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Abstract
Given two metric spaces M and N we study, motivated by a question of N. Weaver,
conditions under which a composition operator Cφ : Lip0(M) −→ Lip0(N ) is an
isometry depending on the properties of φ. We obtain a complete characterisation of
those operators Cφ in terms of a property of the function φ in the case that BF(M)

is the closed convex hull of its preserved extreme points. Also, we obtain necessary
condition for Cφ being an isometry in the case that M is geodesic.

Keywords Composition operators · Lipschitz functions spaces · Lipschitz-free
spaces · denting points
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1 Introduction

In this paper we will analyse the question of when a composition operator between
spaces of Lipschitz functions is an isometry. Let us start with necessary definitions
(for the non-defined notions in the introduction, see the subsection Notation below).
A pointed metric space is just a metric space M in which we distinguish an element,
denoted by 0. Given a pointed metric space M , we write Lip0(M) to denote the
Banach space of all Lipschitz maps f : M −→ R which vanish at 0, endowed with
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896 A. R. Zoca

the Lipschitz norm defined by

‖ f ‖ := sup

{
f (x) − f (y)

d(x, y)
: x, y ∈ M, x �= y

}
.

Given two pointed metric spaces M and N and a Lipschitz map φ : N −→ M such
that φ(0) = 0, then φ induces a composition operator Cφ : Lip0(M) −→ Lip0(N )

given by the equation

Cφ( f ) = f ◦ φ.

The study of this kind of operator is very present in [17] in an effort to give a charac-
terisation of surjective linear isometries between spaces of Lispchitz functions. The
study of the Lipschitz-free spaces and their Banach space structure resulted into a very
useful tool to treat this problem. Let us formally introduce these spaces.

LetM be a pointedmetric space.We denote by δ the canonical isometric embedding
ofM into Lip0(M)∗ which is given by 〈 f , δ(x)〉 = f (x) for x ∈ M and f ∈ Lip0(M).
The closed linear span of δ(M) in the dual space Lip0(M)∗ is denoted by F(M) and
called the Lipschitz-free space over M. See the papers [11] and [12], and the book [17]
(where it receives the name of Arens-Eells space) for background on these spaces. It
is well known that F(M) is an isometric predual of the space Lip0(M,R) [11, pp.
91]. Throughout the text, to denote the evaluation of a function f ∈ Lip0(M) at an
element μ ∈ F(M) we write 〈 f , μ〉. We will write δx := δ(x) and call molecule in
F(M) any element of the form

mx,y := δx − δy

d(x, y)

for x, y ∈ M with x �= y.
Let us recall that when M and N are pointed metric spaces, it is well known that

every Lipschitz function f : N −→ M which preserves the origin can be isometrically
identified with the continuous linear operator f̂ : F(N ) −→ F(M) characterised by
f̂ (δp) = δ f (p) for every p ∈ M .
Under this point of view, if φ : N −→ M is a Lipschitz mapping, then Cφ is

nothing but the adjoint operator of φ̂. That is the reason why the space F(M) in
general and the extremal structure of its unit ball in particular are extremely useful
when dealing with operators between spaces of Lipschitz functions. For instance,
the surjective linear isometries between spaces of Lipschitz functions over uniformly
concave metric spaces are characterised in [17, Theorem 3.56] by making use of the
preserved extreme points of BF(M).

In connection with the composition operators, N. Weaver wondered in [17, pp. 53]
about a characterisation of thoseCφ which are isometries in terms of a condition on the
defining Lipschitz function φ. Notice that, trivially, such φ must be of norm one and
with dense range. Very recently, A. Jiménez-Vargas obtained in [14] a characterisation
in the following sense: if φ : N −→ M is a norm-one Lipschitz function and M has
the so-called peaking property, then Cφ : Lip0(M) −→ Lip0(N ) is an isometry if,
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and only if, for every pair of points x, y ∈ M, x �= y we can find sequences xn ⊆ N
and yn ⊆ N such that φ(xn) → x , φ(yn) → y and

d(φ(xn), φ(yn))

d(xn, yn)
→ 1.

To see how the extremal structure ofF(M) appears in the abovementioned theorem, let
us explain that the peaking property above was originally defined bymeans of peaking
functions but, thanks to [10, Theorem 5.4], it means exactly that mx,y is a strongly
exposed point of BF(M) for every (x, y) ∈ M2 \ � := {(a, b) ∈ M × M : a �= b}.

