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Abstract
In this paper we investigate the dynamical properties of weighted translation operators
acting on the Schwartz space S(R) of rapidly decreasing functions, i.e., operators of
the form Tw : S(R) → S(R), f (·) �→ w(·) f (·+1).We characterizewhen those oper-
ators are hypercyclic, weakly mixing, mixing and chaotic. Several examples illustrate
our results and show which of those classes are different.

Keywords Linear dynamics · Schwartz space · Hypercyclicity · Weighted translation
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1 Introduction

One of the most important spaces of classical analysis is the Schwartz space S(R)

of rapidly decreasing functions, i.e., the space consisting of all smooth functions
f : R → C such that ‖ f ‖N < ∞ for every N ∈ N, where ‖ · ‖N is the norm on S(R)

defined by the formula

‖ f ‖N = max
0≤i≤N

sup
x∈R

(
1 + x2

)N ∣∣∣ f (i)(x)
∣∣∣ .
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It is well known that the space S(R) equipped with the locally convex topology
generated by the family of norms {‖ · ‖N : N ∈ N} is a Fréchet space. The goal of this
paper is to investigate the dynamical properties of a natural class of operators acting
on this space, namely the class of weighted translation operators

Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1),

where w : R → C is a smooth function. It is easy to see that such an operator is well
defined (and thus continuous by the Closed Graph Theorem) if and only if the function
w belongs to the space of smooth functions of moderate growth, i.e., the spaceOM (R)

consisting of all smooth functions f : R → C such that for every k ≥ 0 there is l ∈ N

with
∣∣w(k)(x)

∣∣ < l
(
1 + x2

)l
for every x ∈ R. The spaceOM (R) is also known as the

space of multipliers of S(R) since w ∈ OM (R) if and only if for every f ∈ S(R) also
w · f ∈ S(R).

Let us briefly recall the basic concepts of linear dynamics. Let X be a Fréchet
space and let T ∈ L(X) be a continuous linear operator. For every n ≥ 1 the operator
T n : X → X is defined as the nth iterate of T , i.e,

T n := T ◦ · · · ◦ T︸ ︷︷ ︸
n times

.

The operator T : X → X is called hypercyclic if there exists x ∈ X such that the set

orb(x, T ) := {
T nx : n ≥ 1

}

is dense in X . Such an element x is called a hypercyclic vector of T . By the famous
Birkhoff’s Transitivity Theorem, an operator T acting on a separable Fréchet space X
is hypercyclic if and only if it is topologically transitive, i.e., for every two nonempty
open sets U , V ⊂ X there is n ∈ N such that T n(U ) ∩ V �= ∅. The operator T is
called weakly mixing if the operator T × T is topologically transitive, i.e., for every
four nonempty open setsU1,U2, V1, V2 ⊂ X there is n ∈ N such that T n(U1)∩V1 �=
∅ and T n(U2) ∩ V2 �= ∅. The operator T is called mixing if for every two nonempty
open sets U , V ⊂ X there is N ∈ N such that T n(U ) ∩ V �= ∅ for every n ≥ N .

Finally, T is called chaotic if it is hypercyclic and has a dense set of periodic points
(a point x ∈ X is called a periodic point of T if T kx = x for some k ∈ N). From
the very definitions it is clear that every mixing operator is weakly mixing and every
weakly mixing operator is hypercyclic. For a detailed exposition of the subject of
linear dynamics we refer to the monographs [1,9].

The first example of a hypercyclic operator goes back to Birkhoff who proved that
the translation operator T : H(C) → H(C), f (·) �→ f (·+1) is hypercyclic (see [2]).
In fact Birkhoff’s operator is an example of a composition operator and the dynamics
of this kind of operators was later on studied by various authors (see [8] for composi-
tion operators on spaces of holomorphic functions, see [3] for composition operators
on spaces of real analytic functions, see [10] for weighted composition operators on
Banach spaces of continuous functions and L p spaces, see [11] for weighted com-
position operators on the space of smooth functions). Surprisingly, as shown below,

123



Dynamical properties of weighted translation operators… 105

composition operators are never hypercyclic when acting on the space S(R). Let
us note that recently (see [6]) a description was found of those smooth functions
ψ : R → R for which the composition operator Cψ : S(R) → S(R), f �→ f ◦ ψ is
well defined.

Fact 1 Let ψ : R → R be a smooth function such that the composition operator
Cψ : S(R) → S(R), f �→ f ◦ ψ is well defined. Then Cψ is not hypercyclic.

Proof Let f ∈ S(R) be arbitrary. There exists M > 0 such that | f (x)| < M for every

x ∈ R. If n ∈ N, then
∣∣∣
(
Cn

ψ f
)

(x)
∣∣∣ < M for every x ∈ R. This clearly implies that

Cψ is not hypercyclic. ��
The second important example of a hypercyclic operator goes back toMacLanewho

proved that the differential operator D : H(C) → H(C), f �→ f ′ is hypercyclic (this
was later on extended even to infinite order differential operators on H(C), see [4]).
By easy arguments from linear dynamics, differential operators are also hypercyclic
on the space of smooth functions on the real line. This is not the case if we consider
these operators on S(R).

Fact 2 Let a0, . . . , an be a sequence of complex numbers and let

P : S(R) → S(R), P( f ) =
n∑

i=0

ai f
(i).

Then P is not hypercyclic.

