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Abstract We consider the initial-value problem ũt = �x ũ(x, t), ũ(x, 0) = u(x),
where x ∈ R

n−1, t ∈ (0, T ) and u belongs to certain weighted Orlicz–Slobodetskii
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assumptions on Orlicz function �, the solution ũ belongs to Orlicz–Sobolev space
W 1,�(� × (0, T )) for certain function � which in general dominates �. The typical
representants are �(λ) = λ(log(2 + λ))α , �(λ) = λ(log(2 + λ))α+1 where α > 0.
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1 Introduction

The purpose of this paper is to study the initial-value problem for the heat equation:

{
ũt (x, t) = �x ũ(x, t) in R

n−1 × (0, T ),

ũ(x, 0) = u for x ∈ R
n−1,

(1.1)

where the initial function u lies in the completion of Lipschitz functions in certain
weighted Orlicz–Slobodetski type space denoted by Y�,�

log (�), � is a N -function. It

consists of all v ∈ L�(�) (the Orlicz space generated by �), for which the seminorm

I�
log(v) :=

∫
Rn−1

∫
Rn−1

�

( |v(x) − v(y)|
|x − y|

)
ln(|x − y|)
|x − y|n−2 dxdy (1.2)

is finite.
As our main result formulated in Theorem 7.2, we prove that if � satisfies certain

assumptions (Assumption B in Definition 6.1), then the solution ũ of (1.1) lies in the
Orlicz–Sobolev space W 1,�(Rn−1 × (0, T )), i. e. ũ, together with its all first order
partial derivatives belongs to L�(Rn−1 × (0, T )), where � is in a sense conjugate to
� (see Definition 2.1). The natural representative pair of admitted functions would
be functions generating the logarithmic Zygmund spaces: �(λ) = λ(ln(2+ λ))α and
�(λ) = λ(ln(2 + λ))α+1, where α > 0. They cannot grow to fast. The conjugate
of � is equivalent to exp t1/α near infinity and does not satisfy the �2-condition.
Logarithmic Orlicz spaces are of particular interest in functional analysis, see, e.g.
[4,14,19,21].

For regularity results dealing with the initial data in the classical Besov spaces
Bα,q
p (�) we refer to papers: [20,43,51,58–60] and to their references.
Our motivation to ask about regularity in the Orlicz setting comes from the fact

that many mathematical models in the nonlinear elliptic and parabolic PDEs aris-
ing from the mathematical physics seem to have a good interpretation only when
stated in Orlicz framework, see e.g. [3,6,15,16,37,54]. Moreover, not much is known
about regularity established for the heat equation with initial data in the Orlicz–
Slobodetskii-type spaces, even in the nonweighted ones, where N -function � is
essentially different than λp. We focus on the paper [30] for an approach with an
initial condition in the Orlicz space. For another result in this direction we refer
to our recent paper [24], where we have proven that if Orlicz function R satis-
fies certain assumptions (Assumption B from Definition 6.1), then the solution ũ
of (1.1) lies in the Orlicz–Sobolev space W 1,R(� × (0, T )). The difference between
an approach presented here and our previous one is that now we provide the estimates
between Orlicz–Sobolev-type spaces and Orlicz–Slobodetskii-type spaces defined
by the possibly different Orlicz functions � and �. This motivated us to consider
weighted Orlicz–Slobodetskii setting, while our previous analysis did not require
weights.

Weighted Sobolev–Slobodetskii spaces have appeared in many issues, stating
from classical literature mostly by the Russian school: [42] (which appeared before
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Well posedness and regularity for heat equation 679

fundamental paper by Slobodetskii [50]), [31, Section 9] [35,39,47,56,57]. Those
works were involving measures being the power of the distance from the boundary:
dist(x, ∂�)α See also books [32,38,53] and later works [1,22,26,36,40,41,46,55].

Weighted Orlicz–Slobodetskii spaces involving general weights have appeared in
old papers by Lacroix [34] and Palmieri [45]. Recently first author and Dhara [11,12]
were investigating properties of the extension operator from Orlicz–Slobodetski type
space to Orlicz–Sobolev space in the weighted setting. See also [7,8,29,32,38], for
some interesting related results.

Except the standard arguments based on Young and Jensen’s inequalities and the a
priori estimates, we propose an approach based on obtained here pointwise estimates
for the time-maximal functions of ũ and its first order derivatives (see Lemmas 4.4,
5.3 and 6.4) and Stein type theorem due to Kita, see Theorem 4.1 obtained in [28].

The estimates for solutions of the heat equation are of interest to many mathe-
maticians form various branches of mathematics including the probability theory and
analysis onmetric spaces, see e.g. [2,5,10,13,17,18,44,48], and the references therein.

2 Notation and preliminaries

2.1 Basic notation

Let � ⊂ R
n be an open set. By C∞(�̄) we mean set of functions which

have smooth extension to certain open neighborhood of �̄. If f is defined on a
set A ⊆ R

n , by f χA we mean the function f extended by 0 outside A. Let
Mh(t0) := supt>0

1
2r

∫
(t0−r,t0+r) h(t) dt be the Hardy–Littlewood maximal function

of h ∈ L1
loc(R) [52]. We will be also dealing with the time-directional maximal func-

tion of function w ∈ L1
loc(R

n−1 × [0,∞)), the function

M2w(x, t0) := sup
t>0

1

2r

∫
(t0−r,t0+r)

w(x, t)χRn−1×(0,∞) dt (2.1)

(defined for almost every (x, t0)). Having to norms ‖ · ‖ and ‖ · ‖1 defined on a Banach
space X , we will write ‖·‖ ∼ ‖·‖1 if norm ‖·‖ is equivalent to ‖·‖1 on X . Having two
functions �,� defined on [0,∞) we will say that � dominates � (� ≺ �) if there
exist constants C1,C2 > 0 such that �(x) ≤ C1�(C2x) for every x > 0. Functions
�,� are called equivalent if � ≺ � and � ≺ �.

The notation “�” will be used in usual manner, namely, if�,� : A → R are given
functions, where A is some abstract domain (it can be either a subset of Euclidean
space, as well as a set of functions), we will write that � � � if there is a constant
C > 0 such that �(a) ≤ C�(a), for every a ∈ A. When n ∈ N, we denote:
Q′ = [0, 1]n−1, Q = [0, 1]n = Q′ × (0, 1). By Lip(�) we denote space of Lipschitz
functions defined on the set � ⊆ R

n , while by Lip0(�) we denote those elements
of Lip(�) which have compact support in �. If x = (x1, . . . , xn) ∈ R

n , then x ′ will
stand for (x1, . . . , xn−1) ∈ R

n−1. By ln x we denote the natural logarithm of a positive
number x .
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680 A. Kałamajska, M. Krbec

2.2 Orlicz, Orlicz–Sobolev and Orlicz–Slobodetskii spaces

2.2.1 Orlicz space

When � : [0,∞) → [0,∞) is a nondecreasing convex continuous function such that
�(0) = 0 and limt→∞ �(t) = +∞, the space

L�(�) :=
{
f ∈ L1

loc(�) :
∫

�

�(s| f (x)|) dx < ∞ for some s > 0

}

is calledOrlicz space (see e.g. [49]). It is a Banach space equippedwith the Luxemburg
norm:

‖ f ‖L�(�) := inf

{
λ > 0 :

∫
�

�

( | f (x)|
λ

)
dx ≤ 1

}
.

As is well known, when �(λ) = λp and p ≥ 1, then L�(�) = L p(�) is the usual
Lebesgue space. The same notation will be used for vector functions, u : � → R

m ,
with the formal difference that instead of |u(x)| we shall work with the Euclidean
norm of the vector u(x).

We shall write that � ∈ �2 if it satisfies the �2-condition: �(2λ) ≤ C�(λ),
for every λ > 0, with a constant C independent of λ. Symbol � ∈ �c

2 will mean
that the Legendre conjugate of �, that is, �∗(s) := supt>0{st − �(t)}, satisfies the
�2-condition.

We will be using the following statement (see e.g. [9, Proposition 2]).

Proposition 2.1 Let M be a Young function and (X, μ) be the measurable space
equipped with the measure μ. Then the expression

‖ f ‖L�(X,μ),α := inf

{
λ > 0 :

∫
X

�

( | f (x)|
λ

)
μ(dx) ≤ α

}
.

defines a complete norm on

L�(X, μ) :=
{
f ∈ L1

loc(X) :
∫

�

�(s| f (x)|) μ(dx) < ∞ for some s > 0

}

for each α ∈ (0,∞). Moreover, all norms ‖ · ‖L�(X,μ),α , α ∈ (0,∞) are equivalent.

2.2.2 Orlicz–Sobolev space

Let � ⊆ R
n be an open bounded domain, k ∈ N, and � : [0,∞) → [0,∞) be a

nondecreasing convex continuous function such that �(0) = 0 and limt→∞ �(t) =
+∞. The Orlicz–Sobolev space Wk,p(�) is the linear set

{u ∈ L1
loc(�) : Dαu ∈ L�(�) for every α : |α| ≤ k} (2.2)
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Well posedness and regularity for heat equation 681

equipped with the norm:

‖u‖Wk,p(�) :=
∑

α:|α|≤k

‖Dαu‖L�(�).

Here Dαu means the distributional derivative of u.
We define the spaceWk,�∞ (�), (respectivelyWk,�

L (�)) as the completion ofC∞(�̄)

(respectively Lip(�)) in the norm of the space Wk,�(�).

