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Abstract

We introduce and study strongly and weakly harmonic functions on metric measure
spaces defined via the mean value property holding for all and, respectively, for some
radii of balls at every point of the underlying domain. Among properties of such
functions we investigate various types of Harnack estimates on balls and compact
sets, weak and strong maximum principles, comparison principles, the Holder and the
Lipschitz estimates and some differentiability properties. The latter one is based on
the notion of a weak upper gradient. The Dirichlet problem for functions satisfying
the mean value property is studied via the dynamical programming method related
to stochastic games. Finally, we discuss and prove the Liouville type theorems. Our
results are obtained for various types of measures: continuous with respect to a metric,
doubling, uniform, measures satisfying the annular decay condition. Relations between
such measures are presented as well. The presentation is illustrated by examples.
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1 Introduction

Harmonic functions and the related Dirichlet problem are one of the most classical
and fundamental subjects of studies in mathematical analysis and theory of PDEs. One
studies harmonic functions and their generalizations in various settings and contexts,
for instance in the Euclidean domains, on manifolds, in the setting of trees, also in
Banach spaces. Recent two decades have been the period of an intensive development
of yet another area of mathematics, the analysis on metric measure spaces. Its studies
bring new approaches and sheds new light also on the theory of harmonic functions.
The results due to Cheeger [9], Hajtasz—Koskela [16], Heinonen—Koskela [25] and
Shanmugalingam [46], to mention just few mathematicians contributing to the growth
of the analysis on metric spaces, laid foundations for the first order Calculus and
notions of gradient in metric spaces. See, for instance, a survey by Heinonen [24]
for the panorama of the area and further references. Basing on the notion of the weak
upper gradient one can study the minima of the Dirichlet energy obtaining counterparts
of p-harmonic functions and mappings in the metric setting with the harmonic case
corresponding to p = 2, see e.g. Shanmugalingam [47]. Related is an approach based
on the Cheeger derivative and a metric counterpart of the tangent space, see [9].

In this work we present another approach to harmonicity on metric measure spaces
based on functions which satisfy the mean value property for all balls centered at the
points of the given open set and contained in this set. Harmonic functions of such kind
were introduced by Gaczkowski and Goérka [13]. Namely, in [13] the authors study
locally integrable real-valued functions defined on an open subset 2 C X of a metric
measure space (X, d, i) requiring that the mean value property for f holds at every
x € Q and for all balls B(x, r) € Q:

1
= — d .
7 (B (x, 1)) JBx,r J@dn

In this work we call such functions strongly harmonic, see Definition 3.1. We continue
investigations of their properties, as well as introduce the so-called weakly harmonic
functions which are required to satisfy the mean value property only for at least one
admissible radius at every point of an open set. Our definition is motivated by the
classical and subtle investigations in the Euclidean setting due to e.g. Koebe, Volterra
and Kellogg, Hansen and Nadirashvili, and Blaschke, Privaloff and Zaremba. We refer
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to Sect. 3 for a brief historical sketch of the studies on the size of the set of admissible
radii sufficient to imply the harmonicity. Moreover, one of the main goals of our
work is to provide a uniform approach to the mean-value harmonicity and extract the
properties shared by functions with the mean-value property in various settings, as
illlustrated by examples in Sect. 3.

In Preliminaries we introduce and recall some basic definitions of the metric anal-
ysis. In particular, we define continuity of a measure with respect to a metric, see
Definition 2.1. Such a property has been important in the previous studies of harmonic
functions, see [13] (also [15]). Moreover, we study some properties of a measure imply-
ing its continuity with respect to the given metric and notice that this condition gives us
wide class of metric measure spaces. It turns out, for instance, that doubling measures
in geodesic spaces have this property, see Proposition 2.1. Our studies involve various
other types of measures, e.g. uniform measures and measures satisfying §-annular
decay condition for some § € (0, 1]. However, measures continuous with respect to a
distance appear to be the most general among the aforementioned measures (see the
discussion and the diagram following Proposition 2.1 in Preliminaries).

In Sect. 3 we bring on stage main characters of the paper, i.e. strongly and weakly
harmonic functions, motivate their definitions and introduce some of their basic prop-
erties and natural relatives such as sub- and superharmonic functions. The latter two
notions will play a vital role in the studies of the Dirichlet problem in Sect. 6. Fur-
thermore, we study how to generate new sub- and superharmonic functions from the
existing ones; we also mention the p-harmonic functions as defined via the mini-
mization of the p-Dirichlet energy and address their relation to harmonic functions
as studied in our work. Additionally, we provide a number of examples of strongly
and weakly harmonic functions in various settings, including manifolds, trees and
weighted R”.

The key geometric and regularity properties of harmonic functions are presented
and studied in Sects. 4 and 5. We identify conditions implying continuity of strongly
and weakly harmonic functions as well as we discuss various Harnack inequalities on
balls and compact sets. This allows us to obtain important tools of the potential and
geometric function theories, namely the weak and strong maximum principles, and the
comparison principle. While for strongly harmonic functions such properties could
be expected, the fact that they are also available in the setting of weakly harmonic
functions might be surprising. Having established the aforementioned properties of
harmonic functions, we show one of the main results of Sect. 4, namely the local
Holder continuity of strongly and weakly harmonic functions (i.e. Holder continuity
on compact subsets of an underlying domain), see Theorem 4.1. For strongly harmonic
functions we prove this result for geodesic doubling measure spaces with the Holder
exponent depending on the doubling constant only, whereas for weakly harmonic
functions we, additionally, require that a compact set K remains enough away from
the boundary of the domain and the admissible radii for points in K are uniformly
separated from zero and uniformly bounded from the above. The final topic studied in
Sect. 4 is the Holder and Lipschitz regularity of harmonic functions in spaces satisfying
the so-called §-annular decay property for some § € (0, 1] with the Lipschitz case
corresponding to § = 1, see e.g. Buckley [8]. Roughly speaking, such a property
relates the measure of an annular ring to its thinness, cf. Definition 4.1. Moreover, it
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turns out that length doubling metric spaces have an annular decay property for some §
while a space with measure continuous with respect to a distance possesses 1-annular
decay property. In Theorem 4.2 we provide the Holder and Lipschitz estimates on balls
and compact sets. By imposing stronger assumptions on measure than in Theorem 4.1
we are able to obtain finer estimates on balls already in the Holder case, while on
compact subsets we not only show the Holder regularity as in Theorem 4.1 but also
provide estimates with explicit constants and exponent §. In the Lipschitz case not
covered by Theorem 4.1 we also have explicit constants, however our estimates depend
additionally on a Lebesgue number of a choosen covering.

We continue studies of the regularity properties of harmonic functions in Sect. 5.
There, we study uniform measures, i.e. such measures p that every ball B of radius
r > 0 satisfies

u(B) =Cr?, forgivenC > 0and Q > 1.

Uniform measures appear in geometric measure theory, for example in relation to the
Marstrand theorem, in the studies of rectifiable measures and in the theory of incom-
pressible flows in PDEs, see the discussion following Definition 5.1. Proposition 5.1
shows that in spaces with uniform measures strongly and weakly harmonic functions
are locally Lipschitz. Moreover, we compute Lipschitz constants more accurately than
in Theorem 4.2. In particular we avoid using a Lebesgue number of a covering. These
observations allow us to complete the presentation in Sections 4 and 5 with differen-
tiability results based on Cheeger’s work [9]. In Corollaries 5.1 and 5.2 we describe
conditions on metric measure spaces implying that strongly and weakly harmonic
functions have weak upper gradients. The (1, p)-Poincaré inequality plays a crucial
role for such results to hold.

Section 6 is entirely devoted to studying the Dirichlet problem for harmonic func-
tions. We address the following fundamental problems: whether there exists a function
with given boundary data satisfying the mean value property inside the domain and
whether it is unique, and if so how to construct such a function? In order to solve the
first problem we take an approach based on the dynamical programming principle.
The idea of this method originates from the stochastic games, especially tug-of-war
games and related p-harmonious functions (see e.g. Manfredi et al. [37]), and is based
on setting up an integral operator, iterating it and proving that such an iteration pro-
cess converges to a function. We adapt method by Luiro, Parviainen and Saksman
[36], recently developed for the Euclidean domains, in the metric setting. According
to our best knowledge such an approach to the Dirichlet problem on metric spaces is
new in the literature. In Theorem 6.1 we show that given a domain and a measurable
boundary data one obtains a function which satisfies the mean value property with
respect to exactly one radius at every point of the domain, provided that this point is
enough far away from the boundary. Moreover, such a solution satisfies the boundary
data condition. Furthermore, Theorem 6.2 extends the previous result to the setting
of continuous boundary data. We also prove that if a Dirichlet problem has a contin-
uous subharmonic solution, then it has the weakly harmonic solution with the same
continuous boundary data, see Theorem 6.3.
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Harmonic functions on metric measure spaces 145

In the final section of the paper we discuss another fundamental geometric properties
of harmonic functions, namely the Liouville type theorems. In Theorem 7.1 we provide
afairly general condition for a measure which implies that a strongly(weakly) bounded
harmonic function defined in the whole space must be constant. Furthermore, we
discuss some sufficient conditions on measure to guarantee that the hypotheses of
Theorem 7.1 is satisfied. In particular, this is the case if the measure of the space is
finite or in the length spaces with a doubling measure. Our discussion is illustrated
with examples. We, for instance, show that even in a simple case of R there exist
non-Lebesgue measures for which bounded entire harmonic functions need not be
constant.

2 Preliminaries

Let (X, d, ) be a metric measure space equipped with a metric d and measure . A
ball in space X is denoted by B := B(x,r) for x € X and a radius r > 0. In what
follows we will assume that w is a Borel regular measure with 0 < p(B) < oo for any
ball B C X. Moreover, we assume that X is proper, that is closed bounded subsets of
X are compact. For the sake of convenience we also assume that X is connected.

We say that a measure p is doubling if there is a constant C;, > 0 such that for all
balls B= B(x,r)={ye X:d(x,y) <r},

n(2B) = Cupu(B),

where 2B(x,r) = B(x,2r). If i is doubling, then X is complete if and only if it is
proper (i.e. every closed bounded set is compact), see Proposition 3.1 in Bjorn—-Bjorn
[4].

One of the consequences of doubling property of w is that there exist C, Q > 0
such that forallx € X,0 <r < Rand y € B(x, R),

M>i<r)9, 0

w(B(x,R)) — C \R

In fact, Q = log, C;, and C = Ci will do, see Lemma 3.3 in Bjorn-Bjorn [4], but
there may exist a better, that is smaller, exponent Q. Moreover, we note that (1) implies
that u is doubling, i.e. u is doubling if and only if there is an exponent Q such that
(1) holds.

Furthermore, in what follows we will often appeal, without mentioning it explicitly,
to the following property of doubling measures. If (X, d, 1) is a doubling metric
measure space and 2 C X is bounded with ;£ (€2) > 0 (e.g. 2 is a domain), then for
any x € Qand 0 < r < diam €2 it holds that

w(B(x,r)) - l( r )logzcu.
w(2) — C \diam Q
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We say that X is Ahlfors Q-regular if there is a constant C such that
Lo 0
o’ = w(B(x,r)) <Cr

for all balls B(x,r) C X with r < 2diam X. If we only require the left hand side of
the inequality to hold, then we say that X is lower Q-Ahlfors regular.

One of the important properties of the metric spaces considered in the paper is the
following relation between the metric and the measure.

Recall that AA B stands for a symmetric difference of sets A, B C X and is defined
as follows:

AAB := (A\B) U (B\A).

Definition 2.1 (cf. Definition 2.2 in [13]) Let (X, d, u) be a metric measure space.
We say that a measure u is continuous with respect to metric d if for all x € X and
all r > 0 it holds that

lim w(B(x,r)AB(y,r)) =0.
Qayyx

The measure u is called metrically continuous.

According to our best knowledge the above notion appeared for the first time in the
literature in Gorka [15].

The following lemma collects some basic facts about continuity of a measure with
respect to the metric (see [13] for the proofs). In the presentation below we will appeal
to these properties a number of times and, therefore, for the sake of convenience we
present them here.

Lemma 2.1 Let (X, d, ) be a metric space with a Borel regular measure ju. Then the
following hold:

1. If u is continuous with respect to the metric d, then the map x — u(B(x,r)) is
continuous in d.

2. If for every x € X and every r > 0 it holds that w(0B(x,r)) = 0, then u is
continuous with respect to the metric d.

3. Ifforeveryx € X the functionr — w(B(x, r)) is continuous, then  is continuous
with respect to the metric d.

Proof For the proof of Property 1, see Corollary 2.1 in [13]. Property 2 is proved in
Lemma 2.1 in [13], while Property 3 is proved in Theorem 2.1 in [13]. O

Following [13], we recall that a metric space (X, d) has the segment property if for
any x, y € X there exists a continuous curve ¥ : [0, 1] — X joining x and y and such
that for all ¢ € [0, 1] we have that

d(x,y) =d(x,y) +d(y(),y).
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Recall further, that a metric space (X, d) is geodesic if any two points x, y € X can
be joint by a curve y whose length equals distance d(x, y). For a large class of metric
spaces we can easily show their bi-Lipschitz equivalence to geodesic spaces. Namely,
let X be a Loewner Ahlfors regular space (see Definition 3.1 in Heinonen—Koskela
[25]). Then X is quasiconvex, see Theorem 8.23 in Heinonen [23]. If X is additionally
proper, then one can introduce a new metric in X by taking the infimum of lengths of
all rectifiable curves joining two points, see Remark 9.11 and Chapter 8 in [23], also
[25] for further discussion on Loewner spaces. According to Theorem 2.2 in [13], if
(X, d, ) is adoubling measure space with the segment property, then u is continuous
with respect to metric d. In a consequence we get the following result.