Proof Let φ : S(R) → C be the continuous linear functional defined on S(R) by the
formula

φ( f ) =
∫ ∞

−∞
f (x)dx .

Then for every n ∈ N

φ(Pn f ) = an0

∫ ∞

−∞
f (x)dx .

If f would be a hypercyclic vector for P , then the set {φ(Pn f ) : n ∈ N} should be
dense in C. This is impossible. ��

The above considerations show that many classical hypercyclic operators are not
hypercyclicwhen considered on the Schwartz space.Our aimwas to find a natural class
of operators acting on S(R) and to study them from the point of view of linear dynam-
ics. Motivated by weighted bilateral shifts acting on sequence spaces, we decided to
studyweighted translation operators onS(R). In Theorem 1we give a characterization
of hypercyclic weighted translation operators. It is not a surprise that this class is equal
to the class of weakly mixing weighted translation operators. In Theorems 2 and 3 we
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106 M. Goliński, A. Przestacki

characterize the class of mixing and chaotic weighted translation operators. In fact, in
Theorem 4 we show that those classes are equal. In the last sections we present some
tools which help to decide if a given function w induces an operator Tw with some
dynamical properties. Using those tools we construct examples showing which of the
considered classes of weighted translation operators are different.

2 Hypercyclic, weakly mixing, mixing and chaotic weighted
translation operators

In this section we characterize the dynamical properties of weighted translation opera-
tors acting on theSchwartz spaceS(R). In thefirst theoremwe show that hypercyclicity
of these operators is equivalent to weak mixing. This is not surprising since for many
natural operators the situation is the same (see [11] for weighted composition opera-
tors on the space of smooth functions, see [10] for weighted composition operators on
Banach spaces of continuous and integrable functions, see [12] and [7] for weighted
backward shifts and weighted bilateral shifts on sequence spaces). Let us emphasize
that there are hypercyclic operators which are not weakly mixing (see [5]).

Theorem 1 Let w ∈ OM (R). The following conditions are equivalent:

(i) The operator Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) is weakly mixing.
(ii) The operator Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) is hypercyclic.
(iii) The following conditions are satisfied:

(a) For every x ∈ R we have w(x) �= 0.
(b) For every compact set K ⊂ R there exists an increasing sequence of natural

numbers (nk)k∈N such that for every j, l ≥ 0

sup
x∈K−nk

(
1 + x2

) j

∣∣∣∣∣∣

(nk−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0

and

sup
x∈K+nk

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏nk

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0.

Proof (i) ⇒ (i i) This is obvious since every weakly mixing operator is hypercyclic.
(i i) ⇒ (i i i) To prove that (a) holds, let us assume to the contrary that there is x0 ∈ R

such that w(x0) = 0. Then for every n ∈ N and f ∈ S(R) we have T n
w( f )(x0) = 0.

This shows that Tw cannot have a dense orbit.
In order to prove that hypercyclicity of Tw implies condition (b), let us fix a compact

set K ⊂ R. Without loss of generality we may assume that K = [−D, D] for some
D > 0. It is easy to see that is enough to show that for every ε > 0 and every N ∈ N

there is a natural number k ≥ N such that for every 0 ≤ l ≤ N
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sup
x∈K−k

(
1 + x2

)N

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣
< ε (1)

and

sup
x∈K+k

(
1 + x2

)N

∣∣∣∣∣∣

(
1∏k

n=1 w(x − n)

)(l)
∣∣∣∣∣∣
< ε. (2)

To prove the desired statement let us consider the set U ⊂ S(R) consisting of all
functions f such that

1 <

∣∣∣ f (l)(x)
∣∣∣ < M for x ∈ [−D, D], 0 ≤ l ≤ N (3)

and

max
0≤l≤N

sup
x∈R\[−D−1,D+1]

(
1 + x2

)N ∣∣∣ f (l)(x)
∣∣∣ < Cε, (4)

where

M = 2 max
0≤i≤N

(N + 1)!(2D + 2)N+1−i

(N + 1 − i)!
and C is a positive constant depending on D, N and w that will be fixed later.
Claim 1 The set U is nonempty.
Proof of the claim.Any smooth function supported on [−D−1, D+1]which is equal
to the polynomial

(x + D + 2)N+1

on the interval [−D, D] belongs to U . ��
Claim 2 The set U is open.
Proof of the claim. Let g ∈ U . Then there exists δ > 0 such that

1 + δ <

∣∣∣g(l)(x)
∣∣∣ < M − δ for x ∈ [−D, D], 0 ≤ l ≤ N

and

max
0≤l≤N

sup
x∈R\[−D−1,D+1]

(
1 + x2

)N ∣∣∣g(l)(x)
∣∣∣ < Cε − δ.

One can easily check that

{ f ∈ S(R) : ‖ f − g‖N < δ} ⊂ U

which proves the claim. ��
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Claim 3 There is k ≥ N such that the inequalities (1) and (2) hold for 0 ≤ l ≤ N .
Proof of the claim: By Claim 1 and Claim 2 the set U is nonempty and open. Since
Tw is hypercyclic, we can find k ∈ N large enough to ensure that

T k
w(U ) ∩U �= ∅ and [−D, D] ± k ∩ [−D + 1, D + 1] = ∅.

