
Revista Matemática Complutense (2023) 36:869–886
https://doi.org/10.1007/s13163-022-00448-9

Critical metrics for quadratic curvature functionals on some
solvmanifolds

Giovanni Calvaruso1 · Amirhesam Zaeim2

Received: 1 April 2022 / Accepted: 29 November 2022 / Published online: 17 January 2023
© The Author(s) 2023, corrected publication 2023

Abstract
We prove the existence of four-dimensional compact manifolds admitting some
non-Einstein Lorentzian metrics, which are critical points for all quadratic curva-
ture functionals. For this purpose, we consider left-invariant semi-direct extensions
GS = H � exp(RS) of the Heisenberg Lie group H , for any S ∈ sp(1, R), equipped
with a family ga of left-invariant metrics. After showing the existence of lattices in
all these four-dimensional solvable Lie groups, we completely determine when ga

is a critical point for some quadratic curvature functionals. In particular, some four-
dimensional solvmanifolds raising from these solvable Lie groups admit non-Einstein
Lorentzian metrics, which are critical for all quadratic curvature functionals.

Keywords Quadratic curvature functionals · Solvmanifolds · Heisenberg group ·
Semi-direct extensions

Mathematics Subject Classification 53C50 · 53C21 · 35A01

1 Introduction

Let Mn denote a closed oriented manifold and M1 the space of Riemannian metrics
of volume one on M . A well known problem consists in determining within M1 the
critical points for a given curvature functional.
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Let R, �, τ respectively denote the Riemann curvature tensor, the Ricci tensor and
the scalar curvature of a given metric g. The Euler-Lagrange equations associated to
the Einstein-Hilbert functional g �→ ∫

M τdvolg are given by � = λg, for some real
constant λ, so that critical metrics onM1 for the Einstein-Hilbert functional coincide
with the Einstein ones.

The next natural step is to consider functionals defined by scalar quadratic curvature
invariants. In Riemannian settings this topic started in [1], has been intensively studied
and is a very active field of research (see for example [4, 10, 12, 17–22, 27, 28, 30] and
references therein).We report here someessential information on the studyof quadratic
curvature invariants, referring to [10] and [30] for excellent surveys on the topic. A
basis for the space of quadratic curvature invariants is given by {�τ, τ 2, ||�||2, ||R||2}
so that, correspondingly, an arbitrary quadratic curvature functional has the form

g �→
∫

M

(
a||R||2 + b||�||2 + cτ 2

)
dvolg,

for some real constants a, b, c. In this general framework, the four-dimensional case
carries some special features and interest, as these functionals also arise naturally
in some gravitational field theories (see for example [11]). When dim M = 4, the
Gauss-Bonnet Theorem yields

32π2χ(M) =
∫

M

(
||R||2 − 4||�||2 + τ 2

)
dvolg.

Consequently, in dimension four, all quadratic curvature functionals are equivalent to

S(g) =
∫

M
τ 2dvolg, Ft (g) =

∫

M

(
||�||2 + tτ 2

)
dvolg, t ∈ R.

As already observed in [2], Einstein metrics are critical forFt onM1 for every t ∈ R.
In general, critical metrics for quadratic curvature functionals need not be Einstein.
For example, Bach-flat metrics are critical points for F−1/3, and Weyl metrics of
vanishing scalar curvature are critical points for F−1/4 (and for S). Moreover, it may
be observed that although this problem has been extensively studied for Riemannian
metrics, its formulation is also possible in different signatures, and it leads to the same
Euler-Lagrange equations. These remarks lead naturally to the following questions:

(1) Do there exist conditions under which a critical metric for Ft is necessarily
Einstein?

(2) Do there exist non-Einstein critical metrics for all quadratic curvature functionals?
(3) What happens considering metrics of different signatures?

The first two of the above questions have been studied by several authors. In partic-
ular, suitable curvature conditions forcing critical metrics to be Einstein were found
in [10]. A positive answer to the second of the above questions was obtained in [4]:
there exist four-dimensional Riemannian metrics which are critical for all quadratic
curvature invariants but are not Einstein. The examples investigated in [4] are non-flat
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Critical metrics for quadratic curvature... 871

cones R+ ×r N , where N is a three-dimensional Einstein manifold of constant sec-
tional curvature −3. We may observe that by their own construction, these examples
are not compact.

On the other hand, up to our knowledge, the third question is just starting to
attract the interest of researchers (see for example [5]) and has not been extensively
investigated yet. The aim of this paper is to contribute to this general topic, with
particular regard to the third of the above questions, proving that some compact
four-dimensional manifolds admit non-Einstein Lorentzian metrics, which are crit-
ical points for all quadratic curvature functionals. These compact manifolds naturally
arise as solvmanifolds, i.e., compact quotients of solvable Lie groups with respect to
some lattices.

Following [26], where semi-direct extensions of the Heisenberg group (of arbitrary
dimension) were introduced, let H denote the three-dimensional Heisenberg group
and h = span{X , Y , U } its Lie algebra, with [X , Y ] = U .