Proposition 2.1 Let (X, d, i) be a geodesic doubling metric measure space. Then |1
is continuous with respect to metric d.

Proof By Theorem 2.2 in [13] it is enough to show that a geodesic space has the
segment property. Indeed, let x, y € X and let y,, be a curve such that d(x, y) =
I(yxy). Choose t € [0, 1] and denote z = y (). Then I(yyy) = [(¥xz) + [(yzy).
Moreover, [(yx;) = d(x, z) and I(y;y) = d(z, y). Otherwise, suppose that [(yy;) >
d(x,z). Then,d(x, z2)+d(z, y) < [(yx)+I(yzy) = d(x, y),contradicting the triangle
inequality. Therefore, we have that

d(x,2) +d(z,y) =1(yxz) +1(yzy) = lyxy) =d(x,y) =d(x,2) +d(z, y).
Hence, X has a segment property and the proof of the proposition is completed. O

In the paper we investigate other types of measures, for instance uniform measures
(Definition 5.1) and measures satisfying -annular decay condition for some § €
(0, 1] (Definition 4.1). As mentioned in the Introduction, it turns out that measures
continuous with respect to a metric seem to be most general among the aforementioned
measures. We present the following list of relations between measures studied below.

Denote by (X, d, i) a metric measure space and the following properties:

(1) X is geodesic and u is doubling,

(1’) X is a length space and p is doubling,

(2) X has the §-annular decay property for some § € (0, 1],
(2’) X has the 1-annular decay property,

(3) w is a uniform measure,

(4) p is continuous with respect to d.

Then, the following inclusions hold:

(1) = @)  (Proposition 2.1)

1) = (2) = (@4 (Definition 4.1 and the discussion
following it, Remark 2)

“4) =~(@2) (Example9)

3 = @)
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We close the preliminary part of our presentation with recalling some basic defini-
tions and facts about the first order Calculus on metric spaces. The presented results
will be employed in Sect. 5 in the studies of differentiability properties of harmonic
functions in metric spaces. For foundations of the analysis on metric spaces we refer
e.g. to a book and a survey article by Heinonen [23,24], see also Heinonen—Koskela
[25] and Hajtasz—Koskela [16].

We say that a property holds for p-a.e. rectifiable curve, if it fails only for a curve
family I" with zero p-modulus, see e.g. Viisdld [S1] and Section 2 in [25] for definitions
and properties of the modulus of curve families in Euclidean and metric settings,
respectively.

Definition 2.2 Let (X, d, ) be a metric measure space and f : X — [—o0, o0].
We say that a nonnegative Borel function g on X is an upper gradient of f for all
nonconstant rectifiable curves y : [0, [(y)] — X, parameterized by arc length ds, we
have

1FO) = FrUoN < / g7 ds %)
Y

whenever both f(y(0)) and f(y(I(y))) are finite, and fy gy ds = oo otherwise.
If g is a nonnegative measurable function on X and if (2) holds for p-a.e. non-
constant rectifiable curve, then g is called a p-weak upper gradient of f.

Upper gradients were introduced in [25], whereas p-weak upper gradients were first
defined in Koskela-MacManus [30]. A relation between those two notions follows
from a result in [30], where it is also shown that a p-weak upper gradient of f can be
approximated by a sequence of upper gradients of f in L”(X). Moreover, if f has an
upper gradient in L?(X), then it has a minimal p-weak upper gradient in L? (X), see
Corollary 3.7 in Shanmugalingam [47].

Let p > 1. We say that X supports a (1, p)-Poincaré inequality if there exist
constants Cp; > 0 and A > 1 such that for all balls B C X and all integrable
functions f on X and all upper gradients g of f,

1/p
][|f—f3|du§Cp1diamB<][ g?du) ,
B AB

where

f :=]éfdu = ﬁ/}gfdu.

3 Harmonic functions

In this section we introduce and present some elementary properties of the two fun-
damental notions of our work, namely weakly harmonic and (strongly) harmonic
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functions for subsets of metric measure spaces, both based on the mean value prop-
erty.

Our first definition corresponds to the most classical mean value property required
to hold at every point of the underlying domain. Functions with such property will be
called strongly harmonic. However, in what follows we will often drop term strongly
and write, harmonic functions.

Definition 3.1 Let 2 C X be an open set. A locally integrable function f : Q@ —
R is called (strongly) harmonic in 2 if the following inequality holds for all balls
B(x,r) €@ Qwithx € Qandr > 0:

1
= — d .
7 n(B(x,r)) B(x,r)f(Z) #e

The set of all harmonic functions in 2 will be denoted H (€2, 1) and H(2) in case the
measure is fixed.

The studies of relations between the harmonicity and the mean value property in
the Euclidean setting have long history. It was Gauss who, perhaps first, observed that
harmonic functions posses the mean value property. The opposite question, whether
one need to require mean value property to hold for all radii of balls centered at the
given point has also been investigated by several mathematicians, to mention results
due to Koebe, Volterra and Kellogg, Hansen and Nadirashvili, and Blaschke, Privaloff
and Zaremba. We refer to Section 2 in Llorente [35] for an interesting historical account
on the mean value property and harmonicity; also to Heath [20] for further studies on
to what extent the restricted mean value property is sufficient for harmonicity in the
Euclidean setting. In order to motivate Definition 3.2 below more thoroughly, let us
just mention that Koebe, for instance, showed that in order for a continuous function
in a domain 2 C R" to be harmonic it is enough to satisfy the mean value property at
every x € Q with respect to some family of radii r* with inf »* = 0. If we strengthen
the assumption on function and require it to be continuous on the closure of a domain,
then Volterra and Kellogg proved that one radius at every point is enough for the mean
value property to imply the harmonicity. Hansen and Nadirashvili [17,18] improved
the previous results by substituting continuity of a function up to the boundary by
its boundedness. Blaschke, Privaloff and Zaremba independently observed that an
asymptotic mean value property is enough to imply the harmonicity. Their results
facilitated the discovery of p-harmonious functions, see Manfredi—Parviainen—Rossi
[37] for the definitions and relations between p-harmonious functions and stochastic
tug-of-war games.

In order to provide examples of studies beyond the Euclidean framework, let us
mention that the mean value property appears in the setting of differential geome-
try, e.g. in the studies of the so-called harmonic manifolds and related notions of
horospheres and the Lichnerowicz Conjecture. Recall, that a complete Riemannian
manifold M is called harmonic if harmonic functions on M satisfy the mean value
property, see Willmore [53], Ranjan-Shah [44], also Todjihounde [50] for further def-
initions and references. Furthermore, see e.g. Picardello-Woess [42] and Zucca [56]
for the studies of mean value property in the context of harmonic functions on trees.
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Motivated by the above considerations and the literature, we introduce the following
more general variant of harmonic functions on metric measure spaces.

Definition 3.2 Let 2 C X be an open set. A locally integrable function f : @ — Ris
called weakly harmonic in Q if for every x € €2 there exists a non-empty set of positive
radii 7 for a € I such that the following inequality holds for all balls B(x, r}) € Q:

1
= d .
T =BG oy T QM

The set of all weakly harmonic functions in € will be denoted wH (€2, ) and
wH(L2) in case the measure is fixed.

A priori we allow set of indexes [ to be any non-empty set, e.g. I can be uncountable.
However, in what follows we will study weakly harmonic functions under minimal
assumptions, namely that at every point there is at least one admissible radii and that
[ is at most countable.

We denote by
ry = sup r}
ie{l,2,..}
and related ri}, = sup,cq ry,- However, in the presentation below we shall write
rfé = ry, if Q2 is fixed or clear from the context. We further remark, that if 2 is a

bounded domain, then rj; < diam 2.
In what follows also the minimal radius at the point will play a role. Namely, for
any x € 2 we denote by

X : X Q . X
ry= inf r >0 r=1inf r; .
mie1,2,.0 ! ’ mexe

We will often require r;;, > 0 or r,, > 0.
Similarly we define super- and subharmonic functions.

Definition 3.3 Let 2 C X be an open set. A locally integrable function f : @ — R
is called a subharmonic(superharmonic) in 2 if the following inequality holds for all
balls B(x,r) € 2 withx € Qandr > 0O:

1
fx) < (Z)m - f(@)du(z)

We denote S_H(S2, ) the set of all subharmonic functions in € with respect to
the measure p while the set of all superharmonic functions in 2 will be denoted
STH(2, w). For the sake of simplicity when the measure is fixed, we will often write
S_H(Q) (STH(R)).

Similarly, we define weakly sub- and superharmonic functions, cf. Definition 3.2
and denote them by wS_H(L2, 1) and wSTH (R, u), respectively (also wS_H ()
and wSTH(RQ), respectively).

We present now further properties of harmonic functions.
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Proposition 3.1 The following properties hold:

1. Let f € H(Q). If m € R, then f —m € H(Q) and (f —m); € STH(RQ).

2. Let f € STH(RQ). Let F : f(Q) — R be concave and increasing. Then F o f is
superharmonic. Furthermore, if f € H(Q), then F o f is superharmonic for F
merely concave.

3. Let f € S_H(RQ). Let F : f(2) — R be convex and increasing. Then F o f is
subharmonic. Furthermore, if f € H(R2), then F o f is subharmonic for F merely
convex.

The analogous properties hold for weakly harmonic (sub-, and superharmonic) func-
tions.

Proof Denote B := B(x,r) € Q a ball centered at x € Q with » > 0. In order to
show Property 1 we note that

1 1 1
-—m=— du—m—— | ldp = —— —m)dpu.
fx)—m M(B)/Bf(Z) w mM(B) B 7 H(B)/B(f(Z) m)d

Similarly, we show that
! /(f() )+d ! (f(2) )d
— 7)—m = — 7)—m
w(B) Iy LB Jonirom a
+ / 0du < (f(x) = m)s.
BN{f<m}

The Young inequality gives us Property 2.

1 1
F(f(x)) = F (—f f(z)du) > —/ F(f(z)dpu. (3)
n(B) Jp n(B) Jp
If f € H(2), then the first inequality above becomes equality giving us the second
part of Property 2.

The proof of Property 3 follows the same lines as the one for Property 2. In this
case inequalities in (3) are reversed due to convexity of F.

For the proofs of Properties 1-3 for weakly sub/super/harmonic functions one
proceeds as above restricting the discussion only to balls with admissible radii. O

3.1 Examples of weakly and strongly harmonic functions, relations to
p-subharmonic functions

We begin with an example showing that already in simple one-dimensional case of R
with the weighted Lebesgue measure, weakly and strongly harmonic functions may
differ.

Example 1 Let (R, ||, |x|dx) be a metric measure space equipped with the Euclidean
distance and a measure wu such that du := du(x) = |x|dx. Define a function f :
R — R as follows
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1
SXR\{0}, X # O,
x)=1"
F) {0, x=0.
Then f is weakly harmonic but not harmonic. Indeed, f is locally integrable and by
letting y # 0 and r < |y|, we find that

S dxldx
f@dp="""— =~ = f(y).
][B(y,r) yy_tr |x|dx y

Moreover, for any r > 0 we have

][ f@dpn=0= f(0).
B(O,r)

On the other hand, if we take y > 0 and » > y, then

y+r

M(B(y,r))=/ wldx = 12 42,
y—r

and thus
2y
f@dp = —5——= # f).
-fB(y,r) y2 + r2

Similar situation occurs in R” for n > 1, as illustrated by the following example.

Example2 Let X = R” be equipped with the Euclidean distance and the Lebesgue
measure. One considers a sequence of annuli B(0, kK + 1)\B(0, k) fork = 0,1, ...
and related functions: uy(x) = ar¢,(x) + by, where ¢, stands for the fundamen-
tal harmonic solution in R” and coefficients ag, by are choosen properly, so that the
resulting function u : R"\{0} — R, u = uy fork =0, 1, ... is continuous in R\ {0}.
Moreover, u turns out to be weakly-, but not strongly harmonic. Similar construc-
tion can be obtained in the unit disc in R”. (See the discussion following Example
2.1.3 in Llorente [35] and the references therein for the details of the aforementioned
constructions.)

It turns out that already the Euclidean setting with the weighted Lebesgue measure
leads to interesting results in the context of the mean-value property.

Example 3 Theorem 5 in Bose [7] asserts that for a C>-regular weight w being a
harmonic eigeinvalue, a C? function u is strongly harmonic in a domain Q C R”, for
n > 2 with respect to the weighted Lebesgue measure wdx if and only if u satisfies
the following equation in €2:

wAu +2(Vu, Vw) = 0.
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For further studies of the weighted mean-value we refer to e.g. Hansen—Netuka [19],
Aikawa [2] and Kijowski [28].

The next two examples relate the mean-value harmonic functions to the studies in
the context of manifolds (cf. the discussion above).

