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Abstract
We prove a characterization of Hardy’s inequality in Sobolev–Slobodeckiı̆ spaces in
terms of positive local weak supersolutions of the relevant Euler-Lagrange equation.
This extends previous results by Ancona Kinnunen & Korte for standard Sobolev
spaces. The proof is based on variational methods.

Keywords Hardy inequality · Nonlocal operators · Fractional Sobolev spaces

Mathematics Subject Classification 39B72 · 35R11 · 46E35

1 Introduction

1.1 Main result

The present note deals with the fractional Hardy inequality in Sobolev–Slobodeckiı̆
spaces. For 1 < p < ∞, 0 < s < 1 and � � RN an open set, this takes the form
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C
∫

�

|u|p
ds p�

dx ≤
∫∫

RN×RN

|u(x) − u(y)|p
|x − y|N+s p

dx dy, for every u ∈ C∞
0 (�), (1.1)

where

d�(x) = min
y∈∂�

|x − y|, for x ∈ �.

This note can be seen as a companion paper of [2], where themain result here presented
is applied. We refer the reader to [2] for more details on (1.1). The paper [2] deals with
the problem of determining the sharp constant in (1.1). This is the quantity defined by

hs,p(�) := inf
u∈C∞

0 (�)

{∫∫
RN×RN

|u(x) − u(y)|p
|x − y|N+s p

dx dy :
∫

�

|u|p
ds p�

dx = 1

}
.

In order to present the main result, we need to introduce the equation

(−�p)
su = λ

|u|p−2 u

ds p�

, in �, (1.2)

where λ ≥ 0. The symbol (−�p)
s stands for the fractional p− Laplacian of order s,

defined in weak form by the first variation of the convex functional

u �→ 1

p
[u]p

Ws,p(RN )
:= 1

p

∫∫
RN×RN

|u(x) − u(y)|p
|x − y|N+s p

dx dy,

see Sect. 2 for more details.
Actually, There is a tight connection between positive supersolutions of (1.2) and

the constant hs,p(�). This connection is encoded in the following result, which is the
main goal of the present note. We refer to the comments below, for a comparison with
known results.

Theorem 1.1 Let 1 < p < ∞, 0 < s < 1 and let � � RN be an open set. Then we
have

hs,p(�) = sup
{
λ ≥ 0 : equation (1.2) admits a positive local weak supersolution

}
.

The proof of this result is a direct consequence of the following equivalence (see
Lemmas 4.1 and 4.2 below)

hs,p(�) > 0 ⇐⇒ The equation (1.2) admits a positive
local weak supersolution for some λ > 0.

Such an equivalence is quite well-known among experts, at least in the local case,
i.e. for standard Sobolev spaces. The case p = 2 is contained for example in the
classical paper [1, Appendix] by Alano Ancona and it has been generalized to p 
= 2
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A note on the supersolution method for Hardy’s inequality 325

by Juha Kinnunen and Riika Korte, see [10, Theorem 5.1]. We should notice that the
case p = 2 and 0 < s < 1 can be obtained from [8, Theorem 1.9] by Patrick Joseph
Fitzsimmons, which is concerned with the more general framework of Dirichlet forms
associated to symmetric Markov processes. We point out that in [8] the author uses a
probabilistic approach, which can not be applied to the case p 
= 2.
In all these references, the proof of the implication “�⇒” is based on the Lax-Milgram
Theorem for coercive bilinear forms and its non-Hilbertian variants.1 Our proof of
this fact is slightly different: more precisely, we use a purely variational approach (see
Lemma 4.2 below) in order to show existence of a supersolution. This is quite delicate,
since in Theorem 1.1 we do not have any assumption on the open set �, apart from
the fact that it admits a Hardy inequality. Thus, when employing the Direct Method in
the Calculus of Variations, some non-trivial compactness issues arise. A careful study
of a suitable weighted Sobolev–Slobodeckiı̆ space is needed at that point (see Sect. 3).
This also gives us the opportunity to make some precisions on the correct functional
analytic setting which is needed for this result (see Remark 3.7).

1.2 Plan of the paper

In Sect. 2we introduce themain notation and definitions. Section3 is devoted to discuss
in detail a weighted Sobolev–Slobodeckiı̆ space. This in an essential tool in the proof
of Theorem 1.1, which can be found in Sect. 4.

