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Abstract
In this note, we prove that the boundary of a (W 1,p, BV )-extension domain is of
volume zero under the assumption that the domain � is 1-fat at almost every x ∈ ∂�.
Especially, the boundary of any planar (W 1,p, BV )-extension domain is of volume
zero.
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1 Introduction

To simplify the definition of extension domains, we always assume � ⊂ R
n is a

bounded domain. Given 1 ≤ q ≤ p ≤ ∞, a domain � ⊂ R
n , n ≥ 2, is said to be a

(W 1,p,W 1,q)-extension domain if there exists a bounded extension operator

E : W 1,p(�) �→ W 1,q(Rn),

and is said to be a (W 1,p, BV )-extension domain if there exists a bounded extension
operator
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E : W 1,p(�) �→ BV (Rn).

The theory of Sobolev extensions is of interest in several fields in analysis. Partial
motivations for the study of Sobolev extensions comes from the theory of PDEs, for
example, see [18]. It was proved in [2, 22] that for every Lipschitz domain inRn , there
exists a bounded linear extension operator E : Wk,p(�) �→ Wk,p(Rn) for each k ∈ N

and 1 ≤ p ≤ ∞. Here Wk,p(�) is the Banach space of all L p-integrable functions
whose distributional derivatives up to order k are L p-integrable. Later, the notion of
(ε, δ)-domains was introduced by Jones in [9], and it was proved that for every (ε, δ)-
domain, there exists a bounded linear extension operator E : Wk,p(�) �→ Wk,p(Rn)

for every k ∈ N and 1 ≤ p ≤ ∞.
In [26], a geometric characterization of planar (L1,2, L1,2)-extension domain was

given. Here Lk,p(�) denotes the homogeneous Sobolev space which contains locally
integrable functions whose k-th order distributional derivative is L p-integrable. By
later results in [11, 13, 14, 21], we now have geometric characterizations of planar
simply connected (W 1,p,W 1,p)-extension domains for all 1 ≤ p ≤ ∞. A geometric
characterization is also known for planar simply connected (Lk,p, Lk,p)-extension
domains with 2 < p ≤ ∞, see [23, 29, 30]. Beyond the planar simply connected case,
geometric characterizations of Sobolev extension domains are still missing. How-
ever, several necessary properties have been obtained for general Sobolev extension
domains.

For a measurable subset F ⊂ R
n , we use |F | to denote its Lebesgue measure. In

[7, 8], Hajłasz, Koskela and Tuominen proved for 1 ≤ p < ∞ that a
(
W 1,p,W 1,p

)
-

extension domain � ⊂ R
n must be Ahlfors regular which means that there exists a

positive constant C > 1 such that for every x ∈ � and 0 < r < min
{
1, 1

4 diam�
}
,

we have

|B(x, r)| ≤ C |B(x, r) ∩ �|. (1.1)

From the results in [4, 10], we know that also (BV , BV )-extension domains are
Ahlfors regular. For Ahlfors regular domains, the Lebesgue differentiation theorem
then easily implies |∂�| = 0.

In the case where � is a planar Jordan
(
W 1,p,W 1,p

)
-extension domain, � has to

be a so-called John domain when 1 ≤ p ≤ 2 and the complementary domain has to be
John when 2 ≤ p < ∞. The John condition implies that the Hausdorff dimension of
∂� must be strictly less than 2, see [12]. Recently, Lučić, Takanen and the first named
author gave a sharp estimate on the Hausdorff dimension of ∂�, see [17]. In general,
the Hausdorff dimension of a (W 1,p,W 1,p)-extension domain can well be n.