Let f ∈ U be such that T k
w( f ) ∈ U . By (4), we obtain that for 0 ≤ l ≤ N

sup
x∈K−k

(
1 + x2

)N ∣∣∣(T k
w( f ))(l)(x)

∣∣∣

≤ sup
x∈R\[−D−1,D+1]

(
1 + x2

)N ∣∣∣(T k
w( f ))(l)(x)

∣∣∣ < Cε.

Using the product rule we obtain that for 0 ≤ l ≤ N

sup
x∈K−k

(
1 + x2

)N

∣∣∣∣∣∣
l∑

i=0

(
l

i

) (
k−1∏
n=0

w(x + n)

)(l−i)

f (i)(x + k)

∣∣∣∣∣∣
< Cε.

For l = 0 this gives

sup
x∈K−k

(
1 + x2

)N
∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)
f (x + k)

∣∣∣∣∣ < Cε (5)

and for 1 ≤ l ≤ N

sup
x∈K−k

(
1 + x2

)N

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l)

f (x + k)

∣∣∣∣∣∣

< Cε +
l∑

i=1

(
l

i

)
sup

x∈K−k

(
1 + x2

)N

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l−i)

f (i)(x + k)

∣∣∣∣∣∣
.

(6)

Since f ∈ U , it satisfies the condition in (3), and we obtain from (5) that

sup
x∈K−k

(
1 + x2

)N
∣∣∣∣∣
k−1∏
n=0

w(x + n)

∣∣∣∣∣ < Cε
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and from (6), for 1 ≤ l ≤ N , we get

sup
x∈K−k

(
1 + x2

)N

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

< Cε + M
l∑

i=1

(
l

i

)
sup

x∈K−k
(1 + x2)N

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l−i)
∣∣∣∣∣∣
.

This easily gives (using an induction argument over l) that there exists a positive
constant M such that for 0 ≤ l ≤ N

sup
x∈K−k

(
1 + x2

)N

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣
< MCε,

Choosing the constant C sufficiently small we get that the inequality in (1) is true for
0 ≤ l ≤ N .

In order to prove the inequalities in (2) one needs to observe that if g ∈ U is such
that f = T k

w(g) ∈ U , then for x ∈ R

g(x) = f (x − k)∏k
n=1 w(x − n)

.

Since g ∈ U , we get that for every 0 ≤ l ≤ N

sup
x∈K+k

(
1 + x2

)N ∣∣∣g(l)(x)
∣∣∣ ≤ sup

x∈R\[−D−1,D+1]

(
1 + x2

)N ∣∣∣g(l)(x)
∣∣∣ < Cε

and proceeding as earlier we obtain that the required inequalities hold.
(i i i) ⇒ (i) To show that Tw is a weakly mixing operator let us take nonempty and
open subsets U1,U2, V1, V2 of S(R). We need to show that there is n ∈ N such that

T n
w(U1) ∩ V1 �= ∅ and T n

w(U2) ∩ V2 �= ∅.

Since compactly supported smooth functions are dense inS(R), we can find compactly
supported smooth functions f1, f2, g1, g2 and constants ε > 0, N ∈ N such that

{h ∈ S(R) : ‖ fi − h‖N < ε} ⊂ Ui and {h ∈ S(R) : ‖gi − h‖N < ε} ⊂ Vi

for i = 1, 2. Let us assume that the supports of the functions f1, f2, g1, g2 are con-
tained in a compact set K and let (nk)k∈N be an increasing sequence of natural numbers
which existence is assumed in condition (b). For i = 1, 2 we define the function hi
via the formula
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110 M. Goliński, A. Przestacki

hi (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

fi (x), x ∈ K ,

gi (x−nk )∏nk
n=1 w(x−n)

, x ∈ K + nk,

0, otherwise.

If k is large enough, then the functions hi are well defined, compactly supported and
smooth. For i = 1, 2, from the assumptions, using the product rule and the fact that
the derivatives of gi are bounded we obtain that

‖hi − fi‖N = max
0≤ j≤N

sup
x∈K+nk

(
1 + x2

)N

∣∣∣∣∣∣

(
gi (x − nk)∏nk
n=1 w(x − n)

)( j)
∣∣∣∣∣∣

k→∞−−−→ 0.

The same arguments show that for i = 1, 2

‖T nk
w hi − gi‖N = max

0≤ j≤N
sup

x∈K−nk

(
1 + x2

)N

∣∣∣∣∣∣

(nk−1∏
n=0

w(x + n) fi (x)

)( j)
∣∣∣∣∣∣

k→∞−−−→ 0.

Therefore, if k is large enough, then for i = 1, 2wehave thathi ∈ Ui andT
nk
w (hi ) ∈ Vi .

This completes the proof. ��
The next theorem characterizes the class of mixing weighted translation operators

on S(R). In Example 3 we will show that this class is strictly smaller than the class
of hypercyclic operators (note that for weighted composition operators acting on the
space of smooth functions on the real line those classes are equal, see [11]).

Theorem 2 Let w ∈ OM (R). The following conditions are equivalent:

(i) The operator Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) is mixing.
(ii) The following conditions are satisfied:

(a) For every x ∈ R we have w(x) �= 0
(b) For every compact set K ⊂ R and for every j, l ≥ 0

sup
x∈K−k

(
1 + x2

) j

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0

and

sup
x∈K+k

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏nk

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0.

