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Abstract
Westudy actions ofmultiplicative subgroups ofClifford algebras onRiemann surfaces.
We show that every Klein surface of algebraic genus greater than 1 is isomorphic to the
orbit space of such an action. We obtain linear representations of fundamental groups
of Klein surfaces by using the spinor representations of Clifford algebras.
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1 Introduction

Let Cln−t,t be a Clifford algebra associated with a vector space V = Kn for K = R

or K = C and a quadratic form Qt defined by

Q(x1, . . . , xn) = (x21 + . . . + x2t ) − (x2t+1 + . . . + x2n ) for (x1, . . . , xn) ∈ V .

We will identify vectors of V with their images in Cln−t,t . A multiplicative subgroup
Mn−t,t of Cln−t,t generated by an ortogonal basis of V is called a base group. Let
M+

n−t,t = Mn−t,n
⋂

Cl+n−t,t for the subalgebra Cl
+
n−t,t preserved by an automorphism

of Cln−t,t which maps v to −v for all v ∈ V .
We prove that for any Klein surface Y of algebraic genus d ≥ 2 there are actions

of base groups Gt = Md+1−t,t for t = 0, 1 on a Riemann surface X of genus
g = 1+ 2d+1(d − 1) such that the orbit space X/Gt is isomorphic to Y . The surface
Y has a double cover Y+ being a Riemann surface. We show that for a proper Klein
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surface Y an action of Gt can be defined in such a way that Y+ is isomorphic to the
orbit space X/G+

t for G+
t = M+

d+1−t,t . Let πY and πY+ be the fundamental groups of
Y and Y+. Using the spinor representation of a complex Clifford algebra Cld,1 for an
odd d and spinor representation of complex algebra Cl+d+1,0 for an even d we obtain
linear representations ρ : πY → Gl(2m,C) and ρ : πY+ → Gl(2m,C), respectively,
for m = d+d(2)

2 and d(2) ∈ {0, 1} such that d(2) ≡ d mod 2.

2 Preliminaries

This chapter contains elementary information needed to understand the paper. Sections
on tensor algebras, exterior algebras, Clifford algebras and their spinor representations
are based on books [6, 7]; sections on NEC groups and Klein surfaces are based on
the book [3].

2.1 Tensor algebras and external algebras

Let V and W be vector spaces over a field K . The tensor product of V and W is a
K -vector space V ⊗W with a bilinear map j : V ×W → V ⊗W such that for every
K -vector space Z and every bilinear map f : V × W → Z there is a unique linear
map f̄ : V ⊗ W → Z for which f = f̄ ◦ j .

Vectors v ⊗ w = j(v,w) for v ∈ V and w ∈ W are called elementary tensors. If
V andW are finite dimensional and {vi }n1 and {wi }m1 are their basis, respectively, then
the set

{vi ⊗ w j : 1 ≤ i ≤ n and 1 ≤ j ≤ m}

is a basis of V ⊗ W . So dimV ⊗ W = dimV · dimW .
The tensor product of a finite family of K -vector spaces {Vi }n1 is defined as

⊗n
i=1Vi = (. . . ((V1 ⊗ V2) ⊗ V3) ⊗ . . .) ⊗ Vn .

In the case when V1 = . . . = Vn = V the tensor product ⊗n
i=1Vi is denoted by V⊗n

and V⊗0 = K .
Amultiplication of tensors is a bilinear map V⊗n ×V⊗m → V⊗n+m which to each

pair of tensors t1 = v1 ⊗ . . . ⊗ vn ∈ V⊗n and t2 = w1 ⊗ . . . ⊗ wm ∈ V⊗m assigns
tensor

t1 · t2 = v1 ⊗ . . . ⊗ vn ⊗ w1 ⊗ . . . ⊗ wm ∈ V⊗n+m .

The tensor algebra of a K -vector space V is a direct sum T (V ) = ⊕n≥0V⊕n with the
multiplication defined by

(
∑

p

t1p

)

·
(

∑

q

t2q

)

=
∑

s

⎛

⎝
∑

p+q=s

t1p · t2q
⎞

⎠
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for
∑

p t
1
p,

∑
q t

2
q ∈ T (V ).

An endomorphism A ∈ End(V⊗n) defined by the formula

A(v1 ⊗ . . . ⊗ vn) = 1

n!
∑

σ∈Sn
sgn σvσ(1) ⊗ . . . ⊗ vσ(n)

for t = v1 ⊗ . . . ⊗ vn ∈ V⊗n is called antisymmetrization. The vector space
∧n V =

A(V⊗n) is called the n-th exterior power of V and
∧0 V denotes the field K .

Vector t = A(v1 ⊗ . . . ⊗ vn) is denoted by v1 ∧ . . . ∧ vn . If vi = v j for some
i �= j , then t = 0. Thus dim

∧n V = 0 for n > dimV . Moreover, for any permutation
τ ∈ Sn ,

vτ(1) ∧ . . . ∧ vτ(n) = sgnτv1 ∧ . . . ∧ vn .

Consequently, if dimV = k and {vi }k1 is a basis of V , then the set

{1} ∪ {vi1 ∧ . . . ∧ vin : 1 ≤ i1 < . . . < in ≤ k}

is a basis of
∧n V and

dim
n∧

V = k!
n!(k − n)! .

The exterior algebra of a vector space V of dimension k is the direct sum
∧

V =
⊕k

n=0

∧n V with the multiplication defined by

t ∧ t ′ = A(t ⊗ t ′) for t, t ′ ∈
∧

V .

This algebra is the quotient of the tensor algebra T (V ) modulo the ideal generated by
tensors v ⊗ v for all v ∈ V . Moreover, dim

∧
V = ∑k

n=0

(k
n

) = 2k .

2.2 Clifford algebras

Let V be a finite-dimensional vector space over a field K . A quadratic form is a
function Q : V → K such that

Q(αv) = α2Q(v) for all v ∈ V and α ∈ K

and the mapping B : V × V → K defined by the formula

B(v1, v2) = 1

2
[Q(v1 + v2) − Q(v1) − Q(v2)] (1)

is a bilinear form. It is said that the quadratic form Q is nondegenerate, if for every
0 �= v ∈ V there exists w ∈ V such that B(v,w) �= 0.
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The Clifford algebra associated with V and Q is an associative algebra Cl(V , Q)

over K together with a linear map j : V → Cl(V , Q) such that

( j(v))2 = Q(v) · 1 for all v ∈ V (2)

and for every algebra A over K and every linear map f : V → A with

( f (v))2 = Q(v) · 1A for all v ∈ V , (3)

there is a unique algebra homomorphism f̄ : Cl(V , Q) → A for which f = f̄ ◦ j .
Linear maps f : V → A satisfying the condition (3) are called Clifford maps. It is
said that the Clifford algebra is universal for Clifford maps.