With the previous information in mind, the main aim of Section 2 is to generalise
the above mentioned result [14, Theorem 2.4] and to prove that, if BF(M) is the closed
convex hull of its preserved extreme points (see formal definition below), then given a
norm-one Lipschitz function φ : N −→ M we have thatCφ is an isometry if, and only
if, for every pair of different points x, y ∈ M such that mx,y is a preserved extreme
point, we can find a pair of sequences xn and yn in N so that φ(xn) → x, φ(yn) → y
and

d(φ(xn), φ(yn))

d(xn, yn)
→ 1.

The key ingredient for obtaining this result is that, in Lipschitz-free Banach spaces,
a molecule mx,y is preserved extreme if, and only if, it is denting (see the subsection
Notation for details and references). Thus the equivalence established in [14, Theorem
2.4] actually works for a rather larger class of metric spaces M (see Example 2.4).

While in Sect. 2 we are studying composition operators Cφ : Lip0(M) −→
Lip0(N ) for metric spaces M such that F(M) has a rich extremal structure, in Sect. 3
we aim to study the extremely oposite case, that is, the case whenF(M) does not con-
tain any preserved extreme point. According to [3, Theorem 1.5], given a complete
metric space M , the unit ball of F(M) does not have any preserved extreme point
if, and only if, M is length (see formal definition below). Because of this reason, we
will first study the composition operators Cφ : Lip0([0, 1]) −→ Lip0(N ). Though
we do not obtain a complete characterisation in this case, we will obtain necessary
and sufficient conditions in Propositions 3.1 and 3.2 which are closely related to an
abundance of points in N where, roughly speaking, φ has derivative exactly one. To
be more precise, we get for instance in Proposition 3.2, that Cφ is an isometry if φ(N )

has Lebesgue measure one and, for every t ∈ φ(N ), there exists x ∈ N such that
φ(x) = t and that

lim sup
y→x

d(φ(y), φ(x))

d(y, x)
= 1.

Finally, in Theorem 3.7 we obtain necessary condition for a composition operator
Cφ : Lip0(M) −→ Lip0(M) to be an isometry when M is geodesic.

Notation:Wewill only consider real Banach spaces. Given a Banach space X we will
denote by BX and SX the closed unit ball and the closed unit sphere. Also, X∗ stands
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for the topological dual of X . A slice of the unit ball BX is a non-empty intersection
of an open half-space with BX ; every slice can be written in the form

S(BX , f , β) := {x ∈ BX : f (x) > 1 − β},

where f ∈ SX∗ , β > 0.
The notations ext (BX ), pre-ext (BX ), str-exp (BX ) stand for the set of extreme

points, preserved extreme points (i.e. extreme points which remain extreme in the
bidual ball), and strongly exposed points of BX , respectively. A point x ∈ BX is said
to be a denting point of BX if there exist slices of BX containing x and of arbitrarily
small diameter. We will denote by dent (BX ) the set of denting points of BX . We
always have that

str-exp (BX ) ⊂ dent (BX ) ⊂ pre-ext (BX ) ⊂ ext (BX ) .

The study of the extremal structure in the paricular case of being X a Lipschitz-free
space has experimented a recent and intense research (see e.g. [1,2,9,10]). Among all
this research, particularly useful in themain result of Sect. 2 is [9, Theorem 2.4], which
establishes that every preserved extreme point is a denting point in a Lipschitz-free
space.

Given a metric space M , we say that M is length if, for every pair of distinct points
x, y ∈ M , the distance d(x, y) is equal to the infimum of the length of the rectifiable
curves joining them. If such infimum is actually a minimum for every pair of points we
will say that M is geodesic. See [4] for background on length spaces. In the context of
Lipschitz-free spaces, these notions have been used in connection with the Daugavet
property in the papers [3,10,13].

Let M be a metric space and f : M −→ R be a Lipschitz function. According to
[7], the pointwise Lipschitz constant of f at a non-isolated point x ∈ M is defined as

Lip f (x) := lim sup
y→x

| f (y) − f (x)|
d(y, x)

,

and it is defined Lip f (x) = 0 if x is an isolated point. See [7] and references therein
for background on pointwise Lipschitz constants.

Let us end the section with some notation about generalised derivatives which will
be used in Example 3.3. Let X be a Banach space and f : X −→ R a Lipschitz
function. According to [6], the generalised derivative of f at a point x ∈ X in the
direction v ∈ X is defined by

f ◦(x, v) := lim sup
y→x,t↘0

f (y + tv) − f (y)

t
.