The proof of this theorem is similar to the proof of Theorem 1. We include the proof
for the convenience of the reader.
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Proof (i) ⇒ (i i) Since every mixing operator is hypercyclic, we obtain from Theo-
rem 1 thatw(x) �= 0 for every x ∈ R. In order to show that the condition (b) is satisfied
let us fix ε > 0 and N ∈ N. We consider now the nonempty and open set U from the
proof of Theorem 1. Since Tw is mixing, T k

w(U ) ∩ U �= ∅ for every k large enough.
Repeating the arguments from the previous proof we obtain that for 0 ≤ l ≤ N and k
large enough

sup
x∈K−k

(
1 + x2

)N

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣
< ε

and

sup
x∈K+k

(
1 + x2

)N

∣∣∣∣∣∣

(
1∏k

n=1 w(x − n)

)(l)
∣∣∣∣∣∣
< ε.

This is enough.
(i i) ⇒ (i) Let U and V be nonempty and open subsets of S(R). We need to show
that T k

w(U ) ∩ V �= ∅ for every k large enough. Since compactly supported smooth
functions are dense in S(R), we can find compactly supported smooth functions f , g,
constants ε > 0, N ∈ N such that

{h ∈ S(R) : ‖ f − h‖N < ε} ⊂ U and {h ∈ S(R) : ‖g − h‖N < ε} ⊂ V .

Let us assume that the supports of the functions f , g are contained in a compact set
K and let us define the function h via the formula

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

f (x), x ∈ K ,
g(x−k)∏nk

n=1 w(x−n)
, x ∈ K + k,

0, otherwise.

If k is large enough, then the function h are well defined, compactly supported and
smooth. Using the product rule and the fact that the derivatives of g are bounded we
obtain that

‖h − f ‖N = max
0≤ j≤N

sup
x∈K+k

(
1 + x2

)N

∣∣∣∣∣∣

(
g(x − k)∏k

n=1 w(x − n)

)( j)
∣∣∣∣∣∣

k→∞−−−→ 0.

The same arguments show that

‖T k
wh − g‖N = max

0≤ j≤N
sup

x∈K−k

(
1 + x2

)N

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n) f (x)

)( j)
∣∣∣∣∣∣

k→∞−−−→ 0.
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Therefore, if k is large enough, then h ∈ U and T k
w(h) ∈ V . ��

The following result gives a description of chaotic weighted translation operators
on S(R). Surprisingly, for those operators, the existence of a dense set of periodic
points already implies that they are chaotic (a similar situation holds for weighted
bilateral shifts, see [12]).

Theorem 3 Let w ∈ OM (R). The following conditions are equivalent:

(i) The operator Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) is chaotic.
(ii) The operator Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) has a dense set of

periodic points.
(iii) The following conditions are satisfied:

(a) For every x ∈ R we have w(x) �= 0.
(b) For every compact set K ⊂ R there exists d ∈ N such that for every j, l ≥ 0

sup
x∈K−kd

(
1 + x2

) j

∣∣∣∣∣∣

(
kd−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0

and

sup
x∈K+kd

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏kd

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0.

Proof (i) ⇒ (i i) This implication is obvious.
(i i) ⇒ (i i i) First we show that the condition (a) holds. To do this let us assume that
there exists x0 ∈ R such that w(x0) = 0. This implies that every periodic point of Tw

vanishes at x0 which clearly implies that (i i) cannot hold.
In order to prove that (b) is satisfied let us take an arbitrary compact set K ⊂ R.

Condition (i i) implies that there is p ∈ S(R) which is a periodic point for Tw and
satisfies the condition

|p(x)| > 1 for x ∈ K . (7)

We can find d ∈ N large enough to ensure that

T d
w p = p and K + n1d ∩ K + n2d = ∅ for all integers n1 �= n2.

Now, since T kd
w p = p for every k ∈ N, it is easy to check that the function p must

satisfy the following equations

p(x) =

⎧⎪⎨
⎪⎩

p(x−kd)∏kd
n=1 w(x−n)

, x ∈ K + kd, k ≥ 1,

(∏kd−1
n=0 w(x + n)

)
· p(x + kd), x ∈ K − kd, k ≥ 1.

(8)
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Using induction with respect to l we will show that for every l ≥ 0 the following
holds: for every j ≥ 0

sup
x∈K−kd

(
1 + x2

) j

∣∣∣∣∣∣

(
kd−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0 (9)

and

sup
x∈K+kd

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏kd

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0. (10)

Step 1 Let l = 0. Since p ∈ S(R), for every j ≥ 0

sup
x∈K−kd

(
1 + x2

) j |p(x)| k→∞−−−→ 0

and

sup
x∈K+kd

(
1 + x2

) j |p(x)| k→∞−−−→ 0.

Together with (7) this proves (9) and (10) for l = 0 since

sup
x∈K−kd

(
1 + x2

) j
∣∣∣∣∣
kd−1∏
n=0

w(x + n)

∣∣∣∣∣

< sup
x∈K−kd

(
1 + x2

) j
∣∣∣∣∣

(
kd−1∏
n=0

w(x + n)

)
p(x + kd)

∣∣∣∣∣

= sup
x∈K−kd

(
1 + x2

) j |p(x)|

and

sup
x∈K+kd

(
1 + x2

) j
∣∣∣∣∣

1∏kd
n=1 w(x − n)

∣∣∣∣∣

< sup
x∈K+kd

(
1 + x2

) j
∣∣∣∣∣

p(x − kd)∏kd
n=1 w(x − n)

∣∣∣∣∣

= sup
x∈K+kd

(
1 + x2

) j |p(x)| .