The outward cusp domain with a polynomial type singularity is a typical example
which is not a (W 1,p,W 1,p)-extension domain for 1 ≤ p < ∞. However, it is a
(W 1,p,W 1,q)-extension domain, for some 1 ≤ q < p ≤ ∞, see the monograph
[19] and the references therein. Hence, for 1 ≤ q < p ≤ ∞, it is not necessary for
a (W 1,p,W 1,q)-extension domain to be Ahlfors regular. In the absence of Ahlfors
regularity, one has to find alternative approaches for proving |∂�| = 0. The first
approach in [24, 25] was to generalize the Ahlfors regularity (1.1) to a Ahlfors-type
estimate
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|B(x, r)|p ≤ C�p−q(B(x, r))|B(x, r) ∩ �|q (1.2)

for (W 1,p,W 1,p)-extension domains with n < q < p < ∞. Here � is a bounded
and quasiadditive set function generated by the (W 1,p,W 1,q)-extension property and
defined on open sets U ⊂ R

n , see Sect. 3. By differentiating � with respect to the
Lebesgue measure, one concludes that |∂�| = 0 if � is a (W 1,p,W 1,q)-extension
domain for n < q < p < ∞. Recently, Koskela, Ukhlov and the second named author
[15] generalized this result and proved that the boundary of a

(
W 1,p,W 1,q

)
-extension

domain must be of volume zero for n−1 < q < p < ∞ (and for 1 ≤ q < p < ∞ on
the plane). For 1 ≤ q < n−1 and (n−1)q/(n−1−q) < p < ∞, they constructed as
a counterexample a

(
W 1,p,W 1,q

)
-extension domain � ⊂ R

n with |∂�| > 0. For the
remaining range of exponents where 1 ≤ q ≤ n−1 and q < p ≤ (n−1)q/(n−1−q),
it is still not clear whether the boundary of every

(
W 1,p,W 1,q

)
-extension domainmust

be of volume zero.
As iswell-known, for every domain� ⊂ R

n , the space of functions of boundedvari-
ation BV (�) strictly contains every Sobolev space W 1,q(�) for 1 ≤ q ≤ ∞. Hence,
the class of

(
W 1,p, BV

)
-extension domains contains the class of

(
W 1,p,W 1,q

)
-

extension domains for every 1 ≤ q ≤ p < ∞. As a basic example to indicate
that the containment is strict when n ≥ 2, we can take the slit disk (the unit disk
minus a radial segment) in the plane. The slit disk is a

(
W 1,p, BV

)
-extension domain

for every 1 ≤ p < ∞, and even a (BV , BV )-extension domain; however it is not
a

(
W 1,p,W 1,q

)
-extension domain for any 1 ≤ q ≤ p < ∞. This basic example

also shows that it is natural to consider the geometric properties of
(
W 1,p, BV

)
-

extension domains. In this paper, we focus on the question whether the boundary of
a (W 1,p, BV )-extension domain is of volume zero. Our first theorem tells us that the
(BV , BV )-extension property is equivalent to the

(
W 1,1, BV

)
-extension property.

Hence, a (W 1,1, BV )-extension domain is Ahlfors regular and so its boundary is of
volume zero.

Theorem 1.1 A domain � ⊂ R
n is a (BV , BV )-extension domain if and only if it is

a
(
W 1,1, BV

)
-extension domain.

Since,W 1,1(�) is a proper subspace of BV (�)with ‖u‖W 1,1(�) = ‖u‖BV (�) for every
u ∈ W 1,1(�), (BV , BV )-extension property implies (W 1,1, BV )-extension property
immediately. The other direction from (W 1,1, BV )-extension property to (BV , BV )-
extension property is not as straightforward, as W 1,1(�) is only a proper subspace
of BV (�). The essential tool here is the Whitney smoothing operator constructed
by García-Bravo and the first named author in [4]. This Whitney smoothing operator
maps every function in BV (�) to a function in W 1,1(�) with the same trace on ∂�,
so that the norm of the image in W 1,1(�) is uniformly controlled from above by the
norm of the corresponding preimage in BV (�).

With an extra assumption that � is q-fat at almost every point on the boundary
∂�, in [15] it was shown that the boundary of a (W 1,p,W 1,q)-extension domain is of
volume zero when 1 ≤ q < p < ∞. The essential point there was that the q-fatness
of the domain on the boundary guarantees the continuity of a W 1,q -function on the
boundary. Maybe a bit surprisingly, the assumption that the domain is 1-fat at almost
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every point on the boundary also guarantees that the boundary of a (W 1,p, BV )-
extension domain is of volume zero. In particular, every planar domain is 1-fat at
every point of the boundary. Hence, we have the following theorem.