Any two Clifford algebras associated with V and Q are isomorphic. The Clifford
algebra Cl(V , Q) can be seen as the quotient of the tensor algebra T (V ) modulo the
ideal generated by elements of the form v ⊗ v − Q(v) · 1 for all v ∈ V .

To simplify the notation, from now on we will write v instead of j(v) for v ∈ V .
By Eqs. (1) and (2) we have

2B(v,w) = Q(v + w) − Q(v) − Q(w) = (v + w)2 − v2 − w2 = vw + wv

what implies that

vw + wv = 2B(v,w). (4)

Let {vi }n1 be an ortogonal basis of V with B(vi , v j ) = 0 for i �= j . Then the set

{1} ∪ {vi1vi2 · · · vil : 1 ≤ i1 < . . . < il ≤ n} (5)

is a basis of Cl(V , Q), where 1 denotes the multiplicative unit of Cl(V , Q) being the
image of 1 ∈ K under the projection T V → Cl(V , Q).

The subalgebra of Cl(V , Q) generated by 1 and all elements vi1vi2 · · · vil of above
basis with even l is denoted by Cl(V , Q)+. This subalgebra is fixed by an automor-
phism of Cl(V , Q) which maps v to −v for all v ∈ V . We have dimCl(V , Q) = 2n

and dimCl(V , Q)+ = 2n−1. If Q ≡ 0, then Cl(V , Q) is isomorphic to the exterior
algebra

∧
V . Otherwise, Cl(V , Q) and

∧
V are isomorphic only as vector spaces.

2.3 Spinor representation of a Clifford algebra

Let V be a finite-dimensional vector space over a field K and let Q be a non-degenerate
quadratic form on V . A subspace W of V is called a totally isotropic subspace, if
Q(w) = 0 for all vectors w ∈ W . In the case when W does not contain any non-zero
vector w with Q(w) = 0, it is said that W is an anisotropic subspace. A subspace W ′
of V is called ortogonal to W , if B(w,w′) = 0 for all w ∈ W and w′ ∈ W ′, where B
is a bilinear form associated with Q by the formula (1).

There exists a Witt decomposition of V into a direct sum of three subspaces V =
W ⊕ U ⊕ T such that W and U are maximal totally isotropic subspaces of the same
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dimensionm, while T is anisotropic and orthogonal toW ⊕U . Moreover, for any basis
{w1, . . . , wm} ofW , there exists a basis {u1, . . . , um} ofU such that B(wi , u j ) = δi j ,
where δi j are the Kronecker symbols. If the field K is algebraically closed, then T has
dimension 1 or 0 according to whether n = dimV is odd or even, respectively.

First assume that n is even and V = W ⊕U . The set

Cl(V , Q) f = {a f : a ∈ Cl(V , Q)} for f = w1 · · · wm

is a subalgebra of Cl(V , Q) generated by

{ f }
⋃

{ui1 · · · uik f : 1 ≤ i1 < . . . < ik ≤ m}.

Since Q|U ≡ 0, it follows that the algebra Cl(U , Q|U ) is isomorphic to the external
algebra

∧
U which is spanned by the set

B = {1}
⋃

{ui1 ∧ . . . ∧ uik : 1 ≤ i1 < . . . < ik ≤ m}.

Let ϕ : ∧
U → Cl(V , Q) f and ψ : Cl(V , Q) → End(Cl(V , Q) f ) be given by

ϕ(ui1 ∧ . . . ∧ uik ) = ui1 · · · uik f for ui1 ∧ . . . ∧ uik ∈ B

and

ψ(a)(b f ) = ab f , for a, b ∈ Cl(V , Q),

respectively. Then the assignments

a → η(a) = ϕ−1 ◦ ψ(a) ◦ ϕ for a ∈ Cl(V , Q) (6)

define an isomorphism η : Cl(V , Q) → End(
∧

U ) called the spinor representation
of the Clifford algebra Cl(V , Q).

In the case when K is algebraically closed and n = dimV = 2m + 1, the Witt
decomposition of V has the form V = W ⊕ U ⊕ Lin(v0) for a subspace Lin(v0)
spanned by a vector v0 ∈ V ortogonal to V ′ = W ⊕U with Q(v0) �= 0. The mapping
Q′ : V ′ → K defined by the formula

Q′(v) = −Q(v0)Q(v) for v ∈ V ′

is a nondegenerate quadratic form on a vector space V ′ of even dimension 2m. Thus by
the previus case there exists an isomorphism η : Cl(V ′, Q′) → End(

∧
U ). A linear

map f : V ′ → Cl(V , Q)+ defined by

f (v) = v0v for v ∈ V ′

is a Clifford map because f (v)2 = −Q(v0)Q(v) · 1 = Q′(v) · 1. Since algebra
Cl(V ′, Q′) is universal for Cliffordmaps, there exists a unique algebra homomorphism
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f̄ : Cl(V ′, Q′) → Cl(V , Q)+ such that f = f̄ ◦ j for j : V ′ → Cl(V ′, Q′). The
homomorphism f̄ is an isomorphism because it is injective and

dimCl(V , Q)+ = 2dimV−1 = 2dimV ′ = dimCl(V ′, Q′).

An isomorphism μ = η ◦ f̄ −1 : Cl(V , Q)+ → End(
∧

U ) is called the spinor
representation of the algebra Cl(V , Q)+.

2.4 Non-Euclidean-crystallographic groups (NEC groups)

An NEC group is a discrete in the topology of R4 subgroup � of the group Aut(H)

of isometries of the hyperbolic plane H with compact orbit space H/�. If an NEC
group � is contained in the group Aut+(H) of orientation preserving isometries, then
it is called a Fuchsian group. Otherwise, it is said that � is a proper NEC group and
�+ = � ∩ Aut+(H) is called the canonical Fuchsian subgroup of �.