Step 2 Assume that the inequalities (9) and (10) are true for 0, 1, . . . , l − 1. We will
show that they are true for l.
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Since p ∈ S(R), for every j ≥ 0

sup
x∈K−kd

(
1 + x2

) j ∣∣∣p(l)(x)
∣∣∣ k→∞−−−→ 0

and

sup
x∈K+kd

(
1 + x2

) j ∣∣∣p(l)(x)
∣∣∣ k→∞−−−→ 0.

Using (8) we get that

sup
x∈K−kd

(
1 + x2

) j

∣∣∣∣∣∣

((
kd−1∏
n=0

w(x + n)

)
p(x + kd)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0

and

sup
x∈K+kd

(
1 + x2

) j

∣∣∣∣∣∣

(
p(x − kd)∏nd
k=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0.

By the product rule, the inductive hypothesis and the fact that p and all its derivatives
are bounded we get

sup
x∈K−kd

(
1 + x2

) j

∣∣∣∣∣∣

(
kd−1∏
n=0

w(x + n)

)(l)

p(x + kd)

∣∣∣∣∣∣
k→∞−−−→ 0 (11)

and

sup
x∈K+kd

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏kd

n=1 w(x − n)

)(l)

p(x − kd)

∣∣∣∣∣∣
k→∞−−−→ 0. (12)

From (7) it follows that |p(x + kd)| > 1 for x ∈ K − kd and |p(x − kd)| > 1 for
x ∈ K + kd. Together with (11) and (12) this proves the inductive hypothesis.
(i i i) ⇒ (i) By Theorem 1 the operator Tw is hypercyclic and therefore we only need
to show that Tw has a dense set of periodic points. To do this we will prove that for
every compactly supported smooth function f there is a sequence (ps)s∈N of periodic
points of Tw which is convergent to f in S(R).

Let f ∈ S(R) with supp f ⊂ K = [−D, D]. Let d be a natural number for which
conditions in (i i i) are satisfied and such that K ± d ∩ K = ∅. For every s ∈ N we
define a function ps : R → C by the formula
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ps(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (x), x ∈ K
f (x−nsd)∏nsd
k=1 w(x−k)

, x ∈ K + nsd, n ≥ 1
(∏−nsd−1

k=0 w(x + k)
)
f (x − nsd), x ∈ K + nsd, n ≤ −1

0, otherwise.

The functions ps are smooth and will show that they are in S(R). In order to do this,
let us fix N ∈ N. From the definition of the functions ps it follows that

‖ps‖N = max
0≤i≤N

sup
x∈R

(
1 + x2

)N ∣∣∣p(i)
s (x)

∣∣∣

= max
0≤i≤N

sup
n∈Z

sup
x∈K+nsd

(
1 + x2

)N ∣∣∣p(i)
s (x)

∣∣∣ .

Since the function f is compactly supported, there exists a constant C such that

max
0≤i≤N

sup
x∈R

∣∣∣ f (i)(x)
∣∣∣ < C . (13)

Using this we obtain that

max
0≤i≤N

sup
x∈K

∣∣∣p(i)
s (x)

∣∣∣ = max
0≤i≤N

sup
x∈K

∣∣∣ f (i)(x)
∣∣∣ < C .

Now using the assumptions, the inequality in (13) and the product rule we get that

max
0≤l≤N

sup
n≥1

sup
x∈K+nsd

(
1 + x2

)N ∣∣∣p(l)(x)
∣∣∣

= max
0≤l≤N

sup
n≥1

sup
x∈K+nsd

(
1 + x2

)N

∣∣∣∣∣∣

(
f (x − nsd)∏nsd
k=1 w(x − k)

)(l)
∣∣∣∣∣∣

< C max
0≤l≤N

sup
n≥1

sup
x∈K+nsd

l∑
j=0

(
l

j

) (
1 + x2

)N

∣∣∣∣∣∣

(
1∏nsd

k=1 w(x − k)

)( j)
∣∣∣∣∣∣
< ∞

and

max
0≤l≤N

sup
n≤−1

sup
x∈K+nsd

(
1 + x2

)N ∣∣∣p(l)
s (x)

∣∣∣

= max
0≤l≤N

sup
n≤−1

sup
x∈K+nsd

(
1 + x2

)N

∣∣∣∣∣∣

((−nsd−1∏
k=0

w(x + k)

)
f (x − nsd)

)(l)
∣∣∣∣∣∣

< C max
0≤l≤N

sup
n≤−1

sup
x∈K+nsd

l∑
j=0

(
l

j

)(
1 + x2

)N

∣∣∣∣∣∣

(−nsd−1∏
k=0

w(x + k)

)( j)
∣∣∣∣∣∣
< ∞.
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116 M. Goliński, A. Przestacki

This gives that ‖ps‖N < ∞. Now, it is easy to see that for every s ∈ N

T sd
w ps = ps

and that the sequence (ps)s∈N converges to f in S(R). ��
From Theorems 2 and 3 we immediately obtain the following corollary.

Corollary 1 Let w ∈ OM (R). If Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) is mixing
then it is chaotic.

We will show now that even more is true.

