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Abstract
Recently Oishi published a paper allowing lower bounds for the minimum singular 
value of coefficient matrices of linearized Galerkin equations, which in turn arise 
in the computation of periodic solutions of nonlinear delay differential equations 
with some smooth nonlinearity. The coefficient matrix of linearized Galerkin equa‑
tions may be large, so the computation of a valid lower bound of the smallest sin‑
gular value may be costly. Oishi’s method is based on the inverse of a small upper 
left principal submatrix, and subsequent computations use a Schur complement 
with small computational cost. In this note some assumptions are removed and the 
bounds improved. Furthermore a technique is derived to reduce the total computa‑
tionally cost significantly allowing to treat infinite dimensional matrices.
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1 � Main result

Certain periodic solutions of nonlinear delay differential equations with some smooth 
nonlinearity can be calculated by some Galerkin equations. Oishi’s paper [3] discusses 
how to obtain a lower bound for the smallest singular value of the coefficient matrix G 
of the linearized Galerkin equation.

Throughout this note ‖ ⋅ ‖ denotes the �2-norm, and we use the convention that 
matrices are supposed to be nonsingular when using their inverse. Dividing the 
matrix G into blocks

with a square upper left block A of small size, often ‖G−1‖ is in practical applica‑
tions not too far from ‖A−1‖ . In other words, the main information on ‖G−1‖ sits in 
A. Moreover, the matrix G shares some kind of diagonal dominance so that ‖D−1‖ 
can be expected to be not too far from ‖D−1

d
‖ for the splitting D = Dd + Df  into diag‑

onal and off-diagonal part.
Based on that Oishi discusses in [3] how to obtain an upper bound on 

‖G−1‖ = �min(G)
−1 by estimating the influence of the remaining blocks B, C, D. 

Oishi proves the following theorem.

Theorem 1.1  Let n be a positive integer, and m be a non-negative integer satisfying 
m ≤ n . Let G ∈ Mn(ℝ) be as in (1) with A ∈ Mm(ℝ) , B ∈ Mm,n−m(ℝ) , C ∈ Mn−m,m(ℝ) 
and D ∈ Mn−m(ℝ) . Let Dd and Df  be the diagonal part and the off-diagonal part of 
D, respectively. If

then G is invertible and

In a practical application the matrix G may be large. So the advantage of Oishi’s 
bound is that with small computational effort a reasonable upper bound for ‖G−1‖ , and 
thus a lower bound for �min(G)

−1 , is derived. In particular the clever use of Schur’s 
complement requires only a small upper left part A of G to be inverted, whereas the 
inverse of the large lower right part D is estimated using a Neumann expansion.

For p ∶= min(m, n) , denote by Im,n the matrix with the p × p identity matrix in 
the upper left corner. If m = n , we briefly write Im . Oishi’s estimate is based on 
the factorization [2] of G using its Schur complement

(1)G ∶=

(
A B

C D

)

(2)‖A−1B‖ < 1, ‖CA−1‖ < 1 and ‖D−1
d
(Df − CA−1B)‖ < 1,

(3)‖G−1‖ ≤

max

�
‖A−1‖, ‖D−1

d
‖

1 − ‖D−1
d
(Df − CA−1B)‖

�

(1 − ‖A−1B‖)(1 − ‖CA−1‖) .

G =

(
Im 0

CA−1 In−m

)(
A 0

0 D − CA−1B

)(
Im A−1B

0 In−m

)
.
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It follows

where for N ∈ Mm,n−m(ℝ)

To bound ‖(D − CA−1B)−1‖ the standard estimate

based on a Neumann expansion is used. In practical applications as those in [3] this 
imposes only a small overestimation, and often the maximum in the middle of (4) is 
equal to ‖A−1‖.

Thus it remains to bound �(N) for N ∈ {CA−1,A−1B} which is done in [3] by 
�(N) ≤

1

1 − ‖N‖ requiring ‖N‖ < 1 . The following lemma removes that restric‑

tion and gives an explicit formula for �(N).

