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Abstract
We present a new proof of the caloric smoothing related to the fractional Gauss–
Weierstrass semi–group in Triebel-Lizorkin spaces. This property will be used to
prove existence and uniqueness of mild and strong solutions of the Cauchy problem
for a fractional nonlinear heat equation.
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1 Introduction

The aim of the paper is twofold. First we justify the smoothing property

t
d
2α ‖Wα

t w |As+d
p,q (Rn)‖ ≤ c ‖w |As

p,q(R
n)‖, 0 < t ≤ 1, d ≥ 0, (1)
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of the fractional Gauss–Weierstrass semi–group Wα
t ,

Wα
t w(x) =

(
e−t |ξ |2α ŵ

)∨
(x), w ∈ As

p,q(R
n), α > 0, (2)

in Besov and Triebel-Lizorkin spaces (see Definition 1)

As
p,q(R

n), A ∈ {B, F}, s ∈ R and 1 ≤ p, q ≤ ∞. (3)

Here ∧ and ∨ stand for the Fourier transform and its inverse, respectively. It will be a
straightforward consequence of the characterization of some of these spaces in terms
of the semi–groupWα

t . Based on these observations we deal secondly with the Cauchy
problem

∂t u(x, t) + (−�)αu(x, t) −
n∑
j=1

∂ j u
2(x, t) = 0, x ∈ R

n, 0 < t < T (4)

u(x, 0) = u0(x), x ∈ R
n, (5)

where 0 < T ≤ ∞ and 2 ≤ n ∈ N in the context of the semi–group Wα
t in (2) and

the fractional Laplacian

(−�)αw =
(
|ξ |2αŵ

)∨
. (6)

Here as usual ∂t = ∂/∂t and ∂ j = ∂/∂x j . In particular, (−�)α = (−�x )
α refers

to the space variables. If α = 1 then (4) refers to Burgers equation. The peculiar
nonlinearity Du2 = ∑n

j=1 ∂ j u2 is considered as the scalar counterpart of the related
(vector–valued) non–linearity in theNavier–Stokes equations. In general the fractional
Laplacian (−�)α is modelling dissipation (hyperdissipation if α > 1, hyperviscousity
if α = 2). In this respect the case α = n+2

4 attracted special attention. We refer to [7]
and [13]. The fractional Burgers equation (4) with 1/2 ≤ α < 1 has been considered
in [6]. For investigations of solutions of Cauchy problems for fractional dissipative
heat equations with several types of nonlinearities we refer to [12]. It turns out that
both in generalized Navier–Stokes equations and in other generalized equations of
physical and biological relevance (such as quasi-geostrophic equations, Keller-Segel
equations, chemotaxis equations) the suggestion is to replace the Laplace operator
by a (fractional) power (−�)α in order to achieve adequate mathematical models.
The motivation to study the smoothing property (1) for fractional Gauss-Weierstrass
semi–groups comes from our interest in so–calledmild solutions of (4), (5) being fixed
points of the operator Tu0 ,

Tu0u(x, t) = Wα
t u0(x) +

t∫

0

Wα
t−τ Du2(x, τ ) dτ, x ∈ R

n, 0 < t < T (7)
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Fractional nonlinear heat equations...

in suitable weighted Lebesgue spaces with respect to the Bochner integral
Lv((0, T ), b, X), where X = As

p,q(R
n), A ∈ {B, F}, s ∈ R, 1 ≤ p ≤ ∞,

1 ≤ q ≤ ∞, stands for a Besov or Triebel-Lizorkin space. This means that for some
b ∈ R and v our solution satisfies

‖ f |Lv ((0, T ), b, X) ‖ =
⎛
⎝

T∫

0

tbv‖ f (·, t)|X‖vdt

⎞
⎠

1/v

< ∞ (8)

if 1 ≤ v < ∞ and

‖ f |L∞ ((0, T ), b, X) ‖ = sup
0<t<T

tb‖ f (·, t)|X‖ < ∞ (9)

if v = ∞. Note that (after extension from R
n × (0, T ) to R

n+1 by zero)

Lv((0, T ), b, X) ⊂ S′(Rn+1) if b + 1

v
< 1 (10)

(see [18, formulae (4.17), (4.21)]) for details and an appropriate interpretation). Here
S′(Rn+1) stands for the space of tempered distributions. As far as the smoothing
property (1) is concerned we refer to [18, Theorem 4.1] (α = 1, classical case), [2,
Proposition 3.4] (α ∈ N) aswell as [8, Corollary 5.4] and [9, Example 4.7] (α > 0).We
present a different proof in Theorem 3 based on characterizations of As

p,q(R
n) (s > 0)

in terms of the fractional Gauss-Weierstrass semi–group Wα
t provided in Theorem 2.

As far as the Cauchy problem (4), (5) is concerned we follow the method developed in
[18, Subsection 4.5] and [1] (α = 1) as well as [2] and [3] (α ∈ N). The main results
are contained in Theorem 6 (existence of mild and strong solutions) and Theorem 7
(locally well-posedness of the Cauchy problem). Our approach allows us to deal with
the above Cauchy problem for initial data u0 belonging to spaces A

s0
p,q(R

n) in the so-
called supercritical case s0 > n

p −2α +1, where α > 1/2, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞.
Apart from the smoothing property (1) a key ingredient in the proof turns out to be
the mapping property of the nonlinearity Du2 = ∑n

j=0 ∂ j u2 in (4) considered in

Proposition 4 and Corollary 1 which require the condition s >
(
n
p − n

2

)
+ for spatial

solution spaces As
p,q(R

n).
The paper is organized as follows. Section2 is concerned with the characterization

of spaces As
p,q(R

n) in terms of fractional Gauss–Weierstrass semi–groups and the
proof of the smoothing property (1). The existence, uniqueness and stability of mild
and strong solutions of the Cauchy problem (4), (5) are treated in Sect. 3. In the final
Sect. 4 we illustrate different cases of solution spaces depending on the choice of
α > 0, dimension n and integrability p. In particular we consider how close the
spaces of admitted initial data approach to the so-called critical line s0 = n

p − 2α + 1
(for more details see explanations below). Moreover, we discuss the special case when
initial data u0 belong to L p(R

n), 1 < p < ∞. Finally, we investigate how our results
fit in the current literature and compare them with related results.
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2 Function spaces

2.1 Definitions and basic ingredients

We use standard notation. Let N be the collection of all natural numbers and N0 =
N ∪ {0}. Let R

n be Euclidean n-space, where n ∈ N. Put R = R
1. Let S(Rn) be

the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable
functions on R

n and let S′(Rn) be the space of all tempered distributions on R
n .

Furthermore, L p(R
n) with 0 < p ≤ ∞, is the standard complex quasi-Banach space

with respect to the Lebesgue measure, quasi-normed by

‖ f |L p(R
n)‖ =

⎛
⎝

∫

Rn

| f (x)|p dx
⎞
⎠

1/p

(11)

with the usual modification if p = ∞. Similarly L p(M) where M is a Lebesgue-
measurable subset of R

n . As usual, Z is the collection of all integers and Z
n where

n ∈ N denotes the lattice of all points m = (m1, . . . ,mn) ∈ R
n with mk ∈ Z. Let

Q j,m = 2− jm + 2− j (0, 1)n with j ∈ Z and m ∈ Z
n be the usual dyadic cubes in R

n ,
n ∈ N, with sides of length 2− j parallel to the axes of coordinates and 2− jm as the
lower left corner.

