A note on Oishi's lower bound for the smallest singular value of linearized Galerkin equations

Siegfried M. Rump ${ }^{1,2}$ © . Shin'ichi Oishi ${ }^{3}$

Received: 12 August 2023 / Revised: 3 November 2023 / Accepted: 3 January 2024
© The Author(s) 2024

Abstract

Recently Oishi published a paper allowing lower bounds for the minimum singular value of coefficient matrices of linearized Galerkin equations, which in turn arise in the computation of periodic solutions of nonlinear delay differential equations with some smooth nonlinearity. The coefficient matrix of linearized Galerkin equations may be large, so the computation of a valid lower bound of the smallest singular value may be costly. Oishi's method is based on the inverse of a small upper left principal submatrix, and subsequent computations use a Schur complement with small computational cost. In this note some assumptions are removed and the bounds improved. Furthermore a technique is derived to reduce the total computationally cost significantly allowing to treat infinite dimensional matrices.

Keywords Bound for the norm of the inverse of a matrix • Minimum singular value • Galerkin's equation • Nonlinear delay differential equation • Schur complement

Mathematics Subject Classification 65F45

[^0]
1 Main result

Certain periodic solutions of nonlinear delay differential equations with some smooth nonlinearity can be calculated by some Galerkin equations. Oishi's paper [3] discusses how to obtain a lower bound for the smallest singular value of the coefficient matrix G of the linearized Galerkin equation.

Throughout this note $\|\cdot\|$ denotes the ℓ_{2}-norm, and we use the convention that matrices are supposed to be nonsingular when using their inverse. Dividing the matrix G into blocks

$$
G:=\left(\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right)
$$

with a square upper left block A of small size, often $\left\|G^{-1}\right\|$ is in practical applications not too far from $\left\|A^{-1}\right\|$. In other words, the main information on $\left\|G^{-1}\right\|$ sits in A. Moreover, the matrix G shares some kind of diagonal dominance so that $\left\|D^{-1}\right\|$ can be expected to be not too far from $\left\|D_{d}^{-1}\right\|$ for the splitting $D=D_{d}+D_{f}$ into diagonal and off-diagonal part.

Based on that Oishi discusses in [3] how to obtain an upper bound on $\left\|G^{-1}\right\|=\sigma_{\min }(G)^{-1}$ by estimating the influence of the remaining blocks B, C, D. Oishi proves the following theorem.

Theorem 1.1 Let n be a positive integer, and m be a non-negative integer satisfying $m \leq n$. Let $G \in M_{n}(\mathbb{R})$ be as in (1) with $A \in M_{m}(\mathbb{R}), B \in M_{m, n-m}(\mathbb{R}), C \in M_{n-m, m}(\mathbb{R})$ and $D \in M_{n-m}(\mathbb{R})$. Let D_{d} and D_{f} be the diagonal part and the off-diagonal part of D, respectively. If

$$
\begin{equation*}
\left\|A^{-1} B\right\|<1, \quad\left\|C A^{-1}\right\|<1 \quad \text { and } \quad\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right\|<1 \tag{2}
\end{equation*}
$$

then G is invertible and

$$
\begin{equation*}
\left\|G^{-1}\right\| \leq \frac{\max \left\{\left\|A^{-1}\right\|, \frac{\left\|D_{d}^{-1}\right\|}{1-\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right\|}\right\}}{\left(1-\left\|A^{-1} B\right\|\right)\left(1-\left\|C A^{-1}\right\|\right)} \tag{3}
\end{equation*}
$$

In a practical application the matrix G may be large. So the advantage of Oishi's bound is that with small computational effort a reasonable upper bound for $\left\|G^{-1}\right\|$, and thus a lower bound for $\sigma_{\min }(G)^{-1}$, is derived. In particular the clever use of Schur's complement requires only a small upper left part A of G to be inverted, whereas the inverse of the large lower right part D is estimated using a Neumann expansion.