Lemma 1.2  Let H ∈ Mn(ℝ) have the block representation

for 1 ≤ k < n and N ∈ Mk,n−k(ℝ) with ‖N‖ ≠ 0 . Abbreviate � ∶= ‖N‖ and define

Then

Proof  Let x ∈ ℝ
k and y ∈ ℝ

n−k . Then

with equality if, and only if, ‖Ny‖ = ‖N‖‖y‖ and x is a positive multiple of Ny. Let 
u ∈ ℝ

k and v ∈ ℝ
n−k with ‖u‖ = ‖v‖ = 1 and Nv = ‖N‖u and define y ∶= �v and 

x ∶=
√
1 − �2 u . Then 

‖‖‖‖‖

(
x

y

)‖‖‖‖‖
= 1 and

(4)‖G−1‖ ≤ �(CA−1) max
�‖A−1‖, ‖(D − CA−1B)−1‖��(A−1B)

�(N) ∶=
‖‖‖‖‖

(
Im − N

0 In−m

)‖‖‖‖‖
=
‖‖‖‖‖

(
Im N

0 In−m

)−1‖‖‖‖‖
=
‖‖‖‖‖

(
Im 0

NT In−m

)−1‖‖‖‖‖
=
‖‖‖‖‖

(
Im 0

−NT In−m

)‖‖‖‖‖
.

‖(D − CA−1B)−1‖ = ‖�I + D−1
d
(Df − CA−1B)

�−1
D−1

d
‖ ≤

‖D−1
d
‖

1 − ‖D−1
d
(Df − CA−1B)‖

H =

(
Ik − N

0 In−k

)

� ∶=

⎧⎪⎨⎪⎩

1

2

⎛⎜⎜⎜⎝
1 +

1�
1 +

4

�2

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭

1∕2

∈ (0, 1).

(5)�(N) ∶= ‖H‖ = ‖H−1‖ =

�
1 + 2��

√
1 − �2 + �2�2 .

�����
H

�
x

y

������

2

=
�����

�
x + Ny

y

������

2

≤ (‖x‖ + ‖N‖‖y‖)2 + ‖y‖2
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so that the maximum of �(�) over � ∈ [0, 1] is equal to ‖H‖2 . A computation yields

Setting the derivative to zero and abbreviating � ∶= �2 gives

with positive solution

for nontrivial N. That proves the lemma. 	�  ◻

The lemma removes the first two assumptions in (2). In practical applications 
those are usually satisfied, so the advantage is that they do not have to be verified. 
That proves the following.

Theorem 1.3  Let n, m and G ∈ Mn(ℝ) with the splitting as in (1) be given. With the 
splitting D = Dd + Df  into diagonal and off-diagonal part assume

Then G is invertible and

using �(⋅) as in (5) in Lemma 1.2.

For a matrix G arising in linearized Galerkin equations the norm 
‖(D − CA−1B)−1‖ of the inverse of the Schur complement is often dominated by 
‖A−1‖ . That is because of the increasing diagonal elements Dd of the lower right 
part of G, implying that ‖D−1

d
‖ is equal to the reciprocal of the left upper ele‑

ment of Dd and ‖D−1
d
(Df − CA−1B)−1‖ to become small. In that case the bound 

(8) reduces to ‖G−1‖ ≤ ‖A−1‖ �(A−1B) �(CA−1) . It can be adapted to other norms 
following the lines of the proof of Lemma 1.2.

(6)�(�) ∶=
�����
H

�
x

y

������

2

=
�√

1 − �2 + ��

�2

+ �2 = 1 + 2��
√
1 − �2 + �2�2,

d�(�)

d�
=

2�√
1 − �2

�
1 − 2�2 + ��

√
1 − �2

�
.

�2 − � +
1

4 + �2
= 0

� =
1

2

⎛
⎜⎜⎜⎝
1 +

1�
1 +

4

�2

⎞
⎟⎟⎟⎠
∈ (0, 1)

(7)‖D−1
d
(Df − CA−1B)‖ < 1.

(8)‖G−1‖ ≤ max

�
‖A−1‖, ‖D−1

d
‖

1 − ‖D−1
d
(Df − CA−1B)‖

�
�(A−1B) �(CA−1)
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2 � Computational improvement and an infinite dimensional example

For both the original bound (3) and the new bound (8) the main computational 
effort is to estimate ‖D−1

d
(Df − CA−1B)‖ requiring O((n − m)2 m) operations. It 

often suffices to use ‖N‖ ≤
√‖N‖1‖N‖∞ =∶ �(N) and the crude estimate

That avoids the product of large matrices and to compute the �2-norm of large matri‑
ces, thus reducing the total computational cost to O((n − m)m2) operations. For 
instance, in Example 3 in [4] with n=10,000 and k = 0.9 the bound (9) is successful 
in the sense that max

�
‖A−1‖, ‖D−1

d
‖

1−�

�
= ‖A−1‖ for dimension m ≥ 13 of the upper 

left block A. The additional computational cost for (9) is marginal, so in any case it 
is worth to try. If successful, then the computational cost for dimension n=10,000 
reduces from 8 minutes to less than 2 seconds on a standard laptop.