2 Notation and definitions

For every 1 < p < ∞, we indicate by Jp : R → R the monotone increasing
continuous function defined by

Jp(t) = |t |p−2 t, for every t ∈ R.

For x0 ∈ RN and R > 0, we will set

BR(x0) =
{
x ∈ RN : |x − x0| < R

}
,

and ωN := |B1(x0)|. For an open set � � RN , we denote by

d�(x) = min
y∈∂�

|x − y|, for every x ∈ �,

the distance function from the boundary. Whenever such a distance is bounded, we
will set

r� := ‖d�‖L∞(�). (2.1)

1 As an historical curiosity, we notice that the prototype of this kind of result can be traced back to a
paper by Giuseppe Tomaselli, dealing with weighted Hardy inequalities for standard Sobolev spaces, in the
one-dimensional case. We refer to [13, Lemma 2, point (ii)] for more details.
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326 F. Bianchi et al.

This will be called inradius of the set �. For two open sets �′ ⊂ � ⊂ RN , we will
write �′ � � to indicate that the closure �′ is a compact set contained in �.
For 1 < p < ∞ and 0 < s < 1, we consider the fractional Sobolev space

Ws,p(RN ) =
{
u ∈ L p(RN ) : [u]Ws,p(RN ) < +∞

}
,

where

[u]Ws,p(RN ) :=
(∫∫

RN×RN

|u(x) − u(y)|p
|x − y|N+s p

dx dy

) 1
p

.

This is a reflexive Banach space, when endowed with the natural norm

‖u‖Ws,p(RN ) = ‖u‖L p(RN ) + [u]Ws,p(RN ),

see for example [11, Proposition 17.6 and Theorem 17.41]. For an open set � ⊂ RN ,
we indicate by W̃ s,p

0 (�) the closure of C∞
0 (�) in Ws,p(RN ). It is intended that

functions in C∞
0 (�) are considered as elements of C∞

0 (RN ), by extending them to be
zero outside �. Occasionally, for an open set � ⊂ RN , we will need the fractional
Sobolev space defined by

Ws,p(�) =
{
u ∈ L p(�) : [u]Ws,p(�) < +∞

}
,

where

[u]Ws,p(�) :=
(∫∫

�×�

|u(x) − u(y)|p
|x − y|N+s p

dx dy

) 1
p

.

Finally, Ws,p
loc (�) is the space of functions u ∈ L p

loc(�) such that u ∈ Ws,p(�′) for
every �′ � �.
For 0 < β < ∞, we also denote by Lβ

s p(R
N ) the following weighted Lebesgue space

Lβ
s p(R

N ) =
{
u ∈ Lβ

loc(R
N ) :

∫
RN

|u(x)|β
(1 + |x |)N+s p

dx < +∞
}

.

We observe that this is a Banach space for β ≥ 1, when endowed with the natural
norm. Moreover, it is not difficult to see that

Lβ
s p(R

N ) ⊂ Lβ ′
s p(R

N ), for 0 < β ′ < β < ∞. (2.2)

It is sufficient to use that
∫
RN

1

(1 + |x |)N+s p
dx < +∞, for every N ≥ 1, 1 < p < ∞ and 0 < s < 1,

and then apply Jensen’s inequality.
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A note on the supersolution method for Hardy’s inequality 327

Definition 2.1 We say that u ∈ Ws,p
loc (�) ∩ L p−1

s p (RN ) is a

• local weak supersolution of (1.2) if

∫∫
RN×RN

Jp(u(x) − u(y)) (ϕ(x) − ϕ(y))

|x − y|N+s p
dx dy ≥ λ

∫
�

|u(x)|p−2 u(x)

d�(x)s p
ϕ(x) dx,

(2.3)

for every non-negative ϕ ∈ Ws,p(RN ) with compact support in �;
• local weak solution of (1.2) if (2.3) holds as an equality, for every ϕ ∈ Ws,p(RN )

with compact support in �.

Remark 2.2 Under the assumptions taken on u and the test functions, the previous
definition is well-posed, i.e.

Jp(u(x) − u(y)) (ϕ(x) − ϕ(y))

|x − y|N+s p
∈ L1(RN × RN ).

We also observe that if a local weak solution u belongs to W̃ s,p
0 (�), then by a density

argument we can take ϕ = u itself as a test function in the weak formulation.

3 Aweighted fractional Sobolev space

In the proof of Theorem 1.1, we will crucially exploit a suitable weighted fractional
Sobolev space, whose definition is inspired by [1, Appendix].