Example 4 The notion of the harmonic manifold grows from the studies of counterparts
of the fundamental solution of the Laplace equation on manifold (H.S. Ruse, 1930).
The Lichnerowicz conjecture, confirmed for dimensions 2-5, characterizes harmonic
manifolds as either flat or rank-one symmetric, see [32], see also Nikolayevsky [41].
Recently, characterization of homogeneous harmonic manifolds has been obtained by
Heber [21]. From our point of view the following result due to Willmore is interesting,
see Theorem 3 in [53]:

A Riemannian manifold M is harmonic if and only if every solution to the
Beltrami—Laplace operator has the mean-value property over any geodesic
sphere.

Example 5 Let M be a complete Riemmanian manifold with the sectional curvature
Ky < k in geodesic ball B(x, R) in M. Suppose further that R is less than the
injectivity radius of M. Then, Theorem in Chapter I.6 (pg. 75) in Schoen—Yau [45],
asserts that any smooth nonnegative function u on M with Au > 0 has the sub mean-
value property on B(x, R). Therefore, if M has the sectional curvature Kj; bounded
uniformly from above by k, then u is weakly sub-harmonic in M with admissible
radii less the injectivity radius of M. More general, u is weakly sub-harmonic in those
subdomains of M, where K, is bounded from above.

Analogous observation for super weakly-harmonic functions holds if, instead of the
bound on the sectional curvature, the lower bound is imposed on the Ricci curvature,
see Theorem 10 in [40].

In the following example we discuss the mean-value harmonic functions in the
context of Carnot—Carathéodory groups (CC groups, for short).

Example 6 In [1] we studied relations between the mean-value harmonicity in the
setting of CC groups and, in particular, in Heisenberg groups. Theorem 4.2 in [1] shows
that strongly harmonic functions in such groups are smooth. Moreover, functions in
‘H are also subelliptic harmonic, i.e. satisfy the £-harmonic equation, see Theorem
4.3 in [1]. Hence, functions in H are 2-harmonic in the sense of minimization of the
2-Dirichlet energy of the horizontal gradient. In fact, we provide examples showing
that the opposite inclusion does not hold in general. Moreover, we identify a large
class of subelliptic harmonic functions that are strongly harmonic. Namely, a subclass
of the so-called spherical harmonic polynomials, see Observation 5.1 and Example 6
in [1].

An important setting, in which weakly and strongly harmonic function appear, is
the one of the discrete metric spaces, such as graphs.

Example7 Let T denote the homogeneous infinite tree of degree n such that each
vertex has exactly the same number of neighbours n + 1. Then, it is fairly easy to
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see that a function satisfying the discrete Laplace equation defined as follows is also
strongly harmonic (cf. Lemma 1 in [42]):

1
Au(x) = u(x) — P u(y),

y~x
where the sum is taken with respect to all verticies adjacent to vertex x. In fact, the
stronger result holds. Namely, suppose that # > 0 is weakly harmonic with exactly
one admissible radius r* at each vertex x of 7. Then u is harmonic in the sense of
the discrete laplasian provided that admissible radii satisfy the certain Lipschitz-type
growth (see Theorem in [42]). Moreover this condition is also necessary.

Another definition of harmonic functions in the Euclidean setting comes from the
minimization of the 2-Dirichlet energy and the fact that the related Euler-Lagrange
equation is the Laplace equation. Such a variational approach allows to define the
corresponding harmonic, or more general p-harmonic, functions also in the setting
of metric measure spaces. The properties of p-harmonic functions and their potential
theory have been intensively studied in last two decades by several authors, e.g. by
Aikawa—Shanmugalingam [3], Bjorn—Bjorn [4], Bjorn—-Bjorn—Shanmugalingam [5],
Shanmugalingam [47,48], Kinnunen—Shanmugalingam [29]. Let us point out some
differences between such functions and harmonic functions studied here. First, recall
that most of results for p-harmonic functions are obtained under assumptions that
the underlying space is a complete doubling metric measure space supporting (1, p)-
Poincaré inequality, whereas in our setting we allow various kinds of measures, see for
instance Proposition 2.1 and the discussion following it. Moreover, we do not neces-
sarily assume a Poincaré inequality to hold. The most important difference between the
p-harmonic functions and harmonic functions as in Definition 3.1 is that p-harmonic
functions barely ever satisfy the mean value property (see e.g. Zalcman [55] for more
discussion on the mean value property for various differential operators). This prop-
erty may fail even if p = 2 and X = R", but the measure u is not the Lebesgue
measure. Nevertheless, relations between the mean value property and p-harmonicity
play important role in stochastic games, see e.g. [37].

Some counterparts of the sub mean-value property for L”-norms are known to
hold in the manifold setting, see e.g. Li—Schoen [33, Theorem 2.1] and in the metric
setting, see [3, Formula (9)]. Below, we employ some potential theoretic results to
relate p-subminimizers to weakly harmonic functions.

Example 8 Let (X, d, ) be an unbounded doubling metric measure space satisfying
the (1, p)-Poincaré inequality and let # > 0 be a bounded continuous p-subminimizer
in X in the sense of Definition 7.7 in [4]. We will now investigate when u is weakly
subharmonic in X\{x € X : u(x) = supy u}.

We remark that already in R” for n > 3 equipped with the Lebesgue measure and
the Euclidean distance, the Liouville theorem for subharmonic function may fail, see
e.g. a counterexample in Remark (iv), pg. 132 in Protter—Weinberger [52]. Therefore,
u need not be constant.

Set w := supy u — u. Since u is bounded in X, it holds that inf xy w = 0 and, thus,
forall e > 0, x. € X and a radius R, > O such that inf g, g.) w < €. Observe that
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w > 01is bounded p-superminimizer in X. Therefore, by the weak Harnack inequality,
see Theorem 8.10 in [4], we may find ¢, C > 0 such that for all R > R,

1
q
<][ wq> <C inf w=<C inf w<Ce,
B(y.2R) B(y,R) B(xe,Re)

where g and C depend only on p, doubling constant and the constants in the (1, p)-
Poincaré inequality. Indeed, the estimate follows from [4] in case B(x., Rc) C
B(y, R). Otherwise, one needs to increase R so that the corresponding inclusion
holds. Then, by applying the Young inequality, we obtain

lim u=supu >u(y), forallye X. @)
R—00 JB(y,2R) X

We claim that at every y € Q := X\{x € X : u(x) = supy u} there exists R” > 0
such that

u(y) = ][ u, Q)
B(y.RY)

and so u is weakly subharmonic in 2. Suppose that (5) fails at a given y € Q. Then,
for all R the opposite inequality holds at y contradicting (4), unless u(y) = supy u
which is ruled out by the definition of set 2. Notice, that in order to ensure that a ball
of radius R”, where (5) holds, is contained in 2 we need, for instance, to assume that
supy u is not attained by u in X.

Similarly it holds that u € wH ('), for any ' C Q where (5) can be verified for
all y € 2, see Corollary 7.11 and Proposition 7.16 in [4].

4 Harnack estimates, maximum principles, Holder and Lipschitz
continuity

In this section we show several geometric properties of strongly and weakly harmonic
functions such as the Harnack inequalities on balls and compact sets, strong and weak
maximum principles and comparison principles. One of the main results of this section
is the Holder continuity of harmonic functions as in Definition 3.1 for geodesic metric
spaces with doubling measures, Theorem 4.1. Moreover, for spaces satisfying the
§-annular decay condition, see Definition 4.1, we have more accurate estimates, cf.
Theorem 4.2. We also discuss relations between measures continuous with respect to
the distance and measures in Definition 4.1, see Remark 2 and Example 9.
First, we need to refine some results from Gaczkowski-Goérka [13].

Proposition 4.1 (Continuity of harmonic functions) Let (X, d, i) be a metric measure

space with measure [ continuous with respect to metric d. If f € H(S2, u), then f is
continuous in 2.
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The same assertion holds for f € wH(S2, u) at points x € Q with the following
property: there exists a neighborhood U of x such that

{rfm 0 {1} # 0. (©6)

yeU

In other words in Proposition 4.1 we require that all points y in every neighborhood
U of a point x have at least one common radius with the set of admissible radii at x
for a weakly harmonic function f. Then, f is continuous at all points x € € where
such property holds.

We note that here we do not assume that p is doubling.

Proof Suppose that x, y € © and fix r > 0. Then, we have

1 1
_ _ d B .,
e = I ‘M(B(x,r)) B(x,r)f(Z) #lz) w(B(y. ") Jeo.r f@dp)
! 1
= d I d
‘M(B(x,r)) B(x,r) f@dp() w(B(x,r) Jp.r f@du)

B, — u(B(. 1)
LB NBO.1) Json
1
_— ) d
= HBE ) Joannnion, | 1D
(B (x,r) — u(B(y. )|
(B, Na(B(. 1)

f(du(z)

”f”L'(B(y,r))' 7

Recall that, by definition, function f € H(S2, ) belongs to L }UC(Q). Letnow y — x
in metric d. Then, by the continuity of u with respect to d we have that (B(x,r) A
B(y, r)) — 0. This assumption together with the absolute continuity of the Lebesgue
integral with respect to the measure imply that f(y) — f(x).

Letnow f € wH(2) and x € Q2 satisfy the assumptions of proposition. Thus, for
any sequence {yy}72; converging to x for k — oo in metric d we have that for some
i € Nandall j, k € Nitholds that r}* = r7*. Denote such a radius by r. This gives
us a radius common for points x and all y; for which the mean value property for f
holds. Then, estimate (7) holds for r and, as previously,

lim pu(B(x,r) A B(yg,r)) =0
Yk7x

completing the proof of the proposition. O
The following observation is an immediate consequence of Proposition 4.1.

Corollary 4.1 Let (X, d, ) be ametric measure space with measure p continuous with
respect to metric d. If f € H(S2, w), then f is locally bounded in Q2. Furthermore,
f e wH(, w) is locally bounded on sets E C 2 such that every x € E satisfies
assumption (6) of Proposition 4.1.
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Next, we show that the fundamental Harnack estimate holds for both weakly and
strongly harmonic functions.

Lemma 4.1 (The Harnack inequality on balls, cf. Lemma 3.2 in [13]) Let X be a
metric measure space with doubling measure jw and let f € H(S2, t) be a nonnegative
function on an open set Q2 C X. Suppose that a ball B := B(x,r) C Q is such that
B(x, 6r) @ Q. Then the following inequality holds

sup f < Cy inf f, (3)
B B

where Cy = Ci and C, stands for a doubling constant of .
Moreover, let f € wH(2, n) be a nonnegative function on a domain Q2 C X.
Suppose that a ball B :== B(x,r) C B(x, 2r1€1) € Q is such that

fsupr,ﬁ <r<3r< infrlf,lgrﬁ.
B

yeEB ye

B
0<ry,

Then, the Harnack inequality (8) holds with constant

5.B
log, ;—%-&-l
T,
Cp=Cy, "

Proof We follow the steps of reasoning in [13] and note that by assumptions on a
strongly harmonic function f the following inequality holds for any y, z € B

f fdp = / fdu.
B(y,3r) B(z,r)

Hence, the harmonicity of f and the doubling property of u together with the fact that
B(y, 3r) C B(z, 5r) imply

w(B(y,3r)) w(B(z,5r))
fl@ < BG) JF) = BGT)

W(B(zr FO) = Cfm). ©)

Similarly, if f is weakly harmonic, then the above approach gives us for y,z € B
that

/ fd,uz/ fduZ/  fdp = f@RBE ).
B(y,3r) B(z,r) B(zrj))

In the last estimate we have also used the assumption that sup g rin < r, and hence
there exists an admissible radius at z such that riz0 < r. Moreover, it holds that

/ fdu Sf , fduw = OBy, ry)),
B(y,3r) B

(sryp)
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since by assumptions 3r < inf,ep r;f,[. By the analogy to the case of f € H(2), we
obtain

(B (y, ) w(B(z,5/3r3,)) (B (z,5/3rb))

fl@) < W(BG, 75)) )= (BG.r D)) fy = (B rE)) F)
log, 5;%+1
<Cu " fy, (10)

since 3r < r;,, and, hence, d(y, z) + ri, < 5/3r%,,. Here, we also appealed to the
doubling property of u.

Since both (9) and (10) hold for any y, z € B they hold for supremum and infimum
as well resulting in the assertion of the lemma. O

In order to show the Harnack estimate on compact sets for weakly harmonic func-
tions we will need the following variant of Lemma 4.1.

Lemma 4.2 Let X be a metric measure space with doubling measure p and let f €
wH(S2, u) be a nonnegative function on a domain Q2 C X. Suppose that a ball
B := B(x,r) C B(x, Zrﬁ) € Q is such that

Q Q
0<r, <r=<ry<oo.

and both r,ff and 3rAS,21 are admissible radii for all y € B. Then, the Harnack estimate
(8) holds with constant

5.Q
log, ;—g—&-l
3n,

Cy=C, "

Proof We follow the steps of Lemma 4.1 and, upon notation of the lemma, we arrive
at the following estimates

/ fd/Lz/ fduzf fdu = f@u(B r)),
B(y,3r) B(z,r) B(z,r)

/ fdu < / fdu = fFO)(B(y,3rip).
B(y.3r) B(y.3r$)

By combining these inequalities we obtain an analog of (10):

Q

g 3r}g+l
f()_ O,

w(B(y, M))

f@) = LB,

where the final constant arises from the doubling property of measure . From this
the Harnack inequality follows immediately. O

As an immediate consequence we obtain the Harnack estimate on compact sets.
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Corollary 4.2 (The Harnack inequality on compact sets, cf. Theorem 3.4 in [13]) Let
X be a geodesic metric measure space with doubling measure u, Q2 C X be an open
connected setand let f € H (2, ;) be anonnegative function. Then, for every compact
connected K € 2 the following inequality holds

sup f < Cinf f, (11)
K K

where C > 0 is a constant whose value is independent of f, but depends among other
parameters on Cy, a doubling constant of .

