Thus the above lemma applies to the normalization
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map X ′ → X of an integral scheme, and also to the projection from the base-change
X ′ = X ⊗k k′ with respect to any algebraic ground field extension, provided that X ′
stays noetherian.

Since in Lemma 6.2 the map f : X ′ → X is not assumed to be of finite type, the
product X ′ ×X X ′ may not be noetherian and might have infinitely many connected
components. Thus the graph constructed in 5.4 might have an infinite set of edges. To
deal with this we record the following lemma.

Lemma 6.3 Let � be a connected oriented graph with a finite set of vertices. Then
there exists a finite oriented subgraph �′ ⊂ �, which has the same set of vertices as
� and which is connected.

Proof Choose for each pair of vertices v,w ∈ � a path pv,w connecting them. Take
�′ to be the graph whose set of vertices is equal to the set of vertices of � and whose
edges are given by all the finitely many edges appearing in the paths pv,w, for all pairs
of vertices (v,w). ��
Proof Lemma 6.2 Since f is closed and surjective the image f (Z) of a closed sub-
scheme Z ⊂ X ′ is closed and satisfies dim f (Z) � dim(Z), see [12, Proposition
(5.4.1)]. In particular, closed points are mapped to closed points.

We assume dim X � 2. Let Z ⊂ X be a closed subset with dim(Z) � 0. Set
X ′′ = X ′ ×X X ′. Let u : U → X be a finite étale covering with connected total space.
We want to find a closed connected at most one dimensional subscheme C which
contains Z and such that the pullback of U over C stays connected. To this end we
may assume that u : U → X is a finite étale Galois covering with Galois group G. We
denote by U ′ = U ×X X ′ and U ′′ = U ×X X ′′ the base changes and by �X and �U

the oriented graphs defined as in 5.4 by pr1 × pr2 : π0(X ′′) → π0(X ′) × π0(X ′) and
pr1 × pr2 : π0(U ′′) → π0(U ′) × π0(U ′), respectively. These graphs are connected,
since X andU are, and have finite sets of vertices. The map u induces a surjective map
of graphs�U → �X again denoted by u. For any vertexw ∈ �U with v = u(w) ∈ �X ,
the morphism u induces a finite étale morphism U ′

w → X ′
v .

Let �′
U ⊂ �U be a finite connected subgraph with the same vertices as �U , see

Lemma 6.3. Choose closed points xU ,e ∈ U ′′
e for any edge e ∈ �′

U . Set

xe,i := u(pri (xU ,e)) ∈ X ′
vi

, where vi = u(pri (e)) ∈ �, i = 1, 2.

Since �′
U is finite we find as in the proof of Lemma 5.3 for each vertex v ∈ �X a

0-dimensional closed subset Z ′
v ⊂ X ′

v such that

(a) Z ∩ f (X ′
v) ⊂ f (Z ′

v) and
(b) xe,i ∈ Z ′

v , for all edges e ∈ �′
U with v = u(pri (e)) for i = 1 or 2.

By the surjectivity of f we have

Z ⊂
⋃

v

f (Z ′
v). (6.1)

Fix a vertex v ∈ � and choosew0 ∈ �′
U mapping to v. Applying (C*) to the finite étale

covering U ′
w0

→ X ′
v we find an at most 1-dimensional connected closed subscheme
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C ′
v ⊂ X ′

v containing Z ′
v , such that the restriction U ′

w0
×X ′

v
C ′

v remains connected.
The base change U ×X C ′

v → C ′
v is a Galois covering with Galois group G. In

particular G acts transitively on the connected components ofU ×X C ′
v and we obtain

isomorphisms

U ′
w ×X ′

v
C ′

v
∼= U ′

w0
×X ′

v
C ′

v, for all w ∈ �U mapping to v, (6.2)

in particular all these schemes are connected. Set

Cv := f (C ′
v) and C :=

⋃

v

Cv.