Each matrix S belonging to the Lie algebra sp(1, R) of the symplectic group
Sp(1, R) on R

2, defines a derivation S of h, given by

[S, (z, u)] = (S(z), 0)

and so, a corresponding one-dimensional semi-direct extension g = h � (RS) of h.
We denote by GS = H � exp(RS) the connected, simply connected Lie group

corresponding to h � (RS).
It is easy to check that S ∈ R

2,2 satisfies S t ◦ J + J ◦ S = 0 if and only if

S =
(

α β

γ −α

)

, (1.1)

for some real constants α, β, γ and the Lie algebra h � (RS)=span{U , X , Y , S} is
completely described by the following brackets:

[X , Y ] = U , [S, X ] = αX + γ Y , [S, Y ] = β X − αY . (1.2)

In particular, for

S =
(
0 −μ

μ 0

)

, μ > 0,

we find the well known oscillator algebra. The corresponding (four-dimensional)
oscillator group [29] admits a bi-invariant metric g0, which has been generalized to a
one-parameter family ga , a2 < 1, of left-invariant metrics. Setting U = e1, X = e2,
Y = e3 and S = e4, this family of metrics is described by

〈e1, e1〉 = 〈e4, e4〉 = a, 〈e2, e2〉 = 〈e3, e3〉 = 〈e1, e4〉 = 〈e4, e1〉 = 1, 〈ei , e j 〉
= 0 otherwise. (1.3)
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Since its introduction in [16] as a generalization of previous examples studied in
[24], this family of metrics has been intensively studied in different contexts (see for
example [6], [8] and references therein). We remark that the above equations (1.3)
define a metric for any real constant a satisfying a2 �= 1. In particular, these metrics
are Lorentzian if a2 < 1 and Riemannian when a2 > 1.

Generalizing this example, one can consider GS = H � exp(RS), equipped with
an arbitrary left-invariant metric ga of the form (1.3) (see [7], [9]).

In this paper we shall completely classify left-invariant metrics ga on GS , which
are critical points for some quadratic curvature functionals. In particular, wewill prove
that whatever the form of the defining matrix S, the Lorentzian metric g0 is a critical
point for all quadratic curvature functionals. We will also show that all Lie groups
GS admit some lattices, that is, discrete co-compact subgroups, so that they give rise
to solvmanifolds. As a consequence, we prove the existence of some non-Einstein
Lorentzian critical metrics for all quadratic curvature invariants on some compact
four-manifolds.

The paper is organized in the following way. In Sect. 2 we shall provide some basic
information on Lie groups GS and their left-invariant metrics (1.3). In Sect. 3 we shall
investigate the existence of lattices on all these solvable Lie groups. In Sect. 4 we
shall consider the Euler-Lagrange equations for the quadratic curvature functionals
and solve them for metrics of the form (1.3).

2 Preliminaries

Let GS = H � exp(RS) denote the semi-direct extension of the three-dimensional
Heisenberg group corresponding to an Hamiltonian matrix S ∈ sp(1, R). The
following result holds (see [7] for more details).

Proposition 1 [7] Given S ∈ sp(1, R) described as in (1.1), the semi-direct extension
GS = H � exp(RS) of the Heisenberg group determined by S can be realized as the
following four-dimensional subgroup of GL(4, R):

GS = {MS(x1, x2, x3, x4) ∈ GL(4, R) | x1, x2, x3, x4 ∈ R},
where

MS(xi ) =

⎛

⎜
⎜
⎝

1 x2 w(x4) − x3 u(x4) x2 z(x4) − x3v (x4) 2x1
0 u(x4) v(x4) x2
0 w(x4) z(x4) x3
0 0 0 1

⎞

⎟
⎟
⎠

and, depending on whether � = − det(S) = α2 + βγ is positive, null or negative,
we have:

u(x4) =

⎧
⎪⎨

⎪⎩

cosh(
√

�x4) + α√
�
sinh(

√
�x4) if � > 0,

1 + αx4 if � = 0,
cos(

√−�x4) + α√−�
sin(

√−�x4) if � < 0.
(2.1)
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v(x4) =

⎧
⎪⎨

⎪⎩

β√
�
sinh(

√
�x4) if � > 0,

βx4 if � = 0,
β√−�

sin(
√−�x4) if � < 0,

(2.2)

w(x4) =

⎧
⎪⎨

⎪⎩

γ√
�
sinh(

√
�x4) if � > 0,

γ x4 if � = 0,
γ√−�

sin(
√−�x4) if � < 0,

(2.3)

z(x4) =

⎧
⎪⎨

⎪⎩

cosh(
√

�x4) − α√
�
sinh(

√
�x4) if � > 0,

1 − αx4 if � = 0,
cos(

√−�x4) − α√−�
sin(

√−�x4) if � < 0,
(2.4)

Let ∂ j := ∂/∂x j denote the coordinate vector field corresponding to the
x j -coordinate. Then, vector fields

e1 = ∂1,

e2 = x2w(x4)−x3u(x4)
2 ∂1 + u(x4)∂2 + w(x4)∂3,

e3 = x2z(x4)−x3v(x4)
2 ∂1 + v(x4)∂2 + z(x4)∂3,

e4 = ∂4

(2.5)

determine a basis of left-invariant vector fields on GS , with (e j )I = (∂x j )I . Explicitly,
we find

[e2, e3] = e1, [e2, e4] = −αe2 − γ e3, [e3, e4] = −βe2 + αe3 (2.6)

and so, setting U = e1, X = e2, Y = e3, S = e4, we see that the Lie algebra spanned
by {e1, e2, e3, e4} coincides with g = h � (RS). Equations (1.3) describe the family
of left-invariant metrics ga, a2 �= 1 on g with respect to the basis {e1, e2, e3, e4}.

We observe that there is a natural distinction between the properties of the Lie
algebra g, and the ones of the left-invariant metric ga we are equipping g with. At
the Lie algebra level, g = h � (RS) is uniquely determined up to isomorphisms, and
different choices of S ∈ sp(1, R) can lead to isomorphic Lie algebras. On the other
hand, the specific S ∈ sp(1, R) plays a fundamental role, via the Koszul formula,
in determining the connection and curvature properties of (GS, ga). We shall take
advantage of this simple remark in the following sections.