The basics of NEC group theory were developed by Wilkie [15], Macbeath [8]
and Natanzon [10, 11]. The algebraic structure of an NEC group � is given by the
so-called signature which has the form

σ(�) = (g;±; [m1, . . . ,mr ]; {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk )}). (7)

The number g is called the orbit genus, the integers mi are said to be proper peri-
ods, the brackets (ni,1, . . . , ni,si ) are called period cycles and the integers ni, j are
the link periods of �. The set of proper periods may be empty as well as the set of
period cycles. In addition, an individual period-cycle may be empty too. For exam-
ple, the signature (g;+; [−]; {−}) has no proper periods and no period cycle; the
signature (g;−; [m]; {(−), (−)}) has one proper period m and two empty period
cycles. A Fuchsian group can be regarded as an NEC group with the signature
(h;+; [m1, . . . ,mt ]; {−}), usually shortened to (h;m1, . . . ,mt ).

If there is a sign + in the signature σ(�), then the presentation of � consists
of generators ai , bi (i = 1, . . . , g), xi (i = 1, . . . , r), ci j , ei (i = 1, . . . , k, j =
1, . . . , si ) and the relations

xmi
i = 1, i = 1, . . . , r ,
c2i j−1 = c2i j = (ci j−1ci j )ni j = 1, i = 1, . . . , k, j = 1, . . . , si ,

ei ci0e
−1
i = cisi , i = 1, . . . , k

x1 · · · xr e1 · · · ek[a1, b1] · · · [ag, bg] = 1.

If there is a sign − in the signature σ(�), then we just replace the generators ai , bi
by di (i = 1, . . . , g) and the last relation by

x1 · · · xr e1 · · · ekd21 · · · d2g = 1.

The last relation in the presentation of � will be called long relation.
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The generators ai , bi are hyperbolic, di are glide reflections, xi are elliptic, ei are
hyperbolic or elliptic, and ci j are reflections.

Any generators of anNEC group satisfying the above relations are called canonical
generators.

In [8] Macbeath proved the following

Theorem 2.1 Let � and �′ be NEC groups with signatures (7) and

σ(�′) = (g′; ±; [m′
1, . . . ,m

′
r ′ ]; {(n′

1,1, . . . , n
′
1,s′1

), . . . , (n′
k′,1, . . . , n

′
k′,s′

k′
)}),

respectively. Let Pi = (ni,1, . . . , ni,si ) and P ′
i = (n′

i,1, . . . , n
′
i,s′i

) be the period cycles

in σ(�) and σ(�′), respectively. Then � and �′ are isomorphic if and only if the
following conditions are satisfied:

(i) the sign in σ(�) is the same as in σ(�′),
(ii) g′ = g, r = r ′ and k = k′,
(iii) (m′

1, . . . ,m
′
r ′) is a permutation of (m1, . . . ,mr ),

(iv) there is a permutation ϕ of {1, . . . , k} such that si = s′
ϕ(i) for i = 1, . . . , k.

(v) if the sign is "+ " then either for each i , P ′
i is a cyclic permutation of Pϕ(i) or for

each i , P ′
i is a cyclic permutation of the inverse of Pϕ(i); if the sign is " − ", then

for each i either P ′
i is a cyclic permutation of Pϕ(i) or is a cyclic permutation of

the inverse of Pϕ(i).

There is a closed subset E ⊂ H associatedwith anNECgroup�, called a fundamental
region of �. It has the property that for every z ∈ H there exists λ ∈ � such that
λ(z) ∈ E and this λ is unique if λ(z) ∈ IntE . The hyperbolic area μ(�) of E depends
only on the signature of �. If σ(�) is given by (7), then

μ(�) = 2π

⎡

⎣αg + k − 2 +
r∑

i=1

(

1 − 1

mi

)

+ 1

2

k∑

i=1

si∑

j=1

(

1 − 1

ni, j

)
⎤

⎦ , (8)

where α = 1 or α = 2 according to whether the sign in σ(�) is − or +, respectively
(e.g. [5, 14]). An abstract group with an algebraic structure determined by a signature
(7) is an NEC group if and only if the right hand of (8) is positive.

If  is a finite index subgroup of an NEC group �, then it is an NEC group itself
and there is a Hurwitz-Riemann formula, which says that

[� : ] = μ()

μ(�)
. (9)

2.5 Klein surfaces

An NEC group with a signature

σ = (γ ;±; [−]; {(−), k. . ., (−)}) (10)
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is called a surface NEC group. The orbit space of the hyperbolic plane H under the
action of this group is a surface of topological genus γ with k boundary components
which is orientable or non-orientable according to whether the sign + or − occurs in
the signature. The integer αγ + k − 1 is called the algebraic genus of the surface,
where α = 2 in the orientable case and α = 1 in the non-orientable case.

A Klein surface is a compact topological surface equipped with a dianalitic struc-
ture. A Riemann surface can be seen as an orientable Klein surface without boundary.
Preston proved in [12] that any Klein surface Y of algebraic genus d ≥ 2 is an orbit
space H/ for some surface NEC group  with the signature (10).

Alling andGreenleaf [1] constructed certain double cover Y+ of Y being a Riemann
surface. If  is a proper NEC group, then Y+ � H/+ for the canonical Fuchsian
subgroup+ <  with the signature (d;+; [−]; {−})which consists of all preserving
automorphisms of �. If Y is an orientable surface without boundary, then Y+ consists
of two connected components Y1 and Y2 with different analytic structures each one
homeomorphic to Y and there is an anticonformal isomorphism from Y1 to Y2.

By Proposition 3 ofMay in [9], an automorphism group of Y = H/ is isomorphic
to the quotient group�/ for someNEC group� containing as a normal subgroup.
So an actionof afinite groupG onaKlein surface of algebraic genusd ≥ 2 is associated
with a short exact sequence of homomorphisms

1 →  → �
θ→ G → 1, (11)

in which � is an NEC group and  is a surface NEC group isomorphic to the
fundamental group of the surface. This action is denoted by (�, θ,G).

If there does not exist another NEC group containing � properly, then � is called
a maximal NEC group and G = �/ is the full automorphism group of the Klein
surface. The detailed exposition of maximality can be found in [4].

