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Abstract
We introduce and study strongly and weakly harmonic functions on metric measure
spaces defined via the mean value property holding for all and, respectively, for some
radii of balls at every point of the underlying domain. Among properties of such
functions we investigate various types of Harnack estimates on balls and compact
sets, weak and strong maximum principles, comparison principles, the Hölder and the
Lipschitz estimates and some differentiability properties. The latter one is based on
the notion of a weak upper gradient. The Dirichlet problem for functions satisfying
the mean value property is studied via the dynamical programming method related
to stochastic games. Finally, we discuss and prove the Liouville type theorems. Our
results are obtained for various types of measures: continuous with respect to a metric,
doubling, uniform,measures satisfying the annular decay condition.Relations between
such measures are presented as well. The presentation is illustrated by examples.
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1 Introduction

Harmonic functions and the related Dirichlet problem are one of the most classical
and fundamental subjects of studies in mathematical analysis and theory of PDEs. One
studies harmonic functions and their generalizations in various settings and contexts,
for instance in the Euclidean domains, on manifolds, in the setting of trees, also in
Banach spaces. Recent two decades have been the period of an intensive development
of yet another area of mathematics, the analysis on metric measure spaces. Its studies
bring new approaches and sheds new light also on the theory of harmonic functions.
The results due to Cheeger [9], Hajłasz–Koskela [16], Heinonen–Koskela [25] and
Shanmugalingam [46], to mention just few mathematicians contributing to the growth
of the analysis on metric spaces, laid foundations for the first order Calculus and
notions of gradient in metric spaces. See, for instance, a survey by Heinonen [24]
for the panorama of the area and further references. Basing on the notion of the weak
upper gradient one can study theminima of theDirichlet energy obtaining counterparts
of p-harmonic functions and mappings in the metric setting with the harmonic case
corresponding to p = 2, see e.g. Shanmugalingam [47]. Related is an approach based
on the Cheeger derivative and a metric counterpart of the tangent space, see [9].

In this work we present another approach to harmonicity on metric measure spaces
based on functions which satisfy the mean value property for all balls centered at the
points of the given open set and contained in this set. Harmonic functions of such kind
were introduced by Gaczkowski and Górka [13]. Namely, in [13] the authors study
locally integrable real-valued functions defined on an open subset � ⊂ X of a metric
measure space (X , d, μ) requiring that the mean value property for f holds at every
x ∈ � and for all balls B(x, r) � �:

f (x) = 1

μ(B(x, r))

∫
B(x,r)

f (z)dμ(z).

In this work we call such functions strongly harmonic, see Definition 3.1.We continue
investigations of their properties, as well as introduce the so-called weakly harmonic
functions which are required to satisfy the mean value property only for at least one
admissible radius at every point of an open set. Our definition is motivated by the
classical and subtle investigations in the Euclidean setting due to e.g. Koebe, Volterra
and Kellogg, Hansen and Nadirashvili, and Blaschke, Privaloff and Zaremba.We refer
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to Sect. 3 for a brief historical sketch of the studies on the size of the set of admissible
radii sufficient to imply the harmonicity. Moreover, one of the main goals of our
work is to provide a uniform approach to the mean-value harmonicity and extract the
properties shared by functions with the mean-value property in various settings, as
illlustrated by examples in Sect. 3.

In Preliminaries we introduce and recall some basic definitions of the metric anal-
ysis. In particular, we define continuity of a measure with respect to a metric, see
Definition 2.1. Such a property has been important in the previous studies of harmonic
functions, see [13] (also [15]).Moreover,we study someproperties of ameasure imply-
ing its continuity with respect to the givenmetric and notice that this condition gives us
wide class of metric measure spaces. It turns out, for instance, that doubling measures
in geodesic spaces have this property, see Proposition 2.1. Our studies involve various
other types of measures, e.g. uniform measures and measures satisfying δ-annular
decay condition for some δ ∈ (0, 1]. However, measures continuous with respect to a
distance appear to be the most general among the aforementioned measures (see the
discussion and the diagram following Proposition 2.1 in Preliminaries).

In Sect. 3 we bring on stage main characters of the paper, i.e. strongly and weakly
harmonic functions, motivate their definitions and introduce some of their basic prop-
erties and natural relatives such as sub- and superharmonic functions. The latter two
notions will play a vital role in the studies of the Dirichlet problem in Sect. 6. Fur-
thermore, we study how to generate new sub- and superharmonic functions from the
existing ones; we also mention the p-harmonic functions as defined via the mini-
mization of the p-Dirichlet energy and address their relation to harmonic functions
as studied in our work. Additionally, we provide a number of examples of strongly
and weakly harmonic functions in various settings, including manifolds, trees and
weighted R

n .
The key geometric and regularity properties of harmonic functions are presented

and studied in Sects. 4 and 5. We identify conditions implying continuity of strongly
and weakly harmonic functions as well as we discuss various Harnack inequalities on
balls and compact sets. This allows us to obtain important tools of the potential and
geometric function theories, namely the weak and strongmaximum principles, and the
comparison principle. While for strongly harmonic functions such properties could
be expected, the fact that they are also available in the setting of weakly harmonic
functions might be surprising. Having established the aforementioned properties of
harmonic functions, we show one of the main results of Sect. 4, namely the local
Hölder continuity of strongly and weakly harmonic functions (i.e. Hölder continuity
on compact subsets of an underlying domain), see Theorem 4.1. For strongly harmonic
functions we prove this result for geodesic doubling measure spaces with the Hölder
exponent depending on the doubling constant only, whereas for weakly harmonic
functions we, additionally, require that a compact set K remains enough away from
the boundary of the domain and the admissible radii for points in K are uniformly
separated from zero and uniformly bounded from the above. The final topic studied in
Sect. 4 is theHölder andLipschitz regularity of harmonic functions in spaces satisfying
the so-called δ-annular decay property for some δ ∈ (0, 1] with the Lipschitz case
corresponding to δ = 1, see e.g. Buckley [8]. Roughly speaking, such a property
relates the measure of an annular ring to its thinness, cf. Definition 4.1. Moreover, it
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turns out that length doubling metric spaces have an annular decay property for some δ

while a space with measure continuous with respect to a distance possesses 1-annular
decay property. In Theorem 4.2we provide the Hölder and Lipschitz estimates on balls
and compact sets. By imposing stronger assumptions on measure than in Theorem 4.1
we are able to obtain finer estimates on balls already in the Hölder case, while on
compact subsets we not only show the Hölder regularity as in Theorem 4.1 but also
provide estimates with explicit constants and exponent δ. In the Lipschitz case not
covered byTheorem4.1we also have explicit constants, however our estimates depend
additionally on a Lebesgue number of a choosen covering.

We continue studies of the regularity properties of harmonic functions in Sect. 5.
There, we study uniform measures, i.e. such measures μ that every ball B of radius
r > 0 satisfies

μ(B) = C r Q, for given C > 0 and Q ≥ 1.

Uniform measures appear in geometric measure theory, for example in relation to the
Marstrand theorem, in the studies of rectifiable measures and in the theory of incom-
pressible flows in PDEs, see the discussion following Definition 5.1. Proposition 5.1
shows that in spaces with uniform measures strongly and weakly harmonic functions
are locally Lipschitz. Moreover, we compute Lipschitz constants more accurately than
in Theorem 4.2. In particular we avoid using a Lebesgue number of a covering. These
observations allow us to complete the presentation in Sections 4 and 5 with differen-
tiability results based on Cheeger’s work [9]. In Corollaries 5.1 and 5.2 we describe
conditions on metric measure spaces implying that strongly and weakly harmonic
functions have weak upper gradients. The (1, p)-Poincaré inequality plays a crucial
role for such results to hold.

Section 6 is entirely devoted to studying the Dirichlet problem for harmonic func-
tions.We address the following fundamental problems: whether there exists a function
with given boundary data satisfying the mean value property inside the domain and
whether it is unique, and if so how to construct such a function? In order to solve the
first problem we take an approach based on the dynamical programming principle.
The idea of this method originates from the stochastic games, especially tug-of-war
games and related p-harmonious functions (see e.g. Manfredi et al. [37]), and is based
on setting up an integral operator, iterating it and proving that such an iteration pro-
cess converges to a function. We adapt method by Luiro, Parviainen and Saksman
[36], recently developed for the Euclidean domains, in the metric setting. According
to our best knowledge such an approach to the Dirichlet problem on metric spaces is
new in the literature. In Theorem 6.1 we show that given a domain and a measurable
boundary data one obtains a function which satisfies the mean value property with
respect to exactly one radius at every point of the domain, provided that this point is
enough far away from the boundary. Moreover, such a solution satisfies the boundary
data condition. Furthermore, Theorem 6.2 extends the previous result to the setting
of continuous boundary data. We also prove that if a Dirichlet problem has a contin-
uous subharmonic solution, then it has the weakly harmonic solution with the same
continuous boundary data, see Theorem 6.3.
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In thefinal section of the paperwediscuss another fundamental geometric properties
of harmonic functions, namely the Liouville type theorems. In Theorem7.1we provide
a fairly general condition for ameasurewhich implies that a strongly(weakly) bounded
harmonic function defined in the whole space must be constant. Furthermore, we
discuss some sufficient conditions on measure to guarantee that the hypotheses of
Theorem 7.1 is satisfied. In particular, this is the case if the measure of the space is
finite or in the length spaces with a doubling measure. Our discussion is illustrated
with examples. We, for instance, show that even in a simple case of R there exist
non-Lebesgue measures for which bounded entire harmonic functions need not be
constant.

2 Preliminaries

Let (X , d, μ) be a metric measure space equipped with a metric d and measure μ. A
ball in space X is denoted by B := B(x, r) for x ∈ X and a radius r > 0. In what
follows we will assume thatμ is a Borel regular measure with 0 < μ(B) < ∞ for any
ball B ⊂ X . Moreover, we assume that X is proper, that is closed bounded subsets of
X are compact. For the sake of convenience we also assume that X is connected.

We say that a measure μ is doubling if there is a constant Cμ > 0 such that for all
balls B = B(x, r) = {y ∈ X : d(x, y) < r},

μ(2B) ≤ Cμμ(B),

where 2B(x, r) = B(x, 2r). If μ is doubling, then X is complete if and only if it is
proper (i.e. every closed bounded set is compact), see Proposition 3.1 in Björn–Björn
[4].

One of the consequences of doubling property of μ is that there exist C, Q > 0
such that for all x ∈ X , 0 < r ≤ R and y ∈ B(x, R),

μ(B(y, r))

μ(B(x, R))
≥ 1

C

( r

R

)Q
. (1)

In fact, Q = log2 Cμ and C = C2
μ will do, see Lemma 3.3 in Björn–Björn [4], but

theremay exist a better, that is smaller, exponent Q. Moreover, we note that (1) implies
that μ is doubling, i.e. μ is doubling if and only if there is an exponent Q such that
(1) holds.

Furthermore, in what follows wewill often appeal, without mentioning it explicitly,
to the following property of doubling measures. If (X , d, μ) is a doubling metric
measure space and � ⊂ X is bounded with μ(�) > 0 (e.g. � is a domain), then for
any x ∈ � and 0 < r < diam� it holds that

μ(B(x, r))

μ(�)
≥ 1

C

( r

diam�

)log2 Cμ

.

123



146 T. Adamowicz et al.

We say that X is Ahlfors Q-regular if there is a constant C such that

1

C
r Q ≤ μ(B(x, r)) ≤ Cr Q

for all balls B(x, r) ⊂ X with r < 2 diam X . If we only require the left hand side of
the inequality to hold, then we say that X is lower Q-Ahlfors regular.

One of the important properties of the metric spaces considered in the paper is the
following relation between the metric and the measure.

Recall that A�B stands for a symmetric difference of sets A, B ⊂ X and is defined
as follows:

A�B := (A\B) ∪ (B\A).

Definition 2.1 (cf. Definition 2.2 in [13]) Let (X , d, μ) be a metric measure space.
We say that a measure μ is continuous with respect to metric d if for all x ∈ X and
all r > 0 it holds that

lim
��y→

d
x
μ(B(x, r)�B(y, r)) = 0.

The measure μ is called metrically continuous.

According to our best knowledge the above notion appeared for the first time in the
literature in Górka [15].

The following lemma collects some basic facts about continuity of a measure with
respect to the metric (see [13] for the proofs). In the presentation below we will appeal
to these properties a number of times and, therefore, for the sake of convenience we
present them here.

Lemma 2.1 Let (X , d, μ) be a metric space with a Borel regular measure μ. Then the
following hold:

1. If μ is continuous with respect to the metric d, then the map x → μ(B(x, r)) is
continuous in d.

2. If for every x ∈ X and every r > 0 it holds that μ(∂ B(x, r)) = 0, then μ is
continuous with respect to the metric d.

3. If for every x ∈ X the function r → μ(B(x, r)) is continuous, then μ is continuous
with respect to the metric d.

Proof For the proof of Property 1, see Corollary 2.1 in [13]. Property 2 is proved in
Lemma 2.1 in [13], while Property 3 is proved in Theorem 2.1 in [13]. 
�

Following [13], we recall that a metric space (X , d) has the segment property if for
any x, y ∈ X there exists a continuous curve γ : [0, 1] → X joining x and y and such
that for all t ∈ [0, 1] we have that

d(x, y) = d(x, γ (t)) + d(γ (t), y).

123



Harmonic functions on metric measure spaces 147

Recall further, that a metric space (X , d) is geodesic if any two points x, y ∈ X can
be joint by a curve γ whose length equals distance d(x, y). For a large class of metric
spaces we can easily show their bi-Lipschitz equivalence to geodesic spaces. Namely,
let X be a Loewner Ahlfors regular space (see Definition 3.1 in Heinonen–Koskela
[25]). Then X is quasiconvex, see Theorem 8.23 in Heinonen [23]. If X is additionally
proper, then one can introduce a new metric in X by taking the infimum of lengths of
all rectifiable curves joining two points, see Remark 9.11 and Chapter 8 in [23], also
[25] for further discussion on Loewner spaces. According to Theorem 2.2 in [13], if
(X , d, μ) is a doubling measure space with the segment property, thenμ is continuous
with respect to metric d. In a consequence we get the following result.

Proposition 2.1 Let (X , d, μ) be a geodesic doubling metric measure space. Then μ

is continuous with respect to metric d.