Theorem 1.2 Let � ⊂ R
n be a (W 1,p, BV )-extension domain for 1 ≤ p < ∞, which

is 1-fat at Lebesgue almost every x ∈ ∂�. Then |∂�| = 0. In particular, for every
planar (W 1,p, BV )-extension domain � with 1 ≤ p < ∞, we have |∂�| = 0.

In light of the results and example given in [15], the most interesting open question
is what happens in the range 1 < p ≤ (n − 1)/(n − 2) of exponents, without the
assumption of 1-fatness. For this range, we do not know whether the boundary of a
(W 1,p, BV )-extension domain must be of volume zero. If a counterexample exists in
this range, it might be easier to construct it in the (W 1,p, BV )-case rather than the
(W 1,p,W 1,1)-case. Hence we leave it as a question here.

Question 1.3 For 1 < p ≤ (n−1)/(n−2), is the boundary of a (W 1,p, BV )-extension
domain of volume zero?

2 Preliminaries

For a locally integrable function u ∈ L1
loc(�) and a measurable subset A ⊂ � with

0 < |A| < ∞, we define

uA := –
∫

A
u(y) dy = 1

|A|
∫

A
u(y) dy.

Definition 2.1 Let� ⊂ R
n be a domain. For every 1 ≤ p ≤ ∞, we define the Sobolev

space W 1,p(�) to be

W 1,p(�) := {
u ∈ L p(�) : ∇u ∈ L p(�;Rn)

}
,

where ∇u denotes the distributional gradient of u. It is equipped with the nonhomo-
geneous norm

‖u‖W 1,p(�) = ‖u‖L p(�) + ‖∇u‖L p(�).

Now, let us give the definition of functions of bounded variation.

Definition 2.2 Let� ⊂ R
n be a domain.A function u ∈ L1(�) is said to have bounded

variation and denoted u ∈ BV (�) if

‖Du‖(�) := sup

{∫

�

f div(φ)dx : φ ∈ C1
o(�;Rn), |φ| ≤ 1

}
< ∞.

The space BV (�) is equipped with the norm

‖u‖BV (�) := ‖u‖L1(�) + ‖Du‖(�).
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Note that ‖Du‖ is a Radon measure defined on � that is defined for every set F ⊂ �

as

‖Du‖(F) := inf {‖Du‖(U ) : F ⊂ U ⊂ �,U open} .

Definition 2.3 We say that a domain � ⊂ R
n is a

(
W 1,p, BV

)
-extension domain for

1 ≤ p < ∞, if there exists a bounded extension operator E : W 1,p(�) �→ BV (Rn)

i.e. for every u ∈ W 1,p(�), we have E(u) ∈ BV (Rn) with E(u)
∣∣
�

≡ u and

‖E(u)‖BV (Rn) ≤ C‖u‖W 1,p(�)

for a constant C > 1 independent of u.

LetU ⊂ R
n be an open set and K ⊂ U be a compact subset. The p-admissible set

Wp(K ;U ) is defined by setting

Wp(K ;U ) :=
{
u ∈ W 1,p

0 (U ) ∩ C(U ) : u∣∣
K ≥ 1

}
.

Definition 2.4 Let U ⊂ R
n be an open set and K ⊂ U be compact. The relative

p-capacity Capp(K ;U ) is defined by setting

Capp(K ;U ) := inf
u∈Wp(K ;U )

∫

U
|∇u(x)|p dx .

For an open subset A ⊂ U , we define the relative p-capacity Capp(K ;U ) by setting

Capp(A;U ) := sup
{
Capp(K ;U ) : K ⊂ A ⊂ U , K compact

}
.