If ϕ ∈ S(Rn) then

ϕ̂(ξ) = (Fϕ)(ξ) = (2π)−n/2
∫

Rn

e−i xξ ϕ(x) dx, ξ ∈ R
n, (12)

denote the Fourier transform of ϕ. As usual,F−1ϕ and ϕ∨ stand for the inverse Fourier
transform, given by the right-hand side of (12) with i in place of −i . Here xξ stands
for the scalar product in R

n . Both F and F−1 are extended to S′(Rn) in the standard
way. Let ϕ0 ∈ S(Rn) with

ϕ0(x) = 1 if |x | ≤ 1 and ϕ0(x) = 0 if |x | ≥ 3/2. (13)

We define the sequences

ϕ j (x) = ϕ0(2
− j x) − ϕ0(2

− j+1x), x ∈ R
n, j ∈ N (14)

and

ϕ j (x) = ϕ0(2
− j x) − ϕ0(2

− j+1x), x ∈ R
n, j ∈ Z. (15)

Since

∞∑
j=0

ϕ j (x) = 1, x ∈ R
n and

∞∑
j=−∞

ϕ j (x) = 1, x ∈ R
n \ {0}, (16)
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ϕ = {ϕ j } j∈N0 and ϕ = {ϕ j } j∈Z form a dyadic resolution of unity, respectively. The
entire analytic functions (ϕ j f̂ )∨(x) ( j ∈ N0) and (ϕ j f̂ )∨(x) ( j ∈ Z) make sense
pointwise in R

n for any f ∈ S′(Rn).
We are interested in inhomogeneous Besov and Triebel-Lizorkin spaces As

p,q(R
n)

with A ∈ {B, F} with s ∈ R and 0 < p, q ≤ ∞. The standard norms of these spaces
and their homogeneous counterparts are given as follows

Definition 1 Let 0 < p ≤ ∞ (p < ∞ if A = F), 0 < q ≤ ∞ and s ∈ R.
(i) Let ϕ = {ϕ j } j∈N0 be the above dyadic resolution of unity. Then As

p,q(R
n) is the

collection of all f ∈ S′(Rn) such that

‖ f |As
p,q(R

n)‖ϕ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
∞∑
j=0

2 jsq
∥∥(ϕ j f̂ )∨ |L p(R

n)
∥∥q

)1/q

, if A = B

∥∥∥
(

∞∑
j=0

2 jsq
∣∣(ϕ j f̂ )∨(·)∣∣q

)1/q ∣∣L p(R
n)

∥∥∥, if A = F

(17)

is finite (with the usual modification if q = ∞).
(ii) Let ϕ = {ϕ j } j∈Z be the above homogeneous dyadic resolution of unity inR

n \{0}.
Then Ȧ

s
p,q(R

n) is the collection of all f ∈ S′(Rn) such that

‖ f | Ȧsp,q (Rn)‖ϕ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( ∞∑
j=−∞

2 jsq
∥∥(ϕ j f̂ )∨ |L p(R

n)
∥∥q

)1/q

, if A = B

∥∥∥
( ∞∑
j=−∞

2 jsq
∣∣(ϕ j f̂ )∨(·)∣∣q

)1/q ∣∣L p(R
n)

∥∥∥, if A = F

(18)

is finite (with the usual modification if q = ∞).
(iii) Let 0 < q < ∞ and s ∈ R. Then Fs∞,q(R

n) is the collection of all f ∈ S′(Rn)

such that

‖ f | Fs∞,q(R
n)‖ϕ = sup

J∈N0,M∈Zn
2Jn/q

⎛
⎜⎝

∫

QJ ,M

∑
j≥J

2 jsq
∣∣(ϕ j f̂ )

∨(x)
∣∣q dx

⎞
⎟⎠

1/q

(19)

with ϕ = {ϕ j } j∈N0 as in (i) is finite.
(iv) Let 0 < q < ∞ and s ∈ R. Then Ḟ

s
∞,q(R

n) is the collection of all f ∈ S′(Rn)

such that

‖ f | Ḟ s
∞,q(R

n)‖ϕ = sup
J∈Z,M∈Zn

2Jn/q

⎛
⎜⎝

∫

QJ ,M

∑
j≥J

2 jsq
∣∣(ϕ j f̂ )∨(x)

∣∣q dx

⎞
⎟⎠

1/q

(20)

with ϕ = {ϕ j } j∈Z as in (ii) is finite.
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Remark 1 We recall that all spaces defined above are independent of the respective
resolution of unity ϕ according to (13)–(16) (equivalent quasi-norms). This justifies
the omission of the subscript ϕ in (17)–(20) in the sequel (and any other marks in
connection with equivalent quasi–norms). Note that the spaces As

p,q(R
n) are transla-

tion invariant. This follows easily from elementary properties of the Fourier transform
and the translation invariance of L p – spaces. The theory of inhomogeneous spaces,
including special cases and their history may be found in [14–16] and [20]. As far
as homogeneous spaces are concerned we refer to [14, Chapter 5] as well as to [19,
Definition 2.8] as far as (20) is concerned. We will use these spaces only in the con-
text of norm equivalences. Especially for our purposes it is not necessary to discuss
the usual ambiguity of homogeneous spaces. Finally, Fs∞,∞(Rn) = Bs∞,∞(Rn) and

Ḟ
s
∞,∞(Rn) = Ḃ

s
∞,∞(Rn) as discussed in [20, Definition 1.1, Remark 1.2, pp. 2–3

and p.116].

We need a few specific properties of the above defined spaces. Let ϕ0 and ϕ = {ϕ j } j∈Z

be as in (13) and (15). Let 1 ≤ p, q ≤ ∞ (p < ∞ for F–spaces) and s > 0. Then

‖ f |Bs
p,q (R

n)‖ ∼ ‖ f |L p(R
n)‖ + ‖ f | Ḃs

p,q (R
n)‖ ∼ ‖(ϕ0 f̂ )

∨|L p(R
n)‖ + ‖ f | Ḃs

p,q (R
n)‖

(21)

are equivalent norms in Bs
p,q(R

n) and

‖ f |Fs
p,q (R

n)‖ ∼ ‖ f |L p(R
n)‖ + ‖ f | Ḟ s

p,q (R
n)‖ ∼ ‖(ϕ0 f̂ )

∨|L p(R
n)‖ + ‖ f | Ḟ s

p,q (R
n)‖

(22)

are equivalent norms in Fs
p,q(R

n) (with the usual modification if q = ∞). This is a
special case of corresponding assertions in [15, Section 2.3.3, pp. 97–100] where one
finds also continuous versions with t > 0 in place of 2− j , j ∈ Z, which are nearer to
what follows. These norms are characterizing what means that f ∈ S′(Rn) belongs
to As

p,q(R
n) if, and only if, the corresponding norm is finite. We need an extension of

the above norms to a wider class of functions ϕ j (x) = ϕ0(2− j x) and ϕ0(t x).
Let h ∈ S(Rn) and H ∈ S(Rn) with

h(x) = 1 if |x | ≤ 1, supp h ⊂ {x : |x | ≤ 2} (23)

and

H(x) = 1 if 1/2 ≤ |x | ≤ 2, supp H ⊂ {x : 1/4 ≤ |x | ≤ 4}. (24)

Proposition 1 Let ϕ0 be as in (13) and ϕ ∈ C∞(Rn \ {0}) with |ϕ(x)|> 0 if 1/2 ≤
|x | ≤ 2.
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(i) Let 1 ≤ p, q ≤ ∞ and 0 < s < σ . Let

∫

Rn

∣∣∣
(

ϕ(z) h(z)

|z|σ
)∨

(y)
∣∣∣ dy < ∞ (25)

and

sup
m∈N

∫

Rn

∣∣∣ (ϕ (
2m ·) H(·))∨

(y)
∣∣∣ dy < ∞. (26)

Then

‖ f |Bs
p,q (Rn)‖ ∼ ‖ f |L p(R

n)‖ +
(∫ ∞

0
t−sq∥∥ (

ϕ(t ·) f̂ )∨ |L p(R
n)

∥∥q dt
t

)1/q

∼ ∥∥(ϕ0 f̂ )
∨|L p(R

n)
∥∥ +

(∫ ∞
0

t−sq∥∥ (
ϕ(t ·) f̂ )∨ |L p(R

n)
∥∥q dt

t

)1/q
(27)

(usual modification if q = ∞) are equivalent norms in Bs
p,q(R

n).
(ii) Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, 0 < s < σ and a > n. Let

∫

Rn

∣∣∣
(

ϕ(z) h(z)

|z|σ
)∨

(y)
∣∣∣ (1 + |y|)a dy < ∞ (28)

and

sup
m∈N

∫

Rn

∣∣∣ (ϕ(2m ·) H(·))∨
(y)

∣∣∣ (1 + |y|)a dy < ∞. (29)

Then

‖ f |Fs
p,q(R

n)‖

∼ ‖ f |L p(R
n)‖ +

∥∥∥
(∫ ∞

0
t−sq

∣∣ (ϕ(t ·) f̂ )∨
(·)∣∣q dt

t

)1/q

|L p(R
n)

∥∥∥

∼ ∥∥(ϕ0 f̂ )
∨|L p(R

n)
∥∥ +

∥∥∥
(∫ ∞

0
t−sq

∣∣ (ϕ(t ·) f̂ )∨
(·)∣∣q dt

t

)1/q

|L p(R
n)

∥∥∥
(30)

(usual modification if q = ∞) are equivalent norms in Fs
p,q(R

n).