Moreover, for f € wH(S2, u) estimate (11) holds provided that 0 < r,ff <r*<
r]% < oo forall x € K and dist(K, 0Q2) > 2rAIfI and both r”? and 3r1% are admissible

radii for all y € K. In such a case the Harnack constant C = C(Cy, rsl, rAS,ZI).

Remark 1 (1) In [13] the Harnack inequality is proved for connected sets which are
not necessarily path-connected. Furthermore, here we estimate Harnack constants in
terms of the doubling constants and admissible radii.

(2) Note that open set €2 need not be bounded. Therefore, we assume that rfvzl < 00
in order to ensure that the Harnack constant C in (11) is finite.

Proof of Corollary 4.2 The proof follows the standard reasoning and, therefore, we
will present only a sketch of it. For every x € K we find a ball B(x, ry) such that
B(x,6ry) € Q. The collection of such balls gives us a open cover of K, and by
compactness of K we may choose a finite subcover consisting of N balls. Next, take
points x, y € K and connect them by a curve y. Indeed, since the space X is geodesic
and 2, Lemma 4.38 in Bjorn—Bjorn [4] implies that any two points in K can be joint
by a rectifiable curve. From the collection of previously chosen N balls we choose
suchthatx € Byandy € By and BiN B+ # @foralli =1, ..., M. Upon choosing
points x; € B; N Bjy fori = 1,..., M < N and applying Lemma 4.1 we have

f@) < Chfx) < <R f) < CIN F(y).

This, together with continuity of f, Proposition 4.1 imply the assertion of the corollary
with C := C2V.

The reasoning for weakly harmonic functions is similar. We cover set K with open
balls C := {B(x, r*)}xekx such that we can apply a variant of the Harnack estimate
on every B, as in Lemma 4.2. Namely, we assume that 7* = rn? forall x € K.
Moreover, we need to ensure at every x € K that a ball B := B(x, r*) satisfies
B(x,r*) C B(x, Zrﬁ) € 2. This, follows from the condition that dist(K, 02) >
2rAIf,. Using compactness of K we choose from the cover C a finite cover of K by balls
{B;} fori =1, ..., n as in the case of strongly harmonic functions.

The remaining part of the chaining argument stays the same as in the case of strongly

harmonic functions. Observe, that for all i = 1,2, ..., n it holds that rﬁ" < VASEI

and rpy > K. In a consequence we arrive at the following chain of estimates, cf.
Lemmas 4.1 and 4.2:
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5rS2 sn—1 2 2
e o 5 (- o
fx)<Cy, fp) < =Cy
Q n
logz(zr’g> +n
ar,
f(xn—l) = Cu " f(y)

SrAS}I
n| log, 3—Q+1
. . . ar,
Hence, in this case we obtain a constant C := C;, " . |

The Harnack inequality implies, in the usual way, the strong and weak maximum
principles as well as the comparison principle. The strong maximum principle for
strongly harmonic functions is proved in Gaczkowski-Goérka [13, Theorem 3.1] with-
out assumption that €2 is open and u is doubling. However, their approach is different
than below and for this reason as well as for the sake of completeness we present a
new proof based on the Harnack inequality.

It is perhaps surprising, but the following four results are valid also for weakly
harmonic functions. In fact, in order for Proposition 4.2 and Corollaries 4.3 and 4.4 to
hold for f € wH(2), it is enough that at every point of a domain 2 there exists one
radius r* for which the mean value property is satisfied for f.

Proposition 4.2 (The strong maximum principle) Let Q@ C X be open connected and
W be a doubling measure on X. Moreover, let f € H(S2, u) and continuous in 2. If
f attains its maximum in 2, then f is constant. Furthermore, the assertion holds for
f € wH(2, n) provided that f is continuous (cf. (6) in Proposition 4.1).

Proof Denote M := supg, f and let @' = {x € Q : f(x) = M}. By Proposition 4.1
harmonic functions in H(2, ) are continuous, and hence, €' is relatively closed in
Q. We will show that Q' is an open subset of Q. Let B C £ be a ball such that
BNQ #Wand 6B € Q. Denote g := M — f > 0in . Proposition 3.1(1) implies
that g € H(€2, n). By the Harnack principle, Proposition 4.1 and by continuity of f
we have that

0<supg < Clinf(M — f) = Ci(M — f(x") =0

for some x” € BN Q. Thus, in fact B C €’ and Q' is open. The connectedness of
implies that €’ is the only open and relatively closed subset of 2 and, hence, 2 = .
In a consequence, f = M and the proof is completed in the case of strongly harmonic
functions.

If f € wH(S2, ), then the above approach may fail. Indeed, in the previous
reasoning we need to know that for a set €/, there isaball B C € such that BNQ' # @
and 3B € Q. For porous sets ensuring existence of a point x € 2 and a radii ;" for
some i = 1,2, ... may require r;, = 0 which, in turn, is prevented by assumptions of
the Harnack inequality, cf. Corollary 4.2. Instead, we follow the approach of Theorem
3.1in [13].

Let Q' be as in the previous part of the proof. Continuity assumptionon f € wH ()
imply that Q' is a relatively closed subset of .
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Moreover, let us choose any xo € €’ with B(xo, rix 9)y @ Q for some admissible
radius r;°. By the harmonicity of f we have that

1

—e (M — f(y)du(y) = 0.
(B (x0, 17°) JBxg.r)
Since for all x € 2 it holds that f(x) < M, we obtain that f = M in B(xo, rixo). In

a consequence 2 is open and, as in the case of strongly harmonic functions, we get
that f = M in Q. O

Recall that a metric space X is locally connected if every neighborhood of a point
x € X contains a connected neighborhood. Then, the Mazurkiewicz—Moore—Menger
theorem stays that X is locally pathconnected provided that it is proper metric space,
see Theorem 1, pg. 254, in Kuratowski [31]. In particular, every component of an open
set is open and pathconnected, see Theorem 2, pg. 253, in [31].

A connected space need not be locally connected (see e.g. the topologist’s sine
curve). Therefore, we present two variants of the weak maximum principle, related to
different connectivity assumptions on the metric space.

Proposition 4.3 (Weak maximum principle) Le? $2 be an open bounded set in a locally
connected space X, such that X\Q2 # @ and f € H(2, u) N C(Q). Then supg f =

supq S

Proof Since Q is compact and f is continuous in €, there exists xo € € such that
supg f = f(xo). It is enough to consider only the case that xo € 2. Let us denote
by €2 (xp) the connected component of €2 containing x¢. Since X is locally connected,
Q(xp) is open and 92 (xg) C 9S2. Hence, by the strong maximum principle we get
that f = f(xo) on Q2 (xp). O

The weak maximum principle follows immediately from Proposition 4.2 (cf. The-
orem 3.2 in [13] proved under stronger assumptions than the one below).

C0|3||ary 4.3 (Weak maximum principle) Let Q2 be a domainin X and f € H(2, u)N
C(2). Then infyq f < infg f and supg [ < sup,q f. Furthermore, the assertion
holds also for f € wH(S2, w) provided that f € C(K2), cf. (6) in Proposition 4.1.

Proof we will show only the second inequality, the first one follows the same steps.
Suppose opposite, that supg f > supyq f. Then the maximum of f is attained in €2,
giving by Proposition 4.2, that f = supg f contradicting the continuity assumption
of f.

The proof of the corollary in the case of f € wH (€2, u) follows the above lines,
since under our assumptions f is continuous in €. O

Next we show the comparison principle for harmonic functions on domains. The

result follows from Proposition 4.2 (cf. Theorem 3.2 in [13] proved under stronger
assumptions on the domain).
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Corollary 4.4 (Comparison principle) Let (X, d, u) be a metric measure space and
Q C X be adomain. Let, further, f, g € H(2, )N C(ﬁ) be such that f > g on 9S2.
Then f > gin Q.

Furthermore, the assertion holds also for f, g € wH(R, u) N C(Q) provided that
at every x € K2 the sets of admissible radii of functions f and g have at least one
common radius.

Proof Since both f and g are harmonic in €2, then so is also f — g. Since f > g on
0%, then infyo(f — g) > 0. By the Corollary 4.3 we obtain that

0 <inf(f —g) =inf(f —g) =inf f +inf(—g).
Q2 Q Q Q

From this, we obtain that supg ¢ < infg f and the comparison principle follows.
The proof of the corollary in the case of f € wH(S2, n) follows the above lines.
Indeed, f and g are continuous in €2 by assumptions and f — g is weakly harmonic
in €2, as sets of admissible radii of functions f and g have a common radius at every
x € Q. m|

We are in a position to state and prove the main result of this section, local Holder
continuity of harmonic functions. The proof of this result relies on the Harnack estimate
on balls and holds for strongly harmonic functions. The iteration method used below
requires that for every ball of radius r one is able to apply the Harnack estimate
on a ball with radius r/t for some ¢ > 4. This, however, need not be satisfied for
weakly harmonic functions in a domain € unless r5? = 0, which leads constant C in
Lemma 4.1 to be unbounded.

Theorem 4.1 Let X be a geodesic metric space with doubling measure | and let
f € H(R, w) for a domain Q2 C X. Then, f is locally Holder continuous with the
Holder exponent depending only on the doubling constant C,.

Moreover, weakly harmonic function f € wH(S2, p) is locally Holder continuous
in a compact set K provided that rnll( > 0, rﬁs/z{ < oo and dist(K, 02) > SrAIfI. In such
a case the Holder exponent depends on C,,, rX and ri}.

Proof Let B := B(x,r) € Qbeaball and f € H(2, n). Denote

m(r) = inf f, M(r)=sup f.
B B

Then g := f —m(r) > 0 a.e. in B and by Proposition 3.1(1) function g is harmonic
in Q2. Set t > 4. Then by the Harnack inequality on balls (Lemma 4.1) we have that

M G) —m(r) = sup (f —m(r)) < Cp. ng)q —m(r))

B(x,7)
—c2 (m (;) - m(r)) . (12)
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From this we get

m()(CE = 1) = €2 (m (;) M (;)) +(C2 = DM ()

r r cr—1
M(;)—m(;)g e (M(r) — m(r)). (13)

Lety € B(x, r) be such that z"% <d(x,y) < zz forsomen =0, 1....(Suchbounds
always hold for some n € N depending on y.) We iterate inequality (13) and obtain
the following estimate:

r r c2—1\"
@ —fol =M (5)=m(5) = ( @ ) (M) = m(r))
< Cﬁ é [ (Sup f —inf f) <d(xr’ y))a (14)
Indeed, set
()
@i=—— > 0. (15)
Then

2 n 2
Cu—l =% and %" <t dex, )\ = Ci dee, )"
CEL N r Cﬁ —1 r

From this, estimate (14) follows immediately.

Let now B := B(xg,r) and let x, y € B for B such that 4B € 2. We distinguish
two cases.
CASE 1:d(x,y) < r. Then, by repeating the above discussion we obtain

2

lf() = fOl =

d
C2 (supf 1nff)( . y))

CASE 2:r <d(x,y) < 2r. Then,

d
| f(x) — f()| <sup f —inf f < (sup f — 1nff)< (x, y))
B B 4B

,
Therefore, f is locally Holder continuous with exponent « as in (15).

If f € wH(S2, u), then the above reasoning can be repeated using second parts of
Lemma 4.1 and Corollary 4.2. O

@ Springer



164 T. Adamowicz et al.

We close this section with yet another Holder and Lipschitz regularity result for har-
monic functions. First, we need the following definition, cf. Section 1 in Buckley

[8].

Definition 4.1 Let (X, d, i) be a metric measure space with a doubling measure .
We say that X satisfies the §-annular decay property with some § € (0, 1] if there
exists A > 1 such that forall x € X, > 0 and € € (0, 1) it holds that

i (B, D\B(x,r(1 =€) < Ae’u(B(x,r)). (16)

If 6 = 1, then we say that X satisfies the strong annular decay property.

Spaces with annular decay property appear, for instance, in the context of the
Hardy-Littlewood and fractional maximal operators, see Buckley [8] and Heikkinen—
Lehrback—Nuutinen—Tuominen [22] respectively, parabolic De Giorgi classes, see
Masson—Siljander [39].