In order to compute rigorous bounds, an upper bound for the �2 norm of a 
matrix C ∈ Mn(ℝ) is necessary. An obvious possibility is to use 

‖C‖2 ≤
√

‖C‖1‖C‖∞ . 
Denoting the spectral radius of a matrix by �(⋅) , better bounds are obtained by 
‖C‖2

2
≤ ‖�C�‖2

2
= �(�C�T �C�) and Collatz’ bound [1]

which is true for any positive vector x. Then a few power iterations on x yield an 
accurate upper bound for ‖�C�‖2 in some O(n2) operations. More sophisticated meth‑
ods for bounding ‖C‖2 can be found in [6].

A practical consideration, in particular for so-called verification methods [4, 
5], is that the true value � = ‖N‖ is usually not available. However, �(N) in (6) is 
increasing with � and implies

For example, �(N) can be used for an upper bound � of ‖N‖ . Applying this method 
to (8) to bound �(N) for N ∈ {A−1B,CA−1} using ‖N‖ ≤ �(N) entirely avoids the 
computation of the �2-norm of large matrices.

To that end we show how to compute an upper bound of ‖G−1‖ for the third 
example in [4] for infinite dimension. The matrix G is parameterized by some 
k ∈ (0, 5, 1) with elements Gij = k|i−j| for i ≠ j and (1,… , n) on the diagonal. As 
before m denotes the size of the upper left block A.

We first show how to estimate � in (9) for arbitrarily large n. Define

Then for every fixed s ∈ {1,… , n − m}

(9)‖D−1
d
(Df − CA−1B)‖ ≤ �(D−1

d
Df ) + �(D−1

d
C)�(A−1B)=∶� .

�(|C|T |C|) ≤ max
i

(|C|T (|C|x))i
xi

(10)‖N‖ ≤ � ⇒ ‖H‖ = ‖H−1‖ ≤

�
1 + 2��

√
1 − �2 + �2�2.

P = D−1
d
Df ⇒ Pij ∶=

{
0 if i = j

k|i−j|∕(i + m) otherwise
.
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and

proves

That estimate is valid for any dimension n > m . For Q = D−1
d
C we have 

Qij ∶= k|m+i−j|∕(m + i) , so that for every fixed s ∈ {1,… , n − m}

and for every fixed s ∈ {1,… ,m}

It follows

In order to estimate ‖A−1B‖ we split B = [S T] into blocks S ∈ Mm,q and 
T ∈ Mm,n−m−q and 1 ≤ q < n − m . Then Bij ∶= km−i+j implies Tij ∶= kq+m−i+j and

so that

Summarizing and using (11), (12), and (13), (9) becomes

Note that only “small” matrices are involved in the computation of � . For given k, 
we choose m and q large enough to ensure max

�
‖A−1‖, ‖D−1

d
‖

1−�

�
= ‖A−1‖ . Then it is 

n−m
∑

j=1
Psj =

s−1
∑

j=1
ks−j∕(s + m) +

n−m
∑

j=s+1
kj−s∕(s + m) < 2

∞
∑

j=1
kj∕(1 + m) = 2k

(1 − k)(m + 1)

n−m∑
i=1

Pis =

s−1∑
i=1

ks−i∕(i + m) +

n−m∑
i=s+1

ki−s∕(i + m) < 2

∞∑
i=1

ki∕(1 + m) =
2k

(1 − k)(m + 1)

(11)‖D−1
d
Df‖ ≤

�
‖D−1

d
Df‖1‖D−1

d
Df‖∞ <

2k

(1 − k)(m + 1)
.

m∑
j=1

Qsj ≤

s−1∑
j=1

km+1−j∕(m + 1) <
k

(1 − k)(m + 1)

n−m∑
i=1

Qis =

n−m∑
i=1

km+i−s∕(m + i) <
k

(1 − k)(m + 1)
.

(12)‖D−1
d
C‖ <

k

(1 − k)(m + 1)
.