For $p:=\min (m, n)$, denote by $I_{m, n}$ the matrix with the $p \times p$ identity matrix in the upper left corner. If $m=n$, we briefly write I_{m}. Oishi's estimate is based on the factorization [2] of G using its Schur complement

$$
G=\left(\begin{array}{cc}
I_{m} & 0 \\
C A^{-1} & I_{n-m}
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right)\left(\begin{array}{cc}
I_{m} & A^{-1} B \\
0 & I_{n-m}
\end{array}\right) .
$$

It follows

$$
\begin{equation*}
\left\|G^{-1}\right\| \leq \varphi\left(C A^{-1}\right) \max \left\{\left\|A^{-1}\right\|,\left\|\left(D-C A^{-1} B\right)^{-1}\right\|\right\} \varphi\left(A^{-1} B\right) \tag{4}
\end{equation*}
$$

where for $N \in M_{m, n-m}(\mathbb{R})$

$$
\varphi(N):=\left\|\left(\begin{array}{cc}
I_{m} & -N \\
0 & I_{n-m}
\end{array}\right)\right\|=\left\|\left(\begin{array}{cc}
I_{m} & N \\
0 & I_{n-m}
\end{array}\right)^{-1}\right\|=\left\|\left(\begin{array}{cc}
I_{m} & 0 \\
N^{T} & I_{n-m}
\end{array}\right)^{-1}\right\|=\left\|\left(\begin{array}{cc}
I_{m} & 0 \\
-N^{T} & I_{n-m}
\end{array}\right)\right\| .
$$

To bound $\left\|\left(D-C A^{-1} B\right)^{-1}\right\|$ the standard estimate

$$
\left\|\left(D-C A^{-1} B\right)^{-1}\right\|=\left\|\left(I+D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right)^{-1} D_{d}^{-1}\right\| \leq \frac{\left\|D_{d}^{-1}\right\|}{1-\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right\|}
$$

based on a Neumann expansion is used. In practical applications as those in [3] this imposes only a small overestimation, and often the maximum in the middle of (4) is equal to $\left\|A^{-1}\right\|$.

Thus it remains to bound $\varphi(N)$ for $N \in\left\{C A^{-1}, A^{-1} B\right\}$ which is done in [3] by $\varphi(N) \leq \frac{1}{1-\|N\|}$ requiring $\|N\|<1$. The following lemma removes that restriction and gives an explicit formula for $\varphi(N)$.

Lemma 1.2 Let $H \in M_{n}(\mathbb{R})$ have the block representation

$$
H=\left(\begin{array}{cc}
I_{k} & -N \\
0 & I_{n-k}
\end{array}\right)
$$

for $1 \leq k<n$ and $N \in M_{k, n-k}(\mathbb{R})$ with $\|N\| \neq 0$. Abbreviate $\mu:=\|N\|$ and define

$$
\alpha:=\left\{\frac{1}{2}\left(1+\frac{1}{\sqrt{1+\frac{4}{\mu^{2}}}}\right)\right\}^{1 / 2} \in(0,1) .
$$

Then

$$
\begin{equation*}
\psi(N):=\|H\|=\left\|H^{-1}\right\|=\sqrt{1+2 \alpha \mu \sqrt{1-\alpha^{2}}+\alpha^{2} \mu^{2}} . \tag{5}
\end{equation*}
$$

Proof Let $x \in \mathbb{R}^{k}$ and $y \in \mathbb{R}^{n-k}$. Then

$$
\left\|H\binom{x}{y}\right\|^{2}=\left\|\binom{x+N y}{y}\right\|^{2} \leq(\|x\|+\|N\|\|y\|)^{2}+\|y\|^{2}
$$

with equality if, and only if, $\|N y\|=\|N\|\|y\|$ and x is a positive multiple of $N y$. Let $u \in \mathbb{R}^{k}$ and $v \in \mathbb{R}^{n-k}$ with $\|u\|=\|v\|=1$ and $N v=\|N\| u$ and define $y:=\alpha v$ and $x:=\sqrt{1-\alpha^{2}} u$. Then $\left\|\binom{x}{y}\right\|=1$ and