It follows that C ⊂ X is closed, non-empty and at most 1-dimensional. By (6.1) and
Z ′

v ⊂ C ′
v we have Z ⊂ C . Moreover, using the choice of C ′

v together with (6.2) we
can argue in the same way as in the last paragraph of the proof of Lemma 5.3 with �U

there replaced by �′
U here to deduce that U ×X C is connected. ��

Lemma 6.4 Let k be an algebraically closed field and X an integral quasi-projective
k-scheme of dim X � 2. Let Z ⊂ X be a finite (possibly empty) set of closed points
and X ′ → X a finite and surjective morphism with X ′ irreducible. Then there is an
integral closed subscheme H ⊂ X of codimension 1 containing Z, such that X ′ ×X H
is irreducible.

Proof This follows from a classical Bertini theorem, where we use a trick of Mumford
to ensure that the hyperplane contains Z , see the proof of the Lemma on p. 56 in [17]:
Let f : Y → X be the blowing up with center Z . Then dim f −1(z) � 1, for all z ∈ Z .
We fix an embedding Y ↪→ P

n
k . Denote by Y ′ ⊂ Y ×X X ′ an irreducible component

which maps birationally onto X ′. By [16, I, Corollary 6.11, 3)] applied to the quasi-
finite morphism Y ′ → Y → P

n
k we find a hyperplane H1 ⊂ P

n
k which is not contained

in the exceptional locus of f and such that its pullback toY ′ is irreducible. (Herewe use
k algebraically closed, since in loc. cit. Y ′ is required to be geometrically irreducible
and k to be infinite.) Since f −1(z) is closed in P

n
k and dim f −1(z) + dim H1 � n we

find f −1(z) ∩ H1 �= ∅, for all z ∈ Z . Set H := f (H1 ∩ Y )red. Then Z ⊂ H and the
pullback of H to X ′ is birationally dominated by H1 ×Pn Y ′ and hence is irreducible.

��
Proposition 6.5 Let X be a connected scheme which is separated and of finite type
over a field k. Then X has property (C*).

Proof We proceed by induction on d = dim X . There is nothing to prove for d � 1.
Assume d � 2 and that (C*) holds for all connected schemes that are separated
and of finite type over k and have dimension � d − 1. Since X is connected all its
irreducible components have dimension� 1. Using Lemma 6.2we can thereforemake
the following reductions:

(i) k algebraically closed (since for k̄ the algebraic closure of k the morphism X ⊗k

k̄ → X is integral, whence universally closed);
(ii) X reduced (by considering the proper morphism Xred → X );
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(iii) X quasi-projective over k (Chow’s Lemma);
(iv) X integral (by considering the proper and surjective morphism �Xi → X , with

Xi the irreducible components of X );
(v) X normal (by considering the normalization X̃ → X ).

Assume k and X satisfy the conditions above. Let U → X be a finite étale map
with U connected. By the normality of X the scheme U is normal as well. Thus U
is irreducible. Hence the existence of a curve for U → X as in (C*) follows directly
from Lemma 6.4 and the induction hypothesis. ��

Corollary 6.6 Let k be a field and set K = ksep. Let X be a connected scheme which
is separated and of finite type over k and let x0 : Spec(K ) → X be a geometric point.
Let X ′ → X be a finite étale Galois covering. Then there exists a connected, reduced,
affine, and 1-dimensional scheme C of finite type over k and a k-morphism C → X,
such that x0 factors via C and the composite map

π
alg
1 (C, x0) −→ π

alg
1 (X , x0) −→ Aut(X ′/X)op, (6.3)

is surjective. Here the second map is the natural surjection from [9, Exp. V, 4, h)].