Theorem 4 Let w ∈ OM (R). The following conditions are equivalent:

(i) The operator Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) is chaotic.
(ii) The operator Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) is mixing.

Proof By Corollary 1 it is enough to show that if Tw is chaotic, then it is mixing. So
let us assume that Tw is chaotic. To prove that Tw is mixing let us fix a compact set K .
By Theorem 3 we know that w(x) �= 0 for every x ∈ R and that there exists d ∈ N

such that for every j, l ≥ 0

sup
x∈K−kd

(
1 + x2

) j

∣∣∣∣∣∣

(
kd−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0 (14)

and

sup
x∈K+kd

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏kd

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0. (15)

Claim 1 For every 1 ≤ s ≤ d − 1 and every j, l ≥ 0

sup
x∈K−kd−s

(
1 + x2

) j

∣∣∣∣∣∣

(
kd+s−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0. (16)

Proof of the claim. Let us fix 1 ≤ s ≤ d − 1 and j, l ≥ 0. By the product rule

(
kd+s−1∏
n=0

w(x + n)

)(l)

=
l∑

i=0

(
l

i

) (
s−1∏
n=0

w(x + n)

)(i) (
kd+s−1∏
n=s

w(x + n)

)(l−i)

.

Since w ∈ OM (R), there exists m ∈ N such that for every 0 ≤ j ≤ l and every x ∈ R

we have
∣∣∣w( j)(x)

∣∣∣ < m(1 + x2)m .
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Therefore

∣∣∣∣∣∣

(
kd+s−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣
≤ C

s−1∏
n=0

(1 + (x + n)2)m
l∑

i=0

∣∣∣∣∣∣

(
kd+s−1∏
n=s

w(x + n)

)(l−i)
∣∣∣∣∣∣
,

where C is a constant which does not depend on k. This gives that

sup
x∈K−kd−s

(
1 + x2

) j

∣∣∣∣∣∣

(
kd+s−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

≤ C sup
x∈K−kd−s

(1 + x2) j
s−1∏
n=0

(1 + (x + n)2)m
l∑

i=0

∣∣∣∣∣∣

(
kd+s−1∏
n=s

w(x + n)

)(l−i)
∣∣∣∣∣∣

= C sup
x∈K−kd

(1 + (x − s)2) j

×
s−1∏
n=0

(1 + (x − s + n)2)m
l∑

i=0

∣∣∣∣∣∣

(
kd−1∏
n=0

w(x + n)

)(l−i)
∣∣∣∣∣∣
.

Now, if k is large enough and x ∈ K − kd, then

(1 + (x − s)2) j
s−1∏
n=0

(1 + (x − s + n)2)m ≤ (1 + x2) j+ms+1.

This proves (16) since by the above computations and by (14)

sup
x∈K−kd−s

(
1 + x2

) j

∣∣∣∣∣∣

(
kd+s−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

≤ C sup
x∈K−kd

(1 + x2) j+ms+1
l∑

i=0

∣∣∣∣∣∣

(
kd−1∏
n=0

w(x + n)

)(l−i)
∣∣∣∣∣∣

k→∞−−−→ 0.

��
Claim 2 For every 1 ≤ s ≤ d − 1

sup
x∈K+kd−s

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏kd−s

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0.
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Proof of the claim: The proof of this claim is very similar to the proof of Claim 1. One
needs only to observe that

1∏kd−s
n=1 w(x − n)

= 1∏kd
n=1 w(x − n)

·
kd∏

n=kd−s+1

w(x − n).

��
Claim 1 and Claim 2 easily give us that

sup
x∈K−k

(
1 + x2

) j

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0

and

sup
x∈K+k

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏kd

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0.

By Theorem 2 this implies that Tw is mixing. ��

3 Examples

The aim of this section is to illustrate our results and to show which of the considered
classes of weighted translation operators on S(R) are different. We start with the
following proposition which gives a wide class of examples of mixing and chaotic
weighted translation operators.

Proposition 1 Let w ∈ OM (R) be such that w(x) �= 0 for every x ∈ R.

(i) If there exists 0 < c < 1 and n0 ∈ N such that |w(x)| < c for x ≤ −n0, then for
every compact set K ⊂ R

sup
x∈K−k

(
1 + x2

) j

∣∣∣∣∣∣

(
k−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0 for every j, l ≥ 0. (17)

(ii) If there exists C > 1 and n0 ∈ N such that |w(x)| > C for x ≥ n0, then for every
compact set K ⊂ R

sup
x∈K+k

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏k

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0 for every j, l ≥ 0. (18)

(iii) If there exists 0 < δ < 1 and n0 ∈ N such that |w(x)| < δ for x ≤ −n0
and |w(x)| > 1

δ
for x ≥ n0, then the operator Tw : S(R) → S(R), f (·) �→

w(·) f (· + 1) is mixing and chaotic.
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Proof (i) Without loss of generality we can take K = [−D, D], where D ∈ N. In
order to show that (17) holds let us first observe that if k ≥ D + n0 + 1, then

(
k−1∏
n=0

w(x + n)

)(l)

=
l∑

i=0

(
l

i

)(
k−D−n0∏

n=0

w(x + n)

)(l−i) ⎛
⎝

k−1∏
n=k−D−n0+1

w(x + n)

⎞
⎠

(i)

.