3 Lattices onGS = H � exp(RS)

It is easy to check that for any prescribed S ∈ sp(1, R), the corresponding four-
dimensional Lie group GS = H �exp(RS) is solvable. C. Bock [3] classified solvable
Lie groups, up to dimension six, which admit some lattices. We shall now prove
that any Lie group GS appears in Bock’s classification and so, it gives rise to some
solvmanifolds.

We start from the three-dimensional Heisenberg Lie algebra h =span{X , Y , U },
with [X , Y ] = U . Following [7], we remark that for any real constants a, b, c, d such
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that ad −bc �= 0, if we consider the linearly independent vectors X̃ = aX +bY , Ỹ =
cX +dY and we set Ũ = (ad −bc)U , we have [X̃ , Ỹ ] = Ũ , so that the description of
the Heisenberg Lie algebra h is exactly the same with respect to both bases {X , Y , U }
and {X̃ , Ỹ , Ũ }.

Substitution of {X , Y } by {X̃ , Ỹ } corresponds to substitute a given S ∈ sp(1, R)

by a similar matrix S̃ ∈ sp(1, R), and Lie algebras h � (RS) and h � (RS̃) (whence,
the corresponding simply connected Lie groups GS and GS̃ ) are isomorphic.

As trace(S) = 0, the characteristic equation of S is completely determined by
� = − det(S). It is then natural to consider separately three cases, depending on the
sign of�. By standard linear algebra arguments one then concludes that for an arbitrary
S ∈ sp(1, R), the corresponding one-dimensional extension h � (RS) is isomorphic
to the Lie algebra g = span{e1 = Ũ , e2 = X̃ , e3 = Ỹ , e4 = S̃}, completely described
by [e2, e3] = e1 and

(A) [e4, e2] = μe2, [e4, e3] = −μe3, μ > 0 if 1 > 0;
(B) [e4, e2] = μe3, [e4, e3] = 0, μ ≥ 0 if 1 = 0;
(C) [e4, e2] = μe3, [e4, e3] = −μe2, μ > 0 if 1 < 0.

Remark 1 The Lie algebra described in Case (C) corresponds to the oscillator group.
Case (A) is known is literature as Boidol’s group or split oscillator group. Case (B) is
nilpotent.

In case (A) we consider the new basis {X1, X2, X3, X4} of g, defined by

X1 = e1, X2 = e2, X3 = e3, X4 = − 1

μ
e4

Then, with respect to {X1, X2, X3, X4}, the Lie algebra g is completely determined
by brackets

[X2, X3] = X1, [X2, X4] = X2, [X3, X4] = −X3,

which is exactly case g−1
4.8 in Table A.1 of [3].

With regard to case (B), if μ = 0 then we already have case g3.1 ⊕ g1 in Table A.1
of [3] (simply renaming ei = Xi , i = 1, .., 4). If μ > 0 we set

X1 = −e1, X2 = e3, X3 = 1

μ
e4, X4 = e2.

Then, with respect to {X1, X2, X3, X4}, the Lie algebra g is described by

[X2, X4] = X1, [X3, X4] = X2,

which is case g4.1 in Table A.1 of [3]. Finally, in case (C) we set

X1 = e1, X2 = e2, X3 = e3, X4 = 1

μ
e4
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and the Lie algebra g takes the form

[X2, X3] = X1, [X2, X4] = −X3, [X3, X4] = X2,

which is case g04.9 in Table A.1 of [3].
Thus, we have the following.

Proposition 2 For any S ∈ sp(1, R), the corresponding one-dimensional extension
g = h � (RS) of the Heisenberg Lie algebra h admits some lattices and so, it gives
rise to some solvmanifolds.

We now report some explicit examples of lattices and corresponding solvmanifolds
for the connected, simply connected Lie groups corresponding to the Lie algebras
described above with respect to bases of the form {X1, .., X4}.

Case (A). Following [3], elements

γ1 = (
1, 1,− 1+√

5
3+√

5

)
, γ2 = ( − 2(2+√

5)
3+√

5
, 1+√

5
3+√

5
,− 11+5

√
5

7+3
√
5

)
, γ3 = (

0, 0,
√
5
)

satisfy [γ1, γ2] = γ3 (with γ3 central) and generate a lattice � in the Heisenberg
group H . Consider the one-parameter group ρA(t)(x, y, z) = (

e−t t1x, ett1 y, z
)
, with

t1 = ln( 3+
√
5

2 ). Then, the connected, simply connected Lie group corresponding to
case (A) can be described as H �ρA R. Since ρA(1) preserves �, one obtains a lattice
� �ρA Z and the corresponding solvmanifold H �ρA R/� �ρA Z for case (A).

Case (B)-1:μ = 0As shown in [3], the corresponding connected, simply connected
Lie group can be described as R �ρB0

R
3, where

ρB0(t) =
(
1 0 0
0 1 t
0 0 1

)
.

A lattice is then given byZ�ρB0
Z
3, giving rise to solvmanifoldR�ρB0

R
3/Z�ρB0

Z
3

for case (B) with μ = 0.
Case (B)-2: μ > 0 In this case, again by [3], the connected, simply connected Lie

group can be described as R �ρB R
3, where ρB is the one-parameter group

ρB(t) =
(

1 t 1
2 t(t−1)

0 1 t
0 0 1

)

.

A lattice is given by Z �ρB Z
3, giving rise to solvmanifold R �ρB R

3/Z �ρB Z
3 for

case (B) with μ > 0.
Case (C). Following [13] and referring to the notations we used in Sect. 2, for the

oscillator group GS = H � exp(RS), where S = (
0 −1
1 0

)
, the set

�r =
{

Z
3 × 0 for r even

{(z, u, 0) : z ∈ Z
2, u ∈ 1

2 z1z2 + Z} for r odd
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defines a lattice for any r ∈ N, determining a corresponding solvmanifold H �

exp(RS)/�r for case (C).