For arbitrary Borel measurable subset E ⊂ U , we define the relative p-capacity
Capp(E;U ) by setting

Capp(E;U ) := inf
{
Capp(A;U ) : E ⊂ A ⊂ U , A open

}
.

Following Lahti [16], we define 1-fatness below.

Definition 2.5 Let A ⊂ R
n be a measurable subset. We say that A is 1-thin at the point

x ∈ R
n , if

lim
r→0+ r

Cap1 (A ∩ B(x, r); B(x, 2r))
|B(x, r)| = 0.

If A is not 1-thin at x , we say that A is 1-fat at x . Furthermore, we say that a set U is
1-finely open, if Rn \U is 1-thin at every x ∈ U .
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By [16, Lemma 4.2], the collection of 1-finely open sets is a topology on R
n . For a

function u ∈ BV (Rn), we define the lower approximate limit u� by setting

u�(x) := sup

{
t ∈ R : lim

r→0+
|B(x, r) ∩ {u < t}|

|B(x, r)| = 0

}

and the upper approximate limit u� by setting

u�(x) := inf

{
t ∈ R : lim

r→0+
|B(x, r) ∩ {u > t}|

|B(x, r)| = 0

}
.

The set

Su := {
x ∈ R

n : u�(x) < u�(x)
}

is called the jump set of u. By the Lebesgue differentiation theorem, |Su | = 0. Using
the lower and upper approximate limits, we define the precise representative ũ :=
(u� + u�)/2. The following lemma was proved in [16, Corollary 5.1].

Lemma 2.6 Let u ∈ BV (Rn). Then ũ is 1-finely continuous at Hn−1-almost every
x ∈ R

n \ Su.

The following lemma for u ∈ W 1,1(Rn)was proved in [15, Lemma 2.6], which is also
a corollary of a result in [6]. We generalize it to BV (Rn) here.

Lemma 2.7 Let � ⊂ R
n be a domain which is 1-fat at almost every point x ∈ ∂�.

If u ∈ BV (Rn) with u
∣∣
B(x,r)∩�

≡ c for some x ∈ ∂�, 0 < r < 1 and c ∈ R. Then
u(y) = c for almost every y ∈ B(x, r) ∩ ∂�.

Proof Let u ∈ BV (Rn) satisfy the assumptions. Then the precise representative
ũ
∣∣
B(x,r)∩�

≡ c. Since |Su | = 0, by Lemma 2.6, there exists a subset N1 ⊂ R
n

with |N1| = 0 such that ũ is 1-finely continuous on R
n \ N1. By the assumption,

there exists a measure zero set N2 ⊂ ∂� such that � is 1-fat on ∂� \ N2. By Defini-
tion 2.5, one can see that B(x, r) ∩ � is also 1-fat on (B(x, r) ∩ ∂�)\N2. For every
y ∈ (B(x, r) ∩ ∂�)\(N1 ∪ N2), since ũ is 1-finely continuous on it and any 1-fine
neighborhood of y must intersect B(x, r) ∩ �, we have ũ(y) = c. Hence u(y) = c
for almost every y ∈ B(x, r) ∩ ∂�. ��

We say a set E ⊂ � has finite perimeter in�, if χE ∈ BV (�), where χE means the
characteristic function of E . We set P(E,�) := ‖DχE‖(�) and call it the perimeter
of E in �. To simplify the notation, P(E) is set to be P(E,Rn). For every Borel
subset F ⊂ �, define

P(E, F) := inf {P(E,U ) : F ⊂ U ⊂ �,U open} .

The following coarea formula for BV functions can be found in [3, Section 5.5]. See
also [4, Theorem 2.2].
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Proposition 2.8 Given a function u ∈ BV (�), the superlevel sets ut = {x ∈ � :
u(x) > t} have finite perimeter in � for almost every t ∈ R and

‖Du‖(F) =
∫ ∞

−∞
P(ut , F) dt

for every Borel set F ⊂ �. Conversely, if u ∈ L1(�) and

∫ ∞

−∞
P(ut ,�) dt < ∞

then u ∈ BV (�).