Since w is smooth, for every every i ≥ 0 there exists Ci > 0 such that for every
k ∈ N

sup
x∈[−D,D]−k

∣∣∣∣∣∣∣

⎛
⎝

k−1∏
n=k−D−n0+1

w(x + n)

⎞
⎠

(i)
∣∣∣∣∣∣∣

= sup
x∈[−D,D]

∣∣∣∣∣∣∣

⎛
⎝

−1∏
n=−D−n0+1

w(x + n)

⎞
⎠

(i)
∣∣∣∣∣∣∣
≤ Ci .

Therefore, to prove that (17) holds it is enough to show that

sup
x∈[−D,D]−k

(
1 + x2

) j

∣∣∣∣∣∣

(
k−D−n0∏

n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0 for every j, l ≥ 0.

(19)

By the product rule we get that

(
k−D−n0∏

n=0

w(x + n)

)(l)

=
∑

i0,...,ik−D−n0≥0
i0+···+ik−D−n0=l

l!
i0! . . . ik−D−n0 !

k−D−n0∏
n=0

w(in)(x + n).

(20)

Let i0, . . . , ik−D−n0 ≥ 0 be such that i0 + · · · + ik−D−n0 = l. If x ∈ [−D, D] − k,
then for n = 0, . . . , k − D − n0 we have that −D − k ≤ x + n ≤ −n0. Since
w ∈ OM (R) there exists m ∈ N such that for every 0 ≤ j ≤ l and every x ∈ R we
have

∣∣w( j)(x)
∣∣ < m(1+x2)m . Using the assumptions we get that for x ∈ [−D, D]−k

and k large enough
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∣∣∣∣∣
k−D−n0∏

n=0

w(in)(x + n)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣

∏
0≤n≤k−D−n0

in=0

w(x + n)

∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣

∏
0≤n≤k−D−n0

in �=0

w(in)(x + n)

∣∣∣∣∣∣∣∣

≤ ck−D−n0+1−l · ml ·
(
1 + (−D − k)2

)ml
.

Thus, from (20), for x ∈ [−D, D] − k and k large enough we get

∣∣∣∣∣∣

(
k−D−n0∏

n=0

w(x + n)

)(l)
∣∣∣∣∣∣

≤ (k − D − n0 + 1)l · l! · ck−D−n0+1−l · ml ·
(
1 + (−D − k)2

)ml
.

Therefore

sup
x∈[−D,D]−k

(
1 + x2

) j

∣∣∣∣∣∣

(
k−D−n0∏

n=1

w(x + n)

)(l)
∣∣∣∣∣∣

≤ (1 + (−D − k)2) j · (k − D − n0 + 1)l · l!
× ck−D−n0+1−l · ml ·

(
1 + (−D − k)2

)ml k→∞−−−→ 0.

This proves (19).
(i i) The proof of this part is similar to the proof of the first part of the proposition.
The only difference is that one needs to use the formula for higher derivatives of the
function 1

w(x+n)
.

(i i i) The last assertion in the proposition follows immediately from the first two parts,
Theorems 2 and 3. ��

Example 1 Let w ∈ OM (R) be such that w(x) �= 0 for x ∈ R and satisfies
limx→−∞ |w(x)| = 0 and limx→∞ |w(x)| = ∞. Then, by Proposition 1, the operator
Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1) is mixing and chaotic.

Example 2 Let w : R → R be any smooth function such that w(x) = 1
2 if x ≤ 0,

w(x) = 2 if x ≥ 1 andw(x) �= 0 for x ∈ [0, 1]. It is clear that such a function belongs
to OM (R). By Proposition 1, the operator Tw : S(R) → S(R), f (·) �→ w(·) f (· + 1)
is mixing and chaotic.

The following proposition is an useful tool to construct examples of weighted
translation operators with various dynamical properties.

Proposition 2 Let w ∈ OM (R) be such that w(x) �= 0 for every x ∈ R and let
K = [−D, D], where D ∈ N.
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(i) Assume that there exist c > 0 and n0 ∈ N such that |w(x)| > c for x ≤ −n0. Let
(nk)k∈N be an increasing sequence of natural numbers such that for every j ≥ 0

sup
x∈K−nk

(
1 + x2

) j
∣∣∣∣∣
nk−1∏
n=0

w(x + n)

∣∣∣∣∣
k→∞−−−→ 0.

Then for every j, l ≥ 0

sup
x∈K−nk

(
1 + x2

) j

∣∣∣∣∣∣

(nk−1∏
n=0

w(x + n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0.

(ii) Assume that there exist C > 0 and n0 ∈ N such that |w(x)| ≤ C for x ≥ n0. Let
(nk)k∈N be an increasing sequence of natural numbers such that for every j ≥ 0

sup
x∈K+nk

(
1 + x2

) j
∣∣∣∣∣

1∏nk
n=1 w(x − n)

∣∣∣∣∣
k→∞−−−→ 0.

Then for every j, l ≥ 0

sup
x∈K+nk

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏nk

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0.

Proof (i) Proceeding exactly the same way as in the beginning of the proof of the first
part of Proposition 1 we get that the assumptions imply that

sup
x∈[−D,D]−nk

(
1 + x2

) j

∣∣∣∣∣∣
nk−D−n0∏

n=0

w(x + n)

∣∣∣∣∣∣
k→∞−−−→ 0 for every j ≥ 0. (21)

Moreover, in the same way, we obtain that to prove the desired statement it is enough
to show that

sup
x∈[−D,D]−nk

(
1 + x2

) j

∣∣∣∣∣∣∣

⎛
⎝

nk−D−n0∏
n=0

w(x + n)

⎞
⎠

(l)
∣∣∣∣∣∣∣

k→∞−−−→ 0 for every j, l ≥ 0.