Proof By Theorem 2.2 in [13] it is enough to show that a geodesic space has the
segment property. Indeed, let x, y ∈ X and let γxy be a curve such that d(x, y) =
l(γxy). Choose t ∈ [0, 1] and denote z = γ (t). Then l(γxy) = l(γxz) + l(γzy).
Moreover, l(γxz) = d(x, z) and l(γzy) = d(z, y). Otherwise, suppose that l(γxz) >

d(x, z). Then, d(x, z)+d(z, y) < l(γxz)+l(γzy) = d(x, y), contradicting the triangle
inequality. Therefore, we have that

d(x, z) + d(z, y) = l(γxz) + l(γzy) = l(γxy) = d(x, y) ≤ d(x, z) + d(z, y).

Hence, X has a segment property and the proof of the proposition is completed. 
�
In the paper we investigate other types of measures, for instance uniform measures

(Definition 5.1) and measures satisfying δ-annular decay condition for some δ ∈
(0, 1] (Definition 4.1). As mentioned in the Introduction, it turns out that measures
continuouswith respect to ametric seem to bemost general among the aforementioned
measures. We present the following list of relations between measures studied below.

Denote by (X , d, μ) a metric measure space and the following properties:

(1) X is geodesic and μ is doubling,
(1’) X is a length space and μ is doubling,
(2) X has the δ-annular decay property for some δ ∈ (0, 1],
(2’) X has the 1-annular decay property,
(3) μ is a uniform measure,
(4) μ is continuous with respect to d.

Then, the following inclusions hold:

(1) �⇒ (4) (Proposition 2.1)

(1′) �⇒ (2) �⇒ (4) (Definition 4.1 and the discussion

following it, Remark 2)

(4) �⇒/ (2) (Example 9)

(3) �⇒ (2′)
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We close the preliminary part of our presentation with recalling some basic defini-
tions and facts about the first order Calculus on metric spaces. The presented results
will be employed in Sect. 5 in the studies of differentiability properties of harmonic
functions in metric spaces. For foundations of the analysis on metric spaces we refer
e.g. to a book and a survey article by Heinonen [23,24], see also Heinonen–Koskela
[25] and Hajłasz–Koskela [16].

We say that a property holds for p-a.e. rectifiable curve, if it fails only for a curve
family�with zero p-modulus, see e.g.Väisälä [51] and Section 2 in [25] for definitions
and properties of the modulus of curve families in Euclidean and metric settings,
respectively.

Definition 2.2 Let (X , d, μ) be a metric measure space and f : X → [−∞,∞].
We say that a nonnegative Borel function g f on X is an upper gradient of f for all
nonconstant rectifiable curves γ : [0, l(γ )] → X , parameterized by arc length ds, we
have

| f (γ (0)) − f (γ (l(γ )))| ≤
∫

γ

g f ds (2)

whenever both f (γ (0)) and f (γ (l(γ ))) are finite, and
∫
γ

g f ds = ∞ otherwise.
If g f is a nonnegative measurable function on X and if (2) holds for p-a.e. non-

constant rectifiable curve, then g f is called a p-weak upper gradient of f .

Upper gradients were introduced in [25], whereas p-weak upper gradients were first
defined in Koskela–MacManus [30]. A relation between those two notions follows
from a result in [30], where it is also shown that a p-weak upper gradient of f can be
approximated by a sequence of upper gradients of f in L p(X). Moreover, if f has an
upper gradient in L p(X), then it has a minimal p-weak upper gradient in L p(X), see
Corollary 3.7 in Shanmugalingam [47].

Let p ≥ 1. We say that X supports a (1, p)-Poincaré inequality if there exist
constants CP I > 0 and λ ≥ 1 such that for all balls B ⊂ X and all integrable
functions f on X and all upper gradients g f of f ,

∫
B

| f − fB | dμ ≤ CP I diam B

(∫
λB

g p
f dμ

)1/p

,

where

fB :=
∫

B
f dμ := 1

μ(B)

∫
B

f dμ.

3 Harmonic functions

In this section we introduce and present some elementary properties of the two fun-
damental notions of our work, namely weakly harmonic and (strongly) harmonic

123



Harmonic functions on metric measure spaces 149

functions for subsets of metric measure spaces, both based on the mean value prop-
erty.

Our first definition corresponds to the most classical mean value property required
to hold at every point of the underlying domain. Functions with such property will be
called strongly harmonic. However, in what follows we will often drop term strongly
and write, harmonic functions.

Definition 3.1 Let � ⊂ X be an open set. A locally integrable function f : � →
R is called (strongly) harmonic in � if the following inequality holds for all balls
B(x, r) � � with x ∈ � and r > 0:

f (x) = 1

μ(B(x, r))

∫
B(x,r)

f (z)dμ(z).

The set of all harmonic functions in � will be denotedH(�,μ) andH(�) in case the
measure is fixed.

The studies of relations between the harmonicity and the mean value property in
the Euclidean setting have long history. It was Gauss who, perhaps first, observed that
harmonic functions posses the mean value property. The opposite question, whether
one need to require mean value property to hold for all radii of balls centered at the
given point has also been investigated by several mathematicians, to mention results
due to Koebe, Volterra and Kellogg, Hansen and Nadirashvili, and Blaschke, Privaloff
andZaremba.We refer to Section 2 inLlorente [35] for an interesting historical account
on the mean value property and harmonicity; also to Heath [20] for further studies on
to what extent the restricted mean value property is sufficient for harmonicity in the
Euclidean setting. In order to motivate Definition 3.2 below more thoroughly, let us
just mention that Koebe, for instance, showed that in order for a continuous function
in a domain � ⊂ R

n to be harmonic it is enough to satisfy the mean value property at
every x ∈ � with respect to some family of radii r x with inf r x = 0. If we strengthen
the assumption on function and require it to be continuous on the closure of a domain,
then Volterra and Kellogg proved that one radius at every point is enough for the mean
value property to imply the harmonicity. Hansen and Nadirashvili [17,18] improved
the previous results by substituting continuity of a function up to the boundary by
its boundedness. Blaschke, Privaloff and Zaremba independently observed that an
asymptotic mean value property is enough to imply the harmonicity. Their results
facilitated the discovery of p-harmonious functions, see Manfredi–Parviainen–Rossi
[37] for the definitions and relations between p-harmonious functions and stochastic
tug-of-war games.

In order to provide examples of studies beyond the Euclidean framework, let us
mention that the mean value property appears in the setting of differential geome-
try, e.g. in the studies of the so-called harmonic manifolds and related notions of
horospheres and the Lichnerowicz Conjecture. Recall, that a complete Riemannian
manifold M is called harmonic if harmonic functions on M satisfy the mean value
property, see Willmore [53], Ranjan-Shah [44], also Todjihounde [50] for further def-
initions and references. Furthermore, see e.g. Picardello-Woess [42] and Zucca [56]
for the studies of mean value property in the context of harmonic functions on trees.
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Motivated by the above considerations and the literature, we introduce the following
more general variant of harmonic functions on metric measure spaces.

Definition 3.2 Let � ⊂ X be an open set. A locally integrable function f : � → R is
calledweakly harmonic in� if for every x ∈ � there exists a non-empty set of positive
radii r x

α for α ∈ I such that the following inequality holds for all balls B(x, r x
α ) � �:

f (x) = 1

μ(B(x, r x
α ))

∫
B(x,r x

α )

f (z)dμ(z).

The set of all weakly harmonic functions in � will be denoted wH(�,μ) and
wH(�) in case the measure is fixed.

Aprioriwe allow set of indexes I to be any non-empty set, e.g. I can be uncountable.
However, in what follows we will study weakly harmonic functions under minimal
assumptions, namely that at every point there is at least one admissible radii and that
I is at most countable.

We denote by

r x
M := sup

i∈{1,2,...}
r x

i

and related r�
M := supx∈� r x

M . However, in the presentation below we shall write
r�

M := rM , if � is fixed or clear from the context. We further remark, that if � is a
bounded domain, then rM ≤ diam�.

In what follows also the minimal radius at the point will play a role. Namely, for
any x ∈ � we denote by

r x
m := inf

i∈{1,2,...} r x
i ≥ 0, r�

m := inf
x∈�

r x
m .

We will often require r x
m > 0 or rm > 0.

Similarly we define super- and subharmonic functions.

Definition 3.3 Let � ⊂ X be an open set. A locally integrable function f : � → R

is called a subharmonic(superharmonic) in � if the following inequality holds for all
balls B(x, r) � � with x ∈ � and r > 0:

f (x) ≤ (≥)
1

μ(B(x, r))

∫
B(x,r)

f (z)dμ(z)

We denote S−H(�,μ) the set of all subharmonic functions in � with respect to
the measure μ while the set of all superharmonic functions in � will be denoted
S+H(�,μ). For the sake of simplicity when the measure is fixed, we will often write
S−H(�) (S+H(�)).

Similarly, we define weakly sub- and superharmonic functions, cf. Definition 3.2
and denote them by wS−H(�,μ) and wS+H(�,μ), respectively (also wS−H(�)

and wS+H(�), respectively).
We present now further properties of harmonic functions.
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Proposition 3.1 The following properties hold:

1. Let f ∈ H(�). If m ∈ R, then f − m ∈ H(�) and ( f − m)+ ∈ S+H(�).
2. Let f ∈ S+H(�). Let F : f (�) → R be concave and increasing. Then F ◦ f is

superharmonic. Furthermore, if f ∈ H(�), then F ◦ f is superharmonic for F
merely concave.

3. Let f ∈ S−H(�). Let F : f (�) → R be convex and increasing. Then F ◦ f is
subharmonic. Furthermore, if f ∈ H(�), then F ◦ f is subharmonic for F merely
convex.

The analogous properties hold for weakly harmonic (sub-, and superharmonic) func-
tions.

Proof Denote B := B(x, r) � � a ball centered at x ∈ � with r > 0. In order to
show Property 1 we note that

f (x) − m = 1

μ(B)

∫
B

f (z)dμ − m
1

μ(B)

∫
B
1dμ = 1

μ(B)

∫
B
( f (z) − m)dμ.

Similarly, we show that

1

μ(B)

∫
B
( f (z) − m)+dμ = 1

μ(B)

∫
B∩{ f >m}

( f (z) − m)dμ

+
∫

B∩{ f ≤m}
0dμ ≤ ( f (x) − m)+.

The Young inequality gives us Property 2.

F( f (x)) ≥ F

(
1

μ(B)

∫
B

f (z)dμ

)
≥ 1

μ(B)

∫
B

F( f (z))dμ. (3)

If f ∈ H(�), then the first inequality above becomes equality giving us the second
part of Property 2.

The proof of Property 3 follows the same lines as the one for Property 2. In this
case inequalities in (3) are reversed due to convexity of F .

For the proofs of Properties 1–3 for weakly sub/super/harmonic functions one
proceeds as above restricting the discussion only to balls with admissible radii. 
�

3.1 Examples of weakly and strongly harmonic functions, relations to
p-subharmonic functions

We begin with an example showing that already in simple one-dimensional case of R

with the weighted Lebesgue measure, weakly and strongly harmonic functions may
differ.

Example 1 Let (R, | · |, |x |dx) be a metric measure space equipped with the Euclidean
distance and a measure μ such that dμ := dμ(x) = |x |dx . Define a function f :
R → R as follows
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f (x) =
{

1
x χR\{0}, x �= 0,

0, x = 0.

Then f is weakly harmonic but not harmonic. Indeed, f is locally integrable and by
letting y �= 0 and r < |y|, we find that

∫
B(y,r)

f (z)dμ =
∫ y+r

y−r
1
x |x |dx∫ y+r

y−r |x |dx
= 1

y
= f (y).

Moreover, for any r > 0 we have

∫
B(0,r)

f (z)dμ = 0 = f (0).

On the other hand, if we take y > 0 and r > y, then

μ(B(y, r)) =
∫ y+r

y−r
|x |dx = r2 + y2,

and thus

∫
B(y,r)

f (z)dμ = 2y

y2 + r2
�= f (y).

Similar situation occurs in R
n for n > 1, as illustrated by the following example.

Example 2 Let X = R
n be equipped with the Euclidean distance and the Lebesgue

measure. One considers a sequence of annuli B(0, k + 1)\B(0, k) for k = 0, 1, . . .
and related functions: uk(x) = akφn(x) + bk , where φn stands for the fundamen-
tal harmonic solution in R

n and coefficients ak, bk are choosen properly, so that the
resulting function u : R

n\{0} → R, u ≡ uk for k = 0, 1, . . . is continuous in R
n\{0}.

Moreover, u turns out to be weakly-, but not strongly harmonic. Similar construc-
tion can be obtained in the unit disc in R

n . (See the discussion following Example
2.1.3 in Llorente [35] and the references therein for the details of the aforementioned
constructions.)

It turns out that already the Euclidean setting with the weighted Lebesgue measure
leads to interesting results in the context of the mean-value property.

Example 3 Theorem 5 in Bose [7] asserts that for a C2-regular weight w being a
harmonic eigeinvalue, a C2 function u is strongly harmonic in a domain � ⊂ R

n , for
n ≥ 2 with respect to the weighted Lebesgue measure wdx if and only if u satisfies
the following equation in �:

w�u + 2〈∇u,∇w〉 = 0.
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For further studies of the weighted mean-value we refer to e.g. Hansen–Netuka [19],
Aikawa [2] and Kijowski [28].

The next two examples relate the mean-value harmonic functions to the studies in
the context of manifolds (cf. the discussion above).

Example 4 The notion of the harmonicmanifold grows from the studies of counterparts
of the fundamental solution of the Laplace equation on manifold (H.S. Ruse, 1930).
The Lichnerowicz conjecture, confirmed for dimensions 2-5, characterizes harmonic
manifolds as either flat or rank-one symmetric, see [32], see also Nikolayevsky [41].
Recently, characterization of homogeneous harmonic manifolds has been obtained by
Heber [21]. From our point of view the following result due toWillmore is interesting,
see Theorem 3 in [53]:

A Riemannian manifold M is harmonic if and only if every solution to the
Beltrami–Laplace operator has the mean-value property over any geodesic
sphere.

Example 5 Let M be a complete Riemmanian manifold with the sectional curvature
KM ≤ k in geodesic ball B(x, R) in M . Suppose further that R is less than the
injectivity radius of M . Then, Theorem in Chapter II.6 (pg. 75) in Schoen–Yau [45],
asserts that any smooth nonnegative function u on M with �u ≥ 0 has the sub mean-
value property on B(x, R). Therefore, if M has the sectional curvature KM bounded
uniformly from above by k, then u is weakly sub-harmonic in M with admissible
radii less the injectivity radius of M . More general, u is weakly sub-harmonic in those
subdomains of M , where KM is bounded from above.