Proof The extension of (21), (22) from ϕ0(2− j x) and its continuous counterpart
ϕ0(t x) to the above assertion follows from [19, Proposition 2.10, pp. 18–19] and the
references given there specified to the above values of the parameters s, p, q. Again
these norms are characterizations as explained above. �
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Remark 2 Note that by [19, Proposition 2.10] the second summands on right-hand-
sides in (27) and (30) are equivalent norms in Ḃ

s
p,q(R

n) and Ḟ
s
p,q(R

n), respectively,
for all admitted parameters.

Let us shortly comment on the conditions with respect to ϕ0 and ϕ supposed in
Proposition 1. The system (ϕ j )

∞
j=1 introduced in order to define the spaces A

s
p,q(R

n)

(see Definition 1) can be rewritten as

ϕ j (x) = 
(2− j x), where 
(x) = ϕ0(x) − ϕ0(2x)

and ϕ0 has the meaning of (13). The function 
 has compact support in {x : 1
2 ≤

|x | ≤ 3
2 } and satisfies the Tauberian condition |
(x)|> 0 on {x : 3

4 ≤ |x | ≤ 1}.
The characterization of spaces As

p,q(R
n) in Proposition 1 can be considered as a

continuous extension and generalization of Definition 1, where the generating function

 is replaced byϕ. In contrast to the properties of 
 it is not assumed thatϕ has compact
support in a subset of R

n \ {0}. Conditions (25) and (28) ensure sufficiently strong
decay to 0 near the origin, whereas (26) and (29) are responsible for decay if |x |→ ∞.
For example, it follows from (25) and (28) that |ϕ(x)| � |x |σ in a neighbourhood
of the origin. Moreover, the condition |ϕ(x)|> 0 if 1

2 ≤ |x | ≤ 2 corresponds to the
Tauberian condition with respect to 
. Let us also mention that the condition with
respect to ϕ0 ∈ C∞

0 (Rn) can be weakened. For a more detailed discussion we refer to
[15, Corollary 2.4.1/1, Remark 2.4.1/3]. Relevant examples will be treated in the next
subsection.

2.2 Characterizations of some function spaces in terms of fractional
Gauss–Weierstrass semi–groups

We wish to apply Proposition 1 to

ϕ(ξ) = |ξ |δe−|ξ |2α , ξ ∈ R, α > 0, δ > 0. (31)

If 0 < α /∈ N then ϕ(ξ) is not smooth at ξ = 0 and some extra care is needed. This is
just the reason why we prefer now Proposition 1 (under the indicated restrictions for
the underlying spaces) compared with the original inhomogeneous versions according
to [15, Theorems 2.4.1, 2.5.1, pp. 100, 101, 132] (which apply to all spaces As

p,q(R
n)

with exception of Fs∞,q(R
n)). Rescue comes from the following observations in [12].

Let

K α(x) =
(
e−|ξ |2α)∨

(x), x ∈ R
n, α > 0, (32)

and according to (6)

Kα,σ (x) = (−�)σ/2Kα(x) =
(
|ξ |σ e−|ξ |2α)∨

(x), x ∈ R
n, σ > 0, α > 0.

(33)
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Then the estimates

|K α(x)|≤ c (1 + |x |)−n−2α, x ∈ R
n, α > 0, (34)

and

|K α,σ (x)|≤ c (1 + |x |)−n−σ , x ∈ R
n, α > 0, σ > 0, (35)

are covered by [12, Lemma 2.1, Lemma 2.2, pp. 463, 465]. WithWα
t as in (2) one has

for k ∈ N0,

∂kt W
α
t w(x) = (−1)k

(
|ξ |2kα e−t |ξ |2α ŵ

)∨
(x), x ∈ R

n, t > 0. (36)

In the distinguished case α = 1 one has now final characterizations of all spaces
As
p,q(R

n) with s ∈ R and 0 < p, q ≤ ∞ in terms of ∂kt Wtw for the classical
Gauss–Weierstrass semi–group Wt = W 1

t . This may be found in [20, Section 3.2.7,
pp. 106–109] and the references given there.Weextendnow these assertions to the frac-
tional Gauss–Weierstrass semi–group Wα

t under the same restrictions for the spaces
As
p,q(R

n) as in Proposition 1.

Theorem 2 Let ϕ0 be as in (13) and Wα
t be as in (2) with α > 0.

(i) Let 1 ≤ p, q ≤ ∞, s > 0 and k ∈ N such that 2αk > s. Then

‖ f |Bs
p,q(R

n)‖ ∼ ‖ f |L p(R
n)‖ +

(∫ ∞

0
t (k−

s
2α )q

∥∥∂kt W
α
t f |L p(R

n)
∥∥q dt

t

)1/q

∼ ‖(ϕ0 f̂ )∨|L p(R
n)‖ +

(∫ ∞

0
t (k−

s
2α )q

∥∥∂kt W
α
t f |L p(R

n)
∥∥q dt

t

)1/q

(37)

(equivalent norms), usual modification if q = ∞.
(ii) Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 and k ∈ N such that 2αk > s + n. Then

‖ f |Fs
p,q(R

n)‖

∼ ‖ f |L p(R
n)‖ +

∥∥∥
(∫ ∞

0
t (k−

s
2α )q

∣∣∂kt Wα
t f (·)∣∣q dt

t

)1/q

|L p(R
n)

∥∥∥

∼ ‖(ϕ0 f̂ )∨|L p(R
n)‖ +

∥∥∥
(∫ ∞

0
t (k−

s
2α )q

∣∣∂kt Wα
t f (·)∣∣q dt

t

)1/q

|L p(R
n)

∥∥∥ (38)

(equivalent norms), usual modification if q = ∞.

Proof Step 1. We rely on part (i) of Proposition 1 choosing there

ϕ(ξ) = |ξ |σ e−|ξ |2α , ξ ∈ R
n, σ = 2αk > s. (39)
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Then (25) follows from (34) and

∫

Rn

∣∣∣
(
e−|·|2αh(·)

)∨
(y)

∣∣∣ dy ≤
∫

Rn

∣∣∣
(
e−|·|2α)∨

(y)
∣∣∣ dy ·

∫

Rn

|h∨(y)| dy < ∞. (40)

Secondly we have to justify (26) with ϕ as in (39). But this follows from

∫

Rn

|g∨(x)| dx ≤ c

⎛
⎝

∫

Rn

∣∣(1 + |x |2)l/2g∨(x)
∣∣2 dx

⎞
⎠

1/2

∼ ‖g |Wl
2(R

n)‖, (41)

n/2 < l ∈ N, where Wl
2(R

n) are the classical Sobolev spaces. Then the second terms
in (27) are equivalent to

∼
(∫ ∞

0
τ−sq

∥∥ (
ϕ(τ ·) f̂ )∨ |L p(R

n)
∥∥q dτ

τ

)1/q

∼
(∫ ∞

0
t−

s
2α q

∥∥ (
ϕ(t

1
2α ·) f̂

)∨ |L p(R
n)

∥∥q dt

t

)1/q

(42)

again with ϕ as in (39) and τ = t
1
2α . One has by

ϕ
(
t

1
2α ξ

)
= tk |ξ |2kαe−t |ξ |2α , t > 0, ξ ∈ R

n, (43)

and (2) that

(
ϕ(t

1
2α ·) f̂

)∨
(x) = (−1)k tk∂kt W

α
t f (x). (44)

Inserted in (42) one obtains (37).
Step 2. For the proof of part (ii) we rely on part (ii) of Proposition 1 choosing

ϕ(ξ) = |ξ |δe−|ξ |2α , ξ ∈ R
n, δ = 2αk > s + n. (45)

Using (1 + |y|)a ≤ (1 + |y − z|)a(1 + |z|)a , a > n, one obtains similarly as in (40)
that the expression (28) can be estimated from above by

c
∫

Rn

∣∣∣
(

ϕ(z)

|z|σ
)∨

(1 + |y|)a dy = c
∫

Rn

∣∣ (|z|δ−σ e−|z|2α)∨
(y)

∣∣(1 + |y|)a dy (46)

with σ > s such that also δ − σ > a > n and some c > 0. Now (28) follows from
(33), (35). As far as the terms (29) are concerned one argues as in (41) incorporating
the factor (1+|x |)a . Afterwards one is in the same position as in (42)–(44) now based
on (30). This proves (38). �
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Remark 3 As already mentioned above the equivalent norms in (37) and (38) are
characterizations. This means in our case that As

p,q(R
n) collects all f ∈ L p(R

n),
1 ≤ p ≤ ∞, such that the corresponding norm is finite. In particular it follows from
the above considerations immediately that always ∂kt W

α
t f ∈ L p(R

n) if f ∈ L p(R
n),

1 ≤ p ≤ ∞. But we will not stress this point in the sequel.