Definition 3.1 Let 1 < p < ∞, 0 < s < 1 and let � � RN be an open set, we define

X s,p(�; d�) :=
{
u ∈ L p

s p(R
N ) : [u]Ws,p(RN ) < +∞ and

u

ds�
∈ L p(�)

}
,

endowed with the norm

‖u‖X s,p(�;d�) := [u]Ws,p(RN ) +
(∫

�

|u|p
ds p�

dx

) 1
p

, for every u ∈ X s,p(�; d�).

Then we define X s,p
0 (�; d�) as the closure of C∞

0 (�) in X s,p(�; d�).

Remark 3.2 We observe that if the open set� � RN is such that hs,p(�) > 0, then by
a simple density argument we can assure that Hardy’s inequality holds inX s,p

0 (�; d�),
as well. That is, we have

hs,p(�)

∫
�

|u|p
ds p�

dx ≤ [u]p
Ws,p(RN )

, for every u ∈ X s,p
0 (�; d�).
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328 F. Bianchi et al.

Accordingly, this implies that in this case

u �→ [u]Ws,p(RN ),

defines an equivalent norm on X s,p
0 (�; d�).

Proposition 3.3 Let 1 < p < ∞ and 0 < s < 1. Let � � RN be an open set. Then

X s,p(�; d�) ⊂ Ws,p
loc (�) ∩ L p−1

s p (RN ),

and we have the estimate

(∫
RN

|u(x)|p
(1 + |x |)N+s p

dx

) 1
p ≤ C� ‖u‖X s,p(�;d�), for every u ∈ X s,p(�; d�).

(3.1)

Moreover, X s,p(�; d�) and X s,p
0 (�; d�) are Banach spaces.

Proof The first fact is straightforward, by also taking into account (2.2).
We prove the estimate (3.1). We take a ball BR(x0) � � such that B2 R(x0) � �, as
well. We then write

[u]Ws,p(RN ) =
(∫∫

RN×RN

|u(x) − u(y)|p
|x − y|N+s p

dx dy

) 1
p

≥
(∫∫

BR(x0)×(RN \B2 R(x0))

|u(x) − u(y)|p
|x − y|N+s p

dx dy

) 1
p

≥
(∫

BR(x0)

(∫
RN \B2 R(x0)

|u(y)|p
|x − y|N+s p

dy

)
dx

) 1
p

−
(∫

BR(x0)
|u(x)|p

(∫
RN \B2 R(x0)

1

|x − y|N+s p
dy

)
dx

) 1
p

,

thanks to Minkowski’s inequality. By observing that

|x − y| ≥ 1

2
|y − x0|, for every x ∈ BR(x0), y /∈ B2 R(x0),

we have
∫
BR(x0)

|u(x)|p
(∫

RN \B2 R(x0)

1

|x − y|N+s p
dy

)
dx

≤ N ωN 2N

s p
R−s p

∫
BR(x0)

|u|p dx

≤ N ωN 2N

s p
R−s p

(∫
�

|u|p
ds p�

dx

)
‖d�‖s pL∞(BR(x0))

.
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A note on the supersolution method for Hardy’s inequality 329

This implies that we have

(∫
BR(x0)

(∫
RN \B2 R(x0)

|u(y)|p
|x − y|N+s p

dy

)
dx

) 1
p ≤ C ‖u‖X s,p(�;d�), (3.2)

for a constant C = C(N , s, p,�, BR(x0)) > 0. We now use that

|x − y| ≤ 2 |x0 − y|, for every x ∈ BR(x0), y /∈ B2 R(x0),

together with the fact that

|x0 − y| ≤ |x0| + |y| ≤ (1 + |x0|) (1 + |y|).

By using these in (3.2), we get

(∫
RN \B2 R(x0)

|u(y)|p
(1 + |y|)N+s p

dy

) 1
p ≤ C ‖u‖X s,p(�;d�),

possibly with a different constant C = C(N , s, p,�, BR(x0)) > 0. The proof of
estimate (3.1) is almost over: it is now sufficient to add on both sides of the previous
estimate the term

(∫
B2 R(x0)

|u(y)|p
(1 + |y|)N+s p

dy

) 1
p

.