Such a limit always exists from the Lipschitz condition. Moreover, it is a sublinear and
positively homogeneous function in the variable v [6, Proposition 2.1.1]. In addition,
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the generalized gradient of f at x is defined as follows

∂ f (x) := {x∗ ∈ X∗ : f ◦(x, v) ≥ x∗(v) ∀v ∈ X}.

Given v ∈ X it follows by [6, Proposition 2.1.2] that

f ◦(x, v) = max
x∗∈∂ f (x)

x∗(v) ∀x ∈ X .

According to [6, Definition 2.3.4], f is said to be regular at x if:

1. For every v ∈ X , the directional derivative f ′(x, v) exists, and,
2. f ′(x, v) = f ◦(x, v) holds for every v ∈ X .

We refer to [6, Proposition 2.6.6] for examples.

2 Isometric composition operators and denting points

Let M and N be two (complete) pointed metric spaces and φ : N −→ M be a norm-
one Lipschitz function such that φ(0) = 0. Let Cφ : Lip0(M) −→ Lip0(N ) given by
Cφ( f ) = f ◦φ. We wonder under which conditions Cφ is an isometry. To begin with,
let us start with the following result, which is a slight modification of [14, Theorem
2.1] which will be used in the sequel.

Proposition 2.1 Let A ⊆ M2 \ � such that:

(1) The set {mx,y : (x, y) ∈ A} is norming for Lip0(M).
(2) For every (x, y) ∈ A there exists a pair of sequences {xn}, {yn} in N such that

φ(xn) → x, φ(yn) → y and

d(φ(xn), φ(yn))

d(xn, yn)
→ 1.

Then Cφ is an isometry.

Proof Let f ∈ SLip0(M). Clearly

‖Cφ( f )‖ = ‖ f ◦ φ‖ ≤ ‖ f ‖‖φ‖ = ‖ f ‖.

In order to prove the reverse inequality, pick ε > 0 and choose (x, y) ∈ A such that
〈 f ,mx,y〉 > 1 − ε = ‖ f ‖ − ε. By the assumptions we can find a pair of sequences
{xn}, {yn} in N such that φ(xn) → x, φ(yn) → y and

d(φ(xn), φ(yn))

d(xn, yn)
→ 1.
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Now

‖ f ◦ φ‖ ≥ f (φ(xn)) − f (φ(yn))

d(xn, yn)

= f (φ(xn)) − f (φ(yn))

d(φ(xn), φ(yn))

d(φ(xn), φ(yn)

d(xn, yn)

→ f (x) − f (y)

d(x, y)
> ‖ f ‖ − ε.

Since ε > 0 was arbitrary we conclude that ‖ f ◦ φ‖ ≥ ‖ f ‖, and we are done. ��

Now we show that the above sufficient condition is in fact necessary in general for
couples of points (x, y) ∈ M2 \ � such that mx,y is preserved extreme point.

Proposition 2.2 Let us assume that Cφ is an isometry and let x, y ∈ M2 \ � so that
mx,y ∈ pre-ext

(
BF(M)

)
. Then there exists a pair of sequences {xn}, {yn} ⊆ N such

that φ(xn) → x, φ(yn) → y and

d(φ(xn), φ(yn))

d(xn, yn)
→ 1.

Proof Pick (x, y) ∈ M2 \ � such that mx,y is a preserved extreme point, then mx,y is
a denting point [9, Theorem 2.4]. Hence, for every n ∈ N, we can find fn ∈ SLip0(M)

and βn > 0 such that 〈 fn,mx,y〉 > 1 − βn and that

diam (S(BF(M), fn, βn)) <
1

n
.

Now, given n ∈ N, it follows that ‖Cφ( fn)‖ = ‖ fn‖ = 1. Consequently, we can find
a pair of sequences xnk , ynk in N such that

fn(φ(xnk )) − fn(φ(ynk ))

d(xnk , ynk )

k→∞−→ 1.

Since, for every k ∈ N, we have

fn(φ(xnk )) − fn(φ(ynk ))

d(xnk , ynk )
= fn(φ(xnk )) − fn(φ(ynk ))

d(φ(xnk ), φ(ynk ))

d(φ(xnk ), φ(ynk ))

d(xnk , ynk )
,

we get that both of the previous factors converge to 1 as k → ∞. Hence, for every
n ∈ N, we can find σ(n) ∈ N such that

d(φ(xnσ(n)), φ(ynσ(n)))

d(xnσ(n), y
n
σ(n))

> 1 − 1

n
,
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and

fn(φ(xnσ(n)) − fn(φ(ynσ(n)))

d(φ(xnσ(n)), φ(ynσ(n)))
> 1 − βn .