2.2.3 Orlicz–Slobodetskii space Y�,�

Let � ⊆ R
n be an open bounded domain, �,� : [0,∞) → [0,∞) be nondecreas-

ing convex continuous functions such that �(0) = �(0) = 0 and limt→∞ �(t) =
limt→∞ �(t) = +∞. By Y�,�(�) we denote the space of all u ∈ L�(�), for which
the seminorm

I�(u,�) :=
∫

�

∫
�

�

( |u(x) − u(y)|
|x − y|

)
dxdy

|x − y|n−1 (2.3)

is finite. We equip it with the norm:

‖u‖Y�,�(�) := ‖u‖L�(�) + J�(u,�),

where

J�(u,�) := inf
{
λ > 0 : I�

(u
λ

,�
)

≤ 1
}

is the Luxemburg-type seminorm.
Analogously one can define Y�,�(u, M), I�(u, M), and J�(u, M), where M ⊆

R
k is an arbitrary n-dimensional rectifiable set (n ≤ k) and instead of the Lebesgue

measure we consider the n-dimensional Hausdorff measureHn defined on M .
By Y�,�∞ (�) (respectively Y�,�

L (�)) we will mean the completion of set

C∞(�̄) ∩ Y�,�(�) (respectively Lip(�) ∩ Y�,�(�))

with respect to the norm ‖u‖Y�,�(�). Analogously, if M ⊆ R
k is an arbitrary n-

dimensional rectifiable set (n ≤ k), by Y�,�∞ (M) (resp. Y�,�
L (M)) we mean the

completion of set

C∞(M) ∩ Y�,�(M) (respectively Lip(M) ∩ Y�,�(M))

in the norm Y�,�(M), where by C∞(M) we mean the set of functions which are
defined on certain neighborhood of M in R

k and are smooth as functions on R
k .

Remark 2.1 Let� ⊆ R
n be an open domain with locally Lipschitz boundary,�(λ) =

�(λ) = |λ|p, 1 < p < ∞. Then
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682 A. Kałamajska, M. Krbec

‖u‖Y�,�(∂�) ∼ ‖u‖L p(∂�) +
(∫

∂�

∫
∂�

|u(x) − u(y)|p
|x − y|p+n−2 dx dy

)1/p
,

which is the norm of u in the Slobodetskii space W 1− 1
p ,p

(∂�), see e.g. [33].

2.3 Basic assumptions

In the sequel we will be dealing with the following assumptions comming from papers
by Kita [27,28].

Definition 2.1 (Assumption A (Kita pair)) We assume that a, b : [0,∞) → [0,∞)

are strictly positive continuous functions such that

(a)
∫ 1
0 a(s)/s ds < ∞,

∫∞
1

a(s)
s ds = +∞;

(b) b(·) is non-decreasing, lims→∞ b(s) = +∞.
(c) there exist constants c1 > 0, s0 ≥ 0 such that

∫ s

0

a(t)

t
dt ≤ c1b(c1s) for all s > s0, (2.4)

and in the case s0 > 0 mapping s �→ a(s)
s is bounded when s �= 0 is near to 0.

We define

�(t) :=
∫ t

0
a(s) ds and �(t) :=

∫ t

0
b(s) ds, where t ≥ 0. (2.5)

Remark 2.2 We always have �(t) ≤ C̃�(C1t), with universal constants, so that
� ≺ �. Moreover, the following three statements (a), (b), (c) are equivalent (see e.g.
Proposition 5.1 in [25]):

(a) � ∈ �c
2

(b) � and � are equivalent Orlicz functions,
(c) � ∈ �c

2.

Example 2.1 Simple computation shows that pair (�(λ),�(λ)) = (λ(log(2 +
λ))α, λ(log(2 + λ))α+1) where α > 0 is a Kita pair.

2.4 Trace operator

Let us briefly recall basic claims from [23, Theorems 3.10 and 3.13]. The original
formulation holds with u ∈ C∞(�̄) however, the proof follows by the same arguments
with no difference for u ∈ Lip(�) as well.

Theorem 2.1 ([23], embedding theorem, inequalities in modulars) Let Assumption A
be satisfied (see Definition 2.1) and let � be a bounded domain with locally Lipschitz
boundary. Then we have
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Well posedness and regularity for heat equation 683

(i) If (2.4) holds with s0 = 0, then for every u ∈ Lip(�),

∫
∂�

�(|u(x)|)Hn−1(dx) + I�(u, ∂�)

≤ C

(∫
�

�(C1|u(x)|) dx +
∫

�

�(C2|∇u(x)|) dx
)

, (2.6)

with constants C, C1,C2 independent of u.
(ii) If (2.4) holds with some s0 > 0, then for every u ∈ Lip(�),

∫
∂�

�(|u(x)|)Hn−1(dx) + I�(u, ∂�)

≤ C

(∫
�

�(C1|u(x)|) dx +
∫

�

�(C2|∇u(x)|) dx +
∫

�

|∇u(x)| dx
)

,

(2.7)

with constants C,C1,C2 independent of u.

Theorem 2.2 ([23], embedding theorem, inequalities in norms) Let Assumption A be
satisfied (see Definition 2.1) and let � be a bounded domain with a locally Lipschitz
boundary. Then there exists a constant D such that for every u ∈ Lip(�) we have

‖u‖Y�,�(∂�) ≤ D‖u‖W 1,� (�). (2.8)

2.4.1 Trace operator

Let the assumptions in Theorems 2.1 and 2.2 be satisfied and let u ∈ W 1,�
Lip (�).

Consider any sequence um ∈ L(�̄) convergent to u in the norm of the spaceW 1,�(�).
Then {um} is a Cauchy sequence in Y�,�(∂�) (convergence in the norm), so that it
converges some element ū ∈ Y�,�

L (∂�). It is easy to observe that ū is independent
of the choice of the sequence {um} ⊆ L(�̄), converging to u. It allows to extend the
standard definition of the trace operator:

Tr u := lim
m→∞ um = ū ∈ Y�,�

L (∂�), (2.9)

where the convergence holds in the norm of Y�,�(∂�).
As a consequence we obtain the following result.

Theorem 2.3 ([23], embedding theorem) Let Assumption A be satisfied (see Defini-
tion 2.1) and let� be a bounded domain with a locally Lipschitz boundary. Then trace
operator Tr : W 1,�

L (�) �→ Y�,�
L (∂�) is well defined by expression (2.9) and there

exists a constant D such that for every u ∈ W 1,�
L (�) we have

‖Tr u‖Y�,�(∂�) ≤ D‖u‖W 1,� (�). (2.10)
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684 A. Kałamajska, M. Krbec

3 Heat kernel estimates

Let u ∈ Lip(∂�). We will define function ũ ∈ Lip(�) such that Tr ũ = u using the
Gaussian kernel. Let

Ẽ(s, t) := 1

2n−1(π t)(n−1)/2
exp(−s2/4t), s ≥ 0, t > 0

and E(x, t) := Ẽ(|x |, t), x ∈ R
n−1, t > 0,

be the heat kernel. Then E obeys the following properties

1. ∫
Rn−1

E(x, t) dx = 1 for every t > 0,

2.

lim
t→0

∫
Rn−1

φ(x)E(x, t) dx = φ(0) for every φ ∈ Lip0(R
n−1),

3.

Et (x, t) = �x E(x, t).

We will start our construction with the case when � = Q, and assuming that
u ∈ Lip0(Q′).

We define

ũ(x, t) = (e−t�u)(x) :=
{∫

Rn−1 u(y)E(x−y, t) dy = (E(·, t) ∗ u)(x) when t > 0,

u(x) when t = 0,

(3.1)

where g ∗ u is the usual convolution. We have the following observation.

Lemma 3.1 For any u ∈ Lip0(Q′) we have ũ ∈ Lip(Q̄). In particular Tr ũ = u.

The remaining estimates and our final result will be established in several steps
presented in in the sequel.

4 Estimates of function ũ

4.1 Presentation of main results

We start with the following result.

Proposition 4.1 ([23]) Let u ∈ Lip(Rn−1) be supported in Q
′
, and ũ be defined by

(3.1). Then for any λ > 0 and any convex function R : [0,∞) → [0,∞) and for any
T > 0, we have
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Well posedness and regularity for heat equation 685

∫ T

0

∫
Q′ R

( |̃u(x ′, t)|
λ

)
dx ′ dt ≤ T

∫
Rn−1

R

( |u(x ′)|
λ

)
dx ′. (4.1)

In particular, if R is a N-function, we have ‖ũ‖LR(Q) ≤ ‖u‖LR(Q′).

Our goal is to show that in some cases the function ũ can have better integrability
properties than u. As main result of this section we obtain the following lemma.

Lemma 4.1 Let ũ be given by (3.1), where u ∈ Lip0(Q′). Moreover, let (�,�) be
as in Assumption A (see Definition 2.1) and suppose that � satisfies the following
estimate:

�(xy) ≤ D(1 + G(x) + G(x)�(y)), with D independent of x, y, (4.2)

and continuous, nondecreasing function G such that
∫ 1
0 G(c| ln t |) dt < ∞ for any

constant c > 0. Then

∫
(x,t)∈Q

�

( |̃u(x, t)|
λ

)
dxdt � 1 +

∫
Q′

�

(
C |u(x)|

λ

)
dx, for every λ > 0, (4.3)

‖ũ‖L�(Q′×(0,1)) � ‖u‖L�(Q′). (4.4)

where constant C > 0 above is independent of u.

Remark 4.1 1. The condition (4.2) implies that� satisfies�2-condition near infinity,
i.e. there exists N > 0 and C > 0 such that �(2y) ≤ C�(y) whenever y > N .

2. Assume that�(s) = sαh(| ln s|)where h is continuous, positive for positive argu-
ments, nondecreasing and satisfies�2-condition near∞ (in the sense of definition
given above). Then

�(xy) � 1 + G(x) + G(x)�(y),where G(x) = max{xα,�(x))}.

Indeed, this follows from the following estimates:

�(xy) = xα yαh(| ln x | + | ln y|) ≤ xα yα (h(2| ln x |) + h(2| ln y|))
� xα yα(1 + h(| ln x |) + h(| ln y|))
= yα�(x) + xα�(y) + xα yα = yα(�(x) + xα) + xα�(y)

� G(x)yα + G(x)�(y)

� G(x) + G(x)�(y).

3. In the original formulations of Lemmas 4.1 and 4.1 we assume u ∈ C∞ instead of
u being Lipschitz. The statements we formulate now hold truewithout any changes
in their proofs.
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4.2 Proof of Lemma 4.1

The proof will be proceeded by the known results of Kita [28, Theorems 2.1 and 2.7]
and sequence of lemmas where we derive certain pointwise estimates.

Theorem 4.1 ([28]) Let a(s), b(s),�(t),�(t) be as in Assumption A (see Defini-
tion 2.1), with s0 ≥ 0. Then there exist constants C1,C2,C3 > 0 such that∫

Rn
�(C3| f (x)|) dx ≤ C1s0

∫
Rn

| f (x)| dx + C2

∫
Rn

�(M f (x)) dx,

for all f ∈ L1(Rn), where M f (x) is the Hardy–Littlewood maximal function of f (x).