By using that

∫
B2 R(x0)

|u(y)|p
(1 + |y|)N+s p

dy ≤
∫
B2 R(x0)

|u|p dy ≤
(∫

�

|u|p
ds p�

dy

)
‖d�‖s pL∞(B2 R(x0))

≤ C ‖u‖p
X s,p(�;d�)

,

for some C = C(s, p,�, B2 R(x0)) > 0, we eventually get the desired conclusion.
We prove the second part of the statement. We first observe that it is sufficient to

prove that X s,p(�; d�) is a Banach space. We take {un}n∈N ⊂ X s,p(�; d�) to be a
Cauchy sequence. Then we get that this is a Cauchy sequence in the Banach space
L p(�; d−s p

� ) and that

{Dsun}n∈N where Dsϕ(x, y) := ϕ(x) − ϕ(y)

|x − y| Np +s
,

is a Cauchy sequence in L p(RN × RN ). This follows from the fact that

[un]Ws,p(RN ) = ‖Dsun‖L p(RN×RN ).
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330 F. Bianchi et al.

Moreover, according to (3.1), the sequence {un}n∈N is also a Cauchy sequence in the
Banach space L p

s p(R
N ). The last fact implies that there exists u ∈ L p

s p(R
N ) such that

lim
n→∞

∫
RN

|un(x) − u(x)|p
(1 + |x |)N+s p

dx = 0.

In particular, up to a subsequence, we can suppose that un converges to u almost
everywhere in RN . By using the completeness of L p(�; d−s p

� ), we get similarly the
existence of ũ ∈ L p(�; d−s p

� ) such that

lim
n→∞

∫
�

|un − ũ|p
ds p�

dx = 0.

By uniqueness of the limit, we must have u = ũ almost everywhere in �. Finally, by
using that L p(RN ×RN ) is a Banach space, we get that there exists φ ∈ L p(RN ×RN )

such that

lim
n→∞ ‖Dsun − φ‖L p(RN×RN ) = 0.

This in particular would imply that

lim
n→∞ Dsun(x, y) = φ(x, y), for a. e. (x, y) ∈ RN × RN ,

up to a subsequence. On the other hand, by using the almost everywhere convergence
of un previously inferred, we also obtain that

lim
n→∞ Dsun(x, y) = Dsu(x, y), for a. e. (x, y) ∈ RN × RN .

By using the uniqueness of the limit, we get at the same time that

[u]Ws,p(RN ) < +∞ and lim
n→∞ ‖Dsun − Dsu‖L p(RN×RN ) = lim

n→∞[un − u]Ws,p(RN ) = 0.

This concludes the proof. ��
In the next technical lemma, we show that the summability of a negative power of

the distance implies certain geometric properties of the open set.

Lemma 3.4 Let N ≥ 1 and let � � RN be an open set such that
∫

�

1

dα
�

dx < +∞,

for some α > 0. Then we must have α < N. Moreover, we have the estimates

r� ≤
(
2α

ωN

∫
�

1

dα
�

dx

) 1
N−α

and |�| ≤
(
2α

ωN

) α
N−α

(∫
�

1

dα
�

dx

) N
N−α

,

(3.3)
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A note on the supersolution method for Hardy’s inequality 331

where r� is defined in (2.1).

Proof We take x0 ∈ � and consider the open ball Br (x0) with radius r = d�(x0).
This implies that

Br (x0) ⊂ � and ∂Br (x0) ∩ ∂� 
= ∅.

Let us call x̃0 a point contained in this intersection. By observing that

d�(x) ≤ |x − x̃0|, for every x ∈ Br (x0),

we get

+∞ >

∫
�

1

dα
�

dx ≥
∫
Br (x0)

1

|x − x̃0|α dx .

By using spherical coordinates, we see that the last integral diverges for α ≥ N . Thus
we get the first statement.
In order to get the claimed estimates, we go on by estimating from below the last
integral as follows

+∞ >

∫
�

1

dα
�

dx ≥ 1

2α rα

∫
Br (x0)

dx = ωN

2α
r N−α = ωN

2α
d�(x0)

N−α.

Since α < N from the first part of the proof, we can take the supremum on x0 ∈ �

and get that the distance function is actually bounded. Moreover, we obtain the first
estimate in (3.3), thus in particular the inradius is finite. In turn, by using this fact we
get

∫
�

1

dα
�

dx ≥ 1

rα
�

∫
�

dx = |�|
rα
�

,

which shows that the volume is finite, as well, together with the second estimate in
(3.3). This concludes the proof. ��

As a straightforward consequence of Lemma 3.4, we get the following

Lemma 3.5 Let 1 < p < ∞, 0 < s < 1 and let � � RN be an open set. Then for
s p ≥ N the unique constant function contained in X s,p(�; d�) is the null one.
The same conclusion holds also for s p < N, if we additionally suppose that |�| =
+∞.