$$
\begin{equation*}
v(\alpha):=\left\|H\binom{x}{y}\right\|^{2}=\left(\sqrt{1-\alpha^{2}}+\alpha \mu\right)^{2}+\alpha^{2}=1+2 \alpha \mu \sqrt{1-\alpha^{2}}+\alpha^{2} \mu^{2} \tag{6}
\end{equation*}
$$

so that the maximum of $v(\alpha)$ over $\alpha \in[0,1]$ is equal to $\|H\|^{2}$. A computation yields

$$
\frac{d \nu(\alpha)}{d \alpha}=\frac{2 \mu}{\sqrt{1-\alpha^{2}}}\left(1-2 \alpha^{2}+\alpha \mu \sqrt{1-\alpha^{2}}\right)
$$

Setting the derivative to zero and abbreviating $\beta:=\alpha^{2}$ gives

$$
\beta^{2}-\beta+\frac{1}{4+\mu^{2}}=0
$$

with positive solution

$$
\beta=\frac{1}{2}\left(1+\frac{1}{\sqrt{1+\frac{4}{\mu^{2}}}}\right) \in(0,1)
$$

for nontrivial N. That proves the lemma.
The lemma removes the first two assumptions in (2). In practical applications those are usually satisfied, so the advantage is that they do not have to be verified. That proves the following.

Theorem 1.3 Let n, m and $G \in M_{n}(\mathbb{R})$ with the splitting as in (1) be given. With the splitting $D=D_{d}+D_{f}$ into diagonal and off-diagonal part assume

$$
\begin{equation*}
\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right\|<1 \tag{7}
\end{equation*}
$$

Then G is invertible and

$$
\begin{equation*}
\left\|G^{-1}\right\| \leq \max \left\{\left\|A^{-1}\right\|, \frac{\left\|D_{d}^{-1}\right\|}{1-\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right\|}\right\} \psi\left(A^{-1} B\right) \psi\left(C A^{-1}\right) \tag{8}
\end{equation*}
$$

using $\psi(\cdot)$ as in (5) in Lemma 1.2.

For a matrix G arising in linearized Galerkin equations the norm $\left\|\left(D-C A^{-1} B\right)^{-1}\right\|$ of the inverse of the Schur complement is often dominated by $\left\|A^{-1}\right\|$. That is because of the increasing diagonal elements D_{d} of the lower right part of G, implying that $\left\|D_{d}^{-1}\right\|$ is equal to the reciprocal of the left upper element of D_{d} and $\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)^{-1}\right\|$ to become small. In that case the bound (8) reduces to $\left\|G^{-1}\right\| \leq\left\|A^{-1}\right\| \psi\left(A^{-1} B\right) \psi\left(C A^{-1}\right)$. It can be adapted to other norms following the lines of the proof of Lemma 1.2.

2 Computational improvement and an infinite dimensional example

For both the original bound (3) and the new bound (8) the main computational effort is to estimate $\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right\|$ requiring $\mathcal{O}\left((n-m)^{2} m\right)$ operations. It often suffices to use $\|N\| \leq \sqrt{\|N\|_{1}\|N\|_{\infty}}=: \pi(N)$ and the crude estimate

$$
\begin{equation*}
\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right\| \leq \pi\left(D_{d}^{-1} D_{f}\right)+\pi\left(D_{d}^{-1} C\right) \pi\left(A^{-1} B\right)=: \gamma \tag{9}
\end{equation*}
$$

That avoids the product of large matrices and to compute the ℓ_{2}-norm of large matrices, thus reducing the total computational cost to $\mathcal{O}\left((n-m) m^{2}\right)$ operations. For instance, in Example 3 in [4] with $n=10,000$ and $k=0.9$ the bound (9) is successful in the sense that $\max \left(\left\|A^{-1}\right\|, \frac{\left\|D_{d}^{-1}\right\|}{1-\gamma}\right)=\left\|A^{-1}\right\|$ for dimension $m \geq 13$ of the upper left block A. The additional computational cost for (9) is marginal, so in any case it is worth to try. If successful, then the computational cost for dimension $n=10,000$ reduces from 8 minutes to less than 2 seconds on a standard laptop.