Proof In general the composition (6.3) is surjective if the pullback of X ′ over C stays
connected. Hence the statement follows from Proposition 6.5 the same way Corollary
5.7 follows from Proposition 5.5. ��

7 Proof of themain theorem

We prove Theorem 4.4.We start by proving the second statement, i.e., for a proper and
connected scheme X over a field k with geometric point x0 : Spec(k) → X wewant to
show that the natural injective group homomorphism π0�

alg(X , x0) → π
alg
1 (X , x0)

is surjective as well.
Set K := ksep. By Corollary 5.7 we find a connected, affine, reduced and 1-

dimensional k-schemeof finite typeC with amorphismC → X such that x0 factors via
C and the natural πalg

1 (C, x0) � π
alg
1 (X , x0) is surjective. We obtain a commutative

diagram

π0�
alg(C, x0)op ��

��

π
alg
1 (C, x0)

����
π0�

alg(X , x0)op �� πalg
1 (X , x0),

(7.1)

in which the vertical arrow on the right is surjective. It therefore remains to show that
the top horizontal arrow is surjective. To this end we choose some pro-object (Ci )i∈I
in (FinEt /C) representing �x0 , see [9], Exposé V, 4. We write Pro(FinEt /C) for
pro-objects in (FinEt /C). Since I is a filtered set and the transition maps Ci → C j

are finite étale, and therefore affine, we may form the projective limit C̃ = lim←−i∈I Ci
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in the category of C-schemes, see [13], Proposition (8.2.3). For a C-scheme T we
obtain a functorial isomorphism

HomC (T , C̃) = lim←−
i

HomC (T ,Ci ).

In particular an element a0 ∈ lim←− �x0(Ci ) is a morphism a0 : Spec(K ) → C̃ over x0.
Furthermore, by [9], Exposé V, 4, h), we have

AutPro(FinEt /C)((Ci )i ) = HomPro(FinEt /C)((Ci )i , (C j ) j )

= lim←−
j

HomPro(FinEt /C)((Ci )i ,C j )

= lim←−
j

HomC (C j ,C j ) = lim←−
j

HomC (C̃,C j )

= HomC (C̃, C̃) = AutC (C̃).

By loc. cit., the choice of a0 : Spec(K ) → C̃ over x0 yields a functorial isomorphism

HomC (C̃,U )
�−→ �x0(U ), f 
−→ f ◦ a0, U ∈ (FinEt /C).

We obtain an isomorphism

θ : AutC (C̃)op
�−→ Aut(�x0) = π

alg
1 (C, x0),

which sends a C-automorphism σ : C̃ → C̃ to the automorphism θ(σ ) of �x0 , which
on U ∈ (FinEt /C) is given by

�x0(U ) � f ◦ a0 
−→ f ◦ (σ ◦ a0) ∈ �x0(U ), f ∈ HomC (C̃,U ).

We claim that for any σ the automorphism θ(σ ) is in the image of π0�
alg(C, x0)op.

Indeed, by construction C̃ is affine, reduced, connected and 1-dimensional and is sim-
ply connectedWe have the K -rational point a0 : Spec(K ) → C̃ over x0 : Spec(K ) →
C . We note that a0 is a closed immersion. Indeed, for any finite separable field exten-
sion L/k a connected component C0 of C ⊗k L is a finite étale covering of C ; hence
we have a map C̃ → C0. It follows that the algebraic closure of k in H0(C̃,OC̃ ) is
equal to K = ksep, which implies that a0 is a closed immersion. Thus (C̃, a0, σ ◦ a0)
is an interval scheme in the sense of Definition 3.1 and the map C̃ → C induces an
algebraic loop w : (C̃, a0, σ ◦ a0) → (C, x0, x0). The map (4.3) sends the loop w to
the monodromy μw which by construction is equal to θ(σ ). This completes the proof
of the second part of the theorem.

It remains to show that assuming X is connected and only separated and of finite
type over k, then the image of π0�

alg(X , x0)op → π
alg
1 (X , x0) is dense. It suffices to

show that for any finite étale Galois covering X ′ → X the composition

π0�
alg(X , x0)

op −→ π
alg
1 (X , x0) −→ Aut(X ′/X)op
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is surjective. By Corollary 6.6 we find a curve C as above such that the composition

π
alg
1 (C, x0) −→ π

alg
1 (X , x0) −→ Aut(X ′/X)op

is surjective. Thus the statement follows from the surjectivity of top horizontal map
in (7.1) proved above. ��
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