In the next result we compare the two spaces W̃ s,p
0 (�) and X s,p

0 (�; d�).

Proposition 3.6 Let 1 < p < ∞ and 0 < s < 1. Let � � RN be an open set such
that hs,p(�) > 0. Then we have

W̃ s,p
0 (�) ⊆ X s,p

0 (�; d�), (3.4)
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332 F. Bianchi et al.

and the inclusion is continuous. Moreover, if we assume that r� < +∞, then

W̃ s,p
0 (�) = X s,p

0 (�; d�),

and

ϕ �→ [ϕ]Ws,p(RN ), (3.5)

is an equivalent norm on this space. Finally, if we further require that |�| < +∞,
then we have the continuous embedding

X s,p
0 (�; d�) ↪→ L p(�),

and this is compact, as well.

Proof By recalling Remark 3.2, we know that (3.5) is an equivalent norm on
X s,p
0 (�; d�). Since we trivially have

[ϕ]Ws,p(RN ) ≤ ‖ϕ‖Ws,p(RN ), for every ϕ ∈ C∞
0 (�),

the continuous inclusion (3.4) easily follows.
We now assume that r� < +∞. In conjuctionwith Hardy’s inequality and recalling

(2.1), this yields

∫
�

|ϕ|p dx ≤ rs p�

∫
�

|ϕ|p
ds p�

dx ≤ rs p�

hs,p(�)
[ϕ]p

Ws,p(RN )
, for every ϕ ∈ C∞

0 (�).

Thus we get that

ϕ �→ ‖ϕ‖X s,p(RN ) and ϕ �→ ‖ϕ‖Ws,p(RN ),

are equivalent norms onC∞
0 (�), again thanks toRemark 3.2. Then the claimed identity

of the twoclosures immediately follows.The last statement is nowaneasy consequence
of the same property for the space W̃ s,p

0 (�), which is well-known. ��
Remark 3.7 Under the sole assumption that hs,p(�) > 0, in general we have

W̃ s,p
0 (�) ⊂ X s,p

0 (�; d�) and W̃ s,p
0 (�) 
= X s,p

0 (�; d�),

contrary to what incorrectly stated in [10, Theorem 5.1], for the local case s = 1. As
a counter-example, it is sufficient to take any open set � � RN such that

hs,p(�) > 0 and inf
ϕ∈C∞

0 (�)

{
[ϕ]p

Ws,p(RN )
:

∫
�

|ϕ|p dx = 1

}
= 0.
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A note on the supersolution method for Hardy’s inequality 333

For example, we can take� to be a half-space. In such a case, we have by construction

W̃ s,p
0 (�) ↪→ L p(�),

while

X s,p
0 (�; d�) 
↪→ L p(�).

We can finally prove a compactness result for the space X s,p
0 (�), under mini-

mal assumptions on the open set �. This will be crucially exploited in the proof of
Lemma 4.2.

Theorem 3.8 Let 1 < p < ∞, 0 < s < 1 and let � � RN be an open set such that
hs,p(�) > 0. Let {un}n∈N ⊂ X s,p

0 (�; d�) be such that

[un]pWs,p(RN )
≤ M, for every n ∈ N,

for some M > 0. Then there exist a function u ∈ X s,p
0 (�; d�) and a subsequence

{unk }k∈N such that

lim
k→∞ unk (x) = u(x), for a. e. x ∈ RN .

Moreover, for every �′ � �, we also have

lim
k→∞ ‖unk − u‖L p(�′) = 0,

up to a possible further subsequence.

Proof We need two distinguish two cases: either |�| < +∞ or |�| = +∞.
Case 1:� has finite volume.This is the easiest case: here the result plainly follows from
Proposition 3.6. We also observe that the last statement actually holds in a stronger
form, since we can infer convergence in L p(�).
Case 2: � has infinite volume. We still use the notation Dsϕ for a measurable func-
tion, as in Proposition 3.3. Thus, by assumption, we get that {Dsun}n∈N is a bounded
sequence in L p(RN × RN ). This entails that, up to a subsequence, it is weakly con-
verging in L p(RN × RN ). For simplicity, we do not relabel the subsequence. Let us
call φ such a limit. We may apply Mazur’s Lemma (see [12, Theorem 2.13]) and get
that for every n ∈ N there exists