In order to compute rigorous bounds, an upper bound for the ℓ_{2} norm of a matrix $C \in M_{n}(\mathbb{R})$ is necessary. An obvious possibility is to use $\|C\|_{2} \leq \sqrt{\|C\|_{1}\|C\|_{\infty}}$. Denoting the spectral radius of a matrix by $\rho(\cdot)$, better bounds are obtained by $\|C\|_{2}^{2} \leq\||C|\|_{2}^{2}=\rho\left(|C|^{T}|C|\right)$ and Collatz' bound [1]

$$
\varrho\left(|C|^{T}|C|\right) \leq \max _{i} \frac{\left(|C|^{T}(|C| x)\right)_{i}}{x_{i}}
$$

which is true for any positive vector x. Then a few power iterations on x yield an accurate upper bound for $\||C|\|_{2}$ in some $\mathcal{O}\left(n^{2}\right)$ operations. More sophisticated methods for bounding $\|C\|_{2}$ can be found in [6].

A practical consideration, in particular for so-called verification methods [4, 5], is that the true value $\mu=\|N\|$ is usually not available. However, $v(N)$ in (6) is increasing with μ and implies

$$
\begin{equation*}
\|N\| \leq \mu \quad \Rightarrow \quad\|H\|=\left\|H^{-1}\right\| \leq \sqrt{1+2 \alpha \mu \sqrt{1-\alpha^{2}}+\alpha^{2} \mu^{2}} \tag{10}
\end{equation*}
$$

For example, $\pi(N)$ can be used for an upper bound μ of $\|N\|$. Applying this method to (8) to bound $\psi(N)$ for $N \in\left\{A^{-1} B, C A^{-1}\right\}$ using $\|N\| \leq \pi(N)$ entirely avoids the computation of the ℓ_{2}-norm of large matrices.

To that end we show how to compute an upper bound of $\left\|G^{-1}\right\|$ for the third example in [4] for infinite dimension. The matrix G is parameterized by some $k \in(0,5,1)$ with elements $G_{i j}=k^{|i-j|}$ for $i \neq j$ and $(1, \ldots, n)$ on the diagonal. As before m denotes the size of the upper left block A.

We first show how to estimate γ in (9) for arbitrarily large n. Define

$$
P=D_{d}^{-1} D_{f} \quad \Rightarrow \quad P_{i j}:=\left\{\begin{array}{ll}
0 & \text { if } i=j \\
k^{|i-j|} /(i+m) & \text { otherwise }
\end{array} .\right.
$$

Then for every fixed $s \in\{1, \ldots, n-m\}$

$$
\sum_{j=1}^{n-m} P_{s j}=\sum_{j=1}^{s-1} k^{s-j} /(s+m)+\sum_{j=s+1}^{n-m} k^{j-s} /(s+m)<2 \sum_{j=1}^{\infty} k^{j} /(1+m)=\frac{2 k}{(1-k)(m+1)}
$$

and

$$
\sum_{i=1}^{n-m} P_{i s}=\sum_{i=1}^{s-1} k^{s-i} /(i+m)+\sum_{i=s+1}^{n-m} k^{i-s} /(i+m)<2 \sum_{i=1}^{\infty} k^{i} /(1+m)=\frac{2 k}{(1-k)(m+1)}
$$

proves

$$
\begin{equation*}
\left\|D_{d}^{-1} D_{f}\right\| \leq \sqrt{\left\|D_{d}^{-1} D_{f}\right\|_{1}\left\|D_{d}^{-1} D_{f}\right\|_{\infty}}<\frac{2 k}{(1-k)(m+1)} . \tag{11}
\end{equation*}
$$