Lemma 4.2 Let β > −2 and

Fβ(x) = x
∫ ∞

x
qβe−q dq. (4.5)

Then there exist constants C0,C1 (depending on β) such that for every y ∈ R+ we
have

sup
{x≤y}

Fβ(x) ≤ C0χy>C1 + Fβ(y)χy≤C1 .

Proof Function Fβ is increasing up to certain xβ and it is bounded. Therefore inequal-
ity follows with C0 = sup F <

∫∞
0 qβ+1e−q dq, C1 = xβ . ��

Lemma 4.3 Let s ∈ R+, t > 0, α > 0 and

Ẽα(s, t) := 1

tα
exp(−s2/4t),

Bα(s, t0, r) := 1

2r

∫
(t0−r,t0+r)

Ẽα(s, t)χt>0 dt.

Then for any s, t0, r > 0 we have

sup
r>0

Bα(s, t0, r) � Ẽα

(
s,

3

2
t0

)
+ 1

s2α
Fα−2

(
s2

8t0

)
+ 1

s2α
χ
t0<

s2
8C1

,

where Fβ(x) is given by (4.5), C1 is the same as in Lemma 4.2.

Proof We start with the case 0 < r < t0
2 . Let us find the negative integer k ≤ −2 such

that t02k ≤ r ≤ t02k+1, so that for B = Bα(s, t0, r) we have

B � 1

2r

∫
(t0−r,t0+r)

1

tα
e− s2

4t dt

� 1

2k t0
· e− s2

4( 32 t0) · t−α
0 |(t0 − r, t0 + r)| � Ẽα

(
s,

3

2
t0

)
,
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Well posedness and regularity for heat equation 687

because when t ∈ (t0 − r, t0 + r) we have t0
2 ≤ t ≤ 3t0

2 and |(t0 − r, t0 + r)| = 2r ≤
2k+2t0.

In case t0
2 ≤ r < t0, we have (we change variables, substituting q = s2

4t )

B �
(

1

2t0

∫ 2t0

0

1

tα
e− s2

4t dt

)

� 1

s2α

(
s2

8t0

)∫
s2
8t0

qα−2e−q dq = 1

s2α
Fα−2

(
s2

8t0

)
.

Finally, if r ≥ t0, we proceed similarly as above, to get

B � 1

2r

∫ 2r

0

1

tα
e− s2

4t dt

� 1

s2α
Fα−2

(
s2

8r

)
,

then we use Lemma 4.2 (note that s2
8r ≤ s2

8t0
=: y) to get in this case

B � 1

s2α
χ s2

8C1
>t0

+ 1

s2α
Fα−2

(
s2

8t0

)
χ s2

8C1
≤t0

.

Therefore the estimate holds in all considered cases. ��

Lemma 4.4 Let u ∈ L1(Q′), Q′ = [0, 1]n−1, and ũ be given by (3.1), M2 is as in
(2.1). Then there exists constant C1 > 0 such that for any t0 > 0 we have

M2(̃uχt>0)(x, t0) � (T0u)

(
x,

3

2
t0

)
+ (T1u)(x, 2t0) + (T2u)(x, 2C1t0),

where

(T0u)(x, t) :=
∫
Rn−1

Ẽ(|x − y|, t)|u(y)| dy,

(T1u)(x, t) :=
∫
Rn−1

1

|x − y|n−1 Fn−5
2

( |x − y|2
4t

)
|u(y)| dy,

(T2u)(x, t) :=
∫
Rn−1

1

|x − y|n−1χ
t< |x−y|2

4
|u(y)| dy.

The estimate holds with some constant which is independent of u, x, t .
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688 A. Kałamajska, M. Krbec

Proof Applying Fubini’s theorem we obtain

1

2r

∫
(t0−t,t0+r)

|̃u(x, t)|χt>0 dt

� 1

2r

∫
(t0−r,t0+r)

(∫
Rn−1

Ẽ n−1
2

(|x − y|, t)|u(y)| dy
)

χt>0 dt

=
∫
Rn−1

(
1

2r

∫
(t0−r,t0+r)

Ẽ n−1
2

(|x − y|, t)χt>0 dt

)
|u(y)| dy.

Now it suffices to apply Lemma 4.3. ��
Remark 4.2 We observe that under the notation in Lemma 4.4 we have

1. when u is nonnegative then (T0u)(x, t) = ũ(x, t), in general (T0u)(x, t) =
|̃u|(x, t) (see 3.1);

2. C1 is as in Lemma 4.2 with β = n−5
2 .

Lemma 4.5 Let u ∈ L1(Rn−1) and let (T1u)(x, t0) be as in Lemma 4.4. Then for any
convex function R and every t0 > 0 we have∫

Rn−1
R(T1u)(x, t0) dx ≤

∫
Rn−1

R(C̃ |u(y)|) dy,

where C̃ = ∫
Rn−1 |z|−(n−1)Fn−5

2
(|z|2)dz.

Proof We have

R((T1u)(x, t0)) = R

⎛
⎝∫

Rn−1

1
|x−y|n−1 Fn−5

2

( |x−y|2
4t0

)
C̃

· (C̃ |u(y)|) dy
⎞
⎠

and C̃ = ∫
Rn−1

1
|x−y|n−1 Fn−5

2
(
|x−y|2
4t0

) dy = ∫
Rn−1 |z|−(n−1)Fn−5

2
(|z|2)dz. Therefore

by Jensen’s inequality

R((T1u)(x, t0)) ≤
∫
Rn−1

1
|x−y|n−1 Fn−5

2

( |x−y|2
4t0

)
C̃

· R(C̃ |u(y)|) dy.

Integrating the above expression over R
n−1, then applying Fubini’s theorem, we get

∫
Rn−1

R((T1u)(x, t0)) dx ≤
∫
Rn−1

⎛
⎝∫

Rn−1

1
|x−y|n−1 Fn−5

2

( |x−y|2
4t0

)
C̃

dx

⎞
⎠ R(C̃ |u(y)|) dy

=
∫
Rn−1

R(C̃ |u(y)|) dy.

This finishes the proof of the lemma. ��
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Lemma 4.6 Let T2 be as in Lemma 4.4, R be an arbitrary convex function and Q′ =
[0, 1]n−1. Then for any t > 0 and measurable function u supported in Q

′
we have

∫
Q′

R((T2ũ)(x, t)) dx ≺
∫
Q′

R(C(1 + | ln t |)|u(x)|) dx,

with constant C > 0 independent of u.

Proof If x ∈ Q′ and y ∈ Q′, then |x − y| ≤ √
n − 1. We have

L :=
∫
Q′

R((T2u)(x, t)) dx =
∫
Q′

R

(∫
Q′

1

|x − y|n−1χ{t< |x−y|2
4 < n−1

4 }u(y) dy

)
dx .

It suffices to show that

L �
{∫

Rn−1 R(C0| ln t ||u(y)|)dy when t < 1
64∫

Rn−1 R(C0|u(y)|)dy when t ≥ 1
64

(4.6)

where C0 is independent in u. We start with the case t < 1
64 . For this, let

C(x, t) :=
∫
Q′

1

|x − y|n−1χ{t< |x−y|2
4 < n−1

4 }dy,

A(x, t) :=
{
y ∈ Q

′ : t <
|x − y|2

4

}
.

We have

|A(x, t)| =
∫
A(x,t)

1dy
z:=x−y=

∫
z∈{x−Q′ }∩{|z|≥2

√
t}
dz = |{x − Q

′ } ∩ {|z| ≥ 2
√
t}|.

Let us fix x
′ = (x2, . . . , xn−1) ∈ Q

′
and consider the mapping

(0, 1) � x1 �→ |{(x1, x2 . . . , xn−1) − Q
′ } ∩ {|z| ≥ 2

√
t}| =: f1(x1).

We will show that f1(x1) takes its minimal value at x1 = 1/2. Indeed, let x =
(x1, x

′
) ∈ (0, 1) × (0, 1)n−2. We have

f1(x1) =
∫
z1∈{x1−(0,1)}

{∫
z′ ∈{x ′−(0,1)n−2}

χ{|z′ |2≥4t−|z1|2}dz
′
}
dz1.

Define for s ∈ (0, 1):

h(s) :=
∫
z′ ∈{x ′−(0,1)n−2}

χ{|z′ |2≥4t−s2}dz
′
,

C(s) := {z′ ∈ x
′ − (0, 1)n−2 : |z′ |2 ≥ 4t − s2}.
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690 A. Kałamajska, M. Krbec

Note that as for s1 ≤ s2 we have C(s1) ⊆ C(s2), therefore function s �→ h(s) is
nondecreasing. Moreover, let

A(x1) := [−1 + x1, x1] ∩
[
−1

2
,
1

2

]
⊆
[
−1

2
,
1

2

]
,

B(x1) := [−1 + x1, x1]
∖[

−1

2
,
1

2

]
.

Then |A(x1)| + |B(x1)| = 1, sets A(x1), B(x1) are disjoint and inf{h(|z1|2) : z1 ∈
B(x1)} ≥ h( 14 ) ≥ sup{h(|z1|2) : z1 ∈ [− 1

2 ,
1
2 ]}. As we have

f1(x1) =
∫
z1∈A(x1)

h(|z1|2)dz1 +
∫
z1∈B(x1)

h(|z1|2)dz1

=
∫
z1∈[− 1

2 , 12 ]
h(|z1|2)dz1 +

{∫
z1∈B(x1)

h(|z1|2)dz1−
∫
z1∈[− 1

2 , 12 ]\A(x1)
h(|z1|2)dz1

}
,

sets B(x1) and [− 1
2 ,

1
2 ]\A(x1) have the same measure, therefore the expression in

brackets {. . . } is nonnegative. Therefore f1(x1) achieves its minimal value when
{. . . } = 0, in particular when A(x1) = [− 1

2 ,
1
2 ], B(x1) = ∅, i. e. in case when

x1 = 1
2 .