See [1, Theorem 3.44] for the proof of the following (1, 1)-Poincaré inequality for
BV functions. For a cube Q ⊂ R

n , we denote by l(Q) its side-length.

Proposition 2.9 Let � ⊂ R
n be a bounded Lipschitz domain. Then there exists a

constant C > 0 depending on n and � such that for every u ∈ BV (�), we have

∫

�

|u(y) − u�| dy ≤ C‖Du‖(�).

In particular, there exists a constant C > 0 only depending on n so that if Q, Q′ ⊂ R
n

are two closed dyadic cubes with 1
4 l(Q

′) ≤ l(Q) ≤ 4 l(Q′) and � := int(Q ∪ Q′)
connected, then for every u ∈ BV (�),

∫

�

|u(y) − u�| dy ≤ Cl(Q)‖Du‖(�). (2.1)

3 A set function arising from the extension

In this subsection, we introduce a set function defined on the class of open sets in
R
n and taking nonnegative values. Our set function here is a modification of the one

originally introduced by Ukhlov [24, 25]. See also [27, 28] for related set functions.
The modified version of the set function we use is from [15], where it was used by
Koskela, Ukhlov and the second named author to study the size of the boundary of
a (W 1,p,W 1,q)-extension domains. Let us recall that a set function � defined on the
class of open subsets of Rn and taking nonnegative values is called quasiadditive (see
for example [27]), if for all open sets U1 ⊂ U2 ⊂ R

n , we have

�(U1) ≤ �(U2),

and there exists a positive constant C such that for arbitrary pairwise disjoint open
sets {Ui }∞i=1, we have

∞∑

i=1

�(Ui ) ≤ C�

( ∞⋃

i=1

Ui

)

. (3.1)
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Let � ⊂ R
n be a (W 1,p, BV )-extension domain for some 1 < p < ∞. For every

open set U ⊂ R
n with U ∩ � �= ∅, we define

W p
0 (U ,�) :=

{
u ∈ W 1,p(�) ∩ C(�) : u ≡ 0 on � \U

}
.

For every u ∈ W p
0 (U ,�), we define


(u) := inf
{‖Dv‖(U ) : v ∈ BV (Rn), v

∣∣
�

≡ u
}
.

Then we define the set function � by setting

�(U ) :=

⎧
⎪⎨

⎪⎩

supu∈W p
0 (U ,�)

(

(u)

‖u‖W1,p (U∩�)

)k

, with 1
k = 1 − 1

p , if U ∩ � �= ∅,

0, otherwise.

(3.2)

In [7], Hajłasz, Koskela and Tuominen proved that for an arbitrary (W 1,p,W 1,p)-
extension domain with 1 < p < ∞, there always exists a bounded linear extension
operator. For q < p, the existence of a bounded linear (W 1,p,W 1,q)-extension
operator is still open. However, in [15, Lemma 2.1], the authors proved that for
(W 1,p,W 1,q)-extension domains there always exists a bounded, positively homo-
geneous (W 1,p,W 1,q)-extension operator. The next lemma is a version of this result
in our setting of (W 1,p, BV )-extensions that follows similarly to the proof of [15,
Lemma 2.1].

Lemma 3.1 Let � ⊂ R
n be a (W 1,p, BV )-extension domain. Then every bounded

extension operator E : W 1,p(�) → BV (Rn) promotes to a bounded, positively
homogeneous extension operator Eh : W 1,p(�) → BV (Rn) with the operator norm
inequality ‖Eh‖ ≤ ‖E‖.

The proof of the following lemma is almost the same as the proof of [15, Theorem
3.1].Oneneeds to simply replace‖Dv‖Lq (U ) by‖Dv‖(U ) in the proof of [15, Theorem
3.1] and repeat the argument.

Lemma 3.2 Let 1 < p < ∞ and let � ⊂ R
n be a bounded (W 1,p, BV )-extension

domain. Then the set function defined in (3.2) for all open subsets of Rn is bounded
and quasiadditive.