That estimate is valid for any dimension $n>m$. For $Q=D_{d}^{-1} C$ we have $Q_{i j}:=k^{|m+i-j|} /(m+i)$, so that for every fixed $s \in\{1, \ldots, n-m\}$

$$
\sum_{j=1}^{m} Q_{s j} \leq \sum_{j=1}^{s-1} k^{m+1-j} /(m+1)<\frac{k}{(1-k)(m+1)}
$$

and for every fixed $s \in\{1, \ldots, m\}$

$$
\sum_{i=1}^{n-m} Q_{i s}=\sum_{i=1}^{n-m} k^{m+i-s} /(m+i)<\frac{k}{(1-k)(m+1)} .
$$

It follows

$$
\begin{equation*}
\left\|D_{d}^{-1} C\right\|<\frac{k}{(1-k)(m+1)} \tag{12}
\end{equation*}
$$

In order to estimate $\left\|A^{-1} B\right\|$ we split $B=[S T]$ into blocks $S \in M_{m, q}$ and $T \in M_{m, n-m-q}$ and $1 \leq q<n-m$. Then $B_{i j}:=k^{m-i+j}$ implies $T_{i j}:=k^{q+m-i+j}$ and

$$
\|T\| \leq \sqrt{\left(\sum_{i=1}^{m} k^{q+m-i+1}\right)\left(\sum_{j=1}^{n-m-q} k^{q+m-1+j}\right)}<\frac{k^{q+1}}{1-k}
$$

so that

$$
\begin{equation*}
\left\|A^{-1} B\right\| \leq\left\|A^{-1} S\right\|+\left\|A^{-1} T\right\|<\left\|A^{-1} S\right\|+\frac{k^{q+1}\left\|A^{-1}\right\|}{1-k} . \tag{13}
\end{equation*}
$$

Summarizing and using (11), (12), and (13), (9) becomes

$$
\left\|D_{d}^{-1}\left(D_{f}-C A^{-1} B\right)\right\|<\frac{2 k}{(1-k)(m+1)}+\frac{k}{(1-k)(m+1)}\left(\left\|A^{-1} S\right\|+\frac{k^{q+1}\left\|A^{-1}\right\|}{1-k}\right)=: \delta .
$$

Note that only "small" matrices are involved in the computation of δ. For given k, we choose m and q large enough to ensure $\max \left(\left\|A^{-1}\right\|, \frac{\left\|D_{d}^{-1}\right\|}{1-\delta}\right)=\left\|A^{-1}\right\|$. Then it is

Table 1 Bounds of $\left\|G^{-1}\right\|$ infinite dimensional G with $k=0.9$ and choices of m and q

m / q	$30 / 50$	$30 / 100$	$50 / 100$	$100 / 100$	$200 / 100$		
$\left\\|G^{-1}\right\\| \leq$	3.07	2.75	2.61	2.50	2.45		

Table 2 Bounds of $\left\|G^{-1}\right\|$ infinite dimensional G in Example 1 [4] and choices of m

m	20	50	100	200
Original bound	3.84	3.36	3.25	3.19
New bound	3.45	3.25	3.18	3.15

true for the infinite dimensional matrix G as well. The computational effort is $\mathcal{O}\left(\max \left(m^{2} q, m^{3}\right)\right)$

Note that the bound is very crude with much room for improvement. Nevertheless, $k=0.9, m=25$ and $q=35$ ensures $\max \left(\left\|A^{-1}\right\|, \frac{\left\|D_{d}^{-1}\right\|}{1-\delta}\right)=\left\|A^{-1}\right\|$ for infinite n with marginal computational effort.

In our example, symmetry implies $\left\|A^{-1} B\right\|=\left\|C A^{-1}\right\|$, so that inserting the above quantities proves the bounds displayed in Table 1 for arbitrarily large dimension n.

Numerical evidence suggests that the true norm does not exceed 2.39. The total computing time for infinite dimensional G with $m=200$ and $q=100$ is less than 0.09 seconds on a laptop.