‖T‖ ≤

����
�

m�
i=1

kq+m−i+1

��
n−m−q�
j=1

kq+m−1+j

�
<

kq+1

1 − k

(13)‖A−1B‖ ≤ ‖A−1S‖ + ‖A−1T‖ < ‖A−1S‖ + kq+1‖A−1‖
1 − k

.

‖D−1
d
(Df − CA−1B)‖ <

2k

(1 − k)(m + 1)
+

k

(1 − k)(m + 1)

�
‖A−1S‖ + kq+1‖A−1‖

1 − k

�
=∶ 𝛿.
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true for the infinite dimensional matrix G as well. The computational effort is 
O(max(m2q,m3))

Note that the bound is very crude with much room for improvement. Neverthe‑
less, k = 0.9 , m = 25 and q = 35 ensures max

�
‖A−1‖, ‖D−1

d
‖

1−�

�
= ‖A−1‖ for infinite n 

with marginal computational effort.
In our example, symmetry implies ‖A−1B‖ = ‖CA−1‖ , so that inserting the above 

quantities proves the bounds displayed in Table 1 for arbitrarily large dimension n.
Numerical evidence suggests that the true norm does not exceed 2.39. The total 

computing time for infinite dimensional G with m = 200 and q = 100 is less than 
0.09 seconds on a laptop.

3 � Comparison of the original and new bound

In [3] the bounds on ‖G−1‖ are tested by means of three typical application exam‑
ples. The first example is a tridiagonal matrix G with all elements equal to 2 on the 
first subdiagonal, all elements equal to 3 on the first superdiagonal, and (1,… , n) 
on the diagonal. Therefore, with increasing dimension n ≥ 21 , neither �(CA−1) nor 
�(A−1B) change. Since the maximum in (4) is equal to ‖A−1‖ , the original bound and 
the new bound using (4) and (5) do not change for any n ≥ 21 , i.e., they are valid for 
the infinite dimensional case. Computed bounds for different size m of the left upper 

Table 1   Bounds of ‖G−1‖ 
infinite dimensional G with 
k = 0.9 and choices of m and q 

m/q 30/50 30/100 50/100 100/100 200/100

‖G−1‖ ≤ 3.07 2.75 2.61 2.50 2.45

Table 2   Bounds of ‖G−1‖ 
infinite dimensional G in 
Example 1 [4] and choices of m 

m 20 50 100 200

Original bound 3.84 3.36 3.25 3.19
New bound 3.45 3.25 3.18 3.15

Table 3   Bounds of ‖G−1‖ 
using dimension m = 20 of the 
upper left block A for different 
parameters k and dimensions 
n of G 

k n Original bound New bound ‖G−1‖
0.9 50 3.7548 2.9231 2.3882

100 3.7566 2.9237 2.3882
1000 3.7566 2.9237 2.3882

0.95 50 11.5604 4.8093 2.9483
100 12.1180 4.8644 2.9483

1000 12.1214 4.8647 2.9483
0.96 50 32.2895 6.1486 3.1352

100 39.9103 6.3328 3.1352
1000 40.0604 6.3359 3.1352

0.97 50 ∞ 9.0043 3.3798
100 ∞ 9.7451 3.3803

1000 ∞ 9.7816 3.3803
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block are displayed in Table 2. Computational evidence suggests that ‖G−1‖ does not 
exceed 3.12 for infinite dimension.

In the second example in [3] the upper left 5 × 5 matrix in G is replaced by some 
random positive matrix. Since the lower (n − 5) × (n − 5) block in G is still tridiago‑
nal, again the original and new bound do not change for any dimension n ≥ 21 . An 
example for the original, the new bound and for ‖G−1‖ is 1.909, 1.648, 1.449.

The third example in [3] was already treated in the previous section. For k close to 
1 the bounds (3) and (8) are getting weak. For different values of k and dimension n 
the results are displayed in Table 3. For the true value of ‖G−1‖ verified bounds were 
computed using verification methods, so that the displayed digits in the last column are 
correct.

We see not much dependency on the dimension of the original and the new bound, 
and practically no dependency of ‖G−1‖ . With k getting closer to the upper limit 1 there 
is more improvement by the new bound, but naturally the bounds become also weaker 
compared to ‖G−1‖ . For k ≥ 0.97 the original bound fails because the assumptions 
‖CA−1‖ < 1 and ‖A−1B‖ < 1 are not satisfied.
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