A signature σ is called maximal, if for every NEC group �′ with a signature σ ′
containing an NEC group � with the signature σ and having the same Teichmüller
dimension, the equality � = �′ holds. For any maximal signature σ , there exists a
maximal NEC group with the signature σ . The lists of non-maximal signatures are
given in [2, 4].

3 Clifford actions on Riemann surfaces

3.1 Themaximal base subgroups of Clifford algebras

We start this chapter by introducing a notation that will be valid throughout the entire
paper. Let t and n be two integers such that 0 ≤ t < n. By Cl(n − t, t) we denote
the Clifford algebra Cl(V , Q) associated with a vector space V = Kn for K = R or
K = C and a quadratic form Qt defined by

Qt (v) = (x21 + . . . x2t ) − (x2t+1 . . . + x2n ) for v = (x1, . . . , xn) ∈ V . (12)
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We use the same symbols for vectors of V and their images in the algebra Cl(n− t, t).
There is an automorphism of Cl(n − t, t) which maps v to −v for all v ∈ V . The
subalgebra of Cl(n− t, t) fixed by this automorphismwill be denoted by Cl(n− t, t)+.

Let B ={vp}n1 be the canonical basis of V such that vp = (x1, . . . , xn), where
xp = 1 and xi = 0 for i �= p. By the base group of the algebra Cl(n − t, t) we mean
its multiplicative subgroup Mn−t,t generated by v1, . . . , vn .

Lemma 3.1 For n > 1, the base group Mn−t,t of the algebra Cl(n − t, t) has order
2n+1.

Proof In Cl(n− t, t) an element vp satisfies the relation v2p = Qt (vp) ·1 what implies
that v2p = 1 for p = 1, . . . , t and v2p = −1 for p > t . Moreover, for p �= r , we have
vpvr + vrvp = 2Bt (vp, vr ) = 0, where Bt is the bilinear form associated with Qt .
Thus vpvrv

−1
p = −vr . The element −1 is central in the group Mn−t,t and the quotient

Mn−t,t/〈−1〉 is an abelian group generated by n elements of order 2 what implies that
|Mn−t,t | = 2n+1. ��

By the proof of Lemma 3.1 we get the relations in the group Mn−t,t which will be
used later in the paper.

Corollary 3.2 The generators v1, . . . , vn of the group Mn−t,t for t = 0, 1 satisfy the
following relations:
t = 1 : v21 = 1, v4p = 1, vpv1v

−1
p = v1v

2
p for p > 1,

v2q = v2p for 1 < p, q ≤ n and vqvpv
−1
q = v−1

p for p �= q,

t = 0 : v4p = 1, v2p = v2q for 1 ≤ p, q ≤ n and vqvpv
−1
q = v−1

p for p �= q.

3.2 Clifford actions defining Klein surfaces

An action of the base group Mn−t,t on a Riemann surface X of genus g ≥ 2 will
be called a (n-t,t,g)-Clifford action. This action is full if Mn−t,t is the group of all
automorphisms of X . We restrict our attention to Clifford actions for which the orbit
space X/Mn−t,t is isomorphic to a Klein surface Y of algebraic genus d > 1. In this
case we will say that Y is definable by the (n − t, t, g)-Clifford action.

Let M+
n−t,t = Cl(n − t, t)+

⋂
Mn−t,t . The orbit space Y ′ = X/M+

n−t,t is a double
cover of Y which will be called the Clifford double cover defined by the (n-t,t,g)-
Clifford action.

Theorem 3.3 Every Klein surface Y of algebraic genus d ≥ 2 is definable by a (n −
t, t, g)-Clifford action for g = 1 + 2d+1(d − 1), n = d + 1 and t = 0, 1. If Y is
a proper Klein surface except a sphere with three boundary components, then the
Clifford double cover defined by this Clifford action is isomorphic to the canonical
double cover of Y and in the exceptional case this is true only for t = 0. Moreover,
for any Klein surface of genus d > 3, there exists a full (n − t, t, g)-Clifford action
defining a Klein surface homeomorphic to Y .

Proof Assume that Y is a Klein surface of algebraic genus d ≥ 2 with k boundary
components. Then Y is isomorphic to the orbit space of the hyperbolic planeH under
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the action of a surface NEC group � with a signature σ given by (10) in which the
sign is + or − according to whether Y is orientable or not, respectively. To simplify
the notation we will write "sign(σ ) = +" or "sign(σ ) = −". In the first case �

is generated by hyperbolic elements a1, b1, . . . , aγ , bγ and reflections c1,0, . . . , ck,0
and connecting generators e1, . . . , ek which satisfy the relations [ei , ci,0] = 1 for
i = 1, . . . , k and

[a1, b1] · · · [aγ , bγ ]e1 · · · ek = 1.

In the second case there are generating glide reflections d1, . . . , dγ instead of
hyperbolic generators and the long relation has the form

d21 · · · d2γ e1 · · · ek = 1.

Let Mn−t,t be the base group of the algebra Cln−t,t for t = 0, 1 and n = d +
1 = αγ + k, where α = 2 or α = 1 according to whether "sign(σ ) = +" or
"sign(σ ) = −", respectively. In order to find an action of the group Mn−t,t on a
Riemann surface for which the orbit space is isomorphic to Y we need to find a smooth
epimorphism θ : � → Mn−t,t for which  = kerθ is a torsion free Fuchsian group.
Then Mn−t,t � �/ is an automorphism group of the Riemann surface X = H/.
By the Hurwitz–Riemann formula, X has genus g = 1 + 2d+1(d − 1) and

X/Mn−t,t � (H/)/(�/) � H/� � Y .

The preimage �′ = θ−1(M+
n−t,t ) is a subgroup of � with index 2 and the orbit space

X/M+
n−t,t � H/�′ is a double cover of Y .

Using the relations listed in Corollary 3.2, we will define an epimorphism θ :
� → Mn−t,t for which the long relation is preserved and all generating reflections of
� are mapped to elements of order 2 and none product of generators of the group �

containing an odd number of anti-conformal elements ismapped to 1. These conditions
guarantee that kernel of θ is a surface Fuchsian group.