Analogous observation for super weakly-harmonic functions holds if, instead of the
bound on the sectional curvature, the lower bound is imposed on the Ricci curvature,
see Theorem 10 in [40].

In the following example we discuss the mean-value harmonic functions in the
context of Carnot–Carathéodory groups (CC groups, for short).

Example 6 In [1] we studied relations between the mean-value harmonicity in the
setting ofCCgroups and, in particular, inHeisenberg groups. Theorem4.2 in [1] shows
that strongly harmonic functions in such groups are smooth. Moreover, functions in
H are also subelliptic harmonic, i.e. satisfy the L-harmonic equation, see Theorem
4.3 in [1]. Hence, functions in H are 2-harmonic in the sense of minimization of the
2-Dirichlet energy of the horizontal gradient. In fact, we provide examples showing
that the opposite inclusion does not hold in general. Moreover, we identify a large
class of subelliptic harmonic functions that are strongly harmonic. Namely, a subclass
of the so-called spherical harmonic polynomials, see Observation 5.1 and Example 6
in [1].

An important setting, in which weakly and strongly harmonic function appear, is
the one of the discrete metric spaces, such as graphs.

Example 7 Let T denote the homogeneous infinite tree of degree n such that each
vertex has exactly the same number of neighbours n + 1. Then, it is fairly easy to
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see that a function satisfying the discrete Laplace equation defined as follows is also
strongly harmonic (cf. Lemma 1 in [42]):

�u(x) := u(x) − 1

n + 1

∑
y∼x

u(y),

where the sum is taken with respect to all verticies adjacent to vertex x . In fact, the
stronger result holds. Namely, suppose that u > 0 is weakly harmonic with exactly
one admissible radius r x at each vertex x of T . Then u is harmonic in the sense of
the discrete laplasian provided that admissible radii satisfy the certain Lipschitz-type
growth (see Theorem in [42]). Moreover this condition is also necessary.

Another definition of harmonic functions in the Euclidean setting comes from the
minimization of the 2-Dirichlet energy and the fact that the related Euler-Lagrange
equation is the Laplace equation. Such a variational approach allows to define the
corresponding harmonic, or more general p-harmonic, functions also in the setting
of metric measure spaces. The properties of p-harmonic functions and their potential
theory have been intensively studied in last two decades by several authors, e.g. by
Aikawa–Shanmugalingam [3], Björn–Björn [4], Björn–Björn–Shanmugalingam [5],
Shanmugalingam [47,48], Kinnunen–Shanmugalingam [29]. Let us point out some
differences between such functions and harmonic functions studied here. First, recall
that most of results for p-harmonic functions are obtained under assumptions that
the underlying space is a complete doubling metric measure space supporting (1, p)-
Poincaré inequality, whereas in our setting we allow various kinds of measures, see for
instance Proposition 2.1 and the discussion following it. Moreover, we do not neces-
sarily assume a Poincaré inequality to hold. Themost important difference between the
p-harmonic functions and harmonic functions as in Definition 3.1 is that p-harmonic
functions barely ever satisfy the mean value property (see e.g. Zalcman [55] for more
discussion on the mean value property for various differential operators). This prop-
erty may fail even if p = 2 and X = R

n , but the measure μ is not the Lebesgue
measure. Nevertheless, relations between the mean value property and p-harmonicity
play important role in stochastic games, see e.g. [37].

Some counterparts of the sub mean-value property for L p-norms are known to
hold in the manifold setting, see e.g. Li–Schoen [33, Theorem 2.1] and in the metric
setting, see [3, Formula (9)]. Below, we employ some potential theoretic results to
relate p-subminimizers to weakly harmonic functions.

Example 8 Let (X , d, μ) be an unbounded doubling metric measure space satisfying
the (1, p)-Poincaré inequality and let u ≥ 0 be a bounded continuous p-subminimizer
in X in the sense of Definition 7.7 in [4]. We will now investigate when u is weakly
subharmonic in X\{x ∈ X : u(x) = supX u}.

We remark that already in R
n for n ≥ 3 equipped with the Lebesgue measure and

the Euclidean distance, the Liouville theorem for subharmonic function may fail, see
e.g. a counterexample in Remark (iv), pg. 132 in Protter–Weinberger [52]. Therefore,
u need not be constant.

Set w := supX u − u. Since u is bounded in X , it holds that infX w = 0 and, thus,
for all ε > 0, xε ∈ X and a radius Rε > 0 such that infB(xε ,Rε ) w < ε. Observe that
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w ≥ 0 is bounded p-superminimizer in X . Therefore, by the weak Harnack inequality,
see Theorem 8.10 in [4], we may find q, C > 0 such that for all R ≥ Rε

(∫
B(y,2R)

wq
) 1

q ≤ C inf
B(y,R)

w ≤ C inf
B(xε ,Rε )

w < Cε,

where q and C depend only on p, doubling constant and the constants in the (1, p)-
Poincaré inequality. Indeed, the estimate follows from [4] in case B(xε, Rε) ⊂
B(y, R). Otherwise, one needs to increase R so that the corresponding inclusion
holds. Then, by applying the Young inequality, we obtain

lim
R→∞

∫
B(y,2R)

u = sup
X

u ≥ u(y), for all y ∈ X . (4)

We claim that at every y ∈ � := X\{x ∈ X : u(x) = supX u} there exists Ry > 0
such that

u(y) ≤
∫

B(y,Ry)

u, (5)

and so u is weakly subharmonic in �. Suppose that (5) fails at a given y ∈ �. Then,
for all R the opposite inequality holds at y contradicting (4), unless u(y) = supX u
which is ruled out by the definition of set �. Notice, that in order to ensure that a ball
of radius Ry , where (5) holds, is contained in � we need, for instance, to assume that
supX u is not attained by u in X .

Similarly it holds that u ∈ wH(�′), for any �′ ⊂ � where (5) can be verified for
all y ∈ �′, see Corollary 7.11 and Proposition 7.16 in [4].

4 Harnack estimates, maximum principles, Hölder and Lipschitz
continuity

In this section we show several geometric properties of strongly and weakly harmonic
functions such as the Harnack inequalities on balls and compact sets, strong and weak
maximum principles and comparison principles. One of themain results of this section
is the Hölder continuity of harmonic functions as in Definition 3.1 for geodesic metric
spaces with doubling measures, Theorem 4.1. Moreover, for spaces satisfying the
δ-annular decay condition, see Definition 4.1, we have more accurate estimates, cf.
Theorem 4.2. We also discuss relations between measures continuous with respect to
the distance and measures in Definition 4.1, see Remark 2 and Example 9.

First, we need to refine some results from Gaczkowski-Górka [13].

Proposition 4.1 (Continuity of harmonic functions) Let (X , d, μ) be a metric measure
space with measure μ continuous with respect to metric d. If f ∈ H(�,μ), then f is
continuous in �.
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The same assertion holds for f ∈ wH(�,μ) at points x ∈ � with the following
property: there exists a neighborhood U of x such that

{
r x
1 , r x

2 , . . .
} ∩

⋂
y∈U

{
r y
1 , r y

2 , . . .
} �= ∅. (6)

In other words in Proposition 4.1 we require that all points y in every neighborhood
U of a point x have at least one common radius with the set of admissible radii at x
for a weakly harmonic function f . Then, f is continuous at all points x ∈ � where
such property holds.

We note that here we do not assume that μ is doubling.

Proof Suppose that x, y ∈ � and fix r > 0. Then, we have

| f (x) − f (y)| =
∣∣∣∣ 1

μ(B(x, r))

∫
B(x,r)

f (z)dμ(z) − 1

μ(B(y, r))

∫
B(y,r)

f (z)dμ(z)

∣∣∣∣
=

∣∣∣∣ 1

μ(B(x, r))

∫
B(x,r)

f (z)dμ(z) − 1

μ(B(x, r))

∫
B(y,r)

f (z)dμ(z)

− μ(B(x, r)) − μ(B(y, r))

μ(B(x, r))μ(B(y, r))

∫
B(y,r)

f (z)dμ(z)

∣∣∣∣
≤ 1

μ(B(x, r))

∫
B(x,r)�B(y,r)

| f (z)|dμ(z)

+ |μ(B(x, r)) − μ(B(y, r))|
μ(B(x, r))μ(B(y, r))

‖ f ‖L1(B(y,r)). (7)

Recall that, by definition, function f ∈ H(�,μ) belongs to L1
loc(�). Let now y → x

in metric d. Then, by the continuity of μ with respect to d we have that μ(B(x, r) �
B(y, r)) → 0. This assumption together with the absolute continuity of the Lebesgue
integral with respect to the measure imply that f (y) → f (x).

Let now f ∈ wH(�) and x ∈ � satisfy the assumptions of proposition. Thus, for
any sequence {yk}∞k=1 converging to x for k → ∞ in metric d we have that for some
i ∈ N and all j, k ∈ N it holds that r x

i = r yk
j . Denote such a radius by r . This gives

us a radius common for points x and all yk for which the mean value property for f
holds. Then, estimate (7) holds for r and, as previously,

lim
yk→

d
x
μ(B(x, r) � B(yk, r)) = 0

completing the proof of the proposition. 
�
The following observation is an immediate consequence of Proposition 4.1.

Corollary 4.1 Let (X , d, μ) be a metric measure space with measure μ continuous with
respect to metric d. If f ∈ H(�,μ), then f is locally bounded in �. Furthermore,
f ∈ wH(�,μ) is locally bounded on sets E ⊂ � such that every x ∈ E satisfies
assumption (6) of Proposition 4.1.
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Next, we show that the fundamental Harnack estimate holds for both weakly and
strongly harmonic functions.

Lemma 4.1 (The Harnack inequality on balls, cf. Lemma 3.2 in [13]) Let X be a
metric measure space with doubling measure μ and let f ∈ H(�,μ) be a nonnegative
function on an open set � ⊂ X. Suppose that a ball B := B(x, r) ⊂ � is such that
B(x, 6r) � �. Then the following inequality holds

sup
B

f ≤ CH inf
B

f , (8)

where CH = C3
μ and Cμ stands for a doubling constant of μ.

Moreover, let f ∈ wH(�,μ) be a nonnegative function on a domain � ⊂ X.
Suppose that a ball B := B(x, r) ⊂ B(x, 2r B

M ) � � is such that

0 < r B
m ≤ sup

y∈B
r y

m < r < 3r < inf
y∈B

r y
M ≤ r B

M .

Then, the Harnack inequality (8) holds with constant

CH = C
log2

5r B
M

3r B
m

+1

μ .

Proof We follow the steps of reasoning in [13] and note that by assumptions on a
strongly harmonic function f the following inequality holds for any y, z ∈ B

∫
B(y,3r)

f dμ ≥
∫

B(z,r)

f dμ.

Hence, the harmonicity of f and the doubling property ofμ together with the fact that
B(y, 3r) ⊂ B(z, 5r) imply

f (z) ≤ μ(B(y, 3r))

μ(B(z, r))
f (y) ≤ μ(B(z, 5r))

μ(B(z, r))
f (y) ≤ C3

μ f (y). (9)

Similarly, if f is weakly harmonic, then the above approach gives us for y, z ∈ B
that

∫
B(y,3r)

f dμ ≥
∫

B(z,r)

f dμ ≥
∫

B(z,r z
i0

)

f dμ = f (z)μ(B(z, r z
i0
)).

In the last estimate we have also used the assumption that supy∈B r y
m < r , and hence

there exists an admissible radius at z such that r z
i0

< r . Moreover, it holds that

∫
B(y,3r)

f dμ ≤
∫

B(y,r y
M )

f dμ = f (y)μ(B(y, r y
M )),
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since by assumptions 3r < inf y∈B r y
M . By the analogy to the case of f ∈ H(�), we

obtain

f (z) ≤ μ(B(y, r y
M ))

μ(B(z, r z
i0
))

f (y) ≤ μ(B(z, 5/3r y
M ))

μ(B(z, r B
m ))

f (y) ≤ μ(B(z, 5/3r B
M ))

μ(B(z, r B
m ))

f (y)

≤ C
log2

5r B
M

3r B
m

+1

μ f (y), (10)

since 3r < r y
M and, hence, d(y, z) + r y

M ≤ 5/3r y
M . Here, we also appealed to the

doubling property of μ.
Since both (9) and (10) hold for any y, z ∈ B they hold for supremum and infimum

as well resulting in the assertion of the lemma. 
�
In order to show the Harnack estimate on compact sets for weakly harmonic func-

tions we will need the following variant of Lemma 4.1.

Lemma 4.2 Let X be a metric measure space with doubling measure μ and let f ∈
wH(�,μ) be a nonnegative function on a domain � ⊂ X. Suppose that a ball
B := B(x, r) ⊂ B(x, 2r B

M ) � � is such that

0 < r�
m ≤ r ≤ r�

M < ∞.

and both r�
m and 3r�

M are admissible radii for all y ∈ B. Then, the Harnack estimate
(8) holds with constant

CH = C
log2

5r�
M

3r�
m

+1

μ .

Proof We follow the steps of Lemma 4.1 and, upon notation of the lemma, we arrive
at the following estimates

∫
B(y,3r)

f dμ ≥
∫

B(z,r)

f dμ ≥
∫

B(z,r�
m )

f dμ = f (z)μ(B(z, r�
m )),

∫
B(y,3r)

f dμ ≤
∫

B(y,3r�
M )

f dμ = f (y)μ(B(y, 3r�
M )).

By combining these inequalities we obtain an analog of (10):

f (z) ≤ μ(B(y, r�
M ))

μ(B(z, r�
m ))

f (y) ≤ C
log2

5r�
M

3r�
m

+1

μ f (y),

where the final constant arises from the doubling property of measure μ. From this
the Harnack inequality follows immediately. 
�

As an immediate consequence we obtain the Harnack estimate on compact sets.
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Corollary 4.2 (The Harnack inequality on compact sets, cf. Theorem 3.4 in [13]) Let
X be a geodesic metric measure space with doubling measure μ, � ⊂ X be an open
connected set and let f ∈ H(�,μ) be a nonnegative function. Then, for every compact
connected K � � the following inequality holds

sup
K

f ≤ C inf
K

f , (11)

where C > 0 is a constant whose value is independent of f , but depends among other
parameters on Cμ, a doubling constant of μ.