Now the second condition implies that mφ(xn
σ(n)

),φ(yn
σ(n)

) ∈ S(BF(M), fn, βn), which

has diameter smaller than 1
n . Consequently ‖mφ(xn

σ(n)
),φ(yn

σ(n)
) − mx,y‖ < 1

n . Now [8,
Lemma 4.1.3] implies that

1

n
> ‖mφ(xn

σ(n)
),φ(yn

σ(n)
) − mx,y‖ ≥ max{d(φ(xnσ(n)), x), d(φ(ynσ(n)), y)}

d(x, y)

holds for every n ∈ N. So, taking xn := xnσ(n) and yn := ynσ(n) we get that φ(xn) →
x, φ(yn) → y and d(φ(xn),φ(yn))

d(xn ,yn)
→ 1, and we are done. ��

Thus, we can obtain the announced generalisation of [14, Theorem 2.4].

Theorem 2.3 Assume that BF(M) = co(pre-ext
(
BF(M)

)
). Then Cφ is an isometry if,

and only if, for every (x, y) ∈ M2 \ � such that mx,y ∈ pre-ext
(
BF(M)

)
, there exists

a pair of sequences {xn}, {yn} ⊆ N such that φ(xn) → x, φ(yn) → y and

d(φ(xn), φ(yn))

d(xn, yn)
→ 1.

Proof The “if” part follows taking A := {(x, y) ∈ M2\� : mx,y ∈ pre-ext
(
BF(M)

)},
which is norming by a separation argument. The converse is simply Proposition 2.2.

��
Let us see examples below where the previous theorem applies.

Example 2.4 BF(M) = co(pre-ext
(
BF(M)

)
) in the following cases:

(1) IfF(M)has theRNP. In particular,whenM is compact andHölder [17, Proposition
4.14] or when M is uniformy discrete [16].

(2) If M is the unit circle in R2 with the euclidean distance of R2 [5, Theorem 2.1].
(3) If M is boundedly compact (i.e. if every closed ball in M is compact) and

SNA(M,R), the set of those Lipchitz functions which strongly attain its norm
(see [11,15] for background), is dense in Lip0(M,R) [5, Corollary 3.21].

3 Isometric composition operators into geodesic spaces

Let us start with a study of the composition operators Cφ which are isometries for
a Lipschitz mapping φ : N −→ [0, 1]. A neccesary condition is established in the
following proposition. Notice that, along this section, unless specifically stated, we no
longer require φ(0) = 0.
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902 A. R. Zoca

Proposition 3.1 Let N be a metric space and φ : N −→ [0, 1] be a 1-Lipschitz
function. If Cφ : Lipφ(0)([0, 1]) −→ Lip0(N ) is an isometry, then for every x ∈ [0, 1]
we can find a pair of sequences xn, yn in N such that

(1) φ(xn) → x and φ(yn) → x.
(2) |φ(xn)−φ(yn)|

d(xn ,yn)
→ 1.

Notice that, in particular, d(xn, yn) → 0.

Proof Pick x ∈ [0, 1]. Consider g : [0, 1] −→ [0, 1] defined by the equation

g(t) :=
∫ t

φ(0)
1 − |x − s| ds,

which is a norm-one Lipschitz function. Notice that, by the definition of g, if un, vn ∈
[0, 1] satisfy that 〈g,mun ,vn 〉 → 1 then un → x and vn → x . Since we are assuming
that Cφ is an isometry we can find xn, yn ∈ N such that 〈Cφ(g),mxn ,yn 〉 → 1. Now

g(φ(xn)) − g(φ(yn))

d(xn, yn)
= g(φ(xn)) − g(φ(yn))

|φ(xn) − φ(yn)|
|φ(xn) − φ(yn)|

d(xn, yn)
.

This implies that

g(φ(xn)) − g(φ(yn))

|φ(xn) − φ(yn)| → 1 (3.1)

and

|φ(xn) − φ(yn)|
d(xn, yn)

→ 1. (3.2)

Now the second condition of the thesis of the proposition is simply (3.2), whereas the
first one follows from (3.1) and the property of the function g exhibited above. ��

If we consider a slight strenghthening on the second condition in Proposition 3.1
we arrive at a sufficient condition for a composition operator to be an isometry. Notice
that Proposition 2.28 (ii) in [17] presents another sufficient condition for Cφ to be an
isometry.