We start with the case when Y is a Riemann surface uniformized by a surface
Fuchsian group � with a signature σ(�) = (γ ;+; [−]; {−}) for some γ ≥ 2. For the
base group Mn−t,t with n = 2γ , let θ : � → Mn−t,t be induced by:

θ(ai ) = vnv2i−1, θ(bi ) = vnv2i for 1 ≤ i ≤ γ − 1 (13)

and θ(aγ ) = vn−1, θ(bγ ) = vn if γ is even or θ(aγ ) = vn−2vn−1 and θ(bγ ) = vn if γ
is odd. Thanks the relations listed in Corollary 3.2 we have

∏γ

i=1[θ(ai ), θ(bi )] = 1.
So  = kerθ is a surface Fuchsian group and the Riemann surface X = H/ has an
automorphism group �/ = Mn−t,t such that X/Mn−t,t � H/� � Y .

The pre-image �′ = θ−1(M+
n−t,t ) is a surface Fuchsian group which by the

Hurwitz–Riemann formula has signature (2γ − 1;+; [−]; {−}). We can choose ele-
ments A1, B1, . . . A2γ−1, B2γ−1 as the canonical generators of �′, where for even
γ :
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Ai = ai , Bi = bi for 1 ≤ i ≤ γ − 1
Aγ−1+i = A2γ−1bγ−i A

−1
2γ−1, Bγ−1+i = A2γ−1aγ−i A

−1
2γ−1 for 1 ≤ i ≤ γ − 1

A2γ−1 = aγ bγ , B2γ−1 = bγ aγ .

and for odd γ :

Ai = bγ aib−1
γ , Bi = bγ bib−1

γ for 1 ≤ i ≤ γ − 1
Aγ−1+i = ai , Bγ−1+i = bi for 1 ≤ i ≤ γ − 1
A2γ−1 = aγ , B2γ−1 = b2γ .

We leave to a reader checking that
∏2γ−1

i=1 [Ai , Bi ] = 1 and that θ -images of
A1, B1, . . . A2γ−1, B2γ−1 generate the group M+

n−t,t . The orbit space Y
′ = X/M+

n−t,t
is isomorphic to Riemann surface H/�′. The quotient group Z2 � �/�′ acts in
natural way on Y ′ and the orbit space is isomorphic to Y .

Next, we assume that � is a proper NEC group with a signature (10) and �+ is
its canonical Fuchsian subgroup consisting of all conformal elements in �. If there
exists a smooth epimorphism θ : � → Mn−t,t which maps all conformal generators
of � to elements of the group M+

n−t,t and maps all anti-conformal generators to
elements outside M+

n−t,t , then θ(�+) ⊆ M+
n−t,t because any element of �+ is a

product of the canonical generators of� containing an even number of anti-conformal
elements. If additionally, the generators v1, . . . , vn of Mn−t,t are θ -images of anti-
conformal elements of the group� then they are themselves anti-conformal and since
any element of M+

n−t,t is a product of even number of these generators, it follows
that M+

n−t,t ⊆ Aut+(X) = θ(�+). Consequently, M+
n−t,t = θ(�+) � �+/ for

 = kerθ which means that the group M+
n−t,t acts on the Riemann space X � H/

and the orbit space is isomorphic to the canonical double cover Y+ = H/�+ of
Y = H/�. So in order to prove that Y is definable by a (n − t, t, g)-Clifford action
for which the Clifford cover is the canonical double cover of Y , we need to define a
smooth epimorphism θ : � → Mn−t,t such that the image θ(λ) of any generator λ of
� belongs to M+

n−t,t if and only if λ is conformal, and all generators vp of Mn−t,t are
θ -images of anti-conformal elements of �. Using the relations given in Corollary 3.2,
it is easy to check that θ defined below is a smooth epimorphism which satisfies the
above conditions. The definition is divided into a few cases depending on parameters
γ , k and ε, where ε = 1 is γ is odd and ε = 0 if γ is even.

A smooth epimorphism θ : � → Mn,0 can be defined as follows:

(1) sign(σ ) = −, γ = 1 and k ≥ 2
θ(d1) = v1, θ(e1) = θ(e2) = v1vk+1, θ(e j ) = 1 for 3 ≤ j ≤ k and θ(ci0) =
v1vk+1vi+1 for i = 1, . . . , k − 1, θ(ck0) = θ(ck−10).

(2) sign(σ ) = −, γ > 1, γ + k ≥ 3
θ(c j0) = v1v2vγ+ j for 1 ≤ j ≤ k, θ(di ) = vi for 1 ≤ i ≤ γ − 1 and θ(e j ) =
1 for 2 ≤ j ≤ k. If k > 0, then θ(dγ ) = vγ and θ(e1) = v2εγ . If k = 0, then
θ(dγ ) = (v1v2)

εvγ .
(3) sign(σ ) = +, γ > 0, k > 0 and 2γ + k ≥ 3

θ(ai ) = v2i−1v2γ+k, θ(bi ) = v2iv2γ+k, for 1 ≤ i ≤ γ , θ(c j0) =
v1v2v2γ+ j for j = 1, . . . , k, θ(e1) = v2ε1 and e j = 1 for j > 1.
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(4) sign(σ ) = +, γ = 0 and k ≥ 3
θ(e1) = v1vk, θ(e2) = v2vk, θ(e3) = v2v1 and θ(e j ) = 1 for j > 3,
θ(ck−10) = θ(ck0) = v1v2vk, and θ(c j0) = v1v2v j+2 for j = 1, . . . , k − 2.

Next, we define a smooth epimorphism θ : � → Mn−1,1 as follows:

(1) γ > 0, k > 0 and αγ + k ≥ 3
θ(ci0) = v1 for 1 ≤ i ≤ k,
θ(ei ) = vk+1vi+1 for 1 ≤ i < k, θ(ek) = (�k−1

i=1 vk+1vi+1)
−1v2εk+1,

if sign = −, then θ(d j ) = vk+ j for 1 ≤ j ≤ γ ,
if sign = +, then θ(ai ) = vk+2i−1v1, θ(bi ) = vk+2iv1 for 1 ≤ i ≤ γ ,

(2) γ = 0 and k ≥ 3:
if k = 3 then θ(c10) = v1, θ(c20) = v1v2, θ(c30) = v1v3 and θ(e1) = θ(e2) =
θ(e3) = 1( the exceptional case in which Y is not double definable),
if k > 3 then θ(c10) = v2v3v4, θ(ci0) = v1 for 2 ≤ i ≤ k, θ(e1) = v3v4,
θ(ei ) = v2vi+1 for 2 ≤ i ≤ k − 1, θ(ek) = (θ(e1) · · · θ(ek−1))