Moreover, for f ∈ wH(�,μ) estimate (11) holds provided that 0 < r�
m ≤ r x ≤

r�
M < ∞ for all x ∈ K and dist(K , ∂�) > 2r K

M and both r�
m and 3r�

M are admissible
radii for all y ∈ K . In such a case the Harnack constant C = C(Cμ, r�

m , r�
M ).

Remark 1 (1) In [13] the Harnack inequality is proved for connected sets which are
not necessarily path-connected. Furthermore, here we estimate Harnack constants in
terms of the doubling constants and admissible radii.

(2) Note that open set � need not be bounded. Therefore, we assume that r�
M < ∞

in order to ensure that the Harnack constant C in (11) is finite.

Proof of Corollary 4.2 The proof follows the standard reasoning and, therefore, we
will present only a sketch of it. For every x ∈ K we find a ball B(x, rx ) such that
B(x, 6rx ) � �. The collection of such balls gives us a open cover of K , and by
compactness of K we may choose a finite subcover consisting of N balls. Next, take
points x, y ∈ K and connect them by a curve γ . Indeed, since the space X is geodesic
and � , Lemma 4.38 in Björn–Björn [4] implies that any two points in K can be joint
by a rectifiable curve. From the collection of previously chosen N balls we choose
such that x ∈ B1 and y ∈ BM and Bi ∩ Bi+1 �= ∅ for all i = 1, . . . , M . Upon choosing
points xi ∈ Bi ∩ Bi+1 for i = 1, . . . , M ≤ N and applying Lemma 4.1 we have

f (x) ≤ C2
μ f (x1) ≤ · · · ≤ C2(n−1)

μ f (xn−1) ≤ C2N
μ f (y).

This, together with continuity of f , Proposition 4.1 imply the assertion of the corollary
with C := C2N

μ .
The reasoning for weakly harmonic functions is similar. We cover set K with open

balls C := {B(x, r x )}x∈K such that we can apply a variant of the Harnack estimate
on every Bx as in Lemma 4.2. Namely, we assume that r x := r�

m for all x ∈ K .
Moreover, we need to ensure at every x ∈ K that a ball B := B(x, r x ) satisfies
B(x, r x ) ⊂ B(x, 2r B

M ) � �. This, follows from the condition that dist(K , ∂�) >

2r K
M . Using compactness of K we choose from the cover C a finite cover of K by balls

{Bi } for i = 1, . . . , n as in the case of strongly harmonic functions.
The remaining part of the chaining argument stays the same as in the case of strongly

harmonic functions. Observe, that for all i = 1, 2, . . . , n it holds that r Bi
M ≤ r�

M

and r Bi
m ≥ r K

m . In a consequence we arrive at the following chain of estimates, cf.
Lemmas 4.1 and 4.2:
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f (x) ≤ C
log2

5r�
M

3r�
m

+1

μ f (x1) ≤ · · · ≤ C
log2

5n−1

3n−1

(
r�
M

r�
m

· ··· · r�
M

r�
m

)
+n

μ

f (xn−1) ≤ C
log2

(
5r�

M
3r�

m

)n

+n

μ f (y).

Hence, in this case we obtain a constant C := C
n

(
log2

5r�
M

3r�
m

+1

)

μ . 
�
The Harnack inequality implies, in the usual way, the strong and weak maximum

principles as well as the comparison principle. The strong maximum principle for
strongly harmonic functions is proved in Gaczkowski-Górka [13, Theorem 3.1] with-
out assumption that � is open and μ is doubling. However, their approach is different
than below and for this reason as well as for the sake of completeness we present a
new proof based on the Harnack inequality.

It is perhaps surprising, but the following four results are valid also for weakly
harmonic functions. In fact, in order for Proposition 4.2 and Corollaries 4.3 and 4.4 to
hold for f ∈ wH(�), it is enough that at every point of a domain � there exists one
radius r x for which the mean value property is satisfied for f .

Proposition 4.2 (The strong maximum principle) Let � ⊂ X be open connected and
μ be a doubling measure on X. Moreover, let f ∈ H(�,μ) and continuous in �. If
f attains its maximum in �, then f is constant. Furthermore, the assertion holds for
f ∈ wH(�,μ) provided that f is continuous (cf. (6) in Proposition 4.1).

Proof Denote M := sup� f and let �′ = {x ∈ � : f (x) = M}. By Proposition 4.1
harmonic functions in H(�,μ) are continuous, and hence, �′ is relatively closed in
�. We will show that �′ is an open subset of �. Let B ⊂ � be a ball such that
B ∩ �′ �= ∅ and 6B � �. Denote g := M − f ≥ 0 in �. Proposition 3.1(1) implies
that g ∈ H(�,μ). By the Harnack principle, Proposition 4.1 and by continuity of f
we have that

0 ≤ sup
B

g ≤ C3
μ inf

B
(M − f ) = C3

μ(M − f (x ′)) = 0

for some x ′ ∈ B ∩ �′. Thus, in fact B ⊂ �′ and �′ is open. The connectedness of �

implies that �′ is the only open and relatively closed subset of � and, hence, � = �′.
In a consequence, f ≡ M and the proof is completed in the case of strongly harmonic
functions.

If f ∈ wH(�,μ), then the above approach may fail. Indeed, in the previous
reasoning we need to know that for a set�′, there is a ball B ⊂ � such that B ∩�′ �= ∅
and 3B � �. For porous sets ensuring existence of a point x ∈ � and a radii r x

i for
some i = 1, 2, . . . may require r x

m = 0 which, in turn, is prevented by assumptions of
the Harnack inequality, cf. Corollary 4.2. Instead, we follow the approach of Theorem
3.1 in [13].

Let�′ be as in the previous part of the proof. Continuity assumption on f ∈ wH(�)

imply that �′ is a relatively closed subset of �.
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Moreover, let us choose any x0 ∈ �′ with B(x0, r x0
i ) � � for some admissible

radius r x0
i . By the harmonicity of f we have that

1

μ(B(x0, r x0
i )

∫
B(x0,r

x0
i )

(M − f (y))dμ(y) = 0.

Since for all x ∈ � it holds that f (x) ≤ M , we obtain that f ≡ M in B(x0, r x0
i ). In

a consequence �′ is open and, as in the case of strongly harmonic functions, we get
that f ≡ M in �. 
�

Recall that a metric space X is locally connected if every neighborhood of a point
x ∈ X contains a connected neighborhood. Then, the Mazurkiewicz–Moore–Menger
theorem stays that X is locally pathconnected provided that it is proper metric space,
see Theorem 1, pg. 254, in Kuratowski [31]. In particular, every component of an open
set is open and pathconnected, see Theorem 2, pg. 253, in [31].

A connected space need not be locally connected (see e.g. the topologist’s sine
curve). Therefore, we present two variants of the weak maximum principle, related to
different connectivity assumptions on the metric space.

Proposition 4.3 (Weakmaximum principle) Let � be an open bounded set in a locally
connected space X, such that X\� �= ∅ and f ∈ H(�,μ) ∩ C(�). Then sup� f =
sup∂� f .

Proof Since � is compact and f is continuous in �, there exists x0 ∈ � such that
sup� f = f (x0). It is enough to consider only the case that x0 ∈ �. Let us denote
by �(x0) the connected component of � containing x0. Since X is locally connected,
�(x0) is open and ∂�(x0) ⊂ ∂�. Hence, by the strong maximum principle we get
that f ≡ f (x0) on �(x0). 
�

The weak maximum principle follows immediately from Proposition 4.2 (cf. The-
orem 3.2 in [13] proved under stronger assumptions than the one below).

Corollary 4.3 (Weakmaximum principle) Let � be a domain in X and f ∈ H(�,μ)∩
C(�). Then inf∂� f ≤ inf� f and sup� f ≤ sup∂� f . Furthermore, the assertion
holds also for f ∈ wH(�,μ) provided that f ∈ C(�), cf. (6) in Proposition 4.1.

Proof we will show only the second inequality, the first one follows the same steps.
Suppose opposite, that sup� f > sup∂� f . Then the maximum of f is attained in �,
giving by Proposition 4.2, that f ≡ sup� f contradicting the continuity assumption
of f .

The proof of the corollary in the case of f ∈ wH(�,μ) follows the above lines,
since under our assumptions f is continuous in �. 
�

Next we show the comparison principle for harmonic functions on domains. The
result follows from Proposition 4.2 (cf. Theorem 3.2 in [13] proved under stronger
assumptions on the domain).
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Corollary 4.4 (Comparison principle) Let (X , d, μ) be a metric measure space and
� � X be a domain. Let, further, f , g ∈ H(�,μ)∩C(�) be such that f ≥ g on ∂�.
Then f ≥ g in �.

Furthermore, the assertion holds also for f , g ∈ wH(�,μ) ∩ C(�) provided that
at every x ∈ � the sets of admissible radii of functions f and g have at least one
common radius.

Proof Since both f and g are harmonic in �, then so is also f − g. Since f ≥ g on
∂�, then inf∂�( f − g) ≥ 0. By the Corollary 4.3 we obtain that

0 ≤ inf
∂�

( f − g) ≤ inf
�

( f − g) = inf
�

f + inf
�

(−g).

From this, we obtain that sup� g ≤ inf� f and the comparison principle follows.
The proof of the corollary in the case of f ∈ wH(�,μ) follows the above lines.

Indeed, f and g are continuous in � by assumptions and f − g is weakly harmonic
in �, as sets of admissible radii of functions f and g have a common radius at every
x ∈ �. 
�

We are in a position to state and prove the main result of this section, local Hölder
continuity of harmonic functions. The proof of this result relies on theHarnack estimate
on balls and holds for strongly harmonic functions. The iteration method used below
requires that for every ball of radius r one is able to apply the Harnack estimate
on a ball with radius r/t for some t > 4. This, however, need not be satisfied for
weakly harmonic functions in a domain � unless r�

m = 0, which leads constant C in
Lemma 4.1 to be unbounded.

Theorem 4.1 Let X be a geodesic metric space with doubling measure μ and let
f ∈ H(�,μ) for a domain � ⊂ X. Then, f is locally Hölder continuous with the
Hölder exponent depending only on the doubling constant Cμ.

Moreover, weakly harmonic function f ∈ wH(�,μ) is locally Hölder continuous
in a compact set K provided that r K

m > 0, r�
M < ∞ and dist(K , ∂�) > 5r K

M . In such
a case the Hölder exponent depends on Cμ, r K

m and r�
M .

Proof Let B := B(x, r) � � be a ball and f ∈ H(�,μ). Denote

m(r) = inf
B

f , M(r) = sup
B

f .

Then g := f − m(r) ≥ 0 a.e. in B and by Proposition 3.1(1) function g is harmonic
in �. Set t > 4. Then by the Harnack inequality on balls (Lemma 4.1) we have that

M
(r

t

)
− m(r) = sup

B(x, r
t )

( f − m(r)) ≤ C2
μ inf

B(x, r
t )
( f − m(r))

= C2
μ

(
m

(r

t

)
− m(r)

)
. (12)

123



Harmonic functions on metric measure spaces 163

From this we get

m(r)(C2
μ − 1) ≤ C2

μ

(
m

(r

t

)
− M

(r

t

))
+ (C2

μ − 1)M(r)

M
(r

t

)
− m

(r

t

)
≤ C2

μ − 1

C2
μ

(M(r) − m(r)). (13)

Let y ∈ B(x, r) be such that r
tn+1 ≤ d(x, y) < r

tn for some n = 0, 1 . . .. (Such bounds
always hold for some n ∈ N depending on y.) We iterate inequality (13) and obtain
the following estimate:

| f (x) − f (y)| ≤ M
( r

tn

)
− m

( r

tn

)
≤

(
C2

μ − 1

C2
μ

)n

(M(r) − m(r))

≤ C2
μ

C2
μ − 1

(sup
B

f − inf
B

f )

(
d(x, y)

r

)α

. (14)

Indeed, set

α :=
ln

(
C2

μ

C2
μ−1

)

ln t
> 0. (15)

Then

(
C2

μ − 1

C2
μ

)n

= t−αn and t−αn ≤ tα
(

d(x, y)

r

)α

= C2
μ

C2
μ − 1

(
d(x, y)

r

)α

.

From this, estimate (14) follows immediately.
Let now B := B(x0, r) and let x, y ∈ B for B such that 4B � �. We distinguish

two cases.
Case 1: d(x, y) < r . Then, by repeating the above discussion we obtain

| f (x) − f (y)| ≤ C2
μ

C2
μ − 1

(sup
4B

f − inf
4B

f )

(
d(x, y)

r

)α

.

Case 2: r ≤ d(x, y) < 2r . Then,

| f (x) − f (y)| ≤ sup
B

f − inf
B

f ≤ (sup
4B

f − inf
4B

f )

(
d(x, y)

r

)α

.

Therefore, f is locally Hölder continuous with exponent α as in (15).
If f ∈ wH(�,μ), then the above reasoning can be repeated using second parts of

Lemma 4.1 and Corollary 4.2. 
�
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We close this section with yet another Hölder and Lipschitz regularity result for har-
monic functions. First, we need the following definition, cf. Section 1 in Buckley
[8].

Definition 4.1 Let (X , d, μ) be a metric measure space with a doubling measure μ.
We say that X satisfies the δ-annular decay property with some δ ∈ (0, 1] if there
exists A ≥ 1 such that for all x ∈ X , r > 0 and ε ∈ (0, 1) it holds that

μ (B(x, r)\B(x, r(1 − ε))) ≤ Aεδμ(B(x, r)). (16)

If δ = 1, then we say that X satisfies the strong annular decay property.
Spaces with annular decay property appear, for instance, in the context of the

Hardy–Littlewood and fractional maximal operators, see Buckley [8] and Heikkinen–
Lehrbäck–Nuutinen–Tuominen [22] respectively, parabolic De Giorgi classes, see
Masson–Siljander [39].

Among examples of spaces with strong annular decay property let us mention
geodesic metric spaces with uniform measures, R

n with the Lebesgue measure and
Heisenberg groupsH

n equippedwith a left-invariant Haarmeasures.Moreover, Corol-
lary 2.2 in [8] stays that if (X , d, μ) is a length metric measure space with a doubling
measure μ, then X has the δ-annular decay property for some δ ∈ (0, 1] with δ

depending only on a doubling constant of μ. In fact, Theorem 2.1 in [8] asserts that
it is enough for (X , d) to be the so-called (α, β)-chain space in order to conclude that
X has the δ-annular decay property. In such a case δ depends additionally on α and β.
We refer to the discussion in Section 2 in [8] for relations between (α, β)-chain spaces
and the Boman chain condition and C(λ, M)-condition of Hajłasz–Koskela [16].