The upper and lower derivatives of a quasiadditive set function� are defined by setting

D�(x) := lim sup
r→0+

�(B(x, r))

|B(x, r)| and D�(x) = lim inf
r→0+

�(B(x, r))

|B(x, r)| .

By [20, 27], we have the following lemma. See also [15, Lemma 3.1].

Lemma 3.3 Let � be a bounded and quasiadditive set function defined on open sets
U ⊂ R

n. Then D�(x) < ∞ for almost every x ∈ R
n.
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The following lemma immediately comes from the definition (3.2) for the set func-
tion �.

Lemma 3.4 Let 1 < p < ∞ and let � ⊂ R
n be a bounded (W 1,p, BV )-extension

domain. Then, for a ball B(x, r)with x ∈ ∂� and every function u ∈ W p
0 (B(x, r),�),

there exists a function v ∈ BV (B(x, r)) with v
∣
∣
B(x,r)∩�

≡ u and

‖Dv‖(B(x, r)) ≤ 2�
1
k (B(x, r))‖u‖W 1,p(B(x,r)∩�), where

1

k
= 1 − 1

p
. (3.3)

4 Proofs of the results

c 1.1 and 1.2.

Proof of Theorem 1.1 Let us first assume that � ⊂ R
n is a (BV , BV )-extension

domain with the extension operator E . Since W 1,1(�) ⊂ BV (�) with ‖u‖BV (�) =
‖u‖W 1,1(�) for every u ∈ W 1,1(�), we have

‖E(u)‖BV (�) ≤ C‖u‖BV (�) ≤ C‖u‖W 1,1(�).

This implies that � is a
(
W 1,1, BV

)
-extension domain with the same operator E

restricted to W 1,1(�).
Let us then prove the converse and assume that � ⊂ R

n is a (W 1,1, BV )-extension
domain with an extension operator E . Let S�,� be the Whitney smoothing operator
defined in [4]. Then by [4, Theorem 3.1], for every u ∈ BV (�), we have S�,�(u) ∈
W 1,1(�) with

‖S�,�(u)‖W 1,1(�) ≤ C‖u‖BV (�)

for a positive constant C independent of u, and

‖D(u − S�,�(u))‖(∂�) = 0, (4.1)

where u − S�,�(u) is understood to be defined on the whole space R
n via a zero-

extension. Then E(S�,�(u)) ∈ BV (Rn) with

‖E(S�,�(u))‖BV (Rn) ≤ C‖S�,�(u)‖W 1,1(�) ≤ C‖u‖BV (�).

Now, define T : BV (�) → BV (Rn) by setting for every u ∈ BV (�)

T (u)(x) :=
{
u(x), if x ∈ �

E(S�,�(u))(x), if x ∈ R
n \ �.

By (4.1), we have T (u) ∈ BV (Rn) with

‖T (u)‖BV (Rn) ≤ ‖E(S�,�(u))‖BV (Rn) + ‖u‖BV (�) ≤ C‖u‖BV (�).
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Hence, � is a BV -extension domain. ��
Proof of Theorem 1.2 Assume towards a contradiction that |∂�| > 0. By the Lebesgue
density point theorem and Lemma 3.3, there exists a measurable subsetU of ∂� with
|U | = |∂�| such that every x ∈ U is a Lebesgue point of ∂� and D�(x) < ∞. Fix
x ∈ U . Since x is a Lebesgue point, there exists a sufficiently small rx > 0, such that
for every 0 < r < rx , we have

∣∣B(x, r) ∩ �
∣∣ ≥ 1

2n−1
|B(x, r)| .

Let r ∈ (0, rx ) be fixed. Since |∂B(x, s)| = 0 for every s ∈ (0, r), we have

∣∣
∣B

(
x,

r

4

)
∩ �

∣∣
∣ ≥ 1

2n−1

∣∣
∣B

(
x,

r

4

)∣∣
∣ ≥ 1

23n−1
|B(x, r)| (4.2)

and

∣∣∣
(
B(x, r) \ B

(
x,

r

2

))
∩ �

∣∣∣ ≥ |B(x, r) ∩ �| −
∣∣∣B

(
x,

r

2

)∣∣∣ ≥ 1

2n
|B(x, r)|.