By an obvious modification of the above argument we have

|A(x, t)| ≥ |{(1/2, . . . , 1/2) − Q
′ } ∩ {|z| ≥ 2

√
t}|

= |(1/2, . . . , 1/2)n−1 ∩ {|z| ≥ 2
√
t}|,

and right hand side is nonzero provided that 2
√
t < |(1/2, . . . , 1/2)| = √

n − 1/2.
When t < 1/16 this is always satisfied and in that case C(x, t) > 0. Moreover, by
simple observation we have

C(x, t) =
∫
A(x,t)

1

|x − y|n−1 dy =
∫

{ x
2
√
t
− 1

2
√
t
Q′ }∩{|z|≥1}

1

|z|n−1 dz

≤
∫

{1≤|z|≤
√
n−1
2
√
t

}
1

|z|n−1 dz = ωn−2 ln r |
√
n−1
2
√
t

1 = ωn−2 ln

√
n − 1

2
√
t

≤ ωn−2

2
ln(n − 1) + ωn−2

2
| ln t | =: a1 + a2| ln t |.

where ωn−2 is measure of unit sphere in R
n−2 is the case n > 2 and ω0 = 2. On the

other hand

C(x, t) =
∫

{ x
2
√
t
− 1

2
√
t
Q′ }∩{|z|≥1}

1

|z|n−1 dz

≥
∫

{ x
2
√
t
− 1

2
√
t
Q′ }∩{|z|≥1}∩ 1

2
√
t
(− 1

2 , 12 )n−1

1

|z|n−1 dz≥
∫

{{|z|≥1}∩ 1
2
√
t
(0, 12 )n−1

1

|z|n−1 dz
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≥ 1

2n−1

∫
1<|z|< 1

4
√
t

1

|z|n−1 dz = 2−(n−2)ωn−2 ln r |
1

4
√
t

1

= 2−(n−2)ωn−2 ln

(
1

4
√
t

)
≥ 6−(n − 2)ωn−2 ln 2.

This easily implies

supt∈[0, 1
64 ]

supy∈Q′C(y, t)

infx∈Q′C(x, t)
≺ 1. (4.7)

By Jensen’s inequality, Fubini’s theorem and the above estimates we can estimate
further:

L ≤
∫
Q′

∫
Q′

1
|x−y|n−1 χ{t< |x−y|2

4 < n−1
4 }

C(x, t)
R (C(x, t)|u(y)|) dydx

≤
∫
Q′

⎛
⎝∫

Q′

1
|x−y|n−1 χ{t< |x−y|2

4 < n−1
4 }

C(x, t)
dx

⎞
⎠ R(C(1 + | ln t |)|u(y)|) dy

(4.7)≺
∫
Q′ R(C(1 + | ln t |)|u(y)|) dy,

where C is independent on u.
When t > 1

64 the computations become simpler as then we have

1

|x − y|n−1χ
t< |x−y|2

4
≤ 1

|x − y|n−1χ 1
4<|x−y| ≤ 4n−1,

which implies

R

(∫
Q′

1

|x − y|n−1χ{t< |x−y|2
4 }u(y) dy

)
≤ R

(∫
Q′ 4

n−1u(y) dy

)

≤
∫
Q′ R(4n−1u(y)) dy.

��
We are now in position to prove Lemma 4.1.

Proof of Lemma 4.1 Let λ > 0 and denote

L :=
∫

(0,1)

∫
Q′

�

( |̃u(x, t)|
λ

)
dxdt

=
∫
Q′

(∫
R

�

( |̃u(x, t)|
λ

χt∈(0,1)

)
dt

)
dx .
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692 A. Kałamajska, M. Krbec

We apply Theorem 4.1 to the internal integral, then Fubini Theorem, to get

L �
∫
R

∫
Q′

�

(
M2
(̃
u(x, t)χt∈(0,1)

)
λ

)
dxdt

+ s0

∫
R

∫
Q′

|̃u(x, t)|χt∈(0,1)

λ
dxdt.

This is further estimated with the help of Lemma 4.4:

L �
∫
Q′

∫
(0,1)

�

(
C
(|T0u(x, 3

2 t)|
)

λ

)
dxdt +

∫
Q′

∫
(0,1)

�

(
C (T1u(x, 2t))

λ

)
dxdt

+
∫
Q′

∫
(0,1)

�

(
C ((T2u)(x, 2C1t))

λ

)
dxdt + s0

∫
R

∫
Q′

|̃u(x, t)|
λ

dxdt

=: A + B + C + D.

Applying Proposition 4.1 and Lemma 4.5 with R = �, we obtain

A + B �
∫
Q′

�

(
C |u(x)|

λ

)
dx .

Moreover, according to Lemma 4.6, we have

C �
∫

(0,1)

∫
Q′

�(C2(1+| ln 2C1t |)|u(x)|) dx�
∫

(0,1)

∫
Q′

�(C3(1+| ln t |)|u(x)|) dx,

with some general constants C1,C2,C3 > 0. This together with (4.2) gives C �
1 + ∫Q′ �(

|u(x)|
λ

) dx . To get (4.3) it suffices to note that if s0 > 0, then

D
s0

=
∫
Q

|̃u(x, t)|
λ

dxdt ≤
∫
Q

�∗(1) dxdt +
∫
Q

�

( |̃u(x, t)|
λ

)
dxdt

� 1 +
∫
Q′

�

( |u(x)|
λ

)
dx .

The last estimate follows from Proposition 4.1. This implies (4.3). Inequality (4.4)
follows directly from (4.3) and Proposition 2.1 after the substitution λ = ‖u‖L�(Q′).

��

5 Estimates of function ∇x ũ

5.1 Presentation of main results

Our approach will be based on the following results.
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Well posedness and regularity for heat equation 693

Proposition 5.1 (Lemma 3.3, [23]) For any k ∈ {1, . . . , n − 1}, any 0 < ε < 1
2 , and

any u ∈ Lip0(Q′) such that dist(supp u, ∂Q′) ≥ ε, we have∣∣∣∣ ∂ ũ∂xk
(x, t)

∣∣∣∣ ≤
∫
Q′

P(|x − y|, t)
( |u(x) − u(y)|

|x − y|
)

dy + C̃ |u(x)|, where

P(s, t) = 1

2n(
√
2π)n−1

1

t (n−1)/2

s2

t
e− s2

4t ,when s ∈ R, in particular,

P(|z|, t) = 2E(z, t)
|z|2
4t

, when z ∈ R
n−1, C̃ = 1√

2πe · ε
.

Proposition 5.2 ([23]) For any convex function R, any 0 < ε < 1
2 and any function

u ∈ Lip0(Q′) such that dist(supp u, ∂Q′) ≥ ε we have

∫
Q′

∫
(0,1)

R(|∇x ũ|) dxdt �
∫
Q′

∫
Q′

R

(
C1|u(y) − u(x)|

|x − y|
)

1

|x − y|n−3 dxdy

+
∫
Q′

R(C2|u(x)|) dx, (5.1)

with C1 = 2
√
n − 1

∫
Rn−1 |w|2e−|w|2 dw, C2 = 2

√
n−1√

2πe·ε .
In particular, when ∇xu denotes the spatial gradient of u, we have

∫
Q′

∫
(0,1)

R(|∇x ũ|) dxdt �
∫
Q′

∫
Q′

R

(
C1|u(y) − u(x)|

|x − y|
)

1

|x − y|n−2 dxdy

+
∫
Q′

R(C2|u(x)|) dx

= J R(C1u, Q′) +
∫
Q′

R(C2|u(x)|) dx .

Proof We use argument preceding (3.5) in the proof of Lemma 3.2 in [23], to get the
slightly more precise statement. ��
Corollary 5.1 ([23]) If u ∈ Y�,�

L (Q′) is supported in the interior of Q′ then the
spatial derivative of ũ satisfies |∇x ũ| ∈ L�(Q).

Remark 5.1 As before we remark that the original formulations of Lemmas 5.1 and
5.2 and Corollary 5.1 deal with u ∈ C∞

0 (Q′) instead of u ∈ Lip0(Q′) but their
statements hold with Lipschitz u by the same arguments.

Remark 5.2 Estimate (5.1) shows that

∫
Q′

∫
(0,1)

R(|∇x ũ|) dxdt �
∫
Q′

∫
Q′

R

(
C1|u(y) − u(x)|

|x − y|
)

ω(x, y)

|x − y|n−2 dxdy

+
∫
Q′

R(C2|u(x)|) dx,
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694 A. Kałamajska, M. Krbec

where ω(x, y) = 1
|x−y| . This implies the estimates in the norms

‖∇x ũ‖LR(Q) � ‖u‖Y R,R
ω (Q′

)

where Y R,R
ω (Q

′
) is weighted Orlicz–Slobodetskii space introduced in [11,12]. In par-

ticular more precise statement than that in Corollary 5.1 holds.

Corollary 5.2 Let Y�,�
ω,L (Q′) denote the completion of Lipschitz functions in Y�,�

ω

(Q′). If u ∈ Y�,�
ω,L (Q′) is supported in the interior of Q′ then the spatial derivative of

ũ satisfies |∇x ũ| ∈ L�(Q).

Note that we have Y�,�(Q′) ⊆ Y�,�
ω (Q′).

Our main goal is to show that in general stronger property follows. Namely, that
under an assumption u ∈ Y�,�

L (∂�), where u is supported in the interior of Q′ and
(�,�) is as in Assumption A (see Definition 2.1), we have |∇x ũ| ∈ L�(Q). Let us
recall that in general we have� ≺ � (see Remark 2.2) and it may happen that� � �.

The main result of this subsection reads as follows.

Lemma 5.1 Let 0 < ε < 1/2 and ũ be given by (3.1), where u ∈ Lip0(Q′) and
dist(supp u, ∂Q′) ≥ ε. Moreover, let (�,�) be as in Assumption A (seeDefinition 2.1)
and � satisfies the following estimation:

�(xy) ≤ C(1 + G(x) + G(x)�(y)), with C independent of x, y, (5.2)

where G is continuous, nondecreasing, locally bounded and such that

sup
s< 1

2

1

s

∫ s2

0

G(c| ln t |)
| ln t | dt < ∞

for any c > 0. Then for every λ > 0

∫
(0,1)

∫
Q′

�

( |∇x ũ(x, t)|
λ

)
dxdt

� 1+
∫
Q′

∫
Q′

1

|x−y|n−2�

(
1

λ

|u(x)−u(y)|
|x−y|

)
dxdy +

∫
Q′

�

( |u(x)|
λ

)
dx, and

(5.3)

‖∇x ũ(x, t)‖L�(Q) � ‖u‖Y�,�(Q′). (5.4)

Remark 5.3 Constant bounds in the above estimations depend on ε > 0.