Remark 2 Let us comment on relation between measures satisfying Definition 4.1
and measures continuous with respect to distance. Let x, y ∈ X and suppose that
d(x, y) < r for some r > 0. If (X , d, μ) has δ-annular decay property for some
δ ∈ (0, 1], then

μ(B(x, r) � B(y, r)) ≤ μ(B(x, r + d(x, y))\B(x, r − d(x, y)))

≤ A

(
2d(x, y)

r + d(x, y)

)δ

μ(B(x, r + d(x, y)).

By letting d(x, y) → 0 we obtain that μ(B(x, r) � B(y, r)) → 0 and, hence, μ is
continuous with respect to d.

The following example shows that the opposite relation need not hold, i.e. ameasure
continuous with respect to a metric may fail δ-annular decay property for any δ ∈
(0, 1].
Example 9 Let X = R with the Euclidean metric and a measure dμ(x) = e−|x |dx . It
is easy to check that μ is continuous with respect to d. Namely, for any ball B(x, r) =
(x − r , x + r) one need to consider three cases: (1) x + r ≤ 0, (2) x − r ≥ 0 and (3)
−r < x < r , depending on the position of B(x, r) with respect to 0. In all cases one
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gets that for any fixed x , the function r �→ μ(B(x, r)) is continuous and hence, by
Part (3) of Lemma 2.1 our claim holds true.

We will show that for large enough x, y > 0 and large enough radii r < x , r < y
condition (16) fails. By computations we get for any ε ∈ (0, 1) that

μ(B(x, r)) =
∫ x+r

x−r
e−ydy = e−x (er − e−r ),

μ(B(x, r) � B(y, r)) =
∫ x+r

x−r
e−ydy

−
∫ x+r(1−ε)

x−r(1−ε)

e−ydy = e−x (er − e−r − er(1−ε) − e−r(1−ε)).

Therefore, by letting ε = 1/r , we obtain the following equality

μ(B(x, r) � B(y, r))

μ(B(x, r))
= 1 −

1
e − e−2r+1

1 − e−2r
→ 1 − 1

e
for r → ∞.

Hence, for large enough x, y and r we get that condition (16) may not be satisfied
with any A > 0 and δ ∈ (0, 1].

In next theoremwe showHölder and Lipschitz estimates on balls and compact sets,
thus extending Theorem 4.1. Previous assumptions on measure allow us to establish
Hölder estimates for some constant and exponent, whose exact values are not deter-
mined. Here, the δ-annular decay property satisfied by a measure enables us to obtain
finer estimates on balls already in the Hölder case. Moreover, on compact subsets
we obtain the Hölder regularity as in Theorem 4.1 but, additionally, provide estimates
with explicit constants and exponent δ. Both for the Hölder case and the new Lipschitz
one, we also have explicit constants, however a dependence on a Lebesgue number of
a chosen covering comes into play. Such a dependence is removed in one of our next
results, see Proposition 5.1.

Theorem 4.2 Let (X , d, μ) be a doubling metric measure space with a δ-annular
decay property for some δ ∈ (0, 1].

If δ ∈ (0, 1), then a locally bounded strongly harmonic function f in a domain
� ⊂ X is δ-Hölder continuous on every ball B := B(x0, r) ⊂ � centered at x0 ∈ �

such that 3B � �.
If δ = 1, then f is locally L-Lipschitz continuous on every ball B ⊂ � such that

3B � �.
In both cases we have that

| f (x) − f (y)| ≤ 4 · 9δ‖ f ‖L∞(B(x0,3r))C
3
μ A

(
d(x, y)

r

)δ

(17)

for x, y ∈ B(x0,
r
2 ). Here, Cμ stands for a doubling constant of μ and A is as in (16).
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Let K � � and f be bounded in �. Furthermore, suppose that η is a Lebesgue
number of any, but fixed, open cover of K . Then, we have the following estimates

| f (x) − f (y)| ≤ 4 · 9δ‖ f ‖L∞(�)C
3
μ A

(
2

dist(K , ∂�)

)δ

d(x, y)δ for d(x, y) ≤ η,

| f (x) − f (y)| ≤ 2
‖ f ‖L∞(�)

ηδ
d(x, y)δ for d(x, y) > η.

Remark 3 Suppose that X is additionally geodesic. Since geodesic space is, in partic-
ular, a length space, we retrieve from Corollary 2.2 in [8] the above Theorem 4.1 with
some δ ∈ (0, 1].

Proof of Theorem 4.2 Let x ∈ � and B(x, r) be a ball such that B(x, 2r) � �. Then,
dist(B(x, r), X\�) > r . Choose y ∈ B(x, r) with d(x, y) < r/2. By the estimate
similar to the one at (7) we get that

| f (x) − f (y)| =
∣∣∣∣ 1

μ(B(x, r))

∫
B(x,r)

f (z)dμ(z) − 1

μ(B(y, r + 2d(x, y)))∫
B(y,r+2d(x,y))

f (z)dμ(z)

∣∣∣∣
≤ 1

μ(B(x, r))

∣∣∣∣
∫

B(x,r)

f (z)dμ(z) −
∫

B(y,r+2d(x,y))

f (z)dμ(z)

∣∣∣∣
+

∣∣∣∣μ(B(y, r + 2d(x, y))) − μ(B(x, r))

μ(B(x, r))μ(B(y, r + 2d(x, y)))

∣∣∣∣ ‖ f ‖L1(B(y,r+2d(x,y))).

(18)

Note that

B(y, r + 2d(x, y))\B(x, r) ⊂ B(y, r + 2d(x, y))\B(y, r ′),
μ(B(y, r + 2d(x, y))) − μ(B(x, r)) ≤ μ(B(y, r + 2d(x, y))) − μ(B(y, r ′)),

for any positive r ′ < r . Observe further, that

∣∣∣∣μ(B(y, r + 2d(x, y))) − μ(B(x, r))

μ(B(x, r))μ(B(y, r + 2d(x, y)))

∣∣∣∣ = 1

μ(B(x, r))
− 1

μ(B(y, r + 2d(x, y)))

≤ μ(B(y, r + 2d(x, y))) − μ(B(y, r ′))
μ(B(y, r ′))μ(B(y, r + 2d(x, y)))

,

as μ(B(y, r ′)) ≤ μ(B(x, r)).
Assume that | f | ≤ M in B(x, 2r). The above discussion together with (18) imply

that
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| f (x) − f (y)| ≤ 1

μ(B(x, r))

∫
B(y,r+2d(x,y))\B(y,r ′)

| f (z)|dμ(z)

+ M
μ(B(y, r + 2d(x, y))) − μ(B(y, r ′))

μ(B(y, r ′))
. (19)

Set r ′ = r − d(x, y). We appeal to the δ-annular decay property of X for ε such that

(r + 2d(x, y))(1 − ε) = r ′ = r − d(x, y).

Since ε = 1− r−d(x,y)
r+2d(x,y)

≤ 3 d(x,y)
r we set the latter expression to be ε. In a consequence

estimate (19) takes the following form

| f (x) − f (y)| ≤ M

μ(B(x, r))
A

(
3

r

)δ

d(x, y)δμ(B(y, r + 2d(x, y)))

+ M

μ(B(y, r − d(x, y)))
A

(
3

r

)δ

d(x, y)δμ(B(y, r + 2d(x, y)))

≤ M A

(
3

r

)δ

d(x, y)δ

×
(

μ(B(y, r + 2d(x, y)))

μ(B(x, r))
+ μ(B(y, r + 2d(x, y)))

μ(B(y, r − d(x, y)))

)
.

Finally, we appeal to the doubling property of μ and obtain

μ(B(y, r + 2d(x, y)))

μ(B(x, r))
≤ μ(B(y, 2r)

μ(B(x, r))
≤ C2

μ

μ(B(y, r
2 )

μ(B(x, r))
≤ C2

μ, and

μ(B(y, r + 2d(x, y)))

μ(B(y, r − d(x, y)))
≤ C3

μ.

As a result we have that

| f (x) − f (y)| ≤ 2 · 3δ‖ f ‖L∞(B(x,2r))C
3
μ A

(
d(x, y)

r

)δ

(20)

holds for all x, y ∈ B(x, r/2).
Suppose now, that x, y ∈ B(x0, r/2) such that 2B(x0, r) � �. Let us consider two

cases.
Case 1: d(x, y) ≥ 1

2d(x, x0). Then, the estimate (20) together with the triangle
inequality imply that

| f (x) − f (y)| ≤ | f (x) − f (x0)| + | f (y) − f (x0)|

≤ 2 · 3δ‖ f ‖L∞(B(x0,2r))C
3
μ A

((
d(x, x0)

r

)δ

+
(

d(y, x0)

r

)δ
)

≤ 2 · 3δ‖ f ‖L∞(B(x0,2r))C
3
μ A
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((
2d(x, y)

r

)δ

+
(

d(x, x0) + d(x, y)

r

)δ
)

≤ (2 · 3δ)2‖ f ‖L∞(B(x0,2r))C
3
μ A

(
d(x, y)

r

)δ

.

Case 2: d(x, y) < 1
2d(x, x0) ≤ r/2. Then, y ∈ B(x, r/2) and B(x, 2r) ⊂

B(x0, 3r) � �. Thus, from (20) we obtain

| f (x) − f (y)| ≤ 2 · 3δ‖ f ‖L∞(B(x,2r))C
3
μ A

(
d(x, y)

r

)δ

.

We note that ‖ f ‖L∞(B(x,2r)) ≤ ‖ f ‖L∞(B(x0,3r)) and combine inequalities obtained
in both cases to obtain the assertion of Theorem 4.2 for balls.

Let K be a compact subset of � and r = dist(K , ∂�). Since K is compact, we can
cover it by open balls B(x, r/2) centered at points x ∈ K and choose a finite subcover,
denoted by Bi := B(xi , r/2) for i = 1, 2, . . . , N for some N . Hence,

K ⊂
N⋃

i=1

B(xi , r).

Let us denote by η a Lebesgue number of covering {Bi }. If x, y ∈ K are such that
d(x, y) ≤ η, then there exists i0 ∈ {1, ..., N } such that x, y ∈ Bi0 . This allows us to
apply (17) and obtain the following inequality

| f (x) − f (y)| ≤ 4 · 9δ‖ f ‖L∞(�)C
3
μ A

(
2

dist(K , ∂�)

)δ

d(x, y)δ.

Otherwise, if d(x, y) > η, then we get

| f (x) − f (y)| ≤ | f (x)| + | f (y)| ≤ 2‖ f ‖L∞(�)

d(x, y)δ

ηδ
.

This completes the proof of the second part of Theorem 4.2 and the whole proof is,
thus, completed. 
�

5 The Lipschitz regularity and uniformmeasures: weak upper
gradients of harmonic functions

In this sectionwe study some differentiability properties of harmonic functions and our
main result is Proposition 5.1. There, we show the Lipschitz regularity of strongly and
weakly harmonic functions in the case of the uniformmeasure growth. Such measures
play a fundamental role e.g. in the geometric measure theory, see the discussion and
references below. Then, by using the celebrated Cheeger’s results on differentiability
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of Lipschitz functions, in Corollaries 5.1 and 5.2 we study the existence of weak upper
gradient for strongly and weakly harmonic functions.

Definition 5.1 Let (X , d, μ) be a geodesic metric space equipped with a Borel regular
measure μ. We call μ a Q-uniform measure for some Q ≥ 1, if there exists a constant
C > 0 such that for any x ∈ X and all r > 0

μ(B(x, r)) = Cr Q . (21)

Uniformmeasures play an important role in geometricmeasure theory. For instance,
if X = Rn , then Marstrand [38] proved that for a non-trivial Q-uniform measure it
necessarily holds that Q ∈ N (see also Chousionis–Tyson [10] for a discussion of
Marstrand’s theorem and uniform measures in the setting of Heisenberg groups). One
of results of the celebrated paper by Preiss [43] stays that for Q = 1, 2 uniform
measures are flat. Let us also mention that uniform measures have been employed
to investigate relations between harmonic measures and non-tangentially accessible
domains (NTA-domains), see Kenig–Preiss–Toro [27] and in the studies of rectifiable
measures, seeTolsa [49].Moreover, uniformmeasure appear in potential and stochastic
analysis, see Bogdan–Stós–Sztonyk [6], in the theory of incompressible flows with
vorticities, see Cieślak–Szumańska [11].

Proposition 5.1 Let (X , d, μ) be a geodesic metric space such with a Q-uniform
measure μ. Then, any harmonic function f ∈ H(�,μ) is locally L-Lipschitz on
every compact K ⊂ � for L = Q2Q+1 M

dist(K ,X\�)
and M = ‖ f ‖L∞(K ).

Furthermore, the assertion holds for f ∈ wH(�,μ) on every compact K ⊂ �,
provided that 0 < 2r K

m < dist(K , X\�) and
⋂

x∈K {r x
1 , r x

2 , . . .} �= ∅, that is, all
points in K have at least one common radius for which the mean value property holds
for f . Moreover, in such a case we have L = Q2Q+1 M

r K
m

.

Remark 4 It is easy to see that uniform measures satisfy 1-annular decay property, see
Definition 4.1 and so for strongly harmonic functions Proposition 5.1 follows from the
Theorem 4.2. However, below we are able to describe more accurately dependence
of the Lipschitz constant on the parameters of the underlying space and the harmonic
function. In particular, we avoid using a Lebesgue number of a covering. Moreover,
the result below gives also the Lipschitz regularity for weakly harmonic functions.

Proof of Proposition 5.1 Let f ∈ H(�,μ). Note that μ is a doubling measure with a
doubling constant Cμ = 2Q . Then, Proposition 2.1 implies that μ is continuous with
respect to metric d. In a consequence, we infer from Corollary 4.1 that f is locally
bounded. Denote by M an upper bound of f on some compact set K ⊂ �. The
estimate similar to (7) in Proposition 4.1 gives us that

| f (x) − f (y)| ≤ 1

μ(B(x, r))

∫
B(x,r)�B(y,r)

| f (z)|dμ(z)

+ |μ(B(x, r)) − μ(B(y, r))|
μ(B(x, r))μ(B(y, r))

∣∣∣∣
∫

B(y,r)

f (z)dμ(z)

∣∣∣∣
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≤ 2M
μ(B(x, r) � B(y, r))

μ(B(x, r))
. (22)

As in Theorem 7.2 we assume that r > d(x, y). Then, by (33) and (21)

μ(B(x, r) � B(y, r)) ≤ μ(B(x, r + d(x, y))\B(x, r − d(x, y)))

= C(r + d(x, y))Q − C(r − d(x, y))Q .