Among examples of spaces with strong annular decay property let us mention
geodesic metric spaces with uniform measures, R” with the Lebesgue measure and
Heisenberg groups H” equipped with a left-invariant Haar measures. Moreover, Corol-
lary 2.2 in [8] stays that if (X, d, u) is a length metric measure space with a doubling
measure (L, then X has the §-annular decay property for some § € (0, 1] with §
depending only on a doubling constant of . In fact, Theorem 2.1 in [8] asserts that
itis enough for (X, d) to be the so-called («, 8)-chain space in order to conclude that
X has the §-annular decay property. In such a case § depends additionally on « and S.
We refer to the discussion in Section 2 in [8] for relations between (¢, 8)-chain spaces
and the Boman chain condition and C(A, M)-condition of Hajtasz—Koskela [16].

Remark 2 Let us comment on relation between measures satisfying Definition 4.1
and measures continuous with respect to distance. Let x, y € X and suppose that
d(x,y) < r for some r > 0. If (X, d, n) has §-annular decay property for some
6 € (0, 1], then

pu(B(x,r) A B(y,r)) < n(B(x,r +d(x, y)\B(x,r —d(x,y)))

2d(x, )\’
<m) ,u(B(x,r+d(x,y))

<A

By letting d(x, y) — 0 we obtain that u(B(x,r) A B(y,r)) — 0 and, hence, i is
continuous with respect to d.

The following example shows that the opposite relation need not hold, i.e. a measure
continuous with respect to a metric may fail §-annular decay property for any 6 €
(0, 1].

Example 9 Let X = R with the Euclidean metric and a measure du(x) = e~ *ldx. It
is easy to check that u is continuous with respect to d. Namely, for any ball B(x, r) =
(x — r, x 4+ r) one need to consider three cases: (1) x +r <0, (2) x —r > 0 and (3)
—r < x < r,depending on the position of B(x, r) with respect to 0. In all cases one
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gets that for any fixed x, the function » — w(B(x, r)) is continuous and hence, by
Part (3) of Lemma 2.1 our claim holds true.

We will show that for large enough x, y > 0 and large enough radii r < x,r <y
condition (16) fails. By computations we get for any € € (0, 1) that

xX—+r
W(B(x, r)) = / ey = e (e — e ),
x—r .
W(B(r,F) A B(y, 1) = / eV dy

x+r(1—e)
_/ e—ydy — e—X(er e er(l—e) _ e—r(l—e)).
x—r(l—e¢)

Therefore, by letting € = 1/r, we obtain the following equality

pB&, 1) 4 BG,r) =1- —% —e —1——- forr - o0
w(B(x,r)) 1 —e 2 e '

Hence, for large enough x, y and r we get that condition (16) may not be satisfied
withany A > 0 and § € (0, 1].

In next theorem we show Holder and Lipschitz estimates on balls and compact sets,
thus extending Theorem 4.1. Previous assumptions on measure allow us to establish
Holder estimates for some constant and exponent, whose exact values are not deter-
mined. Here, the 5-annular decay property satisfied by a measure enables us to obtain
finer estimates on balls already in the Holder case. Moreover, on compact subsets
we obtain the Holder regularity as in Theorem 4.1 but, additionally, provide estimates
with explicit constants and exponent §. Both for the Holder case and the new Lipschitz
one, we also have explicit constants, however a dependence on a Lebesgue number of
a chosen covering comes into play. Such a dependence is removed in one of our next
results, see Proposition 5.1.

Theorem 4.2 Let (X, d, 1) be a doubling metric measure space with a §-annular
decay property for some § € (0, 1].

If § € (0,1), then a locally bounded strongly harmonic function f in a domain
Q C X is 8-Holder continuous on every ball B := B(xg,r) C 2 centered at xo € 2
such that 3B € Q.

If § = 1, then f is locally L-Lipschitz continuous on every ball B C 2 such that
3B € Q.

In both cases we have that

8
d(x,y)> (17
r

£ = FO <49 flleBxo.3m)C A (

forx,y € B(xop, %). Here, C,, stands for a doubling constant of u and A is as in (16).
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Let K € Q2 and f be bounded in Q2. Furthermore, suppose that n is a Lebesgue
number of any, but fixed, open cover of K. Then, we have the following estimates

8
1F ) = fO <49 fllL@Cy A ( ) d(x,y)’ ford(x,y) <n,

dist(K, 0€2)

) = FO)] < 2””5& G,y ford(x,y) > n.

Remark 3 Suppose that X is additionally geodesic. Since geodesic space is, in partic-
ular, a length space, we retrieve from Corollary 2.2 in [8] the above Theorem 4.1 with
some § € (0, 1].

Proof of Theorem 4.2 Let x € Q and B(x, r) be a ball such that B(x, 2r) € Q. Then,
dist(B(x,r), X\2) > r. Choose y € B(x,r) with d(x, y) < r/2. By the estimate
similar to the one at (7) we get that

! 1
_ N 4 B
= o ‘M(B(x,r)) B(x,r) J@dn w(B(y, r+2d(x,y)))

/ f@du(z)

B(y,r+2d(x,y))
1

- d _ p

< B v/l;’(x,r) f@)dpu(z) /B(y,r—i—2d(x,y)) f(@dp(z)

1AL By r+2d0x,v)))-
(18)

’M(B(y, r+2d(x,y))) — w(B(x,r))
w(B@, r)u(B(y, r+2d(x,y)))

Note that

B(y,r +2d(x, y)\B(x,r) C B(y,r +2d(x, Y)\B(y, "),
W(B(y, r +2d(x, y))) = w(B(x,r)) < w(B(y, r +2d(x, y))) — n(B(y, 1)),

for any positive ' < r. Observe further, that

w(B(y,r +2d(x,y)) — uw(Bx,r))| 1 _ 1
w(B, DBy, r +2d(x,y)) |  w(Bx,r) w(B(y,r+2d(x,y)))
_ BB, r+2d&, ) — (B, 1)
w(B(y, r")u(B(y, r+2d(x, y)))

as W(B(y,r") < w(B(x,r)).
Assume that | f| < M in B(x, 2r). The above discussion together with (18) imply
that
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1
lf ) = fI = Z(BG.T) |f(@)]dp(z)

(B(x,7)) JB(y,r+2dx.y)\B(y.r")
+MM(B(y,r+2d(x,y))) —M(B(y,r)). (19)
u(B(y,r")

Setr’ = r —d(x, y). We appeal to the §-annular decay property of X for € such that

r+2dx, y)1 —€)=r =r —d(x,y).

Sincee = 1—L 2dd(’; V). <3 d(x ) we set the latter expression to be €. In a consequence

estimate (19) takes the followmg form

M 3\?
[f(x) = fOI < mA <;) d(x, y)‘s,u(B(y, r+2d(x,y)))

3 8
A=) doe, ) r(B(y, r +2d(x,
w(B(y,r —d(x,y))) (,) (e, M (B (y, r +2d(x,y)))

(7) e
<MA - dx,y)

» (,U«(B()h r+2d(x,y))  w(B(,r+2d(x, y))))
w(B(x,r)) w(B(y,r —d(x,y)))

Finally, we appeal to the doubling property of x and obtain

p(B(y, r +2d(x, ) _ p(BQ,2r) _ o K(BO, 5) <2
n(B(x,r)) T ouBx,r) T HuBx,r)) T M

pBQ,r+2dx, ) _

w(B(y,r —d(x,y)) — *

and

As a result we have that

)
d(x, y)) 20)
r

[f(x)—fDMI=<2- 38||f||Lw(B(x,2r))CZA <

holds for all x, y € B(x,r/2).

Suppose now, that x, y € B(xg, r/2) such that 2B (xq, r) € 2. Let us consider two
cases.

CASE 1:d(x,y) > %d (x, x0). Then, the estimate (20) together with the triangle
inequality imply that

1f ) = FODI = 1) = fo)| + £ () = f(xo)l

d(x, x0)\° d(y. x0) )’
<2 P U f B2 CiA (( : ) U

<23 flloBo.2)Cp A
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<<2d<x,y>>“ . (d(x,xo>+d<x,y)>“>
r r

8

d(x,y)
< Q232 fllL>(Bxo.2)C) A (T)

CASE 2:d(x,y) < %d(x,xo) < r/2. Then, y € B(x,r/2) and B(x,2r) C
B(xg, 3r) € Q2. Thus, from (20) we obtain
8

d ’
1f@) = FDI < 223U flleBic, 2 Ci A (@)

We note that ||f||L°°(B(x,2r)) < ||f||L°°(B(x0,3r)) and combine inequalities obtained
in both cases to obtain the assertion of Theorem 4.2 for balls.

Let K be a compact subset of 2 and r = dist(K, 9€2). Since K is compact, we can
cover it by open balls B(x, r/2) centered at points x € K and choose a finite subcover,
denoted by B; := B(x;,r/2) fori = 1,2, ..., N for some N. Hence,

N
K C UB(x,-,r).

i=1

Let us denote by 1 a Lebesgue number of covering {B;}. If x, y € K are such that
d(x,y) < n, then there exists ip € {1, ..., N} such that x, y € B;;. This allows us to
apply (17) and obtain the following inequality

)
£ = fFWI <49 fllLe@C,A < ) d(x,y)".

dist(K, 9€2)
Otherwise, if d(x, y) > n, then we get

d(x,y)°
1) = FOI < 1@+ 1FOI <20 fll e

This completes the proof of the second part of Theorem 4.2 and the whole proof is,
thus, completed. O

5 The Lipschitz regularity and uniform measures: weak upper
gradients of harmonic functions

In this section we study some differentiability properties of harmonic functions and our
main result is Proposition 5.1. There, we show the Lipschitz regularity of strongly and
weakly harmonic functions in the case of the uniform measure growth. Such measures
play a fundamental role e.g. in the geometric measure theory, see the discussion and
references below. Then, by using the celebrated Cheeger’s results on differentiability
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of Lipschitz functions, in Corollaries 5.1 and 5.2 we study the existence of weak upper
gradient for strongly and weakly harmonic functions.

Definition 5.1 Let (X, d, i) be a geodesic metric space equipped with a Borel regular
measure . We call u a Q-uniform measure for some Q > 1, if there exists a constant
C > 0 such that forany x € X and all » > 0

w(B(x,r)) = Cr@. (21)

Uniform measures play an important role in geometric measure theory. For instance,
if X = R", then Marstrand [38] proved that for a non-trivial Q-uniform measure it
necessarily holds that O € N (see also Chousionis—Tyson [10] for a discussion of
Marstrand’s theorem and uniform measures in the setting of Heisenberg groups). One
of results of the celebrated paper by Preiss [43] stays that for Q = 1, 2 uniform
measures are flat. Let us also mention that uniform measures have been employed
to investigate relations between harmonic measures and non-tangentially accessible
domains (NTA-domains), see Kenig—Preiss—Toro [27] and in the studies of rectifiable
measures, see Tolsa [49]. Moreover, uniform measure appear in potential and stochastic
analysis, see Bogdan—Stés—Sztonyk [6], in the theory of incompressible flows with
vorticities, see CieSlak—Szumanska [11].

Proposition 5.1 Let (X, d, nu) be a geodesic metric space such with a Q-uniform
measure (. Then, any harmonic function f € H(S2, w) is locally L-Lipschitz on
every compact K C Q for L = Q2Q+1#’X\Q) and M = || f |l L= (k)-

Furthermore, the assertion holds for f € wH(S2, i) on every compact K C €,
provided that 0 < 2r,{f < dist(K, X\Q) and ﬂxeK{rf, ¥y, ...} # ¥, that is, all
points in K have at least one common radius for which the mean value property holds
for f. Moreover, in such a case we have L = Q29+! ,MK

Remark 4 Tt is easy to see that uniform measures satisfy 1-annular decay property, see
Definition 4.1 and so for strongly harmonic functions Proposition 5.1 follows from the
Theorem 4.2. However, below we are able to describe more accurately dependence
of the Lipschitz constant on the parameters of the underlying space and the harmonic
function. In particular, we avoid using a Lebesgue number of a covering. Moreover,
the result below gives also the Lipschitz regularity for weakly harmonic functions.

Proof of Proposition 5.1 Let f € H(S2, u). Note that u is a doubling measure with a
doubling constant C;, = 22 Then, Proposition 2.1 implies that z is continuous with
respect to metric d. In a consequence, we infer from Corollary 4.1 that f is locally
bounded. Denote by M an upper bound of f on some compact set K C 2. The
estimate similar to (7) in Proposition 4.1 gives us that

1
— - d
lf ) = fOl = KB ) Jonnson |f(@)]dn(z)

lw(B(x,r)) — w(B(y,r)| /
dul(z
(B, B e f@du(z)
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<2MM(B(XJ)AB()’,V)). 22)

B n(B(x,r))

As in Theorem 7.2 we assume that » > d(x, y). Then, by (33) and (21)

w(Bx,r) AB(y,r)) < u(B(x,r +dx, y)\B(x,r —d(x,y)))
=Cr+dx,y)%—-C@r—dx, y)°.

Hence, by the mean value theorem applied to function s, we obtain that

W(B@.r) 8 BG.1) _ ( d(x, y))Q ~ <1 _da, y))Q _ 5gs0-14G)

w(B(x,r)) L+ r r r

where s < 1 + @ < 2.Choose x,y € K and let r := ldist(](, X\2). Thus, for
all x, y € K it holds

Lf ) — fOI = Ld(x, y),

— 020+ _M
where L = 029 d@ist(K,X\Q) *

If f € wH(2, ), then by assumptions for all x, y € K we are able to find at least
one radius, denoted by r, such that (22) and estimates following it hold for r. Then,
in the final step we have that

d(X»Y)<d(X,Y)
ro Tk

3

and so in this case L = Q29¢+! rﬂ,{, as desired. The proof is therefore completed. O

One of the consequences of Proposition 5.1 is the differentiability of Lipschitz
weakly and strongly harmonic functions on compact sets.