2.3 Smoothing properties

We justify (1)–(3). As already mentioned in the Introduction assertions of this type are
not new. A proof of (1) with α = 1 for the classical Gauss–Weierstrass semi–group
Wtw = W 1

t w covering all spaces As
p,q(R

n), A ∈ {B, F}, s ∈ R and 0 < p, q ≤ ∞
may be found in [20, Theorem3.35, p. 110]. It relies on characterization of these spaces
in terms of Wtw using in a decisive way that the underlying kernel e−|ξ |2 ∈ S(Rn)

is smooth at the origin ξ = 0. This is no longer the case in general if one steps from
Wt to Wα

t , α > 0, this means from e−|ξ |2 to e−|ξ |2α . On the other hand, (1) for the
classical Gauss–Weierstrass semi–group Wt = W 1

t , restricted to A ∈ {B, F}, s ∈ R

and 1 ≤ p, q ≤ ∞ (p < ∞ for F–spaces) is also a special case of a corresponding
assertion for related hybrid spaces LrAs

p,q(R
n). This may be found in [18, Theorem

4.1, p. 114] including related references and comments. The extension of (1) from
α = 1 to α ∈ N for the spaces A ∈ {B, F}, s ∈ R and 1 ≤ p, q ≤ ∞ (p < ∞ for F–
spaces) goes back to [2, Theorem 3.5, p. 2123]. The arguments both in [18] (including
underlying references) and [2] rely on the elaborated machinery of (caloric) wavelet
expansions. The step from α ∈ N to α > 0 in (1) for A ∈ {B, F}, s ∈ R and
1 ≤ p, q ≤ ∞ is covered by the recent paper [9] in the larger context of convolution
inequalities in these spaces. What follows may be considered as a surprising simple
proof of these assertions relying on Theorem 2 and a few well–known properties of
the spaces As

p,q(R
n) as introduced in Definition 1.

Theorem 3 Let Wα
t be as in (2). Let A ∈ {B, F}, s ∈ R and 1 ≤ p, q ≤ ∞. Let

d ≥ 0. Then there is a constant c > 0 such that for all t with 0 < t ≤ 1 and all
w ∈ As

p,q(R
n),

t
d
2α ‖Wα

t w |As+d
p,q (Rn)‖ ≤ c‖w |As

p,q(R
n)‖. (47)

Proof Step 1. Let s > 0 and let w ∈ Bs
p,q(R

n) ⊂ L p(R
n). We put

‖w | ∗
Bs
p,q(R

n)‖ =
(∫ ∞

0
t (k−

s
2α )q

∥∥∂kt W
α
t w |L p(R

n)
∥∥q dt

t

)1/q

(48)

for the second summand on the right–hand side of (37). According to (2) and (34) we
have f = Wα

τ w ∈ L p(R
n) (see also Remark 3) and it holds

∂kt W
α
t f (x) = ∂kt

(
e−t |ξ |2α f̂

)∨
(x) = (−1)k

(
|ξ |2αke−t |ξ |2α f̂

)∨
(x) . (49)
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Inserting

f = Wα
τ w =

(
e−τ |ξ |2α ŵ

)∨

we get

∂kt W
α
t (Wα

τ w)(x) = (−1)k
(
|ξ |2αke−t |ξ |2αe−τ |ξ |2α ŵ(ξ)

)∨
(x)

= (−1)k
(
|ξ |2αke−(t+τ)|ξ |2α ŵ(ξ)

)∨
(x) =

(
∂kt e

−(t+τ)|ξ |2α ŵ(ξ)
)∨

(x)

= ∂kt W
α
t+τw(x) . (50)

Note that (49) is well defined due to (34). Combining (48) and (50) one obtains

τ
d
2α ‖Wα

τ w | ∗
Bs+d
p,q (Rn)‖ =

(∫ ∞

0
τ

d
2α q t (k−

s+d
2α )q

∥∥∂kt W
α
t+τw |L p(R

n)
∥∥q dt

t

)1/q

.

(51)

Let d ≥ 0 and let s+d
2α + 1

q < k ∈ N. Then a = k − s
2α − 1

q > d
2α ,

0 ≤ κ = d

2αa
< 1 and

(
k − s + d

2α
− 1

q

)
1

a
= 1 − κ. (52)

Then it follows from τκ t1−κ ≤ τ + t that for 1 ≤ q < ∞

τ
d
2α q t (k−

s+d
2α )q−1 ≤ (τ + t)(k−

s
2α )q−1 (53)

(modification if q = ∞). Inserted in (51) one obtains

τ
d
2α ‖Wα

τ w | ∗
Bs+d
p,q (Rn)‖ ≤ ‖w | ∗

Bs
p,q(R

n)‖. (54)

As far as the first terms on the right–hand side of (37) are concerned it is sufficient to
justify

∥∥ (
e−τ |ξ |2α ŵ

)∨ |L p(R
n)‖ ≤ c ‖w |L p(R

n)‖ (55)

for some c > 0 and all 0 < τ ≤ 1. Recall that 1 ≤ p ≤ ∞. Then (55) follows from

∫

Rn

∣∣∣
(
e−|λξ |2α)∨

(x)
∣∣∣ dx ≤ C (56)
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for some C > 0 and all 0 < λ < ∞ what in turn can be obtained from (32), (34) and

∫

Rn

∣∣∣
(
e−|λξ |2α)∨

(x)
∣∣∣ dx = λ−n

∫

Rn

∣∣∣
(
e−|ξ |2α)∨

(λ−1x)
∣∣∣ dx . (57)

Now (47) can be obtained for Bs
p,q(R

n) with s > 0 and 1 ≤ p, q ≤ ∞ from (37),
(54) and (55).
Next we consider the case of F–spaces. Let s > 0 and let ω ∈ Fs

p,q(R
n) ⊂ L p(R

n),
where 1 ≤ p < ∞. We put

‖w | ∗
Fs
p,q(R

n)‖ =
∥∥∥

(∫ ∞

0
t (k−

s
2α )q

∣∣∣∂kt Wα
t w(·)

∣∣∣
q dt

t

)1/q

|L p(R
n)

∥∥∥ (58)

Again it holds (50). The counterpart of (51) reads as

τ
d
2α ‖Wα

t w | ∗
Fs+d
p,q (Rn)‖ =

∥∥∥
⎛
⎝

∞∫

0

τ
d
2α q t (k−

s+d
2α )q

∣∣∣∂kt Wα
t w(·)

∣∣∣
q dt

t

⎞
⎠

1/q ∣∣∣L p(R
n)

∥∥∥,

(59)

where d ≥ 0 and s+d
2α + 1

q < k ∈ N. By the same arguments as in the proof of (54)
one obtains

τ
d
2α ‖Wα

t w | ∗
Fs+d
p,q (Rn)‖ ≤ ‖w | ∗

Fs
p,q(R

n)‖. (60)

Now (47) for A = F is a consequence of (38), (55) and (60).
Step 2. Recall

Iσ A
s
p,q(R

n) = As+σ
p,q (Rn), s ∈ R, σ ∈ R and 0 < p, q ≤ ∞, (61)

A ∈ {B, F}, where

Iσ f = (
w−σ f̂

)∨
, f ∈ S′(Rn), (62)

is the well–known lift based on wδ(x) = (1 + |x |2)δ/2, x ∈ R
n , δ ∈ R, [20, Section

1.3.2, p. 16] and the references given there. By definition of Iσ andWα
t it is not difficult

to see that

Wα
t f = I−σ

(
Wα

t (Iσ f )
)

(63)

if f ∈ As
p,q(R

n), 1 ≤ p < ∞, s > 0 and σ > 0 (see Remark 4 below). If s ≤ 0
and f ∈ As

p,q(R
n) then we take (63) as definition of Wα

t f , where σ is chosen such
that s + σ > 0. Then one can extend (47) from the spaces As

p,q(R
n), s > 0 and

1 ≤ p, q ≤ ∞ (p < ∞ for F–spaces) treated in Step 1 to their counterparts with
s ≤ 0.
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This covers all spaces in the above theoremwith exception of Fs∞,q (R
n), 1≤q<∞.