−1.
(3) γ ≥ 3, k = 0 and sign(σ ) = −

θ(d j ) = v j for j = 1, . . . , γ − 1 and θ(dγ ) = (v2v3)
1−εvγ ,

By browsing the lists of non-maximal NEC signatures we check that the signature
(10) is non-maximal only in few cases listed in Table below.

non-maximal surface signatures d

(2; +; [−]; {−}) 3
(1;+; [−]; {(−)}) 2
(0; +; [−]; {(−), (−), (−)}) 2
(1;−; [−]; {(−), (−)}) 2
(2; −; [−]; {(−)}) 2
(3;−; [−]; {−}) 2

For d > 3, the signature (10) is maximal. There exists a maximal NEC group with
any given maximal signature which is not contained properly in any other NEC group.
Let �′ be a maximal NEC group with a signature (10) for d > 3. By Theorem 2.1,
NEC groups with the same signatures are isomorphic. Thus there is an isomorphism
τ : �′ → �. Composing τ with θ we get an epimorphism θ ′ : �′ → Mn−t,t

with kernel  which defines a full action (�′, θ ′, Mn−t,t ) on the Riemann surface
X = H/. It means that Mn−t,t is the group of all automorphisms of X . Otherwise,
there would be an NEC group �′′ containing �′ as a proper subgroup, against the
assumption that �′ is maximal.

Corollary 3.4 For a given integer n ≥ 3, let g = 1+2n(n−2) and let n(2) ∈ {0, 1} such
that n(2) ≡ n mod 2. Then for any t ∈ {0, 1} there are at least n (n − t, t, g)-Clifford
actions defining non-homeomorphic non-orientable Klein surfaces of algebraic genus
n − 1 and there are at least 1 + n−n(2)

2 such actions defining non-homeomorphic
orientable Klein surfaces of algebraic genus n − 1.
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Proof Let (γ, k, α) be a triple of nonnegative integers such that n = αγ +k,α ∈ {1, 2},
and γ �= 0 if α = 1. For α = 1, there are n such triples because γ can be any integer
in the range 1 ≤ γ ≤ n and k is uniquely determined for a fixed γ . For α = 2,
γ can be any integer in the range 0 ≤ γ ≤ n−n(2)

2 and we get 1 + n−n(2)
2 different

triples. Let σ be a signature (10) corresponding to a given triple (γ, k, α), where
sign(σ ) = − for α = 1 and sign(σ ) = + for α = 2. There exists an NEC group
� with the signature σ and the orbit space Y = H/� is a Klein surface of algebraic
genus d = n − 1 ≥ 2 which is non-orientable or orientable according to whether
α = 1 or α = 2, respectively. According to Theorem 3.3, the surface Y is definable
by a (n − t, t, g)-Clifford action for g = 1 + 2n(n − 2) and t ∈ {1, 0}. ��

4 Linear representations of surface NEC groups

In the previous chapter we proved that every Klein surface Y of algebraic genus d ≥ 2
is the orbit space of aRiemann surface under the action of a base group of someClifford
algebra. Using the spinor representation of this algebra, described in section 2.3, we
will get a linear representation of the fundamental group of Y or linear representation
of the fundamental group of the double Clifford cover of Y depending on whether d is
odd or even. For this purpose we need Clifford algebras under an algebraically closed
field. Therefore in this chapter we assume that Cl(n − t, t) for t = 1, 0 is the Clifford
algebra associated with a complex vector space V = C

n and a quadratic form Qt

defined by (12) and Mn−t,t is the base group of Cl(n − t, t) generated by images of
vectors of the canonical basis {vi }ni=1 of V . Vectors of this basis and their images in
Cl(n − t, t) will be denoted with the same symbols. By σ1, σ2 and σ3 we denote the
following Pauli matrices:

σ1 =
[
0 1
1 0

]

, σ2 =
[
0 −i
i 0

]

and σ3 =
[
1 0
0 −1

]

.

Theorem 4.1 Let ηm : Cl(2m − 1, 1) → End(Z) be the spinor representation of
the Clifford algebra Cl(2m − 1, 1) for a vector space Z of dimension 2m. Then in
some basis of Z the endomorphism ηm(vp) is represented by a matrix Am,p, where
A1,1 = σ1, A1,2 = −iσ2 and for m ≥ 2 the matrix Am,p is defined as follows:

Am,p =
[
Am−1,p 0

0 Am−1,p

]

, p = 1, . . . ,m − 1, (14)

Am,p =
[
Am−1,p−2 0

0 Am−1,p−2

]

, p = m + 2, . . . , 2m, (15)

Am,m =
[

0 −Dm

Dm 0

]

and Am,m+1 =
[

0 Dm(−i)
Dm(−i) 0

]

, (16)
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with

D2 = σ3 and Dm =
[
Dm−1 0
0 −Dm−1

]

for m > 2.

Proof Let {vp}np=1 be the canonical basis of a vector space V = C
n for n = 2m.

Then the maximal totally isotropic subspaces W and U of dimension m in Witt
decomposition V = W ⊕ U can be spanned by sets {wp}m1 and {u p}m1 , respectively,
where

w1 = 1

2
(v1 − vn), u1 = 1

2
(v1 + vn),

wp = 1

2
(ivn+1−p − vp) and u p = 1

2
(ivn+1−p + vp) for 2 ≤ p ≤ m.

The images of these vectors in Cl(n − 1, 1) satisfy the relations:

w2
p = 0, u2p = 0 and wpu j + u jwp = δp, j for p, j = 1, . . . ,m. (17)

For f = w1 · · · wm , the subalgebra Cl(n − 1, 1) f = {a f : a ∈ Cl(n − 1, 1)} of
Cl(n − 1, 1) is generated by

B = { f } ∪ {u j1 · · · u jk f : 1 ≤ j1 < . . . < jk ≤ m}.

The external algebra Z = ∧
U of dimension 2m with basis

{1} ∪ {u j1 ∧ . . . ∧ u jk : 1 ≤ j1 < . . . < jk ≤ m} (18)

is isomorphic to the Clifford algebra associated with vector space U and the zero
quadratic form Q1|U . Let ϕ : Z → Cl(n − 1, 1) f be given by

ϕ(1) = f , ϕ(u j1 ∧ u j2 ∧ . . . ∧ u jk ) = u j1u j2 · · · u jk f .