Let f be a locally Lipschitz function in 2 C X. We define a lower pointwise
dilatation of f as follows

lipf(x) =liminf sup M
=0 yeB(x,r) r

Similarly, we define an upper pointwise dilatation of f by the formula:

Lipf(x) =limsup sup M

r—0 yeB(x,r) r

We refer to the following result due to Cheeger, see also Preliminaries for a discus-
sion on weak upper gradients and the Poincaré inequalities.
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Theorem 5.1 (Theorem 6.1 in Cheeger [9]) Let (X, d, i) be a complete doubling
metric measure space supporting (1, p)-Poincaré inequality for p > 1. Let further f
be a locally Lipschitz function in a domain Q C X. Then the minimal p-weak upper
gradient g of f exists and gy = lip f a.e. in Q. Moreover, lipf = Lipf a.e. in Q,
and both lip f and Lip f are upper gradients of f.

One combines the above Cheeger’s theorem with Proposition 5.1 to obtain the
following observation. (Recall that uniform measures are doubling.)

Corollary 5.1 Let (X,d, ) be a complete geodesic metric space such with a Q-
uniform measure [ for some Q > 1 and supporting (1, p)-Poincaré inequality for
p > L. Suppose that f is a strongly harmonic function in a compact set K C Q2. Then,
the minimal p-weak upper gradient g ¢ of f exists and gy = lipf = Lipf a.e. in K.

Furthermore, the assertion holds for a weakly harmonic function f in K provided
that f satisfies the assumptions of the second part of Proposition 5.1.

Similarly, by combining the Cheeger’s theorem with Theorem 4.2 we arrive at the
following result.

Corollary 5.2 Let (X, d, ) be a complete doubling metric measure space with a 1-
annular decay property supporting (1, p)-Poincaré inequality for p > 1. Suppose
that f is a strongly harmonic function in a ball B C 2B € 2. Then, the minimal
p-weak upper gradient g ¢ of f exists and gy = lipf = Lipf a.e. in B.

6 The Dirichlet problem

We begin this section with an observation that in general, the Dirichlet boundary value
problem need not have a solution even in the simplest one-dimensional case as the
following example shows.

Example 10 Let f € H(R, |- |, |x|dx) and set g := fl0,1). Then g € H((0, 1), ] -
|, xdx) and by observing that x € H((0, 1), | - |, dx), we conclude by Proposition 7.1
that xg € H((0, 1), | - |, dx) and, thus, g(x) = % + B for some positive constants
A, B and, hence, f = B by the continuity of f (see also Example 12 below).

Consider the Dirichlet problem of finding a harmonic function g in H((0, 1), | -
|, xdx) such that g(0) # g(1). Then, by the above reasoning there is no solution of
such problem.

The purpose of this section is to study the following questions:

(1) When does a Dirichlet problem for a functions with the mean value property
as in Definition 3.1 have a solution and for what type of boundary data?
(2) How to construct a solution to the harmonic Dirichlet problem?

Although these questions are nowadays classical in the Euclidean setting, see e.g.
Gilbarg—Trudinger [14], their metric counterparts have been intensively studied mainly
in past two decades, see e.g. Section 10 in Bjorn—Bjorn [4] and references therein.
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However, results in [4] apply to harmonic functions defined as minimizers of the 2-
Dirichlet energy, whereas we study the above two questions for harmonic functions
defined via the mean value property.

We approach the solvability of the Dirichlet problem by employing the so-called
Dynamical programming principle, generalized to the metric setting and based on
studies conducted for p-harmonious functions in Euclidean domains by Luiro—
Parviainen—Saksman [36] and Manfredi—Parviainen—Rossi [37]. Our results apply to
some functions with the mean value property for measurable and continuous bound-
ary data. For the further discussion and description of some challenges when applying
the Dynamical programming principle in our case we refer to Remarks 1 and 2 in
Liu—Schikorra [34].

First, we extend the dynamical programming principle as presented in [36] to the
setting of metric spaces with Borel regular measures. Theorems 6.1 and 6.2 below
extend Theorems 2.1 and 4.1 in [36] for measurable and continuous data, respectively.
Moreover, Theorem 6.1 provides us with a function u., the solution to the Dirichlet
problem with measurable data, such that it satisfies the mean value property on balls
with radii €. In Theorem 6.2 we show that the similar property holds for solutions to the
Dirichlet problem with continuous data at points with e-distance from the complement
of the domain. Finally, we show that in metric measure spaces with the §-annular decay
property the existence of subharmonic solution of the boundary value problem with
continuous data implies existence of the weakly harmonic continuous function with
the same continuous boundary data, see Theorem 6.3.

We follow the notation of Section 2.1 in [36] and for € > 0 define the e-boundary
strip of a domain Q2 C X:

I'e ={x € X\Q:dist(x, Q) <e€}.

In order to ensure that I'c # @ we need to assume that 2 is such that I'c C X.
This assumption will not weaken our results, as in fact we apply them only for balls
B, compactly contained in the underlying domain with radii € small enough so that
B, U T’ remains a subset of the domain.

Denote by Q2 := QU IT',.

Theorem 6.1 Let (X, d, i) be ametric measure spaces with a measure continuous with

respect do d. Moreover; let F : I'c — R be a bounded Borel measurable function.

Then, there exists a bounded Borel function u : Q2 — R solving the following

Dirichlet problem with the boundary data F:

{u(x) = fB(x,e) u(y)du(y), x €, (23)
M|r5 =F.

In fact, u is the uniform limit of a sequence {u;};°, defined via the following iteration
scheme:

_Jinfyer, F(x), x€Q,
Hot) = {F(x), xer.,
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while fori =0, 1, ... we define

FoouiMdn(y), x e,

u;(x), x ele. 24

uip1(x) = Tu;(x) := {

Proof First, notice that Tu; is Borel bounded measurable function in ¢ for every
i =0,1,.... In order to verify this observation, first notice that u( is measurable.
Next, we compute

)[B(x,e) uo(Ydu(y), x €,
uo(x), x €l..

up(x) :=Tup(x) = {

w(B(x,€))

| rBron@ e poox e,
F(x), x €Te.

The continuity of u with respect to d gives us that u1(x) is continuous for x € €,
whereas for x € ¢\ the measurability of u; follows the same argument as for u.
Indeed, by Lemma 2.1(1) we have that a function x +— w(B(x, €)) is continuous in
. Similarly, a function 2 > x — fB e uo(y)du(y) is measurable as a quotient of
two measurable functions. The measurability of u; 1 = Tu; fori = 1,2, ... follows
the same steps by induction and we omit details.

We continue the proof following the reasoning for Theorem 2.1 in [36]. It is imme-
diate to check that u| > ug in €2,. In order to give an idea about formulas describing
functions u#; we compute also

uz(x) :=Tuy(x)

. (B (x,e)N{ye:dist(y,02)>¢€})
infr, ¥ [ W(B(x.€)

1 H(B(y,e)N)
B JBontyen distr.09)<¢) 1 Bo ) d“(y)] , X EQ,
F(x), xeTl..

This yields up = Tu; > Tuo = u;. The same reasoning allows us to conclude
that u; < u;+1in Q¢ foralli = 0, 1, .... Definitions of u(y and operator T together
with easy argument by induction imply that the sequence {u;}{ is increasing and
uniformly bounded from above by supj-_ F' < oo. The latter property is a consequence
of a simple induction applied with (24). Namely, since |uo| < supr_ F in €2, then so
is ;. Then, by assuming that |u;| < supp_F in . for some i > 1 we trivially obtain
that for x € Q

i1 (0)] < ][ i ()|dju(y) < sup F.
B(x,€) Ie

while otherwise, in Q.\€2, the boundedness of u;;; immediately follows from its
definition.
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Therefore, we are in a position to define the following bounded Borel measurable
function u : Q. — R:

u(x) = lim u;(x).

Next, one shows that the convergence is uniform and the proof is by contradiction. This
proof follows steps of the corresponding proof of Theorem 2.1 in [36] for « = 0 and
B = 1 and, therefore, will be omitted. Let us comment, that the uniform convergence
implies that u satisfies (23) and, by construction, has the boundary data F. O

In the next theorem we prove the solvability of the Dirichlet problem similar to (23)
for continuous boundary data. Define

Fee:={xeX :dist(x,0R) <€}, Q:=QUTl¢ and TI'c:=T¢\Q.

Using the Tietze extension theorem applied to d€2 and a continuous function g : 92 —
R we obtain a continuous function F : I'c ¢ — R such that F|3q = g. Moreover,

sup |F(x)| = sup [g(x)| < o0.

xele e xX€o2

Let us remark, that if F is an extension of g for some €1, then F can be taken also
forall e < €.

Theorem 6.2 (cf. Theorem 4.1 in [36]) Let Q2 be a path-connected domain in (X, d, 1)
with u continuous with respect to d and let F : T'c ¢« — R be a continuous function as
above. Then, there exists a unique continuous u. : 2 — R which solves the following
boundary value problem:

JCB(X,G) ue(y)du(y), x € Q\Ie e
ne() = § (1= BEL) proy 4 WELD - ()du(y), x€QNTee (25
F(x), x € T \Q2.

In particular, uc|po = g.

Proof Following the idea of the proof of Theorem 6.1 we define a function ug : Q¢ —
R as

up(x) :=c < 1ipf F(x),

€€

Moreover, for bounded functions u : Q. — R we let T be an operator defined as
follows:

F(x)+7 o )u(y)du(y)-

TM(X) = <1 — M) diSt(x, Fe)
€
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By convention, we will interpret that

dist(x, I’ dist(x, T’
(1_M> F(x)=0 and le
€ €

forall x € Q\Tee.

By an iterative scheme we define u; 1 := Tu; fori = 0,1, ... and show that
{u;}32, is a monotone increasing bounded sequence of continuous functions in .
Furthermore, as in Lemma 6.1, the sequence {u; }7°, is uniformly bounded from above
by supyq & < oo and the argument for this to hold follows again from definitions of
ug, T and induction.

The natural modification of the proof of Theorem 6.1 allows us to conclude that
function u, := lim;_, o u; is continuous and satisfies (25).

In order to show the uniqueness, let us suppose that u!' and u? solve (25) and
u £ u?. Set

Q={xeQ:u'(x)—u’(x) =supu'(z) — u’(2)) = M > 0}.

7eQ

Furthermore, note that it is enough to consider supzeﬁ(ul(z) — u2(2)) instead of the

supremum for absolute values of u! —u?, as the case u”> —u' follows by the symmetric

argument. The definition of &’ immediately implies that ' is non-empty. Moreover,
let us notice that &’ contains a ball B(x, €). Indeed, let us consider two cases.
CASE 1 Q\T'¢ ¢ # 0. Then for x € @'\ ¢ it holds that

0=u'(x) —ux) - M = («'0) =2 ) = M)duyy 0. (26)
B(x,€)

Hence, u! —u? = M in B(x, €). Choose a point z € d$2 and some point x” € Q close
enough to z. Since 2 is path-connected, there exists a continuous curve y joining x
and x’ in Q. By the compactness of |y | we may find a finite cover C = {Bi}fv=1 of
y by balls centered at points x; € y with radii €/2 such that x; = x and xy = x'.
Let B(x”, €) be aball in C with x” € y and x” € B(x, €/2) N B(x2, €/2). We apply
reasoning at (26) to B(x”, €) using again the mean value property for u' and u? and
obtain that u' —u? = M in B(x”, €). We continue this procedure along y till we reach
first point x”” € y, such that x” € Q\T'¢cc N B(x;, €) forsome 2 <i < N — 1. Then
by the definition of u. in (25) we get

dist(x”", T
0=u'(x") —u’(x")— M < distw”, )
€ B(x"" €)

(«' () = w2 () = M) du(y) =<0, @7)
Thus, by repeating the last step at most once more, we have approached 92 obtaining
a contradiction with the fact that u! lag = g = u2|3g. Namely, for z € 92 it holds

that u'(z) — u?(z) = 0, even though for points y € U N Q for an arbitrarily small
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neighborhood U of z we have that ul(y) —ul(y) =M > 0, contradicting continuity
of u' and u?.

CASE 2 Q'\I'c. = . Then, since Q' is non-empty, there exists x € QN I'¢ . and
the above procedure simplifies. In fact we immediately reach the contradiction, since
for z € 3Q N B(x, €) on one hand we have that u'(z) — uz(z) = 0, but on the other
hand for points y € U N 2 for an arbitrarily small neighborhood U of z it holds that
u'(y) —u®(y) = M > 0 by (27) applied for x” := x.

The proof of the uniqueness and the whole proof of the theorem are, therefore,
completed. O

The last result of this section shows that if we know that a Dirichlet problem has
a continuous subharmonic solution, then the weakly harmonic solution exists and
satisfies the same continuous boundary data.