5.2 Proof of Lemma 5.1

First we prove several auxiliary claims. We shall proceed quickly when the proofs are
similar to that of the previous subsection.
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Lemma 5.2 Let s ∈ R+, t > 0, α > 0, γ ≥ 0 and

Ẽα,γ (s, t) := 1

tα

(
s2

4t

)γ

exp(−s2/4t),

Bα,γ (s, t0, r) := 1

2r

∫
(t0−r,t0+r)

Ẽα,γ (s, t)χt>0 dt.

Then for any s, t0, r > 0 we have

sup
r>0

Bα,γ (s, t0, r) � Ẽα,γ

(
s,

3

2
t0

)
+ 1

s2α
Fα+γ−2

(
s2

8t0

)
χ
t0≥ s2

8C2

+ 1

s2α
χ
t0<

s2
4C2

,

where Fβ(x) is given by (4.5), C2 = C2(α, γ ) > 0 is a given constant.

Proof The proof is the littlemodification of Lemma 4.3with the difference that instead
of Ẽα(s, t) we now deal with Ẽα,γ (s, t) = Ẽα(s, t)( s

2

4t )
γ . Repeating the proof of

Lemma 4.3 we observe that

Bα,γ (s, t0, r) � Ẽα,γ

(
s,

3

2
t0

)

in case 0 < r < t0
2 . In case

t0
2 ≤ r < t0 we have the estimation

Ẽα,γ (s, t) � 1

2t0

∫ 2t0

0

1

tα

(
s2

4t

)γ

e− s2
4t dt

� 1

s2α
s2

8t0

∫ ∞
s2
8t0

qα+γ−2e−q dq = 1

s2α
Fα+γ−2

(
s2

8t0

)
,

while in case r ≥ t0 we compute that

Bα,γ (s, t0, r) � 1

s2α
Fα+γ−2

(
s2

4r

)
.

Using Lemma 4.2 dealing with y = s2
8t0

and β = α + γ − 2 > −2, we obtain that

when t0
2 ≤ r

Ẽα,γ (s, t) � 1

s2α
Fα+γ−2

(
s2

8t0

)
χ s2

8C2
≤t0

+ 1

s2α
χ s2

8C2
>t0

,

with some positive constant C2 > 0 depending on α + γ . This completes the proof.
��
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Lemma 5.3 Let u ∈ Lip0(Q′) and ũ be given by (3.1). Then for any t0 > 0 we have

M2(∇x ũχt>0)(x, t0) �
∫
Q′

P(|x − y|, 3
2
t)

( |u(x) − u(y)|
|x − y|

)
dy

+
∫
Q′∩{y:t≥ |x−y|2

8C2
}

1

|x − y|n−1 Fn−3
2

( |x − y|2
8t

)
( |u(x) − u(y)|

|x − y|
)

dy

+
∫
Q′∩{y:t< |x−y|2

8C2
}

1

|x − y|n−1

( |u(x) − u(y)|
|x − y|

)
dy + |u(x)|,

where constant C2 > 0 does not depend on u.

Proof According to Proposition 5.1 we have

1

2r

∫
(t0−r,t0+r)

|∇x ũ|χt>0 dt �
∫
Q′

(
1

2r

∫
(t0−r,t0+r)

P(|x − y|, t)χt>0 dt

)

×
( |u(x) − u(y)|

|x − y|
)

dy + |u(x)|.

Now it suffices to estimate 1
2r

∫
(t0−r,t0+r) P(|x− y|, t)χt>0 dt with help of Lemma 5.2

with α = n−1
2 , γ = 1. ��

Lemma 5.4 Let i ∈ {1, 2, 3} and (Pi u)(x, t) be defined by:

(P0u)(x, t) :=
∫
Q′

P(|x − y|, t)
( |u(x) − u(y)|

|x − y|
)

dy

(P1u)(x, t) :=
∫
Q′∩{y:t≥ |x−y|2

4C2
}

1

|x − y|n−1 Fn−3
2

( |x − y|2
4t

)( |u(x) − u(y)|
|x − y|

)
dy

(P2u)(x, t) :=
∫
Q′∩{y:t< |x−y|2

4C2
}

1

|x − y|n−1

( |u(x) − u(y)|
|x − y|

)
dy.

where C2 > 0 is the same as in Lemma 5.3 (it does not depend on u). Let 0 < ε < 1/2
be given and u ∈ Lip0(Q′) be such that dist(suppu, ∂Q ′

) ≥ ε. Then we have for any
t0 > 0

M2(∇x ũχt>0)(x, t0) � (P0u)

(
x,

3

2
t0

)
+ (P1u)(x, 2t0) + (P2u)(x, 2t0) + |u(x)|.
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Moreover, let R be such that

R(xy) � (1 + G(x) + G(x)R(y)), where, (5.5)

sup
s< 1

2

1

s

∫ s2

0

G(| ln t |)
| ln t | dt < ∞. (5.6)

and G is nonincreasing and locally bounded. Then for any convex function R we have
for any T > 0

∫
(0,T )

∫
Q′

R ((Pi u)(x, t)) dxdt � 1+
∫
Q′

∫
Q′

1

|x − y|n−2 R

( |u(x) − u(y)|
|x−y|

)
dxdy,

where i ∈ {0, 1, 2}, with some constant C > 0 which is independent of u.

Proof In this proof constant C > 0 will denote some general constant independent of
u. It can be different even in the same line. We start with the estimate of P0. For this,
we apply arguments from the proof of Lemma 3.2 in [23], to get

∫
(0,T )

∫
Q′

R((P0u)(x, t)) dxdt

�
∫
Q′

∫
Q′

1

|x − y|n−3 R

(
C

|u(x) − u(y)|
|x − y|

)
dxdy,

whenever T > 0. For reader’s convenience we submit them. As C1 := ∫
Rn−1 P(|x −

y|, t)dy > 0 does not depend on t , we have from Jensen’s Inequality:

R((P0u)(x, t)) = R

((∫
Q′

(
P(|x − y|, t)

C1

)(
C1|u(y) − u(x)|

|x − y|
)

dy

))

≤
∫
Q′

(
P(|x − y|, t)

C1

)
R

(
C1|u(y) − u(x)|

|x − y|
)

dy

Simple computation shows that for any s > 0

∫
(0,T )

P(s, t) dt �
(
s2

4

)−(n−3)/2 ∫ ∞
s2
4

q(n−3)/2e−q dq � s−(n−3) � s−(n−2),

and we apply the estimate (5.5) on R involving x̄ = C1, ȳ = |u(y)−u(x)|
|x−y| .

The proof of the estimate of P1 goes more or less along the lines of that of
Lemma 4.5. Namely, we observe that for x ∈ Q′

R ((P1u)(x, t)) ≤
R

(∫
Rn−1

1

|x − y|n−1 Fn−3
2

χ{t≥ |x−y|2
4C2

}

( |x − y|2
4t

)( |u(x) − u(y)|
|x − y| χx,y∈Q′

)
dy

)
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698 A. Kałamajska, M. Krbec

≤
∫
Rn−1

1
|x−y|n−1 Fn−3

2
χ{t≥ |x−y|2

4C2
}
( |x−y|2

4t

)
C̃

R

(
C̃ |u(x) − u(y)|

|x − y| χx,y∈Q′
)

dy,

where we choose C̃ = ∫
Rn−1

1
|x−y|n−1 Fn−3

2
(
|x−y|2

4t ) dy = ∫
Rn−1

1
|z|n−1 Fn−3

2
(|z|2)dz.

Therefore∫
Q′

∫
(0,T )

R ((P1u)(x, t)) dtdx ≤
∫
Q′

∫
Q′

1

|x − y|n−1
{A(x, y)} R

(
C

|u(x) − u(y)|
|x − y|

)
dxdy, where

A(x, y) =
∫

(0,T )

Fn−3
2

( |x − y|2
4t

)
χ{t≥ |x−y|2

4C2
} dt.

Now it suffices to verify that for small s,

∫ T

0
Fn−3

2

(
s2

4t

)
χ s2

4t ≤C2
dt �

∫ T

s2
4C2

s2

t
dt�s2| ln s| � s.

Now let us estimate P2. We have (with C = 1
4C2

),

R((P2u)(x, t))

=
⎧⎨
⎩R

(∫
Q′∩{y:t<|x−y|2}

1
|x−y|n−1 χt<C |x−y|2

C(x,t)

(
C(x, t) |u(x)−u(y)|

|x−y|
)
dy

)
:=A(C) if |Q′∩{y : t<C |x−y|2}|>0

0 if |Q′∩{y : t<C |x−y|2}|=0.

Where we chose at first the positive constant

C(x, t) =
∫
Q′

1

|x − y|n−1χ{t<C|x−y|2} dy =
∫

x−Q′√
t

1

|z|n−1χ{|z|> 1√
C

} dy.

We can assume that C in the condition t < C |x − y|2 is bigger than one and that
C(x, t) is positive. This is because if C1 < C2 we have A(C1) ≤ A(C2), therefore if
we enlarge C , then we get R((P3u)) ≤ A(C), which is sufficient for our analysis.

Observe that

C(x, t) ≥
∫

1√
t
·[0,1/2]n−1

1

|w|n−1 χ|w|> 1√
C
dw = 1

2n−1

∫
1√
t
·[−1/2,1/2]n−1

1

|w|n−1 χ|w|> 1√
C
dw

≥
∫

1√
t
·B(0, 12 )

1

|w|n−1 χ|w|> 1√
C
dw � (1 + | ln t |),

when t is sufficiently small. On the other hand we always have C(x, t) � (1 +
| ln t |), for every t ∈ (0, 1), therefore

(1 + | ln t |) � C(x, t) � (1 + | ln t |), when t < C0, and x ∈ Q′,
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Well posedness and regularity for heat equation 699

whereC0 does is somegeneral positive constant.Combining thiswith Jensen’s inequal-
ity we obtain the following inequality for small t :

R((P2u)(x, t)) ≤ R

(∫
Q′

1
|x−y|n−1 χt<C|x−y|2

C(x, t)

(
C(x, t)

|u(x) − u(y)|
|x − y|

)
dy

)

≤
∫
Q′

1
|x−y|n−1 χt<C|x−y|2

C(x, t)
R

(
C(x, t)

|u(x) − u(y)|
|x − y|

)
dy

�
∫
Q′

1
|x−y|n−1 χt<C|x−y|2

1 + | ln t | R

(
C(1 + | ln t |) |u(x) − u(y)|

|x − y|
)

dy.