Hence, by the mean value theorem applied to function s Q , we obtain that

μ(B(x, r) � B(y, r))

μ(B(x, r))
≤

(
1 + d(x, y)

r

)Q

−
(
1 − d(x, y)

r

)Q

= 2Qs Q−1 d(x, y)

r
,

where s ≤ 1 + d(x,y)
r < 2. Choose x, y ∈ K and let r := 1

2 dist(K , X\�). Thus, for
all x, y ∈ K it holds

| f (x) − f (y)| ≤ Ld(x, y),

where L = Q2Q+1 M
dist(K ,X\�)

.

If f ∈ wH(�,μ), then by assumptions for all x, y ∈ K we are able to find at least
one radius, denoted by r , such that (22) and estimates following it hold for r . Then,
in the final step we have that

d(x, y)

r
≤ d(x, y)

r K
m

,

and so in this case L = Q2Q+1 M
r K

m
, as desired. The proof is therefore completed. 
�

One of the consequences of Proposition 5.1 is the differentiability of Lipschitz
weakly and strongly harmonic functions on compact sets.

Let f be a locally Lipschitz function in � ⊂ X . We define a lower pointwise
dilatation of f as follows

lip f (x) = lim inf
r→0

sup
y∈B(x,r)

| f (x) − f (y)|
r

.

Similarly, we define an upper pointwise dilatation of f by the formula:

Lip f (x) = lim sup
r→0

sup
y∈B(x,r)

| f (x) − f (y)|
r

.

We refer to the following result due to Cheeger, see also Preliminaries for a discus-
sion on weak upper gradients and the Poincaré inequalities.
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Theorem 5.1 (Theorem 6.1 in Cheeger [9]) Let (X , d, μ) be a complete doubling
metric measure space supporting (1, p)-Poincaré inequality for p > 1. Let further f
be a locally Lipschitz function in a domain � ⊂ X. Then the minimal p-weak upper
gradient g f of f exists and g f = lip f a.e. in �. Moreover, lip f = Lip f a.e. in �,
and both lip f and Lip f are upper gradients of f .

One combines the above Cheeger’s theorem with Proposition 5.1 to obtain the
following observation. (Recall that uniform measures are doubling.)

Corollary 5.1 Let (X , d, μ) be a complete geodesic metric space such with a Q-
uniform measure μ for some Q ≥ 1 and supporting (1, p)-Poincaré inequality for
p > 1. Suppose that f is a strongly harmonic function in a compact set K ⊂ �. Then,
the minimal p-weak upper gradient g f of f exists and g f = lip f = Lip f a.e. in K .

Furthermore, the assertion holds for a weakly harmonic function f in K provided
that f satisfies the assumptions of the second part of Proposition 5.1.

Similarly, by combining the Cheeger’s theorem with Theorem 4.2 we arrive at the
following result.

Corollary 5.2 Let (X , d, μ) be a complete doubling metric measure space with a 1-
annular decay property supporting (1, p)-Poincaré inequality for p > 1. Suppose
that f is a strongly harmonic function in a ball B ⊂ 2B � �. Then, the minimal
p-weak upper gradient g f of f exists and g f = lip f = Lip f a.e. in B.

6 The Dirichlet problem

We begin this section with an observation that in general, the Dirichlet boundary value
problem need not have a solution even in the simplest one-dimensional case as the
following example shows.

Example 10 Let f ∈ H(R, | · |, |x |dx) and set g := f |(0,1). Then g ∈ H((0, 1), | ·
|, xdx) and by observing that x ∈ H((0, 1), | · |, dx), we conclude by Proposition 7.1
that xg ∈ H((0, 1), | · |, dx) and, thus, g(x) = A

x + B for some positive constants
A, B and, hence, f ≡ B by the continuity of f (see also Example 12 below).

Consider the Dirichlet problem of finding a harmonic function g in H((0, 1), | ·
|, xdx) such that g(0) �= g(1). Then, by the above reasoning there is no solution of
such problem.

The purpose of this section is to study the following questions:

(1) When does a Dirichlet problem for a functions with the mean value property
as in Definition 3.1 have a solution and for what type of boundary data?
(2) How to construct a solution to the harmonic Dirichlet problem?

Although these questions are nowadays classical in the Euclidean setting, see e.g.
Gilbarg–Trudinger [14], theirmetric counterparts have been intensively studiedmainly
in past two decades, see e.g. Section 10 in Björn–Björn [4] and references therein.
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However, results in [4] apply to harmonic functions defined as minimizers of the 2-
Dirichlet energy, whereas we study the above two questions for harmonic functions
defined via the mean value property.

We approach the solvability of the Dirichlet problem by employing the so-called
Dynamical programming principle, generalized to the metric setting and based on
studies conducted for p-harmonious functions in Euclidean domains by Luiro–
Parviainen–Saksman [36] and Manfredi–Parviainen–Rossi [37]. Our results apply to
some functions with the mean value property for measurable and continuous bound-
ary data. For the further discussion and description of some challenges when applying
the Dynamical programming principle in our case we refer to Remarks 1 and 2 in
Liu–Schikorra [34].

First, we extend the dynamical programming principle as presented in [36] to the
setting of metric spaces with Borel regular measures. Theorems 6.1 and 6.2 below
extend Theorems 2.1 and 4.1 in [36] for measurable and continuous data, respectively.
Moreover, Theorem 6.1 provides us with a function uε , the solution to the Dirichlet
problem with measurable data, such that it satisfies the mean value property on balls
with radii ε. In Theorem 6.2we show that the similar property holds for solutions to the
Dirichlet problemwith continuous data at points with ε-distance from the complement
of the domain. Finally, we show that inmetricmeasure spaces with the δ-annular decay
property the existence of subharmonic solution of the boundary value problem with
continuous data implies existence of the weakly harmonic continuous function with
the same continuous boundary data, see Theorem 6.3.

We follow the notation of Section 2.1 in [36] and for ε > 0 define the ε-boundary
strip of a domain � ⊂ X :

�ε = {x ∈ X\� : dist(x,�) ≤ ε}.

In order to ensure that �ε �= ∅ we need to assume that � is such that �ε ⊂ X .
This assumption will not weaken our results, as in fact we apply them only for balls
Bε compactly contained in the underlying domain with radii ε small enough so that
Bε ∪ �ε remains a subset of the domain.

Denote by �ε := � ∪ �ε .

Theorem 6.1 Let (X , d, μ)be a metric measure spaces with a measure continuous with
respect do d. Moreover, let F : �ε → R be a bounded Borel measurable function.
Then, there exists a bounded Borel function u : �ε → R solving the following
Dirichlet problem with the boundary data F:

{
u(x) = ∫

B(x,ε)
u(y)dμ(y), x ∈ �,

u|�ε = F .
(23)

In fact, u is the uniform limit of a sequence {ui }∞i=0 defined via the following iteration
scheme:

u0(x) =
{
infx∈�ε F(x), x ∈ �,

F(x), x ∈ �ε,
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while for i = 0, 1, . . . we define

ui+1(x) = T ui (x) :=
{∫

B(x,ε)
ui (y)dμ(y), x ∈ �,

ui (x), x ∈ �ε.
(24)

Proof First, notice that T ui is Borel bounded measurable function in �ε for every
i = 0, 1, . . .. In order to verify this observation, first notice that u0 is measurable.
Next, we compute

u1(x) := T u0(x) =
{∫

B(x,ε)
u0(y)dμ(y), x ∈ �,

u0(x), x ∈ �ε.

=
{

μ(B(x,ε)∩�)
μ(B(x,ε))

inf�ε F, x ∈ �,

F(x), x ∈ �ε.

The continuity of μ with respect to d gives us that u1(x) is continuous for x ∈ �,
whereas for x ∈ �ε\� the measurability of u1 follows the same argument as for u0.
Indeed, by Lemma 2.1(1) we have that a function x �→ μ(B(x, ε)) is continuous in
�. Similarly, a function � � x → ∫

B(x,ε)
u0(y)dμ(y) is measurable as a quotient of

two measurable functions. The measurability of ui+1 = T ui for i = 1, 2, . . . follows
the same steps by induction and we omit details.

We continue the proof following the reasoning for Theorem 2.1 in [36]. It is imme-
diate to check that u1 ≥ u0 in �ε . In order to give an idea about formulas describing
functions ui we compute also

u2(x) := T u1(x)

=

⎧⎪⎪⎨
⎪⎪⎩

inf�ε F
[

μ(B(x,ε)∩{y∈� : dist(y,∂�)≥ε})
μ(B(x,ε))

+ 1
μ(B(x,ε))

∫
B(x,ε)∩{y∈� : dist(y,∂�)<ε}

μ(B(y,ε)∩�)
μ(B(y,ε))

dμ(y)
]
, x ∈ �,

F(x), x ∈ �ε.

This yields u2 = T u1 ≥ T u0 = u1. The same reasoning allows us to conclude
that ui ≤ ui+1 in �ε for all i = 0, 1, . . .. Definitions of u0 and operator T together
with easy argument by induction imply that the sequence {ui }∞i=0 is increasing and
uniformly bounded from above by sup�ε

F < ∞. The latter property is a consequence
of a simple induction applied with (24). Namely, since |u0| ≤ sup�ε

F in �ε , then so
is u1. Then, by assuming that |ui | ≤ sup�ε

F in �ε for some i > 1 we trivially obtain
that for x ∈ �

|ui+1(x)| ≤
∫

B(x,ε)

|ui (y)|dμ(y) ≤ sup
�ε

F,

while otherwise, in �ε\�, the boundedness of ui+1 immediately follows from its
definition.
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Therefore, we are in a position to define the following bounded Borel measurable
function u : �ε → R:

u(x) = lim
i→∞ ui (x).

Next, one shows that the convergence is uniform and the proof is by contradiction. This
proof follows steps of the corresponding proof of Theorem 2.1 in [36] for α = 0 and
β = 1 and, therefore, will be omitted. Let us comment, that the uniform convergence
implies that u satisfies (23) and, by construction, has the boundary data F . 
�

In the next theoremwe prove the solvability of the Dirichlet problem similar to (23)
for continuous boundary data. Define

�ε,ε := {x ∈ X : dist(x, ∂�) ≤ ε}, �ε := � ∪ �ε,ε and �ε := �ε,ε\�.

Using the Tietze extension theorem applied to ∂� and a continuous function g : ∂� →
R we obtain a continuous function F : �ε,ε → R such that F |∂� = g. Moreover,

sup
x∈�ε,ε

|F(x)| = sup
x∈∂�

|g(x)| < ∞.

Let us remark, that if F is an extension of g for some ε1, then F can be taken also
for all ε ≤ ε1.

Theorem 6.2 (cf. Theorem 4.1 in [36]) Let � be a path-connected domain in (X , d, μ)

with μ continuous with respect to d and let F : �ε,ε → R be a continuous function as
above. Then, there exists a unique continuous uε : �ε → R which solves the following
boundary value problem:

uε(x) =

⎧⎪⎨
⎪⎩

∫
B(x,ε)

uε(y)dμ(y), x ∈ �\�ε,ε(
1 − dist(x,�ε )

ε

)
F(x) + dist(x,�ε )

ε

∫
B(x,ε)

uε(y)dμ(y), x ∈ � ∩ �ε,ε

F(x), x ∈ �ε,ε\�.

(25)

In particular, uε |∂� = g.

Proof Following the idea of the proof of Theorem 6.1 we define a function u0 : �ε →
R as

u0(x) := c < inf
�ε,ε

F(x),

Moreover, for bounded functions u : �ε → R we let T be an operator defined as
follows:

T u(x) :=
(
1 − dist(x, �ε)

ε

)
F(x) + dist(x, �ε)

ε

∫
B(x,ε)

u(y)dμ(y).
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By convention, we will interpret that

(
1 − dist(x, �ε)

ε

)
F(x) = 0 and

dist(x, �ε)

ε
= 1

for all x ∈ �\�ε,ε .
By an iterative scheme we define ui+1 := T ui for i = 0, 1, . . . and show that

{ui }∞i=0 is a monotone increasing bounded sequence of continuous functions in �ε .
Furthermore, as in Lemma 6.1, the sequence {ui }∞i=0 is uniformly bounded from above
by sup∂� g < ∞ and the argument for this to hold follows again from definitions of
u0, T and induction.

The natural modification of the proof of Theorem 6.1 allows us to conclude that
function uε := limi→∞ ui is continuous and satisfies (25).

In order to show the uniqueness, let us suppose that u1 and u2 solve (25) and
u1 �≡ u2. Set

�′ := {x ∈ � : u1(x) − u2(x) = sup
z∈�

(u1(z) − u2(z)) = M > 0}.

Furthermore, note that it is enough to consider supz∈�(u1(z) − u2(z)) instead of the
supremum for absolute values of u1−u2, as the case u2−u1 follows by the symmetric
argument. The definition of �′ immediately implies that �′ is non-empty. Moreover,
let us notice that �′ contains a ball B(x, ε). Indeed, let us consider two cases.

Case 1 �′\�ε,ε �= ∅. Then for x ∈ �′\�ε,ε it holds that

0 = u1(x) − u2(x) − M =
∫

B(x,ε)

(
u1(y) − u2(y) − M

)
dμ(y) ≤ 0. (26)

Hence, u1 − u2 ≡ M in B(x, ε). Choose a point z ∈ ∂� and some point x ′ ∈ � close
enough to z. Since � is path-connected, there exists a continuous curve γ joining x
and x ′ in �. By the compactness of |γ | we may find a finite cover C = {Bi }N

i=1 of
γ by balls centered at points xi ∈ γ with radii ε/2 such that x1 = x and xN = x ′.
Let B(x ′′, ε) be a ball in C with x ′′ ∈ γ and x ′′ ∈ B(x, ε/2) ∩ B(x2, ε/2). We apply
reasoning at (26) to B(x ′′, ε) using again the mean value property for u1 and u2 and
obtain that u1−u2 ≡ M in B(x ′′, ε). We continue this procedure along γ till we reach
first point x ′′′ ∈ γ , such that x ′′′ ∈ �\�ε,ε ∩ B(xi , ε) for some 2 ≤ i ≤ N − 1. Then
by the definition of uε in (25) we get

0 = u1(x ′′′) − u2(x ′′′) − M ≤ dist(x ′′′, �ε)

ε

∫
B(x ′′′,ε)(

u1(y) − u2(y) − M
)

dμ(y) ≤ 0. (27)

Thus, by repeating the last step at most once more, we have approached ∂� obtaining
a contradiction with the fact that u1|∂� = g = u2|∂�. Namely, for z ∈ ∂� it holds
that u1(z) − u2(z) = 0, even though for points y ∈ U ∩ � for an arbitrarily small

123



176 T. Adamowicz et al.

neighborhood U of z we have that u1(y) − u2(y) = M > 0, contradicting continuity
of u1 and u2.