Theorem 3.2 Let N be a metric space and let φ : N −→ [0, 1] be a 1-Lipschitz
function so that φ(N ) has length 1. Assume that for every t ∈ φ(N ) there exists
x ∈ N such that φ(x) = t and that

Lipφ(x) = 1.

Then Cφ : Lipφ(0)([0, 1]) −→ Lip0(N ) is an isometry.
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Proof Pick a norm-one Lipschitz function f ∈ Lipφ(0)([0, 1]). Let us see that ‖ f ◦
φ‖ = 1. To this end pick ε > 0 and choose x �= y ∈ [0, 1] such that

f (x) − f (y)

|x − y| = 1

|x − y|
∫ x

y
f ′(t) dt > 1 − ε.

By this inequality and since λ(φ(N )) = 1 we can find t ∈ φ(N ) such that f ′(t) >

1−ε. By assumptions we can find x ∈ N such that φ(x) = t and a sequence {xn} ⊆ N
such that xn �= x holds for all n ∈ N, xn → x and

φ(xn) − φ(x)

d(xn, x)
→ 1.

Since xn → x and they are different we get, by the condition of the differentiability
of f at t = φ(x), that

f (φ(xn)) − f (φ(x))

|φ(xn) − φ(x)| → f ′(t) > 1 − ε.

Hence

‖Cφ( f )‖ ≥ Cφ( f )(xn) − Cφ( f )(x)

d(xn, x)

≥ f (φ(xn)) − f (φ(x))

φ(xn) − φ(x)

φ(xn) − φ(x)

d(xn, x)
→ f ′(t) > 1 − ε.

Since ε > 0 was arbitrary we conclude the desired result. ��
We do not know whether the converse of Proposition 3.1 holds. Let us exhibit,

however, a class of metric spaces N and of Lipschitz functions φ where Proposition
3.1 reverses.

Example 3.3 Let X be a finite-dimensional Banach space, let C be a bounded, open
and convex subset of X such that every point of ∂C has a unique supporting tangent
hyperplane. Let N := C . Consider f : X −→ R be a norm-one Lipschitz function
which is regular at every point of X (in particular, this happen if f is convex) such
that f (N ) = [0, 1]. Let φ := f|N : N −→ [0, 1]. Then Cφ is an isometry if, and only
if, for every t ∈ [0, 1] we can find a pair of sequences xn, yn in N such that

(1) φ(xn) → t and φ(yn) → t .
(2) |φ(xn)−φ(yn)|

d(xn ,yn)
→ 1.

Proof The neccesity is just Proposition 3.1. To prove the sufficiency, let us prove that φ
satisfies the assumptions of Proposition 3.2. Pick any t ∈ [0, 1]. Then, by assumptions,
we can find a pair of sequences xn, yn in N such that

(1) φ(xn) → t and φ(yn) → t .
(2) |φ(xn)−φ(yn)|

d(xn ,yn)
→ 1.
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904 A. R. Zoca

Let us assume with no loss of generality, up to taking a further subsequence and
swapping xn and yn if necessary, that φ(xn)−φ(yn)

d(xn ,yn)
→ 1. By [6, Theorem 2.3.7] we

have that, for every n ∈ N, we can find un ∈]xn, yn[⊆ N and ϕn ∈ ∂ f (un) such that

f (xn) − f (yn) = ϕn(xn − yn),

and so f (xn)− f (yn)
d(xn ,yn)

= ϕn

(
xn−yn
d(xn ,yn)

)
holds for every n ∈ N. Since N is compact, the

sequence ϕn is bounded in X∗ [6, Proposition 2.1.2]. Moreover, since xn−yn
d(xn ,yn)

is a
sequence in the compact set SX we can assume, up to taking a suitable subsequence,
that xn → x ∈ N , yn → y ∈ N , ϕn → ϕ ∈ X∗ and xn−yn

d(xn ,yn)
→ v ∈ SX . Now, the

assumptions on the sequences xn and yn imply that x = y and that φ(x) = t . Also,
since un ∈]xn, yn[, we get that un → x . Hence, [6, Proposition 2.1.5] implies that
ϕ ∈ ∂ f (x). Finally, notice that ϕ(v) = 1. Since ϕ ∈ ∂ f (x), Proposition 2.1.2 in [6]
implies that

1 = ϕ(v) ≤ f ◦(x, v) ≤ 1.