Step 3. Let
◦
Fs

p,q(R
n), 1 ≤ q ≤ ∞, be the completion of S(Rn) in Fs

p,q(R
n). Then

one has

◦
Fs
1,q(R

n)′ = F−s
∞,q ′(Rn), 1 ≤ q ≤ ∞,

1

q
+ 1

q ′ = 1 and s ∈ R, (64)

for the related dual spaces in the framework of the dual pairing
(
S(Rn), S′(Rn)

)
. This

is a special case of [20, (1.25), p. 5] with a reference to [10, Theorem 4, p. 87] as far as
the case q = ∞ is concerned (if q < ∞ then S(Rn) is already dense in Fs

1,q(R
n) and

the related duality is well known, [20, p. 5] and the references there). If ϕ ∈ S(Rn)

thenWα
t ϕ can be approximated in, say, Fs+1

1,1 (Rn) by functions belonging to S(Rn) for
any s. But then it follows by embedding that this is also an approximation in Fs

1,∞(Rn)

for any s. In particular one has by Step 2

Wα
t : ◦

Fs
1,q(R

n) ↪→ ◦
Fs+d
1,q (Rn), 1 ≤ q ≤ ∞, s ∈ R, d > 0. (65)

The operator Wα
t is self–dual, (Wα

t )′ = Wα
t . Then (47) with As

p,q(R
n) = Fs∞,q(R

n),
s ∈ R, 1 ≤ q < ∞, follows from (64), (65). �
Remark 4 We justify (63). Let f ∈ As

p,q(R
n), 1 ≤ p < ∞, s > 0 and σ > 0.

Without loss of generality we may assume σ < ∞ (otherwise one replaces s by s − ε

with 0 < ε < s). If f ∈ S(Rn) then

F(Wα
t Iσ f )(ξ) = e−t |ξ |2α (1 + |ξ |2)−σ/2(F f )(ξ) (66)

is well defined pointwise and belongs to S′(Rn). Hence,

I−σ (Wα
t Iσ f ) = F−1e−t |ξ |2αF f = Wα

t f . (67)

for all f ∈ S(Rn). Then it follows (63) for all f ∈ As
p,q(R

n) by (47) (with d = 0),
the lift property (47) and density of S(Rn) in As

p,q(R
n).

Remark 5 Weobserve that ‖ f | ∗
As
p,q(R

n)‖ is an equivalent norm in Ȧ
s
p,q(R

n) if 2αk>s
for Besov spaces and 2αk > s + n for Triebel-Lizorkin spaces. This is a direct
consequence of Remark 1 and Theorem 2.

3 Nonlinear fractional heat equations

In [3] we dealt with the Cauchy problem (4), (5) where α > 0 is a natural number. The
caseα = 1 corresponds to a classical non-linear heat equation.Weestablishedmild and
strong solutions in appropriate function spaces Lv ((0, T ), b, X) ∩C∞(Rn × (0, T ))

being fixed points of the operator Tu0 defined in (7).
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The aim of this section is to extend some of these results to the case of fractional
powers α > 1/2. This restriction results from the mapping properties of the non-
linearity Du2 in As

p,q–spaces, see Proposition 5 below. In particular, we make use of
the smoothing properties formulated in Theorem 3.

For later purposes we recall multiplication properties in the respective spaces
As
p,q(R

n) derived in [3] including p = ∞ for F-spaces.

Proposition 4 Let 1 ≤ p, q ≤ ∞ and ( np − n
2 )+ < s < ∞. Let A ∈ {B, F}. Then it

holds

‖ f · g|As−( np −s)+−ε

p,q (Rn)‖ ≤ c ‖ f |As
p,q(R

n)‖ · ‖g|As
p,q(R

n)‖ (68)

for all f , g ∈ As
p,q(R

n) and all ε > 0.

Proof Spaces As
p,q(R

n) (p < ∞ for F-spaces) are multiplication algebras if s > n
p .

For Fs∞,q(R
n), s > 0 this property follows from [20, Thm. 2.41]. Then (68) holds

with ε ≥ 0. If s = n
p assertion (68) holds due to [3, Prop. 2.3] and embedding (2.24)

in [20]. Finally, if s < n
p then (68) is a consequence of [3, Prop. 2.1] as well as the

Sobolev-type embeddings in [3, Prop. 2.2]. �
Corollary 1 Let 1 ≤ p, q ≤ ∞, ( np − n

2 )+ < s < ∞ and σ < s − 1 − ( np − s)+. Let
A ∈ {B, F}. Then it holds

‖D( f · g)|Aσ
p,q(R

n)‖ ≤ c ‖ f |As
p,q(R

n)‖ · ‖g|As
p,q(R

n)‖ (69)

for all f , g ∈ As
p,q(R

n).

Proof Clearly, we have

‖D( f · g)|Aσ
p,q(R

n)‖ ≤ c ‖ f · g|Aσ+1
p,q (Rn)‖.

Thus, (69) follows from Proposition 4 and σ + 1 < s −
(
n
p − s

)
+. �

Next we derive an estimate of Tu0 as defined in (7) for fixed t > 0 in appropriate
function spaces As

p,q(R
n).

Proposition 5 Let 2 ≤ n ∈ N, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞,
(
n
p − n

2

)
+ < s < ∞ and

let α > 1/2. Let T > 0 and let a, v, d such that

1

α
< v ≤ ∞, −∞ < a + 1

v
< α, 1 +

(
n

p
− s

)

+
< d < 2

(
α − 1

v

)
. (70)

If

u0 ∈ As0
p,q(R

n) with s0 ≤ s and u ∈ L2αv

(
(0, T ),

a

2α
, As

p,q(R
n)

)
(71)
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then there exists a constant c > 0, independent of u0 and u, such that

‖Tu0u(·, t)|As
p,q(R

n)‖ ≤ c t−
s−s0
2α ‖u0|As0

p,q(R
n)‖

+c t1−
1
αv

− d
2α − a

α ‖u|L2αv

(
(0, T ),

a

2α
, As

p,q(R
n)

)
‖2.
(72)

for all t with 0 < t < T (with 1
v

= 0 and the modification (9) if v = ∞).

Proof Note that condition (70) with respect to d implies α > 1
2 . Using Theorem 3 and

Corollary 1 with s − d in place of σ we can estimate as follows

‖Tu0u(·, t)|As
p,q(R

n)‖

≤ ‖Wα
t u0|As

p,q(R
n)‖ +

t∫

0

‖Wα
t−τ Du2(·, τ )|As

p,q(R
n)‖ dτ

� t−
s−s0
2α ‖u0|As0

p,q(R
n)‖ +

t∫

0

(t − τ)−
d
2α ‖Du2(·, τ )|As−d

p,q (Rn)‖ dτ

� t−
s−s0
2α ‖u0|As0

p,q(R
n)‖ +

t∫

0

(t − τ)−
d
2α ‖u(·, τ )|As

p,q(R
n)‖2 dτ. (73)

Here we used that

σ = s − d < s − 1 −
(
n

p
− s

)

+

according to (70). By means of Hölder’s inequality with exponent αv > 1 we obtain

t∫

0

(t − τ)−
d
2α τ− a

α τ+ a
α ‖u(·, τ )|As

p,q(R
n)‖2 dτ

� t1−
1
αv

− d
2α − a

α ‖u|L2αv

(
(0, T ),

a

2α
, As

p,q(R
n)

)
‖2.