Case 2 �′\�ε,ε = ∅. Then, since �′ is non-empty, there exists x ∈ � ∩ �ε,ε and
the above procedure simplifies. In fact we immediately reach the contradiction, since
for z ∈ ∂� ∩ B(x, ε) on one hand we have that u1(z) − u2(z) = 0, but on the other
hand for points y ∈ U ∩ � for an arbitrarily small neighborhood U of z it holds that
u1(y) − u2(y) = M > 0 by (27) applied for x ′′′ := x .

The proof of the uniqueness and the whole proof of the theorem are, therefore,
completed. 
�

The last result of this section shows that if we know that a Dirichlet problem has
a continuous subharmonic solution, then the weakly harmonic solution exists and
satisfies the same continuous boundary data.

Theorem 6.3 Let (X , d, μ) be a metric measure space satisfying the δ-annular decay
condition for some δ ∈ (0, 1]. Let � be a bounded domain in X and consider a
continuous function g : ∂� → R. If there is a continuous weakly subharmonic
function v ∈ wS−H(�) ∩ C(�) such that v|∂� = g, then there exists a weakly
harmonic function u ∈ wH(�) ∩ C(�) such that u|∂� = g.

Examples of continuousweakly subharmonic functions are presented inExamples 5
and 8.

Proof Denote by Cb(�) a space of bounded continuous functions on �. Let us define
an operator T : Cb(�) → Cb(�) given by

T u(x) = −
∫

B(x,rx )

u(y)dμ(y) ,

where rx ≤ 1
2dist(x, ∂�) is a given single admissible radius at x .

In order to see that T is well defined, let us consider any u ∈ Cb(�) and denote
M := ‖u‖L∞(�). The standard computations then imply that

|T u(x) − T u(y)| ≤ 1

μ(B(x, rx ))

∫
B(x,rx )�B(y,ry)

|u(z)|dμ(z)

+ |μ(B(x, rx )) − μ(B(y, ry))|
μ(B(x, rx ))μ(B(y, ry))

∣∣∣∣∣
∫

B(y,ry)

u(z)dμ(z)

∣∣∣∣∣
≤ M

(
μ(B(x, rx ) � B(y, ry))

μ(B(x, rx ))
+ μ(B(x, rx ) � B(y, rx ))

μ(B(x, rx ))μ(B(y, ry))
μ(B(y, ry))

)

≤ 2M
μ(B(x, rx ) � B(y, ry))

μ(B(x, rx ))
. (28)

Moreover,

B(x,min{ry − d(x, y), rx }) ⊂ B(x, rx ) ∩ B(y, ry)
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for all x and y with d(x, y) small enough, and

B(x, rx ) ∪ B(y, ry) ⊂ B(x,max
{
rx , ry

} + d(x, y)).

Hence,

B(x, rx ) � B(y, ry) ⊂ B(x,max
{
rx , ry

} + d(x, y))\B(x,min{ry − d(x, y), rx }).
(29)

We combine (28) and (29), which hold for y → x in d and get that the δ-annular
decay property of X implies T u ∈ C(�), cf. Definition 4.1. By basic properties of the
mean value one also obtains that ‖T u‖∞ ≤ M .

We use operator T to construct the following sequence of functions:

(1) u0 := v ,
(2) un := T un−1 for n = 1, 2, . . ..

We easily see that all un ∈ Cb(�) and ‖un‖L∞(�) ≤ ‖v‖L∞(�).
Next, observe that every un is weakly subharmonic in � with admissible radii

r x = rx . Indeed, u0 = v is subharmonic, so by the definition

u0(x) ≤ −
∫

B(x,rx )

u0(y)dμ(y) = T u0(x).

Moreover, note that if v ≤ w, then T v ≤ T w. Hence, by induction we get

un(x) ≤ un+1(x) = T un(x) = −
∫

B(x,rx )

un(y)dμ(y).

The above reasoning shows also that sequence {un}∞n=0 is increasing at every x ∈ �.
We extend sequence {un}∞n=0 to� in such away that un|∂� = g for all n = 0, 1, . . ..

Indeed, this is possible for u0 because v is continuous up to the boundary and v|∂� = g.
In order to see that the same holds true for un for n ≥ 1 let us first consider any
w ∈ C(�) with w|∂� = g. Then for all x ∈ ∂� and ε > 0 there exists δ > 0 such
that

|w(y) − g(x)| < ε,

for y ∈ � ∩ B(x, δ). Hence, for y ∈ B(x, δ
2 ) ∩ � we have

|T w(y) − g(x)| ≤ −
∫

B(y,ry)

|w(z) − g(x)| dμ(z) < ε.

In a consequence, T w ∈ C(�) and T w|∂� = g. We apply this reasoning withw = un

for n = 0, 1, . . . and obtain that {un}∞n=1 is bounded increasing sequence of continuous
functions on compact set, such that all un|∂� = g.
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We are now in a position to define the following Borel function:

u(x) := lim
n→∞ un(x) for x ∈ �.

One can show that {un}∞n=1 converges uniformly in � and the reasoning is similar to
the one in the proof of Theorem 2.1 in [36], cf. presentation in the proof of Theorem 6.1
above. Since un|∂� = g for all n, the sequence converges uniformly also in �. Hence,
u ∈ C(�) and u|∂� = g. By employing the monotone convergence theorem to the
sequence

un+1(x) = −
∫

B(x,rx )

un(y)dμ(y)

we get that u ∈ wH(�). 
�
It is a work in progress to establish a viable method for proving the existence of

the solutions to the Dirichlet problem via the Perron method or by the dynamical
programming method (see e.g. Theorem 4.1 in [37]). Regarding the first approach,
our efforts are focused on establishing a counterpart of the Poisson modification in
the setting of strongly harmonic functions. Such modifications have several variants
e.g. for superminimizers and superharmonic functions in the setting of Newtonian
spaces, see e.g. Sections 8.7 and 10.9 in Björn–Björn [4]. Furthermore, one can also
obtain a counterpart of the notion of a barrier function at a boundary point x0 ∈ ∂�

for the mean-value harmonicity, by studying continuous functions f : � → R which
satisfy: (1) f (x0) = 0, (2) f (x) < 0 for every x ∈ ∂�\{x0}, (3) the sub mean-
value property in � with the constant C f ≤ 1 multiplying the mean-value integral.
Functions − dist(x, x0) and − dist2(x, x0) are examples of such barriers.

So far, we have established the equivalence between the solvability of the Dirichlet
problem in the underlying domain and the solvability of Dirichlet problems in all balls
contained in the domain.

Let (X , d, μ) be a metric space with metrically continuous measure such that all
balls are connected. Suppose that� ⊂ X is a domain and g : ∂� → R is a continuous
function. Moreover, let us assume that the harmonic Dirichlet problem is solvable on
all balls B ⊂ � for an arbitrary continuous boundary data.

Then, the Dirichlet problem has a solution in � if and only if at every x ∈ ∂� there
exists a barrier function, and for every ball in � there exists a solution of the Dirichlet
problem with g.

We remark that the solvability of the Dirichlet problem on balls leads to interesting
problems. For instance, in the Heisenberg setting, a ball in a Carnot–Carathéodory
metric need not be a regular set for 2-harmonic functions, see Example 14.4 in [4].

7 The Liouville theorem

The Liouville theorem is a classical result in the theory of harmonic functions in R
n .

The purpose of this section is to establish similar results for strongly and weakly
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harmonic functions on metric measure spaces. It turns out that already on R we may
choose such a measure, so that the Liouville theorem fails, cf. Example 11. However,
below we establish a fairly general condition on a measure resulting in the Liouville
theorem, see (31) and (32) in Theorem 7.1. Moreover, we discuss some sufficient
conditions on a measure and a metric space to ensure that Theorem 7.1 holds, see
Remark 6 and Theorem 7.2. For strongly harmonic functions a variant of the Liouville
theorem follows from the Harnack inequality on balls, see Theorem 7.3.

Let us begin with the following simple observation.

Proposition 7.1 Suppose that f ∈ H(�,μ) and let f > 0 in �, then g ∈ H(�, f μ)

if and only if g f ∈ H(�,μ).
Moreover, the assertion remains true for f , g ∈ wH(�,μ) and f > 0 provided

that f and g have the same sets of admissible radii r x
i for i = 1, 2, . . . at every point

x ∈ �.

Proof Let g ∈ H(�, f μ). Define h = f g and by a straightforward computation we
get

∫
B(x,r)

hdμ

μ(B(x, r))
=

∫
B(x,r)

g f dμ

μ(B(x, r))
= g(x)

∫
B(x,r)

f dμ

μ(B(x, r))
= f (x)g(x) = h(x).

Hence, we obtain that h ∈ H(�,μ). In order to show the opposite implication, let us
define g := h

f , where h ∈ H(�,μ). Thus,

∫
B(x,r)

h
f f dμ∫

B(x,r)
f dμ

=
∫

B(x,r)
hdμ∫

B(x,r)
f dμ

= h(x)

f (x)
.

Let now f , g ∈ wH(�,μ) and f > 0. Then, the above reasoning holds at every
ball B = B(x, r x

i ) for all i , since sets of admissible radii are the same for both
functions. 
�

Before proving Liouville-type results, let us give an example illustrating that, in
general, the Liouville property need not hold.

Example 11 There exists a measure μ on (R, | · |) and f ∈ H(R, μ) which is bounded
and nonconstant.

Let f (x) = 2ex cosh x = 1 + e2x . Then f ∈ H(R, e−x dx). Indeed, for every
x ∈ R and r > 0 we have

∫
B(x,r)

f (t)e−t dt =
∫ x+r

x−r
(1 + e2t )e−t dt .

Thus,

∫ x+r

x−r
e−t dt = e−x (er − e−r ) and

∫ x+r

x−r
e2t e−t dt = ex (er − e−r ). (30)
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Hence, we obtain that

1

μ(B(x, r))

∫
B(x,r)

f (t)μ(t) = 1 +
∫ x+r

x−r e2t e−t dt∫ x+r
x−r e−t dt

= 1 + e2x = f (x).

However, by virtue of Proposition 7.1 applied with f (x) = 2ex cosh x , measure
μ = e−x we get that a entire nonconstant bounded harmonic function g := 1

f =
1

1+e2x ∈ H(R, 2 cosh x dx), since g f = 1 ∈ H(�,μ) by (30).

We turn now to the question of the structure and dimension of the space of harmonic
functions on the whole space. Similar studies in the setting of manifolds have been
studied by several authors, e.g. Colding–Minicozzi [12] for Riemannian manifolds,
Theorem 1.4 in Hua–Kell–Xia [26] in the setting of RCD*(0, N ).

Definition 3.1 implies that the space of harmonic functions H(�,μ) is a linear
space. In fact, if X = R, then the following observation holds.

Example 12 Denote by dimH(�,μ) a dimension ofH(�,μ) as a linear space. Then
dimH(R, d, μ) ≤ 2.

We first show the following claim: If f ∈ H(R, d, μ), then f is constant or strictly
monotone. Let D = {(x, y) : x < y} and consider a function g : D → R defined as
follows g(x, y) := f (x) − f (y). Since f is continuous in D by Proposition 4.1, then
so is g in D × D. Suppose that f is not strictly monotone. Then g(x, y) = 0 for some
(x, y) ∈ D, then f (x) = f (y) and by the weak maximum principle in Corollary 4.3
we get that f is constant on the interval [x, y].

Next, we take any b > y. If f is not strictly monotone on [y, b], then we split
this interval into the intervals where f is monotone and apply the following reasoning
on such intervals. Therefore, let us suppose that f is monotone increasing on [y, b],
then by the the strong maximum principle in Proposition 4.2 applied to [x, b], we get
that f is constant on [x, b]. We obtain the same conclusion if f is monotone decreas-
ing, since then we use the strong minimum principle (an immediate consequence of
Proposition 4.2). The analogous reasoning gives us that f must be constant on any
interval [a, y] for a < x . From this, we have that f is constant on any interval [a, b]
containing the set [x, y] and the claim is proven.

Now,we are in position to prove the assertion of the example. Let f , g ∈ H(R, d, μ)

be such that f , g are non-constant. Then, by the claim f and g are strictly monotone.
Hence, there exists A ∈ R such that f (1) − f (−1) = A(g(1) − g(−1)). Thus,

f (−1) = Ag(−1) + B, f (1) = Ag(1) + B

for some B ∈ R. Hence, by the maximum principle we get f (x) − Ag(x) − B = 0
for x ∈ [−1, 1]. This implies that f (x) − Ag(x) − B = 0 for x ∈ R and the proof of
the observation follows.

In fact dimH can be smaller then 2, since it holds that dimH(R, | · |, |x |dx) = 1.
Indeed, let f ∈ H(R, | · |, |x |dx) and denote g := f |(0,+∞). Then g ∈

H((0,+∞), | · |, xdx). Since x ∈ H((0,+∞), | · |, dx), then Proposition 7.1 implies

123



Harmonic functions on metric measure spaces 181

that xg ∈ H((0, 1), | · |, dx) and, therefore, g(x) = A
x + B for some positive constants

A, B. The continuity of f results in f ≡ B.
Finally, note that the similar result for weakly harmonic functions fails since such

functions do not have a natural structure of a linear space. In order to ensure such
structure one would have to assume, for instance, that all functions in wH(�,μ) have
the same sets of admissible radii at every point of �.

The following result is related to a work of Yau [54] for Liouville theorems on
complete Riemannian manifolds with the Ricci curvature bounded from below.