Remark 2 The classification of lattices of a given solvable Lie group is a very inter-
esting topic, which has been investigated by several authors. With regard to the Lie
groups we considered above: complete classifications of lattices of the oscillator Lie
group are known (see [13], [25]) and have been recently applied to harmonic analysis
of solvmanifolds [14]; lattices for Lie group corresponding to case (A) have been
recently classified [15].

4 Critical metrics onGS for quadratic curvature functionals

The Euler-Lagrange equations of quadratic curvature functional are well known. They
have been calculated in the Riemannian case ( [2], [17]). As the argument does not
depend on the signature of the involved metrics, they extend to pseudo-Riemannian
settings.

The gradients of functionals S(g) = ∫
M τ 2dvolg and Ft (g) = ∫

M

(||�||2 + tτ 2
)

dvolg are respectively given by

(∇S)i j = 2∇2
i jτ − 2(�τ)gi j − 2τ�i j + 1

2
τ 2gi j ,

(∇Ft )i j = −��i j + (1 + 2t)∇2
i jτ − 1 + 4t

2
(�τ)gi j

−2tτ�i j − 2�kl Rik jl + 1

2

(
||�||2 + tτ 2

)
gi j ,

and g is critical for Ft if and only if (∇Ft ) = cg for some real constant c. Since the
trace of this equation yields

(n − 4)
(
||�||2 + tτ 2

)
− (n + 4(n − 1)t)�τ = 2nc,

g is critical for Ft if and only if

− ��i j +(1 + 2t)∇2
i jτ − 2t

n
(�τ)gi j − 2�kl Rik jl − 2tτ�i j

+2

n

(
||�||2 + tτ 2

)
gi j = 0 (4.1)

and

(n − 4)
(
||�||2 + tτ 2 − λ

)
= (n + 4(n − 1)t)�τ, (4.2)

with λ = Ft (g) (see [10]). It follows that Einstein metrics are critical for Ft for
all values of t . Moreover, by the above expression of ∇S, metrics which are either
Einstein or of vanishing scalar curvature are critical points for S.

123



Critical metrics for quadratic curvature... 877

It is worthwhile to observe that the above Euler-Lagrange equations simplify
remarkably in the case of a four-dimensional metric of constant scalar curvature,
which is the case for any four-dimensional homogeneous metric (in particular,
for left-invariant metrics on four-dimensional Lie groups). In fact, in such a case,
(∇S)i j = −2τ

(
�i j − 1

4τgi j
)
, equation (4.2) is automatically satisfied,while equation

(4.1) reduces to

�� + 2R
[
�
] + 2tτ� − 1

2

(
||�||2 + tτ 2

)
g = 0, (4.3)

where R
[
�
]
denotes the tensor defined by components �kl Rik jl . We shall now com-

pletely classify solutions to equation (4.3) among left-invariant metrics ga, a2 �= 1 on
GS = H � exp(RS).

The description of the Levi-civita connection and curvature of (GS = H �

exp(RS), ga)wasobtained in [7]. Since themetrics are left-invariant, it suffices towork
at the Lie algebra level. With respect to the basis {e1 = U , e2 = X , e3 = Y , e4 = S}
of left-invariant vector fields, the Levi-Civita connection ∇ is completely determined
by the following possibly non-vanishing covariant derivatives:

∇e1e2 = − a
2 e3, ∇e1e3 = a

2 e2,

∇e2e1 = − a
2 e3, ∇e2e2 = − α

a2−1
e1 + aα

a2−1
e4,

∇e2e3 = a2−1−β−γ

2(a2−1)
e1 + a(β+γ )

2(a2−1)
e4, ∇e2e4 = −αe2 − 1

2 (β + γ + 1)e3,

∇e3e1 = a
2 e2, ∇e3e2 = − a2−1+β+γ

2(a2−1)
e1 + a(β+γ )

2(a2−1)
e4,

∇e3e3 = α
a2−1

e1 − aα
a2−1

e4, ∇e3e4 = − 1
2 (β + γ − 1)e1 + αe3,

∇e4e2 = − 1
2 (β − γ + 1)e3, ∇e4e3 = 1

2 (β − γ + 1)e2.

(4.4)

The Riemann-Christoffel curvature tensor R of (GS , ga) is then completely deter-
mined by components Ri jkh = ga(R(ei , e j )ek, eh), where R(ei , e j )ek = ∇ei ∇e j ek −
∇e j ∇ei ek − ∇[ei ,e j ]ek for all indices i, j, k. Explicitly, we find

R1212 = R1313 = a2
4 , R1224 = − a

4 (β + γ + 1),

R1234 = R1324 = a
2α, R1334 = a

4 (β + γ − 1),

R2323 = a
(
4α2−3 a2+3+(β+γ )2

)

4(a2−1)
, R2424 = 1

4

(
(β + 1)2 − 3γ 2 − 2βγ + 2γ − 4α2

)
,

R2434 = −(β − γ + 1)α, R3434 = 1
4

(
(γ − 1)2 − 3β2 − 2βγ − 2β − 4α2

)
.