Let x̄ := C(1 + | ln t |), ȳ := |u(x)−u(y)|
|x−y| . Using the condition (5.5) on R(x̄ ȳ) and

estimating further, we get

∫
(0,C0)

∫
Q′

R((P2u)(x, t)) dx dt

�
∫
Q′

∫
Q′

1

|x − y|n−1

{∫ min{T,C|x−y|2}

0

1

1 + | ln t | dt
}

dx dy

+
∫
Q′

∫
Q′

1

|x − y|n−2

{
1

|x − y|
∫ min{T,C|x−y|2}

0

G(C(1 + | ln t |))
1 + | ln t | dt

}
dx dy

+
∫
Q′

∫
Q′

1

|x − y|n−2

{
1

|x − y|
∫ min{T,C|x−y|2}

0

G(C(1 + | ln t |))
1 + | ln t | dt

}

×R

( |u(x) − u(y)|
|x − y|

)
dx dy

� 1 +
∫
Q′

∫
Q′

1

|x − y|n−2 R

( |u(x) − u(y)|
|x − y|

)
dx dy

When T ≥ t ≥ C0, the estimates become simples as then we have

R((P2u)(x, t)) ≤ R

(∫
Q′

1
|x−y|n−1 χC0<t<C|x−y|2

b(x)

(
b(x)

|u(x) − u(y)|
|x − y|

)
dy

)

≤ R

(∫
Q′

√
C/C0

1
|x−y|n−2

b(x)

(
b(x)

|u(x) − u(y)|
|x − y|

)
dy

)

where we chose b(x) = ∫Q′
√
C/C0

1
|x−y|n−2 dy ∼ 1 (as x ∈ Q

′
). Therefore and by

Jensen’s inequality

R((P2u)(x, t)) �
∫
Q′

1

|x − y|n−2 R

(
C

|u(x) − u(y)|
|x − y|

)
dy. (5.7)
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700 A. Kałamajska, M. Krbec

After integrating it over (C0, T ) × Q
′
and using (5.5) again, we obtain

∫
(C0,T )

∫
Q′

R((P2u)(x, t)) dx dt � 1+
∫
Q′

∫
Q′

1

|x−y|n−2 R

( |u(x)−u(y)|
|x−y|

)
dx dy,

which finishes the proof. ��
Proof of Lemma 5.1 We note that for an arbitrary λ > 0 we have by Theorem 4.1,

I :=
∫

(0,1)

∫
Q′

�

( |∇x ũ(x, t)|
λ

)
dxdt =

∫
Q′

{∫
R

�

( |∇x ũ(x, t)|χt∈(0,1)

λ

)
dt

}
dx

� s0

∫
Q′

∫
(0,1)

|∇x ũ(x, t)|
λ

dtdx +
∫
Q′

{∫
R

�

(
M2|∇x ũ(x, t)|χt∈(0,1)

λ

)
dt

}
dx

=: L1 + L2.

Moreover, | f (x, t)| ≤ M2 f (x, t) and
∫
Q |h(x, t)| dxdt ≤ �∗(1) + ∫Q �(|h(x, t)|)

dxdt , hence L1 ≺ 1 + L2 and it remains to estimate the expression L2.
According to Lemma 5.3 we have (with the same notation)

M2(|∇x ũ|χt>0)(x, t0) �
2∑

i=0

(Pi u)(x, t) + |u(x)|.

ApplyingLemma5.4with R = � and observing that�(
∑4

j=1 a j ) ≤ 1
4

∑4
j=1 �(4a j )

� 1 +∑4
j=1 �(a j ), we arrive at

L2 � 1 +
2∑
j=0

∫
Q′

∫
(0,1)

�

(
(4Pi u)(x, t)

λ

)
dxdt +

∫
Q′

�

(
4|u(x)|

λ

)
dx

� 1 +
∫
Q′

∫
Q′

1

|x − y|n−2�

(
1

λ

|u(x) − u(y)|
|x − y|

)
dxdy +

∫
Q′

�

( |u(x)|
λ

)
dx .

This gives (5.3). The choice of λ0 = I�(u, Q′) + ‖u‖L�(Q′) implies

∫
Q

�

( |∇x ũ(x, t)|
λ0

)
≤ C,

which together with Proposition 2.1 gives (5.4). This ends the proof of the lemma. ��

6 Estimates of function ∂t ũ

6.1 Presentation of results and discussion

Our goal here is to continue our estimates of heat extension operator, dealing nowwith
the time derivative of ũ.
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Well posedness and regularity for heat equation 701

We start with the following lemma. The Lemma was originally proven for u ∈
C∞
0 (Q

′
). We remark that assumption u ∈ Lip0(Q′) does not change final conclusion

and the proof under such assumption follows by the same arguments.

Lemma 6.1 ([23]) Let u ∈ Lip0(Q′), ũ be given by (3.1), 0 < ε < 1
2 and let

dist(supp u, ∂Q′) ≥ ε. Then we have

∣∣∣∣∂ ũ∂t (x, t)

∣∣∣∣ ≤ C̃1

∫
Q′

S(|x − y|, t)
( |u(x) − u(y)|

|x − y|
)

dy + C̃2
1

ε2
|u(x)|, where

S(s, t) := 1

2n(
√
2π)n−1

{
s

2
√
t

+
(

s

2
√
t

)3} 1

tn/2 e
− s2

4t , in particular

S(|z|, t) =
{

|z|
2
√
t

+
( |z|
2
√
t

)3}
Ẽ(|z|, t) · 1

2
√
t
, when z ∈ R

n−1, (6.1)

with C̃1 = 2n, C̃2 = 1√
π
(
√
3)3e− 9

4 · (n − 1).

A wishful thinking would expect the inequality of type

∫
Q′

∫
(0,1)

R(|∂t ũ(x, t)|) dxdt �
∫
Q′

∫
Q′

R

( |u(y) − u(x)|
|x − y|

)
1

|x − y|n−2 dxdy

+
∫
Q′

R (|u(x)|) dx,

dealing with an arbitrary convex function R. It seems quite difficult to prove such an
inequality. However, we have obtained such result under the special assumption stated
below.

Definition 6.1 (Assumption B)

1. R(λ) = λP(λ), where P(ab) ≺ 1 + P(a) + P(b),
2. P is nondecreasing,
3. Function P(λ)

λ
is nonincreasing for large arguments.

Remark 6.1 ([23])

1. Condition 1., 2., and 3. above imply P(xn) ≤ Cn P(x) for big arguments. It gives
inequality P(y) ≤ Cκ yκ for large arguments, with any κ > 0.

2. Let us consider P(λ) = (ln(2 + λ))α , with any α > 0. Then P satisfies 1, 2, and
3. Moreover, P(λ) ≺ 1 + λβ , with any β > 0.

3. We have that
∫ a
0 P( 1s ) ds < ∞ for every a > 0.

We obtained the following result (formulated originally for u ∈ C∞
0 (Q′)).
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702 A. Kałamajska, M. Krbec

Proposition 6.1 ([23]) If R satisfies an Assumption B (see Definition 6.1), then for
any function u ∈ Lip0(Q′) we have

∫
Q′

∫
(0,1)

R (|∂t ũ(x, t)|) dxdt � 1 +
∫
Q′

R (|u(x)|) dx

+
∫
Q′

∫
Q′

R

( |u(y) − u(x)|
|x − y|

)
1

|x − y|n−2 dxdy.

Remark 6.2 It follows from the proof of Proposition 6.1 presented in [23] that when

Bu(x, t) :=
∫
Q′

S(|x − y|, t)
( |u(x) − u(y)|

|x − y|
)

dy,

then for any u supported in Q′ and any R satisfying Condition B, we have

∫
Q′

∫
(0,T )

R(Bu)(x, t)) dxdt � 1 +
∫
Q′

∫
Q′

1

|x − y|n−2 R

( |u(x) − u(y)|
|x − y|

)
dxdy,

for every 0 < T < ∞.

It is clear from Proposition 6.1 that under certain assumptions on function R, condi-
tion u ∈ Y R,R

L (Q′) implies ∂t ũ ∈ LR(Q). Following our previous schema, we would
like to prove that the condition u ∈ Y�,�(Q′) implies ∂t ũ ∈ L�(Q), where (�,�)

is as in Assumption A. We do not know if this is true in general. However, we have
the following result.

Lemma 6.2 Let 0 < ε < 1/2, u ∈ Lip0(Q′) is such that dist(suppu, ∂Q
′
) ≥ ε and

ũ is given by (3.1). Moreover, let (�,�) be as in Assumption A (see Definition 2.1)
and � satisfies Assumption B (see Definition 6.1). Then we have for every λ > 0:

∫
(0,1)

∫
Q′

�

( |∂t ũ(x, t)|
λ

)
dxdt � 1 +

∫
Q′

�

( |u(x)|
λ

)
dx +

∫
Q′

∫
Q′

| ln |x − y||
|x − y|n−2 �

( |u(x) − u(y)|
λ|x − y|

)
dxdy, (6.2)

∫
(0,1)

∫
Q′

�

( |∂t ũ(x, t)|
λ

)
dxdt � 1 +

∫
Q′

�

( |u(x)|
λ

)
dx +

∫
Q′

∫
Q′

1

|x − y|n−2 ln

( |u(x) − u(y)|
λ|x − y|

)
�

( |u(x) − u(y)|
λ|x − y|

)
dxdy. (6.3)
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Remark 6.3 Note that under the assumptions of Lemma 6.2 we have

∫
(0,1)

∫
Q′

�

( |∂t ũ(x, t)|
λ

)
dxdt

� 1 +
∫
Q′

∫
Q′

1

|x − y|n−2+δ
�

(
1

λ

|u(x) − u(y)|
|x − y|

)
dxdy

+
∫
Q′

�

( |u(x)|
λ

)
dx . (6.4)

and parameter δ > 0 above can be taken arbitrarily. Moreover, the above inequality is
very close to the inequality:

∫
(0,1)

∫
Q′

�

( |∂t ũ(x, t)|
λ

)
dxdt

� 1 +
∫
Q′

∫
Q′

1

|x − y|n−2�

(
1

λ

|u(x) − u(y)|
|x − y|

)
dxdy

+
∫
Q′

�

( |u(x)|
λ

)
dx .