(74)

Here we used the conditions a + 1
v

< α as well as d < 2(α − 1
v
) to ensure that the

integral is finite. �
Theorem 6 Let 2 ≤ n ∈ N, 1

2 < α < ∞, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and let
A ∈ {B, F}. Let

n

p
− 2α + 1 < s0 (75)
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and

(
n

p
− n

2

)

+
< s0 + α. (76)

Let u0 ∈ As0
p,q(R

n).
(i) Then there exists a number T > 0 such that the Cauchy problem (4),(5) has a
unique mild solution u belonging to

L2αv

(
(0, T ), a

2α , As
p,q(R

n)
)

,

for all s satisfying

s0 ≤ s < s0 + min(α, 2α − 1) (77)

and

s > max

((
n

p
− n

2

)

+
,

(
n

p
− 2α + 1

)

+

)
, (78)

where a, v such that

0 ≤ 1

v
<

1

2

(
2α − 1 −

(
n

p
− s

)

+

)
(79)

and

s − s0 < a + 1

v
< min

(
α, 2α − 1 −

(
n

p
− s

)

+

)
. (80)

(ii) The mild solution u obtained in part (i) also belongs to the space L∞((0, T ),

As0
p,q(R

n)). Moreover, if, in addition, max(p, q) < ∞ then the above solution u(·)
converges to u0 with respect to the norm in As0

p,q(R
n) if t → 0+.

Proof First we observe that assumptions (75) and (77) imply that

0 ≤ s − s0 < min

(
α, 2α − 1 −

(
n

p
− s

)

+

)
.

Hence, conditions (79) and (80) make sense. Step 1. We choose d such that

1 +
(
n

p
− s

)

+
< d < min

(
2α −

(
a + 1

v

)
, 2

(
α − 1

v

))
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which is possible due to conditions (79) and (80). Then it follows from Proposition 5
that

‖Tu0u(·, t)|As
p,q(R

n)‖ ≤ c t−
s−s0
2α ‖u0|As0

p,q(R
n)‖

+ c t1−
1
αv

− d
2α − a

α ‖u|L2αv

(
(0, T ), a

2α , As
p,q(R

n)
)

‖2.

for 0 < t < T . We multiply both sides with t
a
2α . Raising to the power of 2αv and

integrating over (0, T ) yield

T∫

0

tav‖Tu0u(·, t)|As
p,q(R

n)‖2αvdt

≤ c T δ ‖u0|As0
p,q(R

n)‖2αv + Tκ ‖u|L2αv

(
(0, T ), a

2α , As
p,q(R

n)
)

‖4αv (81)

with

δ = (a − s + s0)v + 1 > 0, since s − s0 < a + 1

v
(82)

and

κ =
(
2α − 1

v
− d − a

)
v > 0, since d < 2α −

(
a + 1

v

)
. (83)

Thus, Tu0 maps the unit ball UT in L2αv

(
(0, T ), a

2α , As
p,q(R

n)
)
into itself if T is

sufficiently small.
As for the contraction property consider u, v ∈ UT . A similar calculation with d

as above (cf. also (73) and (74)) yields

‖Tu0u(·, t) − Tu0v(·, t)|As
p,q(R

n)‖

≤ c t1−
1
αv

− d
2α − a

α

⎛
⎝

t∫

0

ταv‖u2(·, τ ) − v2(·, τ )|As−d+1
p,q (Rn)‖ dτ

⎞
⎠

1/αv

.

Application of Proposition 4 leads in combination with Hölder’s inequality to

‖Tu0u(·, t) − Tu0v(·, t)|As
p,q(R

n)‖ ≤ c t1−
1
αv

− d
2α − a

α

×
⎛
⎝

t∫

0

τ av‖u(·, τ ) − v(·, τ )|As
p,q(R

n)‖αvdτ

⎞
⎠

1/2αv

×
⎛
⎝

t∫

0

τ av‖u(·, τ ) + v(·, τ )|As
p,q(R

n)‖αv dτ

⎞
⎠

1/2αv

(84)
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Let temporarily Xs
T = L2αv

(
(0, T ), a

2α , As
p,q(R

n)
)
, then it follows from (84)

‖Tu0u − Tu0v|Xs
T ‖ ≤ c T

κ

2αv ‖u + v|Xs
T ‖‖u − v|Xs

T ‖ (85)

with the same κ as in (83). If T > 0 is small enough, then Tu0 : UT �→ UT is a
contraction. Since we deal with Banach spaces we have shown that Tu has a unique
fixed point in UT and hence a mild solution of the Cauchy problem (4), (5).

To extend the uniqueness to the whole space we proceed similarly to e.g. [11, 21].
Let u ∈ UT be the above solution and v ∈ Xs

T a second solution. We observe that (85)
holds for any 0 < t ≤ T0 ≤ T . With u ∈ UT we obtain

‖u − v|Xs
T0‖ ≤ c Tκ

0 (1 + ‖v|Xs
T ‖)‖u − v|Xs

T0‖. (86)

If we choose T0 > 0 small enough such that c Tκ

0 (1 + ‖v|Xs
T ‖) < 1 it follows that

u(·, t) = v(·, t) for any t ∈ (0, T0]. Now we take u(·, T0) ∈ As
p,q(R

n) ↪→ As0
p,q as

new initial value and proceed as in the previous steps until (86) inclusively. There
exists a unique solution ũ in a neighbourhood Uδ(T0) with ũ(·, T0) = u(·, T0). Since
it holds that ũ(·, t) = u(·, t) for all t ∈ (0, T0] ∩Uδ(T0) we have extended u to some
interval (0, T1] with T0 < T1. Thus, we have prolongated u(·, t) − v(·, t) = 0 to
some interval (0, T1] where T0 < T1 ≤ T By iteration it follows the uniqueness in

L2αv

(
(0, T ), a

2α , As
p,q(R

n)
)
.

Step 2. We show part (ii) of the theorem. To this end we first prove that the mild
solution obtained in Step 1 belongs to L∞((0, T ), As0

p,q(R
n)).

Let u0 ∈ As0
p,q(R

n) and let u ∈ L∞
(
(0, T ), a

2α , As
p,q(R

n)
)
be the corresponding

solution, where s and a satisfy (77), (78) and (80), where 1
v
is replaced by 0. Let

0 < t < T . It holds

‖u(·, t)|As0
p,q(R

n)‖ ≤ ‖Wα
t u0|As0

p,q(R
n)‖ +

t∫

0

‖Wα
t−τ Du2(·, τ )|As0

p,q(R
n)‖dτ.

Taking into account (63) and the lift property (61) wemay assume s0 > 0. Concerning
the first summand we obtain

‖Wα
t u0|As0

p,q(R
n)‖

� ‖
∫

Rn

(
e−t |ξ |2α)∨

(x − y) u0(y) dy|As0
p,q(R

n)‖

= ‖
∫

Rn

(
e−|ξ |2α)∨

(z) u0(x − t1/2αz) dz|As0
p,q(R

n)‖

≤
∫

Rn

(
e−|ξ |2α)∨

(z)‖u0(x − t1/2αz)|As0
p,q(R

n)‖ dz (87)
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� ‖u0|As0
p,q(R

n)‖
∫

Rn

(
e−|ξ |2α)∨

(z) dz < ∞ (88)

independent of t , where (87) follows from the generalized Minkowski inequality for
Banach spaces and (88) from the translation invariance of As

p,q(R
n)– spaces (see also

Remark 1) and (34).
In order to estimate the second summand we first consider the case that s − s0 ≤

1 +
(
n
p − s

)
+ and we put

d := 1 +
(
n

p
− s

)

+
− (s − s0) + ε,

where ε is chosen such that 0 < ε < 2α − 1− ( np − s)+ − (s − s0) according to (80).

Then, d > 0, s − s0 < α − d
2 , and we may choose a such that

0 < s − s0 < a < min

(
α − d

2
, 2α − 1 −

(
n

p
− s

)

+

)
.