(4.5)

The Ricci tensor �(X , Y ) = tr(Z �→ R(Z , X)Y ) of ga is then described, with
respect to the basis {ei }, by the symmetric matrix
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� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2a2 0 0 1

2a

0 − a
(
a2−1−β2+γ 2

)

2(a2−1)
− aα(β−γ )

a2−1
0

0 − aα(β−γ )

a2−1
− a

(
a2−1+β2−γ 2

)

2(a2−1)
0

1
2a 0 0 − 1

2 (4α
2 + (β + γ )2 − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.6)

In particular, it is easily seen that (GS = H � exp(RS), ga) is Einstein if and only if
a = 0 and its Lie algebra, as described in (1.2), satisfies 4α2 = 1 − (β + γ )2 (in this
case, ga is Ricci-flat [7]).

Again from (4.6), it is easy to check that the scalar curvature of ga is given by

τ = −a
(
a2 + 4α2 + (β + γ )2 − 1

)

2(a2 − 1)
. (4.7)

Finally, the abovedescriptions of R,� and τ yield thatWeyl conformal curvature ten-
sor W is completely determined by the following possibly non-vanishing components
Wi jkh with respect to {ei }:

W1212 = a2

6(a2 − 1)

(
a2 − 2α2 − 2β2 + γ 2 − γβ − 1

)
,

W1213 = a2

2(a2 − 1)
α(β − γ ),

W1224 = −a

12(a2 − 1)

(
a2(3β + 3γ + 2) − 4(α2 + β2)

−2(1 − γ 2 + γβ) − 3(β + γ )
)

,

W1234 = W1324 = a

2(a2 − 1)
α(a2 + γ − β − 1),

W1313 = a2

6(a2 − 1)

(
a2 + β2 − 2(γ 2 + α2) − γβ − 1

)
,

W1334 = a

12(a2 − 1)

(
a2(3β + 3γ − 2) + 4(α2 + γ 2)

+2(1 − β2 + γβ) − 3(β + γ )
)

,

W1414 = a

6
(2(1 − a2) + 4α2 + (β + γ )2),

W2323 = a

6(a2 − 1)

(
2(1 − a2) + 4α2 + (β + γ )2

)
,

W2424 = 1

6(a2 − 1)

(
a4 + a2(−2α2 + β2 − 2γ 2 − γβ + 3β + 3γ − 1)

−3(β + γ )(β − γ + 1)) ,
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W2434 = −1

2(a2 − 1)
α(a2(β − γ + 2) + 2(γ − β − 1)),

W3434 = 1

6(a2 − 1)

(
a4 + a2(−2α2 + γ 2 − 2β2 − γβ − 3β − 3γ − 1)

+3(β2 − γ 2 + γ + β)
)

. (4.8)

In particular, as the vanishing of theWeyl tensor characterizes the (locally) conformally
flat metrics in dimension four, from the above components we easily conclude that
(GS = H � exp(RS), ga) is locally conformally flat if and only if a = 0 and its Lie
algebra, as described in (1.2), satisfies either β = γ − 1 or α = β + γ = 0 (which is
the well-known case of the bi-invariant metric of the oscillator group).

We are now ready to determine when metrics ga are critical for some curvature
invariants.

First, ga is a critical point for functional S if and only if either ga is Einstein, or its
scalar curvature vanishes. Since the scalar curvature also vanishes when ga is Einstein
(indeed, Ricci-flat), by (4.7) we directly obtain the following characterization.

Theorem 1 For any S ∈ sp(1, R) and real constant a with a2 �= 1, consider the
semi-direct extension GS = H � exp(RS) of the Heisenberg group, equipped with
the left-invariant metric ga described by (1.3). Then, the following properties are
equivalent:

(i) ga is a critical point for functional S(g) = ∫
M τ 2dvolg;

(ii) The scalar curvature of ga vanishes;
(iii) Either a = 0 or a = ±√

1 − 4α2 − (β + γ )2.

We now turn our attention to equation (4.3), which, by our previous analysis,
completely characterizes ga being a critical point for functional Ft .

We first compute the components ��i j with respect to {ei } by means of (4.4) and
(4.6). We find:

��11 = −a3,

��14 = − a2

2(a2−1)

(
2(a2 − 1) + (β − γ )(4α2 + (β + γ )2)

)
,

��22 = a2

2(a2−1)2
(
(a2 − 1)2 + 2(a2 − 1 − 4α2 − 3β2 − γ 2 − 4βγ )α2 + (2γ 2 − β2 + βγ )a2

−βγ − 2γ 2 − 3β2γ 2 + β2 + γ 4 − 2β4 − β3γ − 3βγ 3
)
,

��23 = a2(β−γ )α

2(a2−1)2
(
4α2 + 3(a2 − 1) + 3β2 − 2βγ + 3γ 2

)
,

��33 = a2

2(a2−1)2
(
(a2 − 1)2 + 2(a2 − 1 − 4α2 − β2 − 3γ 2 − 4βγ )α2 + (2β2 − γ 2 + βγ )a2

−3β2γ 2 − βγ + γ 2 − 2β2 − 2γ 4 + β4 − 3β3γ − βγ 3
)
,

��44 = − a
2(a2−1)

(
4(a2 − 1 − 4α2 − 2(β + γ )2 + 2(β − γ ))α2 + ((β + γ )2 + 2)a2

−2 − 4(β2 + γ 2 + βγ )βγ + 2(β + γ )2(β − γ ) − (β + γ )2 − (β2 + γ 2)2
)
.