Now let us prove the following claim.

Claim 3.4 For every ε > 0 there exists vε ∈ SX such that f ◦(x, vε) > 1− ε and such
that there exists a sequence of positive numbers tn → 0 such that x + tnvε ∈ N holds
for every n ∈ N.

Proof of the Claim If there exists a sequence of positive numbers tn → 0 such that
x + tnv ∈ N holds for every n ∈ N then we are done. Otherwise {x + tv : t ∈ R} is
contained in the (unique) supporting hyperplane, say H (in particular, x ∈ ∂C). Pick
z ∈ C such that, for every ε > 0, the set x +R(v + εz) is not contained in H (this can
be done becauseC is open). Consequently, we can find a sequence of positive numbers
tn → 0 such that x + tn(v + εz) ∈ N . Since the function f ◦(x, ·) is 1-Lipschitz [6,
Proposition 2.1.2], we get

f ◦(x, v + εz) = f ◦(x, v) + f ◦(x, v + εz) − f ◦(x, v) ≥ 1 − ε‖z‖.

Since z ∈ C and C is bounded, the Claim is proved. ��
By the hypothesis we have that f ◦(x, vε) = f ′(x, vε). Consequently,

1 − ε < lim
n

f (x + tnvε) − f (x)

d(x + tnvε, x)
= lim

n

φ(x + tnvε) − φ(x)

d(x + tnvε, x)

since x + tnvε ∈ N holds for every n ∈ N. Now, Proposition 3.2 applies to obtain that
Cφ is an isometry. ��

Let us now exhibit a class of examples where Proposition 3.2 applies.

Example 3.5 Let M be a metric space containing an isometric copy of [0, 1] and
let i : [0, 1] −→ i([0, 1]) ⊆ M be an isometry. Consider i−1 : i([0, 1]) −→
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[0, 1] ↪→ R. Let φ : M −→ [0, 1] be a 1-Lipschitz extension of i−1 (for instance,
φ(x) := (0 ∨ inf

y∈i([0,1]) i
−1(y) + d(x, y)) ∧ 1, where ∨ and ∧ stands for maximum

and minimum respectively). Since φ ◦ i is the identity map on [0, 1], the mapping φ

clearly satisfies the assumptions of Proposition 3.2.

Remark 3.6 Let us present another argument which shows that the mapping φ defined
in Example 3.5 defines a composition operator which is an isometry. Notice that the
function φ defines a 1-Lipschitz retraction φ : M −→ [0, 1] ⊆ M . In general, given
two metric spaces M and N with N ⊆ M and a 1-Lipschitz retraction r : M −→ N ,
it can be proved that Cr : Lipr(0)(N ) −→ Lip0(M) is an isometry. The author thanks
an anonymus referee for this valuable example.

We can now give a neccesary condition for a composition operator to be an isometry
in the context of geodesic metric spaces. Indeed, we have the following general result.

Theorem 3.7 Let M and N be metric spaces and φ : N −→ M be a norm-one
Lipschitz map. Assume that Cφ : Lip0(M) −→ Lip0(N ) is an isometry. Let a < b
be two real numbers and let α : [a, b] −→ M be an isometry. Consider r : M −→
M be a 1-Lipschitz retraction onto α([a, b]). Then, for every t ∈ [a, b] there are
sequences {xn}, {yn} ⊆ N such that xn �= yn for every n ∈ N, that r((φ(xn)) →
α(t), r(φ(yn)) → α(t) and

d(r(φ(xn)), r(φ(yn)))

d(xn, yn)
→ 1.

Note that r in the statement of the theorem always exists as [a, b] is an absolute
1-Lipschitz retract.

Proof Without loss of generality we can assume that a = 0 and b = 1. It is easy to see
that Cα−1◦r : Lipα−1(r(0))([0, 1]) −→ Lip0(M) is an isometry. Thus Cφ ◦ Cα−1◦r =
Cα−1◦r◦φLip(α−1◦r◦φ)(0)([0, 1]) −→ Lip0(N ) is an isometry. By Proposition 3.1 we
obtain the desired pair of sequences. ��

Theorem 3.7 yields, in particular, necessary conditions on φ : N −→ M to get that
Cφ is an isometry when M is geodesic. We do not know whether the converse holds
true. It is natural to think, in view of Theorem 3.2, that a natural condition to require
for a converse is the condition

Lip(r ◦ φ)(x) = 1.

However, we do not know whether this condition implies that Cφ is a composition
operator.
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