Theorem 7.1 Suppose that for every x, y ∈ X the following condition holds

lim inf
r→∞

μ(B(x, r) � B(y, r))

μ(B(x, r))
= 0. (31)

Then, every bounded harmonic function in H(X , μ) is constant.
Moreover, the assertion holds true for a bounded f ∈ wH(X , μ) provided that

at every x, y ∈ X there exist sequences (r x
n ), (r y

n ) of admissible radii such that the
following holds

lim
n→∞

μ(B(x, r x
n ) � B(y, r y

n ))

μ(B(x, r x
n ))

= 0. (32)

Before proving the theoremwe present two observations regarding sufficient condi-
tions for functions and for a space and ameasure for (32) and (31) to hold, respectively.

Remark 5 Suppose that at every point x ∈ X : (1) f has the same sets of admissible
radii r x

n for n = 1, 2, . . ., and (2) r x
M = supn∈N r x

n = ∞. Then in assumption (32) one
can consider, for instance, sequences r x

n = r y
n for n = 1, 2, . . ..

Remark 6 Let us provide an example of a measure which ensures that (31) holds.
Suppose that (X , d, μ) is a length metric measure space with a doubling measure μ.
For such spaces Corollary 2.2 in Buckley [8] stays that X satisfies a δ-annular decay
property for some δ ∈ (0, 1], cf. the discussion following Definition 4.1. Then μ

satisfies (31). Indeed, as in Remark 2 we have that for x, y ∈ X with d(x, y) < r it
holds

μ(B(x, r) � B(y, r))

μ(B(x, r))
≤ A

(
2d(x, y)

r + d(x, y)

)δ
μ(B(x, r + d(x, y))

μ(B(x, r))

≤ ACμ

(
2d(x, y)

r + d(x, y)

)δ

,

since r + d(x, y) < 2r and the doubling condition can be applied. By letting r → ∞
we arrive at (31).
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Proof of Theorem 7.1 Let f ∈ H(X) be bounded and set M := ‖ f ‖L∞(X). We follow
the steps of the reasoning at (7), see the proof of Proposition 4.1 and cf. Lemma 4.3
in [13], and obtain

| f (x) − f (y)| ≤ 1

μ(B(x, r1))

∫
B(x,r1)�B(y,r2)

| f (z)|dμ(z)

+ |μ(B(x, r1)) − μ(B(y, r2))|
μ(B(x .r1))μ(B(y, r2))

∣∣∣∣
∫

B(y,r2)
f (z)dμ(z)

∣∣∣∣
≤ M

(
μ(B(x, r1) � B(y, r2))

μ(B(x, r1))
+ μ(B(x, r1) � B(y, r1))

μ(B(x, r1))μ(B(y, r2))
μ(B(y, r2))

)

≤ 2M
μ(B(x, r1) � B(y, r2))

μ(B(x, r1))
.

Now let r1 = r2 = r . We take lim inf for r → ∞ and thus, by assumption (31), we
get that f (x) = f (y) for every x, y ∈ X . From this the proof for strongly harmonic
functions follows.

Let now f ∈ wH(X , μ). Then we set r1 = r x
n and r2 = r y

n for n = 1, 2, . . . and
appeal to (32) in order to complete the proof of the theorem for weakly harmonic
functions. 
�
Theorem 7.2 If μ(X) < ∞, then every bounded f ∈ H(X) is constant. Moreover, if
f ∈ wH(X) is bounded and r x

M = ∞ for all x ∈ X, then f is constant.

Proof Observe that for x, y ∈ X and r > d(x, y) we have

B(x, r − d(x, y)) ⊂ B(x, r) ∩ B(y, r) ⊂ B(x, r) ∪ B(y, r) ⊂ B(x, r + d(x, y)).

Hence,

B(x, r) � B(y, r) ⊂ B(x, r + d(x, y))\B(x, r − d(x, y)). (33)

Next, for n ≥ 2 we define rn = (2n − 1)d(x, y) and r̄n = 2nd(x, y). Since

X = B(x, r2) ∪
∞⋃

n=2

B(x, rn+1)\B(x, rn)

and μ(X) < ∞, we have

lim
n→∞ μ (B(x, rn+1)\B(x, rn)) = 0.

In view of the above relations, we conclude

μ(B(x, r̄n) � B(y, r̄n))

μ(B(x, r̄n))
≤ μ (B(x, rn+1)\B(x, rn))

μ(B(x, r̄2))
→ 0, for n → ∞.
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Therefore, assumption (31) of Theorem 7.1 is satisfied and hence every bounded
harmonic function in H(X , μ) is constant. The proof of the theorem for strongly
harmonic functions is completed.

Now let f ∈ wH(X) with r x
M = ∞ for all x ∈ X . Therefore, at every x ∈ X

we may choose monotone sequences of admissible radii (r x
n ) and (r y

n ), such that
lim

n→∞ r x
n = lim

n→∞ r y
n = ∞. Then,

B(x,min{r y
n − d(x, y), r x

n }) ⊂ B(x, r x
n ) ∩ B(y, r y

n ) ⊂ B(x, r x
n ) ∪ B(y, r y

n )

⊂ B(x, r x
n + r y

n + d(x, y)).

Define two sequences

rn = r x
n + r y

n + d(x, y), sn = min{r y
n − d(x, y), r x

n } for n = 1, 2, . . . .

Hence,

B(x, r x
n ) � B(y, r y

n ) ⊂ B(x, rn)\B(x, sn) for all n.

Let us construct the following subsequences of (rn) and (sn):

(1) r ′
1 := rn1 , s′

1 := sn1 , for some n1 ≥ 1,
(2) for l = 2, 3, . . . we set s′

l := snk+1 , such that snk+1 > rnk and r ′
l := rnk+1 .

Therefore, for i �= j we have that

(
B(x, r ′

i )\B(x, s′
i )

) ∩
(

B(x, r ′
j )\B(x, s′

j )
)

= ∅.

Hence, by additionally appealing to the finiteness of the measure μ of X , we get

μ(B(x, r x
nk

) � B(y, r y
nk ))

μ(B(x, r x
nk

))
≤ μ

(
B(x, r ′

n)\B(x, s′
n)

)
μ(B(x, r x

1 ))
→ 0, for n → ∞.

Thus, assumption (32) of Theorem 7.1 is satisfied implying that f is constant. The
proof of the theorem is, therefore, completed. 
�

The Liouville theorem can also be obtain from the Harnack inequality on balls,
see Lemma 4.1. Below we assume that μ is bounded, restricting the set of admissible
measures, but on the other hand we require harmonic function to be bounded from
below only. Namely, the following result holds.

Theorem 7.3 Let X be a geodesic metric measure space with doubling measure μ.
Then, every bounded from below harmonic function in H(X , μ) is constant.

Proof Let f ∈ H(X , μ) and define g = f − infX f ≥ 0. By Proposition 3.1(1) we
have that g ∈ H(X , μ). By the Harnack inequality, see Lemma 4.1, we have that for
all x ∈ X and any ball B(x, r) ∈ X

g(x) ≤ sup
B(x,r)

g ≤ C3
μ inf

B(x,r)
g → 0, as r → ∞.
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Hence, g ≡ 0 and, in turn, f is constant. 
�

In the setting of weakly harmonic functions the same type of argument cannot be
applied. Indeed, if r B

M → ∞, then the Harnack constant CH in Lemma 4.1 grows
unbounded.
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11. Cieślak, T., Szumańska, M.: A theorem on measures in dimension 2 and applications to vortex sheets.
J. Funct. Anal. 266(12), 6780–6795 (2014)

12. Colding, T.H., Minicozzi II, W.P.: Harmonic functions on manifolds. Ann. Math. (2) 146(3), 725–747
(1997)

13. Gaczkowski, M., Górka, P.: Harmonic functions on metric measure spaces: convergence and compact-
ness. Potential Anal. 31, 203–214 (2009)

14. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order, Reprint of the 1998
edition, Classics in Mathematics. Springer, Berlin, xiv+517 pp (2001)

15. Górka, P.: Campanato theorem onmetric measure spaces. Ann. Acad. Sci. Fenn. Math. 34(2), 523–528
(2009)

16. Hajłasz, P., Koskela, P.: Sobolev Met Poincaré. Mem. Am. Math. Soc. 145, 203–207 (2000)
17. Hansen, W., Nadirashvili, N.: Mean values and harmonic functions. Math. Ann. 297(1), 157–170

(1993)
18. Hansen, W., Nadirashvili, N.: A converse to the mean value theorem for harmonic functions. Acta

Math. 171(2), 139–163 (1993)
19. Hansen, W., Netuka, I.: Volume densities with the mean value property for harmonic functions. Proc.

Am. Math. Soc. 123(1), 135–140 (1995)
20. Heath, D.: Functions possessing restricted mean value properties. Proc. Am. Math. Soc. 41, 588–595

(1973)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1702.07642


Harmonic functions on metric measure spaces 185

21. Heber, J.: On harmonic and asymptotically harmonic homogeneous spaces. Geom. Funct. Anal. 16(4),
869–890 (2006)

22. Heikkinen, T., Lehrbäck, J., Nuutinen, J., Tuominen, H.: Fractional maximal functions in metric mea-
sure spaces. Anal. Geom. Metr. Spaces 1, 147–162 (2013)

23. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York (2001)
24. Heinonen, J.: Nonsmooth calculus. Bull. Am. Math. Soc. (N.S.) 44(2), 163–232 (2007)
25. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. ActaMath.

181, 1–61 (1998)
26. Hua, B., Kell, M., Xia, C.: Harmonic functions on metric measure spaces. arXiv:1308.3607
27. Kenig, C., Preiss, D., Toro, T.: Boundary structure and size in terms of interior and exterior harmonic

measures in higher dimensions. J. Am. Math. Soc. 22(3), 771–796 (2009)
28. Kijowski, A.: Characterization of mean value harmonic functions on norm induced metric measure

spaces with weighted Lebesgue measure. arxiv:1804.10005
29. Kinnunen, J., Shanmugalingam, N.: Polar sets on metric spaces. Trans. Am. Math. Soc. 358(1), 11–37

(2006)
30. Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Stud. Math. 131, 1–17

(1998)
31. Kuratowski, K.: Topology, vol. 2. Academic Press, New York (1968)
32. Lichnerowicz, A.: Sur les espaces riemanniens complètement harmoniques. Bull. Soc. Math. Fr. 72,

146–168 (1944)
33. Li, P., Schoen, R.: L p and mean value properties of subharmonic functions on Riemannian manifolds.

Acta Math. 153(3–4), 279–301 (1984)
34. Liu, Q., Schikorra, A.: General existence of solutions to dynamic programming equations. Commun.

Pure Appl. Anal. 14(1), 167–184 (2015)
35. Llorente, J.: Mean value properties and unique continuation. Commun. Pure Appl. Anal. 14(1), 185–

199 (2015)
36. Luiro, H., Parviainen, M., Saksman, E.: On the existence and uniqueness of p-harmonious functions.

Differ. Integral Equ. 27(3–4), 201–216 (2014)
37. Manfredi, J., Parviainen, M., Rossi, J.: On the definition and properties of p-harmonious functions.

Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2), 215–241 (2012)
38. Marstrand, J.: The (φ, s) regular subsets of n-space. Trans. Am. Math. Soc. 113, 369–392 (1964)
39. Masson, M., Siljander, J.: Hölder regularity for parabolic De Giorgi classes in metric measure spaces.

Manuscr. Math. 142(1–2), 187–214 (2013)
40. Mathematics@CUHK A mathematical blog, https://cuhkmath.wordpress.com/2015/08/14/mean-

value-theorems-for-harmonic-functions-on-riemannian-manifolds/. Accessed at 2.XI.2017
41. Nikolayevsky, Y.: Two theorems on harmonic manifolds. Comment. Math. Helv. 80(1), 29–50 (2005)
42. Picardello, M., Woess, W.: A converse to the mean value property on homogeneous trees. Trans. Am.

Math. Soc. 311(1), 209–225 (1989)
43. Preiss, D.: Geometry of measures in R

n : distribution, rectifiability, and densities. Ann. Math. (2)
125(3), 537–643 (1987)

44. Ranjan, A., Shah, H.: Harmonic manifolds with minimal horospheres. J. Geom. Anal. 12(4), 683–694
(2002)

45. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry, Conference Proceedings and Lecture Notes
in Geometry and Topology. I. International Press, Cambridge (1994)

46. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces.
Rev. Mat. Iberoamericana 16(2), 243–279 (2000)

47. Shanmugalingam, N.: Harmonic functions on metric spaces. Ill. J. Math. 45, 1021–1050 (2001)
48. Shanmugalingam, N.: Some convergence results for p-harmonic functions on metric measure spaces.

Proc. Lond. Math. Soc. (3) 87(1), 226–246 (2003)
49. Tolsa, X.: Uniform measures and uniform rectifiability. J. Lond. Math. Soc. (2) 92(1), 1–18 (2015)
50. Todjihounde, L.: Mean-value property on manifolds with minimal horospheres. J. Aust. Math. Soc.

84(2), 277–282 (2008)
51. Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol.

229. Springer, Berlin, xiv+144 pp (1971)
52. Weinberger, M.H.: Maximum Principles in Differential Equations, corrected reprint of the 1967 orig-

inal. Springer, New York, x+261 (1984)

123

http://arxiv.org/abs/1308.3607
http://arxiv.org/abs/1804.10005
https://cuhkmath.wordpress.com/2015/08/14/mean-value-theorems-for-harmonic-functions-on-riemannian-manifolds/
https://cuhkmath.wordpress.com/2015/08/14/mean-value-theorems-for-harmonic-functions-on-riemannian-manifolds/


186 T. Adamowicz et al.

53. Willmore, T.J.: Mean value theorems in harmonic Riemannian spaces. J. Lond. Math. Soc. 25, 54–57
(1950)

54. Yau, S.-T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28,
201–228 (1975)

55. Zalcman, L.: Mean values and differential equations. Isr. J. Math. 14, 339–352 (1973)
56. Zucca, F.: The mean value property for harmonic functions on graphs and trees. Ann. Mat. Pura Appl.

(4) 181(1), 105–130 (2002)

123


	Harmonic functions on metric measure spaces
	Abstract
	1 Introduction
	2 Preliminaries
	3 Harmonic functions
	3.1 Examples of weakly and strongly harmonic functions, relations to p-subharmonic functions

	4 Harnack estimates, maximum principles, Hölder and Lipschitz continuity
	5 The Lipschitz regularity and uniform measures: weak upper gradients of harmonic functions
	6 The Dirichlet problem
	7 The Liouville theorem
	Acknowledgements
	References