(4.9)

Next, by means of (4.5) and (4.8), we compute the components of tensor R
[
�
]

with respect to {ei }. We explicitly get
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R
[
�
]
11 = − 1

4a3,

R
[
�
]
14 = − a2

4(a2−1)

(
a2 − (β − γ )(4α2 + (β + γ )2) − 1

)
,

R
[
�
]
22 = a2

4(a2−1)2

(
2a4 − (2α2 − β2 + 2γ 2 + γβ + 4)a2 + 8α4 + 2(5γ 2 − β2 + 1 + 4γβ)α2

−β4 − β3γ + (3γ 2 − 1)β2 + (5γ 2 + 1)βγ + 2(1 + γ 4 + γ 2)
)

,

R
[
�
]
23 = 3a2α(β−γ )

4(a2−1)2

(
−a2 + 4α2 + (β + γ )2 + 1

)
,

R
[
�
]
33 = a2

4(a2−1)2

(
2a4 + (−2α2 − γβ − 2β2 + γ 2 − 4)a2 + 8α4 + 2(5β2 − γ 2 + 4γβ + 1)α2

+2β4 + 5β3γ + (2 + 3γ 2)β2 − (γ 2 − 1)βγ + 2 − γ 4 − γ 2
)

,

R
[
�
]
44 = a

4(a2−1)

(
(4α2 + (β + γ )2 − 1)a2 + 4(2β2 + 2(1 − 2γ )β + 2γ 2 − 2γ − 1)α2

+2β4 + 2β3 − (1 − 2γ + 4γ 2)β2 − 2(γ + 1)βγ + 1 − γ 2 − 2γ 3 + 2γ 4
)

.

(4.10)

Finally, we use (1.3), (4.6), (4.7), (4.9) and (4.10) and we compute the components of
tensor

Ft = �� + 2R
[
�
] + 2tτ� − 1

2

(
||�||2 + tτ 2

)
g,

appearing in equation (4.3), with respect to {ei }. We find that the symmetric tensor Ft

is completely determined by the following possibly nonvanishing components:

Ft 11 = aFt 14 = − a3

8(a2−1)2

(
5(t + 3)a4 + 2((12α2 + 3(β + γ )2 − 5)t − 15)a2 + 16(t + 1)α4

+8((t + 2)(β2 + γ 2) + 2tβγ − 3t)α2 + (t + 3)β4 + 4(t + 1)γβ3,

+(2(3t + 1)γ 2 − 3t)β2 + (4((t + 1)γ 2 − 3t)βγ + (t + 3)γ 4 − 6tγ 2 + 5t + 15
)

,

Ft 22 = a2

8(a2−1)2

(
3(t + 3)a4 + 2((4α2 + 3γ 2 − 3 + 2γβ − β2)t − 9)a2 − 16(t + 1)α4

+8((t + 2)γ 2 − 3(t + 2)β2 − 2tγβ − t)α2 − 5(t + 3)β4 − 12(t + 1)γβ3

−2((1 + 3t)γ 2 − t)β2 + 4((t + 1)γ 2 − t)βγ + 3(t + 3)γ 4 − 6tγ 2 + 3t + 9
)

,

Ft 23 = a2α(β−γ )

(a2−1)2

(
(a2 + 4α2 + (β + γ )2 − 1)t + 8α2 + 3β2 + 3γ 2 + 2βγ

)
,

Ft 33 = a2

8(a2−1)2

(
3(t + 3)a4 + 2((4α2 + 3β2 − γ 2 + 2γβ − 3)t − 9)a2 − 16(t + 1)α4

+8((t + 2)β2 − 2tγβ − 3(t + 2)γ 2 − t)α2 + 3(t + 3)β4 + 4(t + 1)γβ3

−2((3t + 1)γ 2 + 3t)β2 − 4(3(t + 1)γ 3 + tγ )β − 5(t + 3)γ 4 + 2tγ 2 + 3t + 9
)

,

Ft 44 = − a
8(a2−1)2

(
(t + 3)a6 + 2(t − 2tγβ − tγ 2 − tβ2 + 3 − 4tα2)a4

+
(
−48(t + 1)α4 − 8(3(t + 2)(β2 + γ 2) + 6tγβ − 5t)α2 − 3(t + 3)β4 − 12(t + 1)β3γ

+2(5t − 3(1 + 3t)γ 2)β2 + 4(5t − 3(t + 1)γ 2)βγ − 3(t + 3)γ 4 + 10tγ 2 − 7t − 21
)

a2

+64(t + 1)α4 + 32((t + 2)(β2 + γ 2) + 2tγβ − t)α2 + 4(t + 3)β4 + 16(t + 1)β3γ

+8((3t + 1)γ 2 − t)β2 + 16((t + 1)γ 3 − tγ )β + 4(t + 3)γ 4 − 8tγ 2 + 12 + 4t
)

.

(4.11)

Thus, for an arbitrary metric ga , equation (4.3) holds for some t if and only if all the
corresponding components listed in (4.11) vanish. In particular, it easily follows from
the above expression of component Ft 23 that we must consider the following possible
cases:
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(i) a = 0;
(ii) β = γ ;
(iii) α = 0;

(iv) t = − 8α2+3β2+3γ 2+2βγ

a2+4α2+(β+γ )2−1
.

Case (i): a = 0 It follows at once from (4.11) that in this case Ft = 0 for all values
of t . Therefore, g0 is critical for all quadratic curvature operators for any value of
α, β, γ , that is, on all semi-direct extensions of the Heisenberg group. On the other
hand, unless the additional condition 4α2 = 1 − (β + γ )2 holds, this metric is not
Einstein.