We do not know if (6.4) holds with δ = 0.

We are now in position to prove the presented result.

6.2 Proof of Lemma 6.2

We start with the following result which extends Lemma 5.2.

Lemma 6.3 Let s ∈ R+, t > 0, α > 0, v(x) = x + x3 and

Ẽα,v(s, t) := 1

tα
v

(
s

2
√
t

)
exp(−s2/4t),

Bα,v(s, t0, r) := 1

2r

∫
(t0−r,t0+r)

Ẽα,v(s, t)χt>0 dt,

Then for any s, t0, r > 0 we have

sup
r>0

Bα,v(s, t0, r) � Ẽα,v

(
s,

3

2
t0

)
+ 1

s2α
s2

4t0
χ
t0≥ s2

4C3

+ 1

s2α
χ
t0<

s2
4C3

,

with some constant C3 > 0.

Proof We note that under an assumption of Lemma 5.2 we have Ẽα,w(s, t) =
Ẽα, 12

(s, t) + Ẽα, 32
(s, t). The estimate follows from Lemma 5.2 by summing up the
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704 A. Kałamajska, M. Krbec

estimates for Ẽα, 12
(s, t) and Ẽα, 32

(s, t), after we note that Fβ(x) � 1 for large argu-

ments, so that Fβ( s2
4t0

) can be estimated by constant when t0 < s2
4C3

. On the other hand
Fβ(x) ∼ x for small x . ��

Lemma 6.4 Let u ∈ Lip0(Q′) and ũ be as in Lemma 6.2 and let S(s, t) be as in
Lemma 6.1. Then for any t > 0,

M2(∂t ũχt>0)(x, t) �
∫
Q′

S

(
|x − y|, 3

2
t

)( |u(x) − u(y)|
|x − y|

)
dy

+
∫
Q′∩{y:t≥ |x−y|2

4C3
}

1

|x − y|n
|x − y|2

4t

( |u(x) − u(y)|
|x − y|

)
dy

+
∫
Q′∩{y:t< |x−y|2

4C3
}

1

|x − y|n
( |u(x) − u(y)|

|x − y|
)

dy + |u(x)|

=: (C1u)(x, t) + (C2u)(x, t) + (C3u)(x, t) + |u(x)|,

with some constant C3, which is not dependent on u.

Proof According to Lemma 6.1, we have

1

2r

∫
(t0−r,t0+r)

|∂t ũ|χt>0 dt � |u(x)| +
∫
Q′

(
1

2r

∫
(t0−r,t0+r)

S(|x − y|, t)χt>0 dt

)( |u(x) − u(y)|
|x − y|

)
dy.

Using the notation of Lemmas 6.1 and 6.3 we have S(s, t) = Ẽ n
2 ,v(s, t). Therefore

the result follows from Lemma 6.3 applied with α = n
2 . ��

We are now to establish our crucial estimates for ∂t ũ. We have the following result.

Lemma 6.5 Let u ∈ Lip0(Q′) and ũ be as in Lemma 6.2, i ∈ {1, 2, 3} and (Ci u)(x, t)
be the same as in Lemma 6.4 and R satisfies Assumption B (see Definition 6.1). Then
we have

∫
(0,1)

∫
Q′

R ((C1u)(x, t)) dxdt

� 1 +
∫
Q′

∫
Q′

1

|x − y|n−2 R

( |u(x) − u(y)|
|x − y|

)
dxdy, (6.5)∫

(0,1)

∫
Q′

R ((C2u)(x, t)) dxdt

� 1 +
∫
Q′

∫
Q′

| ln |x − y||
|x − y|n−2 R

( |u(x) − u(y)|
|x − y|

)
dxdy, (6.6)
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∫
(0,1)

∫
Q′

R ((C2u)(x, t)) dxdt

� 1 +
∫
Q′

∫
Q′

1

|x − y|n−2 ln

( |u(x) − u(y)|
|x − y|

)
R

( |u(x) − u(y)|
|x − y|

)
dxdy, (6.7)∫

(0,1)

∫
Q′

R ((C3u)(x, t)) dxdt

�
∫
Q′

∫
Q′

1

|x − y|n−2 R

( |u(x) − u(y)|
|x − y|

)
dxdy, (6.8)

Proof Denote for simplicity h(x, y) := |u(x)−u(y)|
|x−y| . The proof will be divided into

several steps.
Step 1 (proof of 6.5). The estimate for i = 1 is a consequence of Remark 6.2 as

(C1u)(x, t) = Bu(x, 3
2 t).

Step 2 (reduction argument). We note that for θ := 2α − 1, α ∈ (1/2, 1):

(C2u)(x, t) =
∫
Q′∩{y:t≥ |x−y|2

4C3
,h(x,y)≤

(
1√
t

)θ }
1

|x − y|n
|x − y|2

4t
h(x, y) dy,where

+
∫
Q′∩{y:t≥ |x−y|2

4C3
,
(

1√
t

)θ
<h< 1√

t
}

1

|x − y|n
|x − y|2

4t
h(x, y) dy

+
∫
Q′∩{y:t≥ |x−y|2

4C3
,h> 1√

t
}

1

|x − y|n
|x − y|2

4t
h(x, y) dy

:= B1u(x, t) + B2u(x, t) + B3u(x, t).

By the convexity argument R(
∑3

i=1 Bi u) ≤ 1
3

∑3
i=1 R(3Bi u) and R(Ca) � 1+R(a),

therefore it suffices to prove (6.5) with Bi u instead of C2u.
Step 3 (proof of (6.6) and (6.7) with B1u instead of C2u).
For this purpose we note that

B1u �
∫
Q′∩{y:t≥ |x−y|2

4C3
,h(x,y)≤( 1√

t
)θ }

1

|x − y|n−2 t
−1−θ/2 dy � t−

1
2− θ

2 =: t−α.

Hence R(B1u) � 1 + R(t−α), consequently

∫
Q′

∫ 1

0
R(B1u) � 1 +

∫ 1

0
R(t−α) dt � 1.

Step 4 (proof of (6.6) and (6.7) with B2u instead of C2u).
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As
∫
Q′∩{y:t≥ |x−y|2

4C3
}

1
|x−y|n−2 t

−1/2 dy ∼ 1, we can apply Jensen’s inequality to get

R(B2u) �
∫
Q′∩{y:t≥ |x−y|2

4C3
,
(

1√
t

)θ
<h(x,y)≤ 1√

t
}

1

|x − y|n−2 t
−1/2R

(
ch(x, y)√

t

)
dy,

(6.9)

with some constant c > 0.Wehave fromAssumptionB P( ch√
t
) � 1+P(h)+P( 1√

t
) �

P( 1√
t
) on the considered set of integration. Therefore R( ch√

t
) � 1√

t
hP( ch√

t
) �

1√
t
hP( 1√

t
) on this set. This implies

I :=
∫
Q′

∫ 1

0
R(B2u)(x, t) dxdt �

∫ ∫ ∫
A

1

|x − y|n−2

1

t
P

(
1√
t

)
h(x, y) dydxdt

�
∫
Q′

∫
Q′

1

|x − y|n−2

{∫ 1
h2

( 1h )
2
θ

1

t
P

(
1√
t

)
dt

}
h(x, y)χ

h≤ 2
√

C3
|x−y|

dydxdt,

where A := {Q′ × Q′ × (0, 1) : t ≥ |x−y|2
4C3

, ( 1√
t
)θ < h < 1√

t
}. Now we estimate the

internal integral in brackets {. . . } denoting it by X . Note that when 1√
t

∈ (h, h1/θ ), we

get P(h) � P( 1√
t
) � 1+ P(h) (see Remark 6.1, part 1). This (and the conditions h <

1√
t
, h > 1) imply that X � P(h)

∫ 1
h2

( 1h )
2
θ

1
t dt ∼ P(h)| ln h|. On set of integration we

have the condition h ≤ C
|x−y| with some constant C > 0. Therefore both inequalities

hold:

I �
∫
Q′

∫
Q′

| ln |x − y||
|x − y|n−2 R(h(x, y)) dxdy and

I �
∫
Q′

∫
Q′

| ln h(x, y)|
|x − y|n−2 R(h(x, y)) dxdy,

which implies our assertion.
Step 5 (proof of (6.6) and (6.7) with B3u instead of C2u).
For this purpose we apply inequality

R(B3u) �
∫
Q′∩{y:t≥ |x−y|2

4C3
,h(x,y)> 1√

t
}

1

|x − y|n−2 t
−1/2R

(
ch(x, y)√

t

)
dy,

which is obtained by similar arguments as the ones to get (6.9). Observing that
P( ch√

t
) � P(h), we get, by similar computations as in previous step that
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J :=
∫
Q′

∫ 1

0
R(B3u)(x, t) dxdt �

∫ ∫ ∫
B

1

|x − y|n−2

1

t
R(h(x, y)) dydxdt

�
∫
Q′

∫
Q′

1

|x − y|n−2

{∫ 1

max{( 1h )2,
|x−y|2
4C3

}
1

t
dt

}
R(h(x, y)) dydxdt,

where B := {Q′ × Q′ × (0, 1) : t ≥ |x−y|2
4C3

, h ≥ 1√
t
}. This easily gives the desired

estimates.
Step 6 (proof of (6.8)).
To this goal we again use the fact that when t is sufficiently small, i.e. t < t0 for

some t0 ∈ (0, 1), we have∫
Q′∩{y:t< |x−y|2

4C3
}

√
t

|x−y|n dy ∼ 1 and then we apply Jensen’s inequality to get

R(C3u) �
∫
Q′∩{y:t< |x−y|2

4C3
}

√
t

|x − y|n R
(

h√
t

)
dy

=
∫
Q′∩{y:t< |x−y|2

4C3
}

1

|x − y|n h(x, y)P

(
h√
t

)
dy

=
∫
Q′∩{y:t< |x−y|2

4C3
,h(x,y)≤( 1√

t
)θ }

1

|x − y|n h(x, y)P

(
h√
t

)
dy

+
∫
Q′∩{y:t< |x−y|2

4C3
,h(x,y)>( 1√

t
)θ }

1

|x − y|n h(x, y)P

(
h√
t

)
dy

=: A(x, t) + B(x, t),

recalling that θ = 2α − 1. Now we estimate A(x, t) and B(x, t) separately. To deal
with A, we note that (as h ≤ ( 1√

t
)θ ), we have P( h√

t
) � 1+ P(h)+ P( 1√

t
) � P( 1√

t
).