3 Comparison of the original and new bound

In [3] the bounds on $\left\|G^{-1}\right\|$ are tested by means of three typical application examples. The first example is a tridiagonal matrix G with all elements equal to 2 on the first subdiagonal, all elements equal to 3 on the first superdiagonal, and $(1, \ldots, n)$ on the diagonal. Therefore, with increasing dimension $n \geq 21$, neither $\varphi\left(C A^{-1}\right)$ nor $\varphi\left(A^{-1} B\right)$ change. Since the maximum in (4) is equal to $\left\|A^{-1}\right\|$, the original bound and the new bound using (4) and (5) do not change for any $n \geq 21$, i.e., they are valid for the infinite dimensional case. Computed bounds for different size m of the left upper
Table 3 Bounds of $\left\|G^{-1}\right\|$ using dimension $m=20$ of the upper left block A for different parameters k and dimensions n of G

k	n	Original bound	New bound	$\left\\|G^{-1}\right\\|$
0.9	50	3.7548	2.9231	2.3882
	100	3.7566	2.9237	2.3882
	1000	3.7566	2.9237	2.3882
0.95	50	11.5604	4.8093	2.9483
	100	12.1180	4.8644	2.9483
	1000	12.1214	4.8647	2.9483
0.96	50	32.2895	6.1486	3.1352
	100	39.9103	6.3328	3.1352
	1000	40.0604	6.3359	3.1352
0.97	50	∞	9.0043	3.3798
	100	∞	9.7451	3.3803
	1000	∞	9.7816	3.3803

block are displayed in Table 2. Computational evidence suggests that $\left\|G^{-1}\right\|$ does not exceed 3.12 for infinite dimension.

In the second example in [3] the upper left 5×5 matrix in G is replaced by some random positive matrix. Since the lower $(n-5) \times(n-5)$ block in G is still tridiagonal, again the original and new bound do not change for any dimension $n \geq 21$. An example for the original, the new bound and for $\left\|G^{-1}\right\|$ is $1.909,1.648,1.449$.

The third example in [3] was already treated in the previous section. For k close to 1 the bounds (3) and (8) are getting weak. For different values of k and dimension n the results are displayed in Table 3. For the true value of $\left\|G^{-1}\right\|$ verified bounds were computed using verification methods, so that the displayed digits in the last column are correct.

We see not much dependency on the dimension of the original and the new bound, and practically no dependency of $\left\|G^{-1}\right\|$. With k getting closer to the upper limit 1 there is more improvement by the new bound, but naturally the bounds become also weaker compared to $\left\|G^{-1}\right\|$. For $k \geq 0.97$ the original bound fails because the assumptions $\left\|C A^{-1}\right\|<1$ and $\left\|A^{-1} B\right\|<1$ are not satisfied.

Acknowledgements Our dearest thanks to the anonymous referee for many helpful and constructive remarks.
Funding Open Access funding enabled and organized by Projekt DEAL.
Data availability Not applicable.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen ses/by/4.0/.

References

1. Collatz, L.: Einschließungssatz für die charakteristischen Zahlen von Matrizen. Math. Z. 48, 221-226 (1942)
2. Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2017)
3. Oishi, S.: Lower bounds for the smallest singular values of generalized asymptotic diagonal dominant matrices. Jpn. J. Ind. Appl. Math. (2023). https://doi.org/10.1007/s13160-023-00596-5
4. Oishi, S., Ichihara, K., Kashiwagi, M., Kimura, K., Liu, X., Masai, H., Morikura, Y., Ogita, T., Ozaki, K., Rump, S.M., Sekine, K., Takayasu, A., Yamanaka, N.: Principle of Verified Numerical Computations. Corona publisher, Tokyo (2018). (in Japanese)
5. Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic. Acta Numer. 19, 287449 (2010)
6. Rump, S.M.: Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse. BIT Numer. Math. 51(2), 367-384 (2011)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Siegfried M. Rump
 rump@tuhh.de
 Shin'ichi Oishi
 oishi@waseda.jp
 1 Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-Campus 3, Hamburg 21073, Germany

 2 Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

 3 Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