In all the remaining cases we shall always assume that a �= 0.
Case (ii): β = γ We substitute condition γ = β in (4.11). In particular, taking

into account a �= 0, requiring that Ft11 = 0 and Ft22 = 0 we obtain the following
equations, written down as polynomials in t :

(
5(a2 − 1)2 + 24a2(α2 + β2) − 24(α2 + β2) + 16(α2 + β2)2

)
t

+15(a2 − 1)2 + 16(α2 + β2)2 = 0
(4.12)

and

(
3(a2 − 1)2 + 8a2(α2 + β2) − 8(α2 + β2) − 16(α2 + β2)2

)
t

+9(a2 − 1)2 − 16(α2 + β2)2 = 0.
(4.13)

We sum up equations (4.12) and (4.13) and we get

8(a2 − 1)
(
(a2 + 4(α2 + β2) − 1)t + 3(a2 − 1)

)
= 0.

Observe that as a2 �= 1, the above equation necessarily yields that a2+4(α2+β2)−1 �=0
and so,

t = − 3(a2 − 1)

a2 + 4(α2 + β2) − 1
. (4.14)

We now substitute t from (4.14) into (4.11). A straightforward calculation then shows
that now Fti j = 0 for all indices i, j if and only if

(α2 + β2)
(
3a2 − 4(α2 + β2) − 3

)
= 0. (4.15)

We may observe that the case α = β(= γ ) = 0 will be included as a special case of
Subcase (iii)-A below. For any prescribed value of α and β (not both vanishing), (4.15)
admits two solutions, namely, a = ± 1

3

√
12(α2 + β2) + 9. In particular, this implies

that a2 > 1 and so, ga is Riemannian. If a and α (respectively, β) are prescribed,
then from (4.15) we get values of β (respectively, α) for which (4.15) holds when
3(a2 − 1) − 4α2 ≥ 0 (respectively, 3(a2 − 1) − 4β2 ≥ 0). Finally, from (4.14) and
(4.15) we conclude that t = − 3

4 .
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Case (iii): α = 0 Taking into account a �= 0, by Ft22 and Ft33 in (4.11) we now
respectively get

(
3a4 + 2(3γ 2 − β2 − 3 + 2βγ )a2 + 3 − 6γ 2 + 2β2 + 3γ 4 − 5β4 − 6β2γ 2 − 4βγ − 12β3γ + 4βγ 3

)
t

+9a4 − 18a2 − 12β3γ + 4βγ 3 + 9γ 4 − 15β4 − 2β2γ 2 + 9 = 0.

and

(
3a4 + 2(3β2 − γ 2 − 3 + 2βγ )a2 + 3 − 6β2 + 2γ 2 + 3β4 − 5γ 4 − 6β2γ 2 − 4βγ − 12βγ 3 + 4β3γ

)
t

+9a4 − 18a2 − 12βγ 3 + 4β3γ + 9β4 − 15γ 4 − 2β2γ 2 + 9 = 0.

We substract the second of the above equations by the first one and we find

8(β − γ )(β + γ )
(
(1 − (β + γ )2 − a2)t − 2βγ − 3γ 2 − 3β2

)
= 0. (4.16)

We already treated the case β = γ in general (without the assumption that α = 0).
So, by (4.16) we are now left with two possible subcases: either γ = −β or t =
3γ 2+3β2+2βγ

(1−(β+γ )2−a2)
.

Subcase (iii)-A: α = β + γ = 0 In this case, the components of Ft reduce to:

Ft 11 = aFt 14 = − 5
8a3(t + 3), Ft 22 = Ft 33 = 3

8a2(t + 3), Ft 44 = − 1
8a(a2 + 4)(t + 3),

whence we conclude that ga (for all a with a2 �= 1) is critical for functional F−3.

Subcase (iii)-B: α = t − 3γ 2+3β2+2βγ

(1−(β+γ )2−a2)
= 0 We substitute the value of t in the

components (4.11) of tensor Ft and write them as polynomials in the variable a. In
particular, taking into account a �= 0, we find that Ft11 = 0 and Ft22 = 0 if and only
if

15a4 − 5(3β2 + 3γ 2 + 2βγ + 6)a2 + 15 − 4β3γ − 4βγ 3 − 8β2γ 2 + 10βγ + 15β2 + 15γ 2 = 0

(4.17)

and

9a4 − 3(3β2 + 3γ 2 + 2βγ + 6)a2 + 9 + 4β3γ + 4βγ 3 + 8β2γ 2 + 6βγ + 9γ 2 + 9β2 = 0,

(4.18)

respectively. We multiply (4.17) by 9 and (4.18) by 15 and substract from one another.
We get

0 = −96β3γ − 96βγ 3 − 192β2γ 2 = −96βγ (β + γ )2

so that either β = 0 or γ = 0, as we already treated the previous subcase β + γ = 0.
If β = 0 then the components of Ft reduce to:
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Ft 11 = aFt 14 = − 15a3

8(a2−1)
(a2 − 1 − γ 2),

Ft 22 = Ft 33 = 9a2

8(a2−1)
(a2 − 1 − γ 2),

Ft 44 = − 3a
8(a2−1)

(a2 + 4)(a2 − 1 − γ 2).

Therefore, ga is critical if and only if a2 − 1 − γ 2 = 0. Observe that for β =
a2 − 1 − γ 2 = 0, we get t = − 3

2 . We may also remark that a2 − 1 − γ 2 = 0

yields a = ±√
1 + γ 2, for any real value of γ . On the other hand, it also yields

γ = ±√
a2 − 1, which impies that a2 > 1, that is, ga is Riemannian.

In the case where γ = 0, the argument and calculations are very similar to the
above ones for case β = 0 and we shall omit them. In this case we conclude that ga

is critical for Ft if and only if t = − 3
2 and a2 − 1 − β2 = 0.

Remark 3 We observe that equation (4.16) is also satisfied, for all values of t , if 1 −
(β + γ )2 − a2 = −2βγ − 3γ 2 − 3β2 = 0. However, starting from (4.11), a standard
calculation yields that in this case necessarily a = 0, which we already considered in
the above Case (i). So, this concludes subcase (iii)-B.