The spinor representation ηm : Cl(n − 1, 1) → End(Z) of the algebra Cl(n − 1, 1) is
defined by

ηm(a)(u) = ϕ−1(aϕ(u)) for a ∈ Cl(n − 1, 1) and u ∈ Z .

For an ordered subset S = {z1, . . . , zk} ⊂ Z and z ∈ Z , let Z ∧ z denote an ordered
set {z1 ∧ z, . . . , zk ∧ z}. There is a sequence

B1 ⊂ B2 ⊂ . . . ⊂ Bm

of ordered subsets of
∧

U such that B1 = {1, u1} and B j+1 = B j ∪ (B j ∧ u j+1) for
j = 1, . . . ,m − 1. So B2 = {1, u1, u2, u1 ∧ u2}, B3 = {1, u1, u2, u1 ∧ u2, u3, u1 ∧
u3, u2 ∧ u3, u1 ∧ u2 ∧ u3} and so on. In particular, the set Bm is the basis of Z given
by (18). Let Am,p ∈ M2m×2m (C) denote the matrix of ηm(vp) in this basis.
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For m = 1, the canonical basis of V consists of two vectors

v1 = u1 + w1 and v2 = u1 − w1. (19)

Thus by the relations (17) we have

η1(v1)(1) = ϕ−1((u1 + w1)w1) = u1

and

η1(v1)(u1) = ϕ−1((u1 + w1)u1w1) = ϕ−1(w1u1w1) = ϕ−1((1 − u1w1)w1) = 1

what implies that A1,1 =
[
0 1
1 0

]

= σ1. By similar calculation we get A1,2 = −iσ2.

Now let P = {1, . . . ,m − 1} and R = {m + 2, . . . n} for m > 1. Vectors v1 and v2
are given by (19) while for p = 2, . . . ,m we have

vp = (u p − wp), vn+1−p = (u p + wp)(−i). (20)

Since for all p ∈ P ∪ R vector vp is a linear combination of vectors ui and wi with
1 ≤ i ≤ m − 1, it follows that ηm(vp)(u) ∈ Lin(Bm−1) and ηm(vp)(u ∧ um) ∈
Lin(Bm−1 ∧ um) for any u ∈ Bm−1. It means that there are zero square matrices of
dimension 2m−1 in the right upper corner and in the left lower corner of the matrix
Mm,p for all p ∈ P ∪ R. Moreover, if p ∈ P , then ηm(vp)(u) = ηm−1(vp)(u) and
ηm(vp)(u ∧ um) = (ηm−1(vp)(u)) ∧ um what implies that there is the matrix Am−1,p
in the left upper corner and in the right lower corner of the matrix Am,p. Thus the
endomorphism ηm(vp) in basis Bm = Bm−1 ∪ (Bm−1 ∧ um) has the matrix

Am,p =
[
Am−1,p 0

0 Am−1,p

]

for p ∈ P.

Since ηm(vn+1− j )(u) = ηm−1(vn−1− j )(u) for j = 1, . . . ,m − 1 and u ∈ Bm−1, it
follows that ηm(vp) has the matrix

Am,p =
[
Am−1,p−2 0

0 Am−1,p−2

]

for p ∈ R.

It remains to determine thematricesMm,m andMm,m+1. If u = ui1 ∧. . .∧uik ∈ Bm−1,
then by the relations (17), we have ηm(wm)(u) = 0 and ηm(um)(u ∧ um) = 0. Thus

ηm(vm)(u) = ηm(um − wm)(u) = ηm(um)(u) = (−1)ku ∧ um (21)

and

ηm(vm)(u ∧ um) = η(−wm)(u ∧ um) = (−1)k+1u (22)
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what implies that Am,m =
[

0 −Dm

Dm 0

]

for some diagonal matrix Dm ∈
M2m−1×2m−1(C). Similarly, for vm+1 = (um + wm)(−i) we have

ηm(vm+1)(u) = (−1)k(−i)(u ∧ um) and η(vm+1)(u ∧ um) = (−1)k(−i)u

what implies that Am,m+1 =
[

0 Dm(−i)
Dm(−i) 0

]

.By simple calculation form = 2

we get

Am,m = A2,2 =
[
0 −σ3
σ3 0

]

and Am,m+1 = A2,3 =
[

0 σ3(−i)
σ3(−i) 0

]

.

For m = 3 we have

Am,m =

⎡

⎢
⎢
⎣

0 0 −σ3 0
0 0 0 σ3
σ3 0 0 0
0 −σ3 0 0

⎤

⎥
⎥
⎦ and Am,m+1 =

⎡

⎢
⎢
⎣

0 0 −σ3i 0
0 0 0 σ3i

−σ3i 0 0 0
0 σ3i 0 0

⎤

⎥
⎥
⎦ .

These two examples help us to notice that

Dm =
[
Dm−1 0
0 −Dm−1

]

for any m > 2. This is a consequence of relations (21) and (22) and the fact that
Bm = Bm−1 ∪ (Bm−1 ∧ zm).

Theorem 4.2 Let μm : Cl(n, 0)+ → End(Z) be the spinor representation of the
Clifford algebra Cl(n, 0)+ for n = 2m + 1. Then the homomorphisms μm(vnvp)

with 1 ≤ p ≤ 2m are represented in some basis of Z by A1,1 = (−i)σ2, A1,2 =
(−i)σ1 for m = 1 and by matrices Am,p given by (14), (15) and (16) for m > 1.

Proof Let {vi }n1 be the canonical basis of a vector space V = C
n for n = 2m + 1.

There exists Witt decomposition V = W ⊕U ⊕ Lin(vn) for W and U generated by

{

wp = 1

2
(ivn−p − vp)

}m

p=1
and

{

u p = 1

2
(ivn−p + vp)

}m

p=1
,

respectively. Here W and U are two maximal totally isotropic subspaces of V and vn
is a non-isotropic vector ortogonal to V ′ = W ⊕ U with respect to the bilinear form
B0 associated with Q0. The subspace V ′ is spanned by the set {vi }n−1

1 and it has a
non-degenerate quadratic form Q′ defined by

Q′(v′) = −Q0(vn)Q(v′) for v′ ∈ V ′.