{
t�(n)

}n
�=0 ⊂ [0, 1], such that

n∑
�=0

t�(n) = 1,

and such that the new sequence made of convex combinations

φ̃n(x, y) =
n∑

�=0

t�(n) Dsu�(x, y),
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334 F. Bianchi et al.

strongly converges in L p(RN ×RN ) toφ, as n goes to∞. Observe that by construction
we have

n∑
�=0

t�(n) Dsu� = Ds

(
n∑

�=0

t�(n) u�

)
,

and

ũn :=
n∑

�=0

t�(n) u� ∈ X s,p
0 (�; d�),

since the latter is a vector space. This proves that {Dsũn}n∈N is a Cauchy sequence
in L p(RN × RN ) and this, in turn, implies that {̃un}n∈N is a Cauchy sequence in
X s,p
0 (�; d�), thanks to Remark 3.2. By using that X s,p

0 (�; d�) is a Banach space,
we get that {̃un}n∈N converges in this space to a limit function u ∈ X s,p

0 (�; d�). In
particular, we must have

Dsu = φ.

Wenowwant to prove that {un}n∈N converges almost everywhere onRN to the function
u, up to a subsequence. We first observe that all the elements of X s,p

0 (�; d�) vanish
almost everywhere inRN \�, by construction. Thusweonly need to prove convergence
almost everywhere in �.

Wedenote by {�k}k∈N an exhausting sequence for�,made of bounded open subsets
with smooth boundary: in other words

�k � �, �k � �k+1 for every k ∈ N and
⋃
k∈N

�k = �,

see [6, Proposition 8.2.1]. We preliminary observe that, thanks to the assumption
hs,p(�) > 0, we have for every k, n ∈ N

∫
�k

|un|p dx ≤ ‖d�‖s pL∞(�k)

∫
�k

|un|p
ds p�

dx ≤ 1

hs,p(�)
‖d�‖s pL∞(�k )

[un]pWs,p(RN )

≤ Ck M,

which entails that {un}n∈N is a bounded sequence in eachWs,p(�k). By using the com-
pactness of the embeddingWs,p(�k) ↪→ L p(�k) (see for example [7, Theorem 7.1])
and a diagonal argument, we can obtain existence of a function U ∈ Ws,p

loc (�) and of
a subsequence {unk }k∈N such that

lim
k→∞ unk (x) = U (x), for a. e. x ∈ �.
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We then extend U to be 0 outside �: by using Fatou’s Lemma and the almost
everywhere convergence, we get

[U ]p
Ws,p(RN )

≤ lim
k→∞[unk ]pWs,p(RN )

≤ M .

By further using Hardy’s inequality and (3.1), we also get

∫
�

|U |p
ds p�

dx ≤ lim inf
k→∞

∫
�

|unk |p
ds p�

dx ≤ M

hs,p(�)
,

and

(∫
RN

|U (x)|p
(1 + |x |)N+s p

dx

) 1
p ≤ lim inf

k→∞

(∫
RN

|unk (x)|p
(1 + |x |)N+s p

dx

) 1
p

≤ C� lim inf
k→∞

⎡
⎣[unk ]Ws,p(RN ) +

(∫
�

|unk |p
ds p�

dx

) 1
p
⎤
⎦

≤ C̃ .

This shows that

U ∈ X s,p(�; d�).

We now observe that from the first part of the proof, by uniqueness of the weak limit
we must have

Dsu = DsU , a. e. in RN × RN .

By recalling the definition of Ds , this in turn implies that there exists a constant c ∈ R

such that

u = U + c, a. e. in RN .

By using that X s,p(�; d�) is a vector space, the function constantly equal to c must
belong to X s,p(�; d�). In light of Lemma 3.5, we get that c = 0 and thus the desired
conclusion holds. ��

4 Proof of Theorem 1.1

Lemma 4.1 Let 1 < p < ∞, 0 < s < 1 and let � � RN be an open set. Then:

(i) if there exists λ ≥ 0 such that the Eq. (1.2) admits a positive local weak
supersolution u, then λ ≤ hs,p(�);
(ii) in particular, if u is a positive weak solution in W̃ s,p

0 (�), then λ = hs,p(�)

and u is a minimizer for hs,p(�).
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Proof In order to prove (i), for every η ∈ C∞
0 (�), we test the weak formulation with