Theorem 6.3 Let (X, d, 1) be a metric measure space satisfying the 8-annular decay
condition for some 6 € (0, 1]. Let Q be a bounded domain in X and consider a
continuous function g : 02 — R. If there is a continuous weakly subharmonic
function v € wS_H(R) N C(Q) such that viyq = g, then there exists a weakly
harmonic function u € wH(Q) N C(Q) such that u|yo = g.

Examples of continuous weakly subharmonic functions are presented in Examples 5
and 8.

Proof Denote by C;,(£2) a space of bounded continuous functions on 2. Let us define
an operator T : Cp(2) — Cp(£2) given by

Tu(x) :][ u(y)du(y) ,
B(x,ry)

where r, < %dist(x, 0%2) is a given single admissible radius at x.
In order to see that T is well defined, let us consider any u € C;(£2) and denote
M := |u|| L= (). The standard computations then imply that

1
T - T _ d
Tuto uO)l = w(B(x, rx)) JB(x.r)aB(y.ry) lu(e)lepiiz)

|(B(x, 7)) — n(B(y, ry))l / p
u(BOx, r (B ry) |/ u(z)dp(z)

M <M(B(x,rx) A B(y.ry)) | m(B(x,rx) A B(y,rx))

w(B(y, ry))>

n(B(x,ry)) m(B(x, ra))pu(B(y, ry))
< ZMIL(B(erx)AB(y»ry))‘ 28)
u(B(x,ry))
Moreover,

B(x,min{ry, —d(x,y),ry}) C B(x,ry) N B(y,ry)
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for all x and y with d(x, y) small enough, and
B(x,ry)UB(y,ry) C B(x, max {rx, ry} +d(x,y)).
Hence,

B(x,ry) A B(y,ry) C B(x, max {rx, ry} +d(x, y)\B(x, min{ry, —d(x,y), r:}).
(29)

We combine (28) and (29), which hold for y — x in d and get that the §-annular
decay property of X implies Tu € C(£2), cf. Definition 4.1. By basic properties of the
mean value one also obtains that || Tu|lsc < M.

We use operator T to construct the following sequence of functions:

(1) uo:==v,
2) uy :=Tuy_y forn=1,2,....

We easily see that all u, € Cp(2) and [luy |l Le@) < IVlLx ).
Next, observe that every u, is weakly subharmonic in € with admissible radii
r* = ry. Indeed, ug = v is subharmonic, so by the definition

w = f u0du) = Tuoto,
B(x,ry)
Moreover, note that if v < w, then Tv < Tw. Hence, by induction we get

up(x) < upy1(x) = Tuy(x) =]£( )un(y)du(y)-

The above reasoning shows also that sequence {u,},2, is increasing at every x € Q.

We extend sequence {u,,}flo:o to Q in such away thatu,|yq = gforalln =0, 1, ....
Indeed, this is possible for ug because v is continuous up to the boundary and v|3 = g.
In order to see that the same holds true for u,, for n > 1 let us first consider any
w € C(Q) with w|sq = g. Then for all x € 3Q and € > 0 there exists § > 0 such
that

lw(y) —gM)] <e,

for y € QN B(x, §). Hence, for y € B(x, %) N 2 we have

ITw(y) — (o) s][ w(z) — g0l du() < .
B(y,ry)

In a consequence, Tw € C(R2) and Tw|yq = g. We apply this reasoning with w = u,,
forn =0, 1, ... and obtain that {u, },‘f:l is bounded increasing sequence of continuous
functions on compact set, such that all u, 3o = g.
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We are now in a position to define the following Borel function:

ux) := nlgléo uy(x) forx e Q.

One can show that {u, }>° | converges uniformly in € and the reasoning is similar to
the one in the proof of Theorem 2.1 in [36], cf. presentation in the proof of Theorem 6.1
above. Since u, |yq = g for all n, the sequence converges uniformly also in Q. Hence,
u € C(Q) and u|yq = g. By employing the monotone convergence theorem to the
sequence

Upt1(x) =][ up, (y)dp(y)
B(x,ry)

we get that u € wH(S2). O

It is a work in progress to establish a viable method for proving the existence of
the solutions to the Dirichlet problem via the Perron method or by the dynamical
programming method (see e.g. Theorem 4.1 in [37]). Regarding the first approach,
our efforts are focused on establishing a counterpart of the Poisson modification in
the setting of strongly harmonic functions. Such modifications have several variants
e.g. for superminimizers and superharmonic functions in the setting of Newtonian
spaces, see e.g. Sections 8.7 and 10.9 in Bjorn—-Bjorn [4]. Furthermore, one can also
obtain a counterpart of the notion of a barrier function at a boundary point xo € 9€2
for the mean-value harmonicity, by studying continuous functions f : £ — R which
satisfy: (1) f(xg) = 0, (2) f(x) < O for every x € 9Q\{xp}, (3) the sub mean-
value property in €2 with the constant Cy < 1 multiplying the mean-value integral.
Functions — dist(x, xo) and — dist?(x, xo) are examples of such barriers.

So far, we have established the equivalence between the solvability of the Dirichlet
problem in the underlying domain and the solvability of Dirichlet problems in all balls
contained in the domain.

Let (X, d, 1) be a metric space with metrically continuous measure such that all
balls are connected. Suppose that 2 C X isadomain and g : 92 — Ris a continuous
function. Moreover, let us assume that the harmonic Dirichlet problem is solvable on
all balls B C 2 for an arbitrary continuous boundary data.

Then, the Dirichlet problem has a solution in €2 if and only if at every x € 92 there
exists a barrier function, and for every ball in €2 there exists a solution of the Dirichlet
problem with g.

We remark that the solvability of the Dirichlet problem on balls leads to interesting
problems. For instance, in the Heisenberg setting, a ball in a Carnot—Carathéodory
metric need not be a regular set for 2-harmonic functions, see Example 14.4 in [4].

7 The Liouville theorem

The Liouville theorem is a classical result in the theory of harmonic functions in R".
The purpose of this section is to establish similar results for strongly and weakly
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harmonic functions on metric measure spaces. It turns out that already on R we may
choose such a measure, so that the Liouville theorem fails, cf. Example 11. However,
below we establish a fairly general condition on a measure resulting in the Liouville
theorem, see (31) and (32) in Theorem 7.1. Moreover, we discuss some sufficient
conditions on a measure and a metric space to ensure that Theorem 7.1 holds, see
Remark 6 and Theorem 7.2. For strongly harmonic functions a variant of the Liouville
theorem follows from the Harnack inequality on balls, see Theorem 7.3.
Let us begin with the following simple observation.

Proposition 7.1 Suppose that f € H(2, u) and let f > 0in , then g € H(2, fu)
ifand only if gf € H(2, w).

Moreover, the assertion remains true for f,g € wH(2, u) and f > 0 provided
that f and g have the same sets of admissible radii v} fori = 1,2, ... at every point
x € Q.

Proof Let g € H(S2, fu). Define h = fg and by a straightforward computation we
get

fB(x,r) hdu _ fB(x,r) gfdp B 8(x)f3(x,,) fdu
w(Bx,r) — wBx,r)  p(Bx,r)

= f(x)g(x) = h(x).

Hence, we obtain that 4 € H(€2, ). In order to show the opposite implication, let us
define g := %, where h € H(S2, ). Thus,

h
.[B(x,r) ?fdll« _ fB(x,r) hd/l. _ h(x)
fB(x,r) fdu fB(x,r) fdw  f(x)

Letnow f, g € wH(2, u) and f > 0. Then, the above reasoning holds at every
ball B = B(x,r;") for all i, since sets of admissible radii are the same for both
functions. O

Before proving Liouville-type results, let us give an example illustrating that, in
general, the Liouville property need not hold.

Example 11 There exists a measure p on (R, |-]) and f € H(R, n) which is bounded
and nonconstant.

Let f(x) = 2¢*coshx = 1 + ¢*. Then f € H(R, e *dx). Indeed, for every
x € Rand r > 0 we have

xX+r
f fe 'dt =/ (14 e*)e'dt.
B(x,r) xX—r
Thus,

xX+r xX+r
f e'dt =e (" —e") and / le7ldt = (" —e).  (30)
X X

—r —r
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Hence, we obtain that

1 fx+r e~ dt
_ Hu) = 1+ —1 2 — .
w(B(x, 1)) JBx.r) Fout) * f;f: e~ tdt e f )

However, by virtue of Proposition 7.1 applied with f(x) = 2¢* cosh x, measure
©w = e~ we get that a entire nonconstant bounded harmonic function g := % =

ﬁ € H(R, 2 coshx dx), since gf = 1 € H(2, w) by (30).
We turn now to the question of the structure and dimension of the space of harmonic
functions on the whole space. Similar studies in the setting of manifolds have been
studied by several authors, e.g. Colding—Minicozzi [12] for Riemannian manifolds,
Theorem 1.4 in Hua—Kell-Xia [26] in the setting of RCD*(0, N).
Definition 3.1 implies that the space of harmonic functions H (€2, ) is a linear
space. In fact, if X = R, then the following observation holds.

Example 12 Denote by dim H (2, ) a dimension of H (€2, ) as a linear space. Then
dimHR,d, pn) <2.

We first show the following claim: If f € H(R, d, u), then f is constant or strictly
monotone. Let D = {(x, y) : x < y} and consider a function g : D — R defined as
follows g(x, y) := f(x) — f(y). Since f is continuous in D by Proposition 4.1, then
sois gin D x D. Suppose that f is not strictly monotone. Then g(x, y) = 0 for some
(x,y) € D, then f(x) = f(y) and by the weak maximum principle in Corollary 4.3
we get that f is constant on the interval [x, y].

Next, we take any b > y. If f is not strictly monotone on [y, b], then we split
this interval into the intervals where f is monotone and apply the following reasoning
on such intervals. Therefore, let us suppose that f is monotone increasing on [y, b],
then by the the strong maximum principle in Proposition 4.2 applied to [x, b], we get
that f is constant on [x, b]. We obtain the same conclusion if f is monotone decreas-
ing, since then we use the strong minimum principle (an immediate consequence of
Proposition 4.2). The analogous reasoning gives us that f must be constant on any
interval [a, y] for a < x. From this, we have that f is constant on any interval [a, b]
containing the set [x, y] and the claim is proven.

Now, we are in position to prove the assertion of the example. Let f, g € H(R, d, )
be such that f, g are non-constant. Then, by the claim f and g are strictly monotone.
Hence, there exists A € R such that f(1) — f(—1) = A(g(l) — g(—1)). Thus,

=) =Ag=D+B, f(l)=A4g¢(1)+B

for some B € R. Hence, by the maximum principle we get f(x) — Ag(x) — B =0
for x € [—1, 1]. This implies that f(x) — Ag(x) — B = 0 for x € R and the proof of
the observation follows.
In fact dim H can be smaller then 2, since it holds that dim H(R, | - |, |x|dx) = 1.
Indeed, let f € H(R,| - [, |x|dx) and denote g := f|@©,+o0). Then g €
H((0, +00), |- |, xdx). Since x € H((0, +00), | - |, dx), then Proposition 7.1 implies
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that xg € H((0, 1), |-|, dx) and, therefore, g(x) = % + B for some positive constants
A, B. The continuity of f resultsin f = B.

Finally, note that the similar result for weakly harmonic functions fails since such
functions do not have a natural structure of a linear space. In order to ensure such
structure one would have to assume, for instance, that all functions in w7 (€2, @) have
the same sets of admissible radii at every point of 2.

The following result is related to a work of Yau [54] for Liouville theorems on
complete Riemannian manifolds with the Ricci curvature bounded from below.

Theorem 7.1 Suppose that for every x,y € X the following condition holds

limint “B&NABGIND) G1)
r—00 w(B(x,r))
Then, every bounded harmonic function in H(X, () is constant.
Moreover, the assertion holds true for a bounded f € wH(X, u) provided that
at every x,y € X there exist sequences (r;), () of admissible radii such that the
following holds

B(x,r") A B(y, 1},
lim w(B(x,r;) ¥, r)) -0 (32)
n—00 u(B(x,ry))
Before proving the theorem we present two observations regarding sufficient condi-
tions for functions and for a space and a measure for (32) and (31) to hold, respectively.

Remark 5 Suppose that at every point x € X: (1) f has the same sets of admissible
radii r;; forn = 1,2, ...,and (2) rj, = sup, 7, = oo. Then in assumption (32) one
can consider, for instance, sequences r;, = rforn=1,2,....

Remark 6 Let us provide an example of a measure which ensures that (31) holds.
Suppose that (X, d, ) is a length metric measure space with a doubling measure .
For such spaces Corollary 2.2 in Buckley [8] stays that X satisfies a §-annular decay
property for some § € (0, 1], cf. the discussion following Definition 4.1. Then u
satisfies (31). Indeed, as in Remark 2 we have that for x, y € X withd(x,y) < r it
holds

n(B(x,r) A B(y,r)) <A< 2d(x, y) >5 p(B(x,r +d(x, y))

(B(x, 1)) r+d(x,y) (B(x, 1))
2d(x,y) \°
= ACu (r T dG, y)) ’

since r + d(x, y) < 2r and the doubling condition can be applied. By letting »r — o0
we arrive at (31).
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Proof of Theorem 7.1 Let f € H(X) be bounded and set M := || f || Lo (x). We follow
the steps of the reasoning at (7), see the proof of Proposition 4.1 and cf. Lemma 4.3
in [13], and obtain

1
_ - - d
If () = fIl = KB Jacernasom If (@)dpn(z)

1(B(x. 1)) — n(B(y, r2))] /
d
WBErNRBO.) sy @D
. <M(B<x, r) A B(y.r)  u(B(x.r) & B(y.r))
= W(B(x. ) W(B. r)i(B(y. 1))
< oy MBG ) A B )
W(B(x. )

w(B(y, rz)))

Now letr; = r» = r. We take lim inf for » — o0 and thus, by assumption (31), we
get that f(x) = f(y) for every x, y € X. From this the proof for strongly harmonic
functions follows.