Applying Theorem 3 with s0 − d in place of s and Corollary 1 with σ = s0 − d <

s − 1 −
(
n
p − s

)
+ we obtain

t∫

0

‖Wα
t−τ Du2(·, τ )|As0

p,q(R
n)‖dτ

≤ c

t∫

0

(t − τ)−
d
2α ‖Du2(·, τ )|As0−d

p,q (Rn)‖dτ

≤ c

t∫

0

(t − τ)−
d
2α ‖u(·, τ )|As

p,q(R
n)‖2dτ

≤ c t−
d
2α − a

α
+1

(
sup

0<τ<T
τ

a
2α ‖u(·, τ )|As

p,q(R
n)‖

)2

(89)

because of 0 < d < 2α and a < α.
If s − s0 > 1+

(
n
p − s

)
+ then we can apply Theorem 3 with d = 0 and Corollary

1 with s0 in place of σ to get

t∫

0

‖Wα
t−τ Du2(·, τ )|As0

p,q(R
n)‖dτ ≤ c sup

0<t<T

t∫

0

‖u(·, τ )|As
p,q(R

n)‖2 dτ

≤ c t−
a
α
+1

(
sup

0<τ<T
τ

a
2α ‖u(·, τ )|As

p,q(R
n)‖

)2

. (90)
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The boundedness of u(t, ·) on (0, T ) in As0
p,q(R

n) follows from (88), (89) (due to
a < α − d

2 ), and (90) (because of a < α).
Next we consider the limit of u(t, ·) in As0

p,q(R
n) if t → 0+. It holds

‖u(·, t) − u0|As0
p,q(R

n)‖

≤ ‖Wα
t u0 − u0|As0

p,q(R
n)‖ +

t∫

0

‖Wα
t−τ Du2(·, τ )|As0

p,q(R
n)‖dτ.

The second summand on the right-hand side tends to zero if t → 0+ as a consequence
of (89), (90) and the conditions with respect to a, α, and d. Using the identity

u0(x) = u0(x) ·
((

e−t |ξ |2α)∨)∧
(0) = (2π)−n/2

∫

Rn

(
e−|tξ |2α)∨

(x − y)u0(x) dy

we obtain the estimate

‖Wα
t u0 − u0|As0

p,q(R
n)‖

�
∫

|z|>N

(
e−|ξ |2α)∨

(z)‖u0(x − t1/2αz) − u0(x)|As0
p,q(R

n)‖ dz (91)

+
∫

|z|≤N

(
e−|ξ |2α)∨

(z)‖u0(x − t1/2αz) − u0(x)|As0
p,q(R

n)‖ dz. (92)

The first summand is lower than ε if we choose N large enough. Fixing this N the
second summand tends to zero for t tending to zero. This follows from the fact that
the Schwartz space S(Rn) is dense in As

p,q(R
n) if max(p, q) < ∞ and the continuity

of the translation (See also [5, Subsection 1.2.d] for more details with respect to
approximate identities). This completes the proof. �

In addition to the results of the previous part one may ask for well-posedness of
the Cauchy problem. The notation well-posedness is not totally fixed in the literature
(see the comments in [17, Subsection 6.2.5]) We adapt the standard notation, see e.g.
[4]. The Cauchy problem is called locally well-posed if there exists a unique mild
and strong solution according to Theorem 6. In addition it is required continuous
dependence of the solutions with respect to initial data. This means that for solutions
u1 and u2 of (4), (5) according to Theorem 6 with respect to initial data u10 and u20,
respectively, for any ε > 0 there exists a δ > 0 and a time T > 0 such that for all
0 < t < T

‖u1(·, t) − u2(·, t)|As0
p,q(R

n)‖ ≤ ε (93)

holds if

‖u10 − u20|As0
p,q(R

n)‖ ≤ δ . (94)
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It is sufficient to consider solutions u ∈ L∞
(
(0, T ), a

2α , As
p,q(R

n)
)
. Recall

that by construction of the solution as a fixed point of Tu0 we may assume

‖u|L∞
(
(0, T ), a

2α , As
p,q(R

n)
)

‖ ≤ 1.

Theorem 7 Let ui ∈ L∞((0, Ti ), a
2α , As

p,q(R
n)) (i = 1, 2) be solutions of (4), (5)

obtained in Theorem 6 with initial data ui0 ∈ As0
p,q(R

n) in the corresponding time
interval (0, Ti ). Let max(p, q) < ∞. Then under the conditions of Theorem 6 the
Cauchy problem (4), (5) is locally well-posed.

Proof Let u1, u2 be two solutions of (4), (5) with corresponding initial data u10, u
2
0.

We have

‖u1(·, t) − u2(·, t)|As0
p,q(R

n)‖

≤ ‖Wα
t (u10 − u20)|As0

p,q(R
n)‖ +

t∫

0

‖Wα
t−τ D(u21 − u22)(·, τ )|As0

p,q(R
n)‖dτ

(95)

To estimate the first summand of the right-hand side we use again Theorem 3 with
d = 0. The second summand can be treated in the same way as in Step 2 of the proof
of Theorem 6 with u1 − u2 in place of u. Note, that u1 ∈ L∞((0, T1), a

2α , As
p,q(R

n))

and u2 ∈ L∞((0, T2), a
2α , As

p,q(R
n)). Hence, application of Minkowski’s inequality

leads to

‖u1(·, t) − u2(·, t)|As0
p,q(R

n)‖ ≤ c ‖u10 − u20|As0
p,q(R

n)‖ + c t−
d
2α − a

α
+1 (96)

with the same choice of d ≥ 0 as in step 2 of Theorem 6 and for all 0 < t < T with
T ≤ min(T1, T2). Then the right hand side in (96) is lower the the given ε if this T is
chosen small enough. �

4 Comments and special cases

As already mentioned in the introduction our approach allows to deal with the Cauchy
problem (4), (5) for initial data u0 belonging to spaces As0

p,q(R
n) with smoothness s0

satisfying the a-priori condition (75), i. e. s0 > n
p − 2α + 1.

It refers to the so-called supercritical case, where the existence of local (small T )
solutions can be expected. For a detailed discussion of (sub/super)critical spaces in the
context of Navier–Stokes and the related scalar nonlinear heat equation (4) we refer
to [18, Subsection 5.5] (α = 1), [3, Subsection 3.2] (α ∈ N) and the references given
there. The arguments can be adapted to the case of fractional α > 1/2.

The second a-priori condition (76), i. e.
(
n
p − n

2

)
+ < s0 +α is due to the mapping

properties of the nonlinearity Du2 in (4) and relevant if α > 1. A breaking point is
α = n

2 +1. If 1 < α ≤ n
2 +1 then we obtain a dependence on the parameter p whether
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or not all supercritical spaces are admitted. If α > n
2 + 1 then the supercritical case

can never be completely covered by our method.
A further notable exponent is α = n+2

4 (α = 5
4 if n = 3). In this case we have the

coincidence n
p − 2α + 1 = n

p − n
2 resulting in consequences with respect to spatial

smoothness s of our solution spaces L2αv

(
(0, T ), a

2α , As
p,q(R

n)
)
. All these aspects

will be discussed in more detail in the following.
We always assume n ∈ N, n ≥ 2, α > 1

2 , 1 ≤ p, q ≤ ∞, A ∈ {B, F} and a, v as
in (79) and (80). In the figures below the area of admitted s0 is shaded, that one of s
is hatched.

Remark 6 The case 1
2 < α ≤ 1. Let s0 > n

p − 2α + 1 and let u0 ∈ As0
p,q(R

n). Then
(76) is satisfied and (77) and (78) read as

s0 ≤ s < s0 + 2α − 1 and s >

(
n

p
− 2α + 1

)

+
,

respectively.

(i) If n
p − 2α + 1 < s0 ≤ 0 and n

2α−1 < p ≤ ∞ then there exists a unique mild

solution u ∈ L2αv

(
(0, T ), a

2α , As
p, q(R

n)
)
, where 0 < s < s0 + 2α − 1.

(ii) If s0 >
(
n
p − 2α + 1

)
+ and 1 ≤ p ≤ ∞ then there exists a unique mild solution

u ∈ L2αv

(
(0, T ), a

2α , As
p, q(R

n)
)
, where s0 ≤ s < s0 + 2α − 1.

This is well-known in the case α = 1 (see, for example, [1, 2], and [18, Subsection
4.4]). Supercritical spaces As0

p,q(R
n) are completely covered for all p, 1 ≤ p ≤ ∞

(see Fig. 1). In particular, initial data u0 ∈ A0
p,q(R

n) are admitted if n
2α−1 < p ≤ ∞.