Consequently

I1 :=
∫
Q′

∫ 1

0
A(x, t) dxdt

�
∫
Q′

∫
Q′

1

|x − y|n−1

⎧⎨
⎩
∫ |x−y|2

4C3

0

1

|x − y|
(

1√
t

)θ

P

(
1√
t

)
dt

⎫⎬
⎭ dydx .

Nowweestimate the integral in brackets {·}denotedbyY .Note that on set of integration
we have 1

|x−y| � 1√
t
, moreover, P(λ) � λε for arbitrary ε > 0 (see Remark 6.1).

Taking this into account we get:

Y �
∫ |x−y|2

4C3

0
t−(α+ε) dt ∼ |x − y|β,

where β = 2(1 − α − ε) > 0, (it is enough to take sufficiently small ε). This implies
I1 � 1.
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To estimate the term with B we note that on set of integration we have P( h√
t
) �

P(h), so that

I2 :=
∫
Q′

∫ 1

0
B(x, t) dxdt �

∫
Q′

∫
Q′

1

|x − y|n

⎧⎨
⎩
∫ |x−y|2

4C3

0
1dt

⎫⎬
⎭ R(h(x, y)) dydx

�
∫
Q′

∫
Q′

1

|x − y|n−2 R(h(x, y)) dydx .

The estimates when t > t0 become simpler as on set if integration we have
√
4C3t0 <

|x − y|, therefore we omit them. Lemma is proved. ��
Proof of Lemma 6.2 The proof if obvious modification of the proof of Lemma 5.1 and
is based on Lemmas 6.4 and 6.5. ��

7 Final results

We are now to present our main results. For this purpose we introduce the new space
of functions. Let � ⊆ R

n be a Lipschitz boundary domain. By Y�,�
log (∂�) we will

mean the modification of the space Y�,�(∂�), where the seminorm:

I�(u, ∂�) =
∫

∂�

∫
∂�

�

( |u(x) − u(y)|
|x − y|

)
1

|x − y|n−2 dσ(x)dσ(y),

is substituted by

I�
log(u, ∂�) :=

∫
∂�

∫
∂�

�

( |u(x) − u(y)|
|x − y|

) | ln |x − y||
|x − y|n−2 dσ(x)dσ(y),

where σ is the n − 1-dimensional Hausdorff measure on ∂�. By Y�,�
L ,log(∂�) we will

mean the completion of set {u ∈ Lip(∂�) ∩ Y�,�
log (∂�)} in the norm of Y�,�

log (∂�).
Our first final result reads as follows.

Theorem 7.1 (Theorem about extension) Let� ⊆ R
n be a bounded Lipschitz bound-

ary domain, u ∈ Y�,�
L ,log(∂�), where (�,�) is as in Assumption A (see Definition 2.1)

and let � satisfy Assumption B (see Definition 6.1). Then there exists function
ũ ∈ W 1,�

L (�) such that Tr ũ = u, moreover, we have

∫
�

�(|̃u|) dx +
∫

�

�(|∇ũ|) dx

� 1 +
∫

∂�

�(|u|)dσ(x)

+
∫

∂�

∫
∂�

| ln |x − y||
|x − y|n−2 �

( |u(x) − u(y)|
|x − y|

)
dxdy.
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Consequently

‖ũ‖W 1,� (�) ≤ C‖u‖Y�,�
log (∂�)

,

with constant C independent of u.

Remark 7.1 As a consequence of Theorem 7.1 we obtain inequality

∫
�

�(|̃u|) dx +
∫

�

�(|∇ũ|) dx

≤ Cδ

{
1+
∫

∂�

�(|u|)dσ(x) +
∫

∂�

∫
∂�

1

|x − y|n−2+δ
�

( |u(x)−u(y)|
|x−y|

)}
dxdy,

with an arbitrary δ > 0 independent on u. Note that
∫
∂�

�(|u|)dσ(x) ≺ 1 +∫
∂�

�(|u|)dσ(x), so this inequality is very close to the following one:

∫
�

�(|̃u|) dx +
∫

�

�(|∇ũ|) dx

≺
{
1 +
∫

∂�

�(|u|)dσ(x) +
∫

∂�

∫
∂�

1

|x − y|n−2�

( |u(x) − u(y)|
|x − y|

)}
dxdy,

(7.1)

and the above implies norm inequality ‖ũ‖W 1,� (�) ≤ C‖u‖Y�,�(∂�). If one could find
extension operator u �→ ũ from u defined on ∂� to ũ defined on� for which inequality
(7.1) holds, it would imply that trace operator fromTheorem2.3, acting fromW 1,�(�)

to Y�,�(∂�), is a surjection. However we have not proven such property dealing with
heat extension operator, our result seems to support that conjecture.

Proof of Theorem 7.1 Using standard covering arguments (see e.g. the book [33],
or [34]), suitable partition of the unity on ∂� and the biLipschitz equivalence of sets
B(x0, r)∩�, where x0 ∈ ∂�, r is sufficiently small, with the cube Q = Q′ ×(0, 1) =
(0, 1)n , we observe that the proof reduces to the case when we deal with the heat
extension operator from Q′ to Q. Then we use Lemmas 4.1, 5.1 and 6.2. This requires
to verify the condition (4.2) and (5.2).

We start with the verification of (4.2). We have

�(xy) = xyP(xy) � xy(1 + P(x) + P(y)) = xy + y�(x) + x�(y) =: L.

Let G(x, y) := max{x,�(x)}. When y > 1 we have y ≺ �(y). Consequently
L � G(x) when y < 1 and L � G(x)�(y) when y > 1. This implies

�(xy) � G(x) + G(x)�(y).

The verification of the condition
∫ 1
0 G(| ln t |)dt < ∞ follows from the following two

estimates:
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∫ 1

0
| ln t |dt w=ln 1

t=
∫ ∞

0
we−wdw < ∞,

∫ 1

0
| ln t |P(| ln t |)dt w=ln 1

t=
∫ ∞

0
wP(w)e−wdw

≺ 1 +
∫ ∞

1
w2
(
P(w)

w

)
e−wdw ≺ 1 +

∫ ∞

1
w2e−wdw < ∞.

This completes the proof of (4.2). To verify (5.2) we have to check that

sup
s< 1

2

1

s

∫ s2

0

G(c| ln t |)
| ln t | dt < ∞ for any c > 0.

This follows from chain of inequalities where s < 1/2:

1

s

∫ s2

0

G(c| ln t |)
| ln t | dt = 1

s

∫ s2

0

c| ln t | + c| ln t |P(| ln t |)
| ln t | dt

≺ 1 + 1

s

∫ s2

0
P(| ln t |)dt,

∫ s2

0
P(| ln t |)dt w=ln 1

t=
∫ ∞

−2 ln s
P(w)e−wdw =

∫ ∞

−2 ln s
w

(
P(w)

w

)
e−wdw

w>ln 4≺
∫ ∞

−2 ln s
we−wdw≺

∫ ∞

−2 ln s
e−w/2dw=

∫ ∞

− ln s
e−wdw = s.

��
Our final result establishes regularity properties of solutions to heat equation with

the initial condition in weighted Orlicz Slobodetskii space.

Theorem 7.2 Let u ∈ Y�,�
L ,log(R

n−1 × {0}), (regularity property) (�,�) be as in
Assumption A (seeDefinition 2.1),� satisfy Assumption B (seeDefinition 6.1), T > 0.
Moreover, let ũ ∈ W 1,1

loc (Rn−1 × (0, T )) be the solution to heat equation

ũ(x) :=
{
ũt (x, t) = �u(x, t), in R

n−1 × (0, T )

ũ(x, 0) = u(x) on R
n−1 × {0} (7.2)

Then ũ ∈ W 1,�
L (Rn−1 × (0, T )) and we have

∫
Rn−1×(0,T )

�(|̃u|) dxdt +
∫
Rn−1×(0,T )

�(|∇ũ|) dxdt

� 1 +
∫
Rn−1

�(|u|)dx
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+
∫
Rn−1

∫
Rn−1

| ln |x − y||
|x − y|n−2 �

( |u(x) − u(y)|
|x − y|

)
dxdy;

‖ũ‖W 1,� ((Rn−1×(0,T ))) � ‖u‖Y�,�
log (Rn−1)

,

and constants in the above estimates are independent of u.

Proof The proof is based on the choice of suitable Lipschitz resolution of unity on
R
n−1: {φi }i∈N with the control of Lipschitz constants and supports of the φi ’s where

suppφi ⊆ Q
′
i and Q

′
i ’s are unit cubes. The we provide the estimates for ui = uφi .

The details are left to the reader. ��
Example 7.1 The pair (�(λ),�(λ)) = (λ(log(2 + λ))α, λ(log(2 + λ))α+1) where
α > 0 obeys assumptions of Theorems 7.1 and 7.2.

Remark 7.2 [Open questions]

1. We do not know what is the optimal space for the initial data u to have the solution
of (7.2) in Orlicz–Sobolev space W 1,�(Rn−1 × (0, T )).

2. It would be interesting to know under what conditions one has:u ∈ Y�,�
ω1

(�) ⇒
ũ ∈ W 1,�

ω2
(�×(0, T ))where� is the given domain andω1, ω2 are givenmeasures

defined on � and � × (0, T ), respectively.
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