Let now f € wH(X, ). Then we set 7y = rf and r, = r) forn = 1,2, ... and
appeal to (32) in order to complete the proof of the theorem for weakly harmonic
functions. O

Theorem 7.2 If u(X) < oo, then every bounded f € H(X) is constant. Moreover, if
f € wH(X) is bounded and ry, = oo for all x € X, then f is constant.

Proof Observe that for x, y € X and r > d(x, y) we have
B(x,r —d(x,y)) C B(x,r)NB(y,r) C B(x,r)UB(y,r) C B(x,r +d(x,y)).
Hence,

B(x,r) A B(y,r) C B(x,r +d(x, y)\B(x,r —d(x, y)). (33)

Next, for n > 2 we define r, = (2n — 1)d(x, y) and 7, = 2nd(x, y). Since
o0
X =B(x,r)U| B rar)\B(x, 1)

n=2

and p(X) < oo, we have
lim w (B(x, ryq1)\B(x, ) = 0.
n—o0

In view of the above relations, we conclude

w(B(x, ) A B(y, ) - w(Bx, rprD\B(x, 1))
w(B(x, ry)) - w(B(x,1r2))

— 0, forn — oo.
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Therefore, assumption (31) of Theorem 7.1 is satisfied and hence every bounded
harmonic function in H(X, u) is constant. The proof of the theorem for strongly
harmonic functions is completed.

Now let f € wH(X) with rj, = oo for all x € X. Therefore, at every x € X

we may choose monotone sequences of admissible radii (r;;) and (r)), such that

lim ¥ = lim r; = oco. Then,
n—oo n—oo

B(x, min{ry —d(x,y),r'}) C B(x,r))NB(y,r)) C B(x,r;)UB®,r)
C B(x,r; +r) +d(x,)).

Define two sequences
rp=r 41 +d(x,y), s, =min{ry —d(x,y),r}} forn=1,2,....
Hence,
B(x,r) A B(y,rp) C B(x,r,)\B(x,s,) foralln.

Let us construct the following subsequences of (r,,) and (s;,):

(1) r{ :=rp,, 8] == su,, for some ny > 1,
’. I
(2) forl =2,3,... wesets; := sy, such thats, , >ry andr; :=ry .

Therefore, for i # j we have that
(BGx, rDO\B(x, 5))) N (B(x, FO\B(x, s;)) —g.
Hence, by additionally appealing to the finiteness of the measure u of X, we get

WBOx, ) A B, ra)) _ w(B&, r)\B(x, s,))

B - < 2 < — 0, forn — oo.
w(B(x,ry)) w(B(x,ry))

Thus, assumption (32) of Theorem 7.1 is satisfied implying that f is constant. The
proof of the theorem is, therefore, completed. O

The Liouville theorem can also be obtain from the Harnack inequality on balls,
see Lemma 4.1. Below we assume that p is bounded, restricting the set of admissible
measures, but on the other hand we require harmonic function to be bounded from
below only. Namely, the following result holds.

Theorem 7.3 Let X be a geodesic metric measure space with doubling measure 1.
Then, every bounded from below harmonic function in H(X, ) is constant.

Proof Let f € H(X, u) and define g = f — infx f > 0. By Proposition 3.1(1) we
have that g € H(X, n). By the Harnack inequality, see Lemma 4.1, we have that for
all x € X and any ball B(x,r) € X

g(x) < sup gSCZ inf g —>0, asr — oo.
B(x,r) B(x.r)
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Hence, g = 0 and, in turn, f is constant. 0O

In the setting of weakly harmonic functions the same type of argument cannot be
applied. Indeed, if 7151 — 00, then the Harnack constant Cy in Lemma 4.1 grows
unbounded.

Acknowledgements The authors would like to thank Antoni Kijowski for pointing out Examples 2, 3 and 4.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Adamowicz, T., Warhurst, B.: Mean value property and harmonicity on Carnot—Carathéodory groups.
arxiv:1702.07642
2. Aikawa, H.: Densities with the mean value property for harmonic functions in a Lipschitz domain.
Proc. Am. Math. Soc. 125(1), 229-234 (1997)
3. Aikawa, H., Shanmugalingam, N.: Carleson-type estimates for p-harmonic functions and the conformal
Martin boundary of John domains in metric measure spaces. Mich. Math. J. 53(1), 165-188 (2005)
4. Bjorn, A., Bjorn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol.
17. European Math. Soc, Zurich (2011)
5. Bjorn, A., Bjorn, J., Shanmugalingam, N.: The Dirichlet problem for p-harmonic functions on metric
spaces. J. Reine Angew. Math. 556, 173-203 (2003)
6. Bogdan, K., Stés, A., Sztonyk, P.: Potential theory for Lévy stable processes. Bull. Polish Acad. Sci.
Math. 50(3), 361-372 (2002)
7. Bose, A.: Functions satisfying a weighted average property. Trans. Am. Math. Soc. 118, 472-487
(1965)
8. Buckley, S.: Is the maximal function of a Lipschitz function continuous? Ann. Acad. Sci. Fenn. Math.
24(2), 519-528 (1999)
9. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal.
9(3), 428-517 (1999)
10. Chousionis, V., Tyson, J.: Marstrand’s density theorem in the Heisenberg group. Bull. Lond. Math.
Soc. 47, 771-788 (2015)
11. Cieslak, T., Szumariska, M.: A theorem on measures in dimension 2 and applications to vortex sheets.
J. Funct. Anal. 266(12), 6780—-6795 (2014)
12. Colding, T.H., Minicozzi IT, W.P.: Harmonic functions on manifolds. Ann. Math. (2) 146(3), 725-747
(1997)
13. Gaczkowski, M., Gérka, P.: Harmonic functions on metric measure spaces: convergence and compact-
ness. Potential Anal. 31, 203-214 (2009)
14. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order, Reprint of the 1998
edition, Classics in Mathematics. Springer, Berlin, xiv+517 pp (2001)
15. Gorka, P.: Campanato theorem on metric measure spaces. Ann. Acad. Sci. Fenn. Math. 34(2), 523-528
(2009)
16. Hajtasz, P., Koskela, P.: Sobolev Met Poincaré. Mem. Am. Math. Soc. 145, 203-207 (2000)
17. Hansen, W., Nadirashvili, N.: Mean values and harmonic functions. Math. Ann. 297(1), 157-170
(1993)
18. Hansen, W., Nadirashvili, N.: A converse to the mean value theorem for harmonic functions. Acta
Math. 171(2), 139-163 (1993)
19. Hansen, W., Netuka, I.: Volume densities with the mean value property for harmonic functions. Proc.
Am. Math. Soc. 123(1), 135-140 (1995)
20. Heath, D.: Functions possessing restricted mean value properties. Proc. Am. Math. Soc. 41, 588-595
(1973)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1702.07642

Harmonic functions on metric measure spaces 185

21.
22.
23.
24.
25.

26.
27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.
39.

40.

41.
42.

43.

44.

45.

46.

47.
48.

49.
50.

51.

52.

Heber, J.: On harmonic and asymptotically harmonic homogeneous spaces. Geom. Funct. Anal. 16(4),
869-890 (2006)

Heikkinen, T., Lehrbéck, J., Nuutinen, J., Tuominen, H.: Fractional maximal functions in metric mea-
sure spaces. Anal. Geom. Metr. Spaces 1, 147-162 (2013)

Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York (2001)
Heinonen, J.: Nonsmooth calculus. Bull. Am. Math. Soc. (N.S.) 44(2), 163-232 (2007)

Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math.
181, 1-61 (1998)

Hua, B., Kell, M., Xia, C.: Harmonic functions on metric measure spaces. arXiv:1308.3607

Kenig, C., Preiss, D., Toro, T.: Boundary structure and size in terms of interior and exterior harmonic
measures in higher dimensions. J. Am. Math. Soc. 22(3), 771-796 (2009)

Kijowski, A.: Characterization of mean value harmonic functions on norm induced metric measure
spaces with weighted Lebesgue measure. arxiv:1804.10005

Kinnunen, J., Shanmugalingam, N.: Polar sets on metric spaces. Trans. Am. Math. Soc. 358(1), 11-37
(2006)

Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Stud. Math. 131, 1-17
(1998)

Kuratowski, K.: Topology, vol. 2. Academic Press, New York (1968)

Lichnerowicz, A.: Sur les espaces riemanniens complétement harmoniques. Bull. Soc. Math. Fr. 72,
146-168 (1944)

Li, P, Schoen, R.: L? and mean value properties of subharmonic functions on Riemannian manifolds.
Acta Math. 153(3—4), 279-301 (1984)

Liu, Q., Schikorra, A.: General existence of solutions to dynamic programming equations. Commun.
Pure Appl. Anal. 14(1), 167-184 (2015)

Llorente, J.: Mean value properties and unique continuation. Commun. Pure Appl. Anal. 14(1), 185—
199 (2015)

Luiro, H., Parviainen, M., Saksman, E.: On the existence and uniqueness of p-harmonious functions.
Differ. Integral Equ. 27(3—4), 201-216 (2014)

Manfredi, J., Parviainen, M., Rossi, J.: On the definition and properties of p-harmonious functions.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2), 215-241 (2012)

Marstrand, J.: The (¢, s) regular subsets of n-space. Trans. Am. Math. Soc. 113, 369-392 (1964)
Masson, M., Siljander, J.: Holder regularity for parabolic De Giorgi classes in metric measure spaces.
Manuscr. Math. 142(1-2), 187-214 (2013)

Mathematics@CUHK A mathematical blog, https://cuhkmath.wordpress.com/2015/08/14/mean-
value-theorems-for-harmonic-functions-on-riemannian-manifolds/. Accessed at 2.X1.2017
Nikolayevsky, Y.: Two theorems on harmonic manifolds. Comment. Math. Helv. 80(1), 29-50 (2005)
Picardello, M., Woess, W.: A converse to the mean value property on homogeneous trees. Trans. Am.
Math. Soc. 311(1), 209-225 (1989)

Preiss, D.: Geometry of measures in R": distribution, rectifiability, and densities. Ann. Math. (2)
125(3), 537-643 (1987)

Ranjan, A., Shah, H.: Harmonic manifolds with minimal horospheres. J. Geom. Anal. 12(4), 683-694
(2002)

Schoen, R., Yau, S.-T.: Lectures on Differential Geometry, Conference Proceedings and Lecture Notes
in Geometry and Topology. I. International Press, Cambridge (1994)

Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces.
Rev. Mat. Iberoamericana 16(2), 243-279 (2000)

Shanmugalingam, N.: Harmonic functions on metric spaces. Ill. J. Math. 45, 1021-1050 (2001)
Shanmugalingam, N.: Some convergence results for p-harmonic functions on metric measure spaces.
Proc. Lond. Math. Soc. (3) 87(1), 226-246 (2003)

Tolsa, X.: Uniform measures and uniform rectifiability. J. Lond. Math. Soc. (2) 92(1), 1-18 (2015)
Todjihounde, L.: Mean-value property on manifolds with minimal horospheres. J. Aust. Math. Soc.
84(2), 277-282 (2008)

Viisild, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol.
229. Springer, Berlin, xiv+144 pp (1971)

Weinberger, M.H.: Maximum Principles in Differential Equations, corrected reprint of the 1967 orig-
inal. Springer, New York, x+261 (1984)

@ Springer


http://arxiv.org/abs/1308.3607
http://arxiv.org/abs/1804.10005
https://cuhkmath.wordpress.com/2015/08/14/mean-value-theorems-for-harmonic-functions-on-riemannian-manifolds/
https://cuhkmath.wordpress.com/2015/08/14/mean-value-theorems-for-harmonic-functions-on-riemannian-manifolds/

186 T. Adamowicz et al.

53. Willmore, T.J.: Mean value theorems in harmonic Riemannian spaces. J. Lond. Math. Soc. 25, 54-57
(1950)

54. Yau, S.-T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28,
201-228 (1975)

55. Zalcman, L.: Mean values and differential equations. Isr. J. Math. 14, 339-352 (1973)

56. Zucca, F.: The mean value property for harmonic functions on graphs and trees. Ann. Mat. Pura Appl.
(4) 181(1), 105-130 (2002)

@ Springer



	Harmonic functions on metric measure spaces
	Abstract
	1 Introduction
	2 Preliminaries
	3 Harmonic functions
	3.1 Examples of weakly and strongly harmonic functions, relations to p-subharmonic functions

	4 Harnack estimates, maximum principles, Hölder and Lipschitz continuity
	5 The Lipschitz regularity and uniform measures: weak upper gradients of harmonic functions
	6 The Dirichlet problem
	7 The Liouville theorem
	Acknowledgements
	References