ϕ = |η|p
(ε + u)p−1 ,

where ε > 0.We observe that this is a feasible test function, thanks to [2, Lemma 2.7].
By using the discrete Picone inequality (see [9, Lemma 2.6] or [3, Proposition 4.2]),
we obtain

λ

∫
�

u p−1

ds p�

|η|p
(ε + u)p−1 dx ≤

∫∫
RN×RN

Jp(u(x) − u(y))

( |η|p
(ε + u)p−1 (x) − |η|p

(ε + u)p−1 (y)

)

|x − y|N+s p
dx dy

≤
∫∫

RN×RN

∣∣∣|η(x)| − |η(y)|
∣∣∣p

|x − y|N+s p
dx dy ≤ [η]p

Ws,p(RN )
.

In the last inequality we used that

[|η|]pWs,p(RN )
≤ [η]p

Ws,p(RN )
, (4.1)

and the inequality is strict, unless η has constant sign almost everywhere (see the
proof of [2, Lemma 3.2]). By taking the limit as ε goes to 0 on the left-hand side,
using Fatou’s lemma, the positivity of u on � and the arbitrariness of η ∈ C∞

0 (�),
this finally gives that λ ≤ hs,p(�), as desired.
In order to prove point (ii), we observe that if u ∈ W̃ s,p

0 (�), we can test the weak
formulation of the equation with the solution itself. This yields

[u]p
Ws,p(RN )

= λ

∫
�

u p

ds p�

dx .

On the other hand, by definition of hs,p(�), we know that

hs,p(�)

∫
�

u p

ds p�

dx ≤ [u]p
Ws,p(RN )

.

This shows that hs,p(�) ≤ λ. Since the reverse inequality holds from (i), we conclude
that it must result λ = hs,p(�). ��

In the next Lemma, we will use the weighted space X s,p
0 (�; d�) studied in Sect. 3.

Lemma 4.2 Let 1 < p < ∞, 0 < s < 1 and let � � RN be an open set such that

hs,p(�) > 0.

Then for every 0 ≤ λ < hs,p(�) there exists a positive local weak supersolution
uλ ∈ X s,p

0 (�; d�) of the Eq. (1.2). More precisely, the function uλ is a weak solution
of the equation
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(−�p)
su = λ

u p−1

ds p�

+ 1B, in �, (4.2)

where B � � is a fixed ball.

Proof We first observe that, for every ϕ ∈ X s,p
0 (�, d�), we have

∫
B

|ϕ| dx ≤ |B| p−1
p ‖d�‖sL∞(B)

(∫
�

|ϕ|p
ds p�

dx

) 1
p

≤ |B| p−1
p ‖d�‖sL∞(B)

(
1

hs,p(�)

) 1
p [ϕ]Ws,p(RN ),

thanks to Hölder’s inequality, the definition of hs,p(�) and the fact that Hardy’s
inequality holds inX s,p

0 (�; d�), as well (see Remark 3.2). This shows that we have the
continuous embedding X s,p

0 (�; d�) ↪→ L1(B), for every B � � as in the statement.
Let 0 ≤ λ < hs,p(�), we consider the functional

Fλ(ϕ) = 1

p
[ϕ]p

Ws,p(RN )
− λ

p

∫
�

|ϕ|p
ds p�

dx −
∫
B

ϕ dx, for every ϕ ∈ X s,p
0 (�; d�).

We will construct the desired supersolution as a minimizer of the following problem

m(λ) := inf
ϕ∈X s,p

0 (�;d�)

Fλ(ϕ).

We first notice that by Hardy’s inequality we have, for every ϕ ∈ X s,p
0 (�; d�)

Fλ(ϕ) ≥ 1

p

(
1 − λ

hs,p(�)

)
[ϕ]p

Ws,p(RN )
−

∫
B

ϕ dx

≥ 1

p

(
1 − λ

hs,p(�)

)
[ϕ]p

Ws,p(RN )
− p − 1

p
ε

1
1−p

∫
B
d

s p
p−1

� dx

− ε

p

∫
B

|ϕ|p
ds p�

dx

≥ 1

p

(
1 − λ

hs,p(�)

)
[ϕ]p

Ws,p(RN )
− p − 1

p
ε

1
1−p

∫
B
d

s p
p−1

� dx

− ε

p

1

hs,p(�)
[ϕ]p

Ws,p(RN )
,

with ε > 0, where we also used Young’s inequality. In particular, by choosing

ε = hs,p(�) − λ

2
,

we can infer that

Fλ(ϕ) ≥ c1 [ϕ]p
Ws,p(RN )

− 1

C1
, for every ϕ ∈ X s,p

0 (�; d�), (4.3)
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where c1 > 0 and C1 > 0 do not depend on ϕ. This in particular shows that m(λ) >

−∞.
Let us now take a minimizing sequence {un}n∈N ⊂ X s,p

0 (�; d�) such that

Fλ(un) ≤ m(λ) + 1

n + 1
, for every n ∈ N.