(4.3)

Define a test function u ∈ W 1,p(�) ∩ C(�) by setting

u(y) :=

⎧
⎪⎨

⎪⎩

1, if y ∈ B
(
x, r

4

) ∩ �,
−4
r |y − x | + 2, if y ∈ (

B
(
x, r

2

) \ B
(
x, r

4

)) ∩ �,

0, if y ∈ � \ B
(
x, r

2

)
.

(4.4)

We have

(∫

B(x,r)∩�

|u(y)|p + |∇u(y)|p dx
) 1

p ≤ C

r
|B(x, r) ∩ �| 1p . (4.5)

Since u ≡ 0 on �\B(x, r/2), we have u ∈ W p
0 (B(x, r),�). Then, by the def-

inition (3.2) of the set function � and by Corollary 3.4, there exists a function
v ∈ BV (B(x, r)) with v

∣∣
B(x,r)∩�

≡ u and

‖Dv‖(B(x, r)) ≤ 2�
1
k (B(x, r))‖u‖W 1,p(B(x,r)∩�). (4.6)

By the Poincaré inequality of BV functions stated in Proposition 2.9, we have

∫

B(x,r)
|v(y) − vB(x,r)| dy ≤ Cr‖Dv‖(B(x, r)). (4.7)

Since � is 1-fat on almost every z ∈ ∂�, by Lemma 2.7, v(z) = 1 for almost every
z ∈ B

(
x, r

4

) ∩ ∂� and v(z) = 0 for almost every z ∈ (
B(x, r)\B (

x, r
2

)) ∩ ∂�.
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Hence, on one hand, if vB(x,r) ≤ 1
2 , we have

∫

B(x,r)
|v(y) − vB(x,r)| dy ≥ 1

2

∣∣
∣B

(
x,

r

4

)
∩ �

∣∣
∣ ≥ c|B(x, r)|.

On the other hand, if vB(x,r) > 1
2 , we have

∫

B(x,r)
|v(y) − vB(x,r)| dy ≥ 1

2

∣∣
∣
(
B(x, r) \ B

(
x,

r

2

))
∩ �

∣∣
∣ > c|B(x, r)|.

All in all, we always have

∫

B(x,r)
|v(y) − vB(x,r)| dy ≥ c|B(x, r)| (4.8)

for a sufficiently small constant c > 0. Thus, by combining inequalities (4.5)–(4.8),
we obtain

�(B(x, r))p−1|B(x, r) ∩ �| ≥ c|B(x, r)|p

for a sufficiently small constant c > 0. This gives

|B(x, r) ∩ ∂�| ≤ |B(x, r)| − |B(x, r) ∩ �| ≤ |B(x, r)| − C
|B(x, r)|p

�(B(x, r))p−1 .

Since D�(x) < ∞, we have

lim sup
r→0+

|B(x, r) ∩ ∂�|
|B(x, r)| ≤ lim sup

r→0+

(
1 − |B(x, r) ∩ �|

|B(x, r)|
)

≤ lim sup
r→0+

(
1 − |B(x, r)|p−1

�(B(x, r))p−1

)
≤ 1 − cD�(x)1−p < 1.

This contradicts the assumption that x is a Lebesgue point of ∂�. Hence, we conclude
that |∂�| = 0.

Let us then consider the case � ⊂ R
2. By [5, Theorem A.29], for every x ∈ ∂�

and every 0 < r < min
{
1, 1

4 diam (�)
}
, we have

Cap1(� ∩ B(x, r); B(x, 2r)) ≥ cr

for a constant 0 < c < 1. This implies that � is 1-fat at every x ∈ ∂�. Hence, by
combining this with the first part of the theorem, we have that the boundary of any
planar (W 1,p, BV )-extension domain is of volume zero. ��
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