Let us notice that Q′ = Q0|V ′ because Q0(vn) = −1. A linear map f : V ′ →
Cl(n, 0)+ given by f (v′) = vnv

′ satisfies the condition f (v′)2 = Q′(v′) ·1 for all v′ ∈
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V ′. Thus by universality of the Clifford algebra Cl(V ′, Q′), there is an isomorphism
f̄ : Cl(V ′, Q′) → Cl(n, 0)+ such that f̄ ◦ j = f for the canonical map j : V ′ →
Cl(V ′, Q′). It is induced by

f̄ (vp) = vnvp for p = 1, . . . , n − 1.

Let ηm : Cl(V ′, Q′) → End(
∧

U ) be the spinor representation of the algebra
Cl(V ′, Q′). Then μm = ηm ◦ f̄ −1 : Cl(V , Q)+ → End(

∧
U ) is an isomorphism

such that

μm(vnvp) = ηm(vp) for p = 1, . . . , n − 1.

In order to determine the matrices Am,p of endomorphisms μm(vnvp) in basis Bm of∧
U we can use formulas

vp = u p − wp and vn−p = (−i)(u p + wp) for p = 1, . . . ,m

and the relations (17) which are satisfied in the algebra Cl(V ′, Q′) by vectors wp

and u p. By repeating the argumentation from the proof of Theorem 4.1 we get that
matrices Am,p are defined for m > 1 by (14), (15) and (16); and for m = 1 we have
A1,1 = (−i)σ2, and A1,2 = (−i)σ1.

Theorem 4.3 LetπY be the fundamental group of a properKlein surface Y of algebraic
genus d ≥ 2, πY+-the fundamental group of the Riemann surface Y+ being a double
cover of Y and let m = (d + d(2))/2 for d(2) ∈ {0, 1} such that d(2) ≡ d mod 2. If d is
odd, then there is a linear representation ρ : πY → Gl(2m,C) with image generated
by the matrices Am,1 . . . Am,2m defined in Theorem 4.1. If d is even, then there is a
linear representation ρ : πY+ → Gl(2m,C) with image generated by the matrices
Am,1 . . . Am,2m defined in Theorem 4.2.

Proof According to Theorem 3.3, any proper Klein surface Y of algebraic genus
d ≥ 2 is definable by a (n − t, t, g)-Clifford action (�, θ, Mn−t,t ) for n = d + 1,
g = 1 + 2d+1(d − 1) and t ∈ {0, 1} and the Clifford cover defined by this action
is isomorphic to the canonical double cover Y+ of Y . Here � is a surface NEC
group isomorphic to the fundamental group of Y and θ : � → Mn−t,t is a smooth
epimorphism.By composing θ with the spinor representation of the algebraCl(n−t, t)
for even n or with the spinor representation of the algebra Cl(n − t, t)+ for odd n, we
get linear representations of the fundamental groups of Y or Y+, respectively.

Let m = d+d(2)
2 and let t = d mod 2. For an odd d, the spinor representation

ηm of the algebra Cld,1 associates with every generator vp of the group Md,1 an
isomorphism of a vector space Z of dimension 2m . By Theorem 4.1, there is a basis B
of Z in which endomorphisms ηm(vp) are represented bymatrices Am,p ∈ Gl(2m,C),
where A1,1 = σ1 and A1,2 = −iσ2 for m = 1 and Am,p are given by (14), (15) and
(16) for m > 1. Thus we get an epimorphism ρ = η ◦ θ : � → G ⊂ Gl(2m,C) onto
the group generated by matrices Am,1, . . . Am,2m .

If d is even, then there is a spinor representation ηm : Cl+n,0 → Gl(2m,C) such that

the generators v1vn, . . . , vn−1vn of the group M+
n,0 are represented by matrices given
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in Theorem 4.2. Thus composing θ |�+ with ηm we get an epimorphism ρ : �+ → G
onto the group generated by these matrices.

Corollary 4.4 For any odd d ≥ 3 and m = d+1
2 , there exist a Klein surface Y � H/�

of algebraic genus d and a linear representation ρ : � → Gl(2m,C) which maps
bijectively canonical generators of a canonical presentation of� tomatrices Am,1, . . .,
Am,2m defined in Theorem 4.1.

Proof Let � be an NEC group with the signature (γ ;−; [−]; {(−)}) for γ = d ≥ 3.
Then Y = H/� is a Klein surface of algebraic genus d. Let d1, . . . , dγ be generating
glide reflections of � and let c10 and e1 be generators of � associated with the only
period cycle. Then e1 = (d21 · . . . · d2γ )−1, c210 = 1 and e1c10e

−1
1 = c10. There is a

homomorphism θ : � → Md,1 induced by θ(di ) = v1+i for i = 1, . . . , γ , θ(c10) =
v1 and θ(e1) = v2d+1. The generator ei is redundant because it can be expressed
by d1, . . . , dγ . So generators of � correspond bijectively to generators v1, . . . , vd+1
which according to Theorem 4.1 are represented by matrices Mm,1, . . . , Am,d+1 by
the spinor representation of Cld,1.

Corollary 4.5 For any even d ≥ 2 and m = d
2 , there exist a Klein surface Y �

H/� of algebraic genus d and a linear representation ρ : � → Gl(2m,C) which
maps bijectively canonical conformal generators of a canonical presentation of � to
matrices Am,1, . . ., Am,2m defined in Theorem 4.2.

Proof An NEC group � with the signature (γ ;+; [−]; {(−)}) for γ = d
2 is generated

by elements a1, b1, . . . , aγ , bγ and c10 such that c210 = 1 and e1c10e
−1
1 = c10 for

e1 = ([a1, b1] · · · [aγ , bγ ])−1. There is a smooth epimorphism θ : � → Mn,0 for n =
d + 1 induced by θ(ai ) = v2i−1vn , θ(bn) = v2ivn for i = 1, . . . , γ , θ(c10) = v1v2vn
and θ(e1) = vε

n , where ε = γ mod (2). The generator e1 is redundant and the other
conformal generators of � are mapped to generators v1vn, . . . , vn−1vn of the group
M+

n,0 which according to Theorem4.2 are represented bymatrices Am,1, . . . , Am,2m+1

for m = d
2 by the spinor representation of the algebra Cl+n,0
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