Case (iv): t = − 8α2+3β2+3γ 2+2βγ

a2+4α2+(β+γ )2−1
We preliminarily observe that by (4.11), the component Ft23 also vanishes, for

all values of t , when 8α2 + 3β2 + 3γ 2 + 2βγ = a2 + 4α2 + (β + γ )2 − 1 = 0.
However, under these conditions, if we require that Fti j = 0 for all indices i, j , a
long but straightforward calculation proves that necessarily a = 0. As this possibility
has already been investigated in the previous Case (i), we are left to consider the case

when t = − 8α2+3β2+3γ 2+2βγ

a2+4α2+(β+γ )2−1
.

We start substituting the value of t in equations (4.11) and writing them as poly-
nomials in the variable a. In particular, conditions Ft11 = 0 and Ft22 = 0 now
read

15a4 − 5(8α2 + 3β2 + 3γ 2 + 2βγ + 6)a2 − 16α4 + 4(10 − 6βγ − β2 − γ 2)α2

−4(β + γ )2βγ + 5(3β2 + 3γ 2 + 2βγ + 3) = 0

(4.19)

and

9a4 − 3(8α2 + 6 + 3γ 2 + 3β2 + 2βγ )a2 + 16α4 + 4(6 + 6βγ + β2 + γ 2)α2

+4(β + γ )2βγ + 3(3β2 + 3γ 2 + 2βγ + 3) = 0,

(4.20)

respectively. We multiply (4.19) by 9, (4.20) by 15 and substract from one another.
We get

−96(α2 + βγ )((β + γ )2 + 4α2) = 0.

We already discussed the solution α = β + γ = 0 in the subcase (iii)-A in full
generality. So, we are now left to consider solutions α = ±√−βγ , when βγ ≤ 0.
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We substitute this expression of α into (4.11) and we find that Fti j = 0 for all indices
i, j if ad only if

a2 − (β − γ )2 − 1 = 0,

whence, a = ±√
(β − γ )2 + 1, for all values of β �= γ . Substituting the expressions

of a and α in the above expression of t , we conclude that in this case t = − 3
2 . We

remark that this case includes subcase (iii)-B, which is the special case obtained when
βγ = 0.

The above calculations and results are summarized in the following main result.

Theorem 2 For any S ∈ sp(1, R) and real constant a with a2 �= 1, consider the semi-
direct extension GS = H � exp(RS) of the Heisenberg group, equipped with the
left-invariant metric ga described by (1.3). Then, ga is a critical point for functional
Ft (g) = ∫

M

(||�||2 + tτ 2
)

dvolg if and only if one of the following cases occurs:

(1) a = 0. In this case, ga is a critical point for Ft for all t ∈ R.
(2) β = γ and a = ± 1

3

√
12(α2 + β2) + 9, with (α, β) �= (0, 0). Then, ga

(necessarily Riemannian) is critical for F− 3
4
.

(3) α = β + γ = 0. In this case, all metrics ga are critical for F−3.
(4) α = ±√−βγ and a = ±√

(β − γ )2 + 1 (with βγ ≤ 0 and β �= γ ). Then ga

(necessarily Riemannian) is critical for F− 3
2
.

The complete classification of metrics ga which are critical for some quadratic
curvature invariants is obtained in Theorems 1 and 2. We reported such classification
in Table 1.

We may observe that case (3) in the above Theorem 2 corresponds to the oscillator
group. So, all left-invariant metrics ga (both Riemannian and Lorentzian) on the
oscillator group are critical for the quadratic curvature functional F−3.

Remark 4 Metric g0 carries several special properties. In fact, for any S ∈ sp(1, R),
among left-invariant metrics ga, a2 �= 1 on the corresponding semi-direct extension
GS = H � exp(RS) of the Heisenberg group, the metric g0 is the only one:

• Admitting a null parallel vector field (namely, e1) and so, being a Walker metric
[7]. In particular, g0 is also a pp-wave, as it follows from [23] because g0 admits
the null parallel vector field e1 and, by (4.5), is transversally flat (R(x, y) = 0
whenever x, y are orthogonal to e1);

Table 1 Critical metrics ga for quadratic curvature functionals

Value of a Conditions on (α, β, γ ) Critical for S Critical for Ft

0 None � �
± 1

3

√
12(α2 + β2) + 9 β = γ and (α, β) �= (0, 0) ✗ t = − 3

4

Arbitrary α = β + γ = 0 Only if a = 0 t = −3

a = ±
√

(β − γ )2 + 1 α = ±√−βγ , βγ ≤ 0, β �= γ ✗ t = − 3
2

a = ±
√
1 − 4α2 − (β + γ )2 4α2 + (β + γ )2 < 1 � ✗
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• Being Ricci-parallel [7];
• Satisfying the Ricci soliton equation LX g + � = λg for all real values of λ, and
defining a Yamabe soliton [6], [7];

• Conformally Einstein [9].

Investigation of critical metrics for quadratic curvature functionals emphasizes once
more the special role of g0. In fact, Proposition 2 and Theorems 1 and 2 yield the
following consequence.

Corollary 1 For any S ∈ sp(1, R), the left-invariant Lorentzian metric g0 on GS =
H � exp(RS) is critical for all quadratic curvature functionals. Unless 4α2 + (β +
γ )2 = 1, the Lorentzian manifold (GS , g0) is not Einstein.

The examples we studied suggest the possible existence of some interplays between
properties listed above and criticalmetrics for quadratic curvature functionals. It would
be very interesting to investigate further these possible interplays.
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