By appealing to (4.3), we get in particular that there exists a constant M > 0 such
that

[un]pWs,p(RN )
≤ M, for every n ∈ N.

By applying Theorem 3.8, we can infer existence of u ∈ X s,p
0 (�; d�) such that the

sequence converges almost everywhere in RN and such that

∫
B
un dx =

∫
B
u dx + o(1), as n → ∞,

up to a subsequence. Observe that by construction we have

m(λ) + 1

n + 1
≥ 1

p
[un]pWs,p(RN )

− λ

p

∫
�

|un|p
ds p�

dx −
∫
B
un dx ≥ m(λ),

which in particular implies that

1

p
[un]pWs,p(RN )

− λ

p

∫
�

|un|p
ds p�

dx −
∫
B
un dx = m(λ) + o(1), as n → ∞.

(4.4)

By applying the Brézis-Lieb Lemma (see [5, Theorem 1] and also [4, Lemma 2.2]),
we get

λ

p

∫
�

|un|p
ds p�

dx = λ

p

∫
�

|u|p
ds p�

dx + λ

p

∫
�

|un − u|p
ds p�

dx + o(1), as n → ∞,

and

[un]pWs,p(RN )
= [u]p

Ws,p(RN )
+ [un − u]p

Ws,p(RN )
+ o(1), as n → ∞.

By inserting these informations in (4.4), we obtain

Fλ(u) + 1

p
[un − u]p

Ws,p(RN )
− λ

p

∫
�

|un − u|p
ds p�

dx = m(λ) + o(1), as n → ∞.
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We can now use Hardy’s inequality for the function un − u ∈ X s,p
0 (�; d�). Thanks

to the choice of λ, it holds that

Fλ(u) ≤ m(λ) + o(1), as n → ∞,

and by taking the limit as n goes to ∞, we finally get that u is a minimizer.
By minimality, we get that u must be non-negative. Indeed, by using (4.1) and
observing that

−
∫
B
u dx ≥ −

∫
B

|u| dx,

we have

Fλ(u) ≥ Fλ(|u|).

Moreover, the inequality sign in the latter is strict, unless u has constant sign almost
everywhere. By virtue of the inequality for the integral on B, we get that such a sign
must be non-negative, i.e. we must have u ≥ 0 almost everywhere in �, as claimed.
Additionally, by minimality u is a weak solution of the Euler-Lagrange equation (4.2).
This in particular proves that u 
≡ 0, thanks to the presence of the term 1B . Observe
that (see Proposition 3.3)

X s,p
0 (�) ⊂ Ws,p

loc (�) ∩ L p−1
s p (RN ),

thus u is a local weak supersolution, in the sense of Definition 2.1. Finally, by using
the minimum principle, we get that u is positive on � (one can proceed as in the proof
of [2, Lemma 3.2], for example). ��

By joining the previous two technical results, we finally get the characterization of
the sharp fractional (s, p)−Hardy constant stated in Theorem 1.1.

Proof of Theorem 1.1 Wefirst observe that the set of admissibleλ is non-empty: indeed,
it always containsλ = 0. To see this, it is sufficient to observe that any positive constant
function is a local weak solution of

(−�p)
su = 0, in �,

which is (1.2) for λ = 0.
In order to prove the claimed identity, we first consider the case hs,p(�) = 0. Then,
the previous discussion and Lemma 4.1 imply that the set of admissible λ is actually
given by the singleton {0}. Thus the conclusion holds.
In the case hs,p(�) > 0, again by Lemma 4.1, we have that hs,p(�) ≥ λ for every
λ such that (1.2) admits a positive local weak supersolution. On the other hand, from
Lemma 4.2 we have that for every ε > 0 if we take

hs,p(�) − ε < λ < hs,p(�),
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then (1.2) admits a positive local weak supersolution. This concludes the proof. ��
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