Remark 7 The case 1 < α ≤ n+2
4 .

This case implies n > 2 and (75) as well as (76) are satisfied if

s0 >

(
n

p
− α + 1

)

+
− α.

Conditions (77) and (78) read as

s0 ≤ s < s0 + α and s >

(
n

p
− 2α + 1

)

+
,

respectively.

(i) If
(
n
p − α + 1

)
+ − α < s0 ≤ 0 and n

2α−1 < p ≤ ∞ then there exists a unique

mild solution u ∈ L2αv

(
(0, T ), a

2α , As
p, q(R

n)
)
, where 0 < s < s0 + α.

(ii) If s0 >
(
n
p − 2α + 1

)
+ and 1 ≤ p ≤ ∞ then there exists a unique mild solution

u ∈ L2αv

(
(0, T ), a

2α , As
p, q(R

n)
)
, where s0 ≤ s < s0 + α.
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Fig. 1 1
2 < α ≤ 1

Supercritical spaces As0
p,q(R

n) are completely covered if 1 ≤ p ≤ n
α−1 (see Fig. 2)..

In particular, initial data u0 ∈ A0
p,q(R

n) are admitted if n
2α−1 < p ≤ ∞.

Remark 8 The case n+2
4 < α ≤ n

2 + 1.
As in the previous case (75) as well as (76) are satisfied if

s0 >

(
n

p
− α + 1

)

+
− α.

Now, conditions (77) and (78) read as

s0 ≤ s < s0 + α and s >

(
n

p
− n

2

)

+
,

respectively.
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Fig. 2 1 < α ≤ n+2
4

(i) If
(
n
p − α + 1

)
+ − α < s0 ≤

(
n
p − n

2

)
+ and 1 ≤ p ≤ ∞ then there exists

a unique mild solution u ∈ L2αv

(
(0, T ), a

2α , As
p, q(R

n)
)
, where

(
n
p − n

2

)
+ <

s < s0 + α.

(ii) If s0 >
(
n
p − 2α + 1

)
+ and 1 ≤ p ≤ ∞ then there exists a unique mild solution

u ∈ L2αv

(
(0, T ), a

2α , As
p, q(R

n)
)
, where s0 ≤ s < s0 + α.

Supercritical spaces As0
p,q(R

n) are completely covered if 1 ≤ p ≤ n
α−1 (see Fig. 3).

Initial data u0 ∈ A0
p,q(R

n) are admitted provided that n
2α−1 < p ≤ ∞ if n

2α−1 ≥ 1 or
1 ≤ p ≤ ∞ if n

2α−1 < 1.

Remark 9 The case α > n
2 + 1.

In this case (76) implies (75). We have

s0 >

(
n

p
− n

2

)

+
− α >

n

p
− 2α + 1.
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Fig. 3 n+2
4 < α ≤ n

2 + 1

Conditions (77) and (78) read as

s0 ≤ s < s0 + α and s >

(
n

p
− n

2

)

+
,

respectively.

(i) If
(
n
p − n

2

)
+ − α < s0 ≤

(
n
p − n

2

)
+ and 1 ≤ p ≤ ∞ then there exists a unique

mild solution u ∈ L2αv

(
(0, T ), a

2α , As
p, q(R

n)
)
, where

(
n
p − n

2

)
+ < s < s0+α.

(ii) If s0 >
(
n
p − n

2

)
+ and 1 ≤ p ≤ ∞ then there exists a unique mild solution

u ∈ L2αv

(
(0, T ), a

2α , As
p, q(R

n)
)
, where s0 ≤ s < s0 + α.

Supercritical spaces As0
p,q(R

n) can never be completely covered for given p, 1 ≤ p ≤
∞ (see Fig. 4). Initial data u0 ∈ A0

p,q(R
n) are admitted for all p, 1 ≤ p ≤ ∞.

Remark 10 Some attention attracted Cauchy problems of type (4), (5) for fractional
power dissipative equations with initial data belonging to spaces L p(R

n), 1 < p <

∞ (see, for example, [12]). Let us suppose that initial data u0 ∈ A0
p,q(R

n), where
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Fig. 4 α > n
2 + 1

1 < p < ∞, 1 ≤ q ≤ ∞. In particular, this applies to u0 ∈ L p(R
n) = F0

p,2(R
n).

We follow our approach and recall (see the preceding remarks) that u0 ∈ A0
p,q(R

n)

is admitted if 0 < 1
p < 2α−1

n (0 < 1
p ≤ 1 if 2α−1

n > 1) for given α > 1
2 and

n ∈ N (n ≥ 2). Introducing a new parameter μ = a + 1
v
we can reformulate

u ∈ L2αv

(
(0, T ), a

2α , As
p,q(R

n)
)

123



F.Baaske et al.

in Theorem 6 as

T∫

0

tμv‖ u(·, t)|As
p,q(R

n)‖2αv dt

t
< ∞ (97)

(with modification sup
0<t<T

t
μ
2α ‖ . . . ‖ < ∞ if v = ∞), where

(
n

p
− n

2

)

+
< s < min(α, 2α − 1),

μ > s and 0 ≤ 2

v
<

(
2α − 1 −

(
n

p
− s

)

+

)
.

In the following we shall make use of the embeddings

A
λ+ n

p
p,q (Rn) ↪→ Aλ∞,q(R

n) (98)

for λ ≥ 0 and

A
n
p − n

r
p,q (Rn) ↪→ A0

r ,q(R
n) (99)

for 0 < 1
r < 1

p . We always assume u0 ∈ A0
p,q(R

n) and u stands for the unique mild
solution according to Theorem 6. We distinguish the following cases:
Case 1: Let 1

2 < α < 1 and let 0 < 1
p < 2α−1

n . It follows from (97) and (98) that

T∫

0

tμv‖ u(·, t)|Aλ∞,q(R
n)‖2αv dt

t
< ∞, (100)

where 0 ≤ λ < 2α − 1 − n
p , μ > λ + n

p , and 0 ≤ 2
v

< 2α − 1.
Combining (97) and (99) we get

T∫

0

tμv‖ u(·, t)|A0
r ,q(R

n)‖2αv dt

t
< ∞, (101)

for 0 < 1
r < 1

p , μ > n
p − n

r , and 0 ≤ 2
v

< 2α − 1 − n
r .

Case 2: Let α ≥ 1 and let 0 < 1
p < α

n ( 1p ≤ 1 if α > n). According to (97) and

(98) we find that (100) holds for 0 ≤ λ < α − n
p , μ > λ + n

p , and 0 ≤ 2
v

< 2α − 1.

Moreover, it holds (101) for 0 < 1
r < min

(
1
p , 1

2

)
,

μ > n
p − n

r >
(
n
p − n

2

)
+ , and 0 ≤ 2

v
< 2α − 1 − n

r .
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Case 3: Let α ≥ 1 and let α
n ≤ 1

p < 2α−1
n ( 1p ≤ 1 if α > n). Then u satisfies

(101) for 0 < 1
p − α

n < 1
r < min

(
1
p , 1

2

)
, μ > n

p − n
r >

(
n
p − n

2

)
+ , and

0 ≤ 2
v

< 2α − 1 − n
r .

We may choose μ = 1
v
in (101) if

n

p
− n

r
<

1

v
<

1

2

(
2α − 1 − n

r

)
,

1

p
<

2α − 1

n
< 1, 0 <

1

r
< min

(
1

p
,
1

2

)
.

For example, this is the case if 1
p ≤ 2α−1

2n ≤ 1
2 . Then

n

p
− n

r
<

1

v
<

1

2
(2α − 1) − n

r
<

1

2

(
2α − 1 − n

r

)
and

1

p
<

2α − 1

2n
<

α

n
.

Thus, it follows from Case 2 and (101) that

T∫

0

‖ u(·, t)|A0
r ,q(R

n)‖2αv dt < ∞, (102)

if u0 ∈ A0
p,q(R

n), 0 < 1
r < 1

p < 2α−1
2n ≤ 1

2 , and
1
v

> n
p − n

r . Results of type (101)
(in the case v = ∞) and (102) can be found in [12, Theorems 4.3 and 4.4]. In a certain
sense Theorem 6 is an extension of their investigations (in the case b=d=1).
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