(22)
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By the product rule we get that

⎛
⎝

nk−D−n0∏
n=0

w(x + n)

⎞
⎠

(l)

=
∑

i0,...,ink−D−n0≥0
i0+···+ink−D−n0=l

l!
i0! . . . ink−D−n0 !

nk−D−n0∏
n=0

w(in)(x + n)

=
∑

i0,...,ink−D−n0≥0
i0+···+ink−D−n0=l

l!
i0! . . . ink−D−n0 !

⎛
⎝

nk−D−n0∏
n=0

w(x + n)

⎞
⎠

×

⎛
⎜⎜⎝

∏
0≤n≤nk−D−n0

in �=0

w(in)(x + n)

w(x + n)

⎞
⎟⎟⎠ .

Let i0, . . . , ink−D−n0 ≥ 0 be such that i0 + · · ·+ ink−D−n0 = l. If x ∈ [−D, D]− nk ,
then for n = 0, . . . , nk − D − n0 we have that −D − nk ≤ x + n ≤ −n0. Since
w ∈ OM (R) there existsm ∈ N such that for every 0 ≤ j ≤ l and every x ∈ Rwehave∣∣w( j)(x)

∣∣ < m(1 + x2)m . Using the assumptions we get that for x ∈ [−D, D] − nk
and k large enough

∣∣∣∣∣∣∣∣

∏
0≤n≤nk−D−n0

in �=0

w(in)(x + n)

w(x + n)

∣∣∣∣∣∣∣∣
≤ ml

cl

(
1 + (−D − nk)

2
)ml

.

Therefore

∣∣∣∣∣∣∣

⎛
⎝

nk−D−n0∏
n=0

w(x + n)

⎞
⎠

(l)
∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣
nk−D−n0∏

n=0

w(x + n)

∣∣∣∣∣∣
· (nk − D − n0 + 1)l · l! · m

l

cl

(
1 + (−D − nk)

2
)ml

.

For x ∈ [−D, D] − nk and k large enough we have that

(nk − D − n0 + 1)l · l! · m
l

cl

(
1 + (−D − nk)

2
)ml ≤ (1 + x2)ml+l+1.
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Thus, from our calculations we get that

sup
x∈[−D,D]−nk

(
1 + x2

) j

∣∣∣∣∣∣∣

⎛
⎝

nk−D−n0∏
n=0

w(x + n)

⎞
⎠

(l)
∣∣∣∣∣∣∣

≤ sup
x∈[−D,D]−nk

(
1 + x2

) j+ml+l+1

∣∣∣∣∣∣
nk−D−n0∏

n=0

w(x + n)

∣∣∣∣∣∣
.

By our assumptions, the right hand side goes to zero as k goes to infinity. This proves
(22).
(i i)The proof of this part is similar to the proof of the first part of the theorem. The only
difference is that one needs to use the formula for higher derivatives of the function

1
w(x+n)

. ��
In the following example we construct a weighted translation operator on S(R)

which is hypercyclic and is not mixing (and thus not chaotic).

Example 3 Let w ∈ OM (R) be a real valued function with the following properties:

(i) w(x) = 2 for x ≥ −2 and for x ∈ [−2k+1,−2k − 2k−1 − 1] for k ∈ N;
(ii) w(x) = 1/2 for x ∈ [−2k − 2k−1,−2k − 1] for k ∈ N

(iii) w is decreasing on [−2k − 2k−1 − 1,−2k − 2k−1] for k ∈ N;
(iv) w is increasing on [−2k − 1,−2k] for k ∈ N;
(v) w(x)w(x − 2k−1) = 1 for x ∈ [−2k − 1,−2k] and k ∈ N.

It is clear that we can find such a function in OM (R). From Proposition 1 we obtain
that for every compact set K ⊂ R

sup
x∈K+k

(
1 + x2

) j

∣∣∣∣∣∣

(
1∏k

n=1 w(x − n)

)(l)
∣∣∣∣∣∣

k→∞−−−→ 0 for every j, l ≥ 0.

Now, if K = [−D, D], where D ∈ N, then one can easily check that that for every
j ≥ 0

sup
x∈[−D,D]−2k−2k−1+D

(
1 + x2

) j

∣∣∣∣∣∣
2k+2k−1−D−1∏

n=0

w(x + n)

∣∣∣∣∣∣
k→∞−−−→ 0.

By Proposition 2 we get that

sup
x∈[−D,D]−2k−2k−1+D

(
1 + x2

) j

∣∣∣∣∣∣∣

⎛
⎝

2k+2k−1−D−1∏
n=0

w(x + n)

⎞
⎠

(l)
∣∣∣∣∣∣∣

k→∞−−−→ 0
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for every j, l ≥ 0. By Theorem 1, this gives that Tw is hypercyclic. Let us now observe
that for K = {−1} we have that

sup
x∈K−2k

2k−1∏
n=0

w(x + n) =
2k−1∏
n=0

w(−2k − 1 + n) = 1.

This shows that Tw is not a mixing operator and thus also not chaotic.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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