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Abstract
This paper develops a continuous approximation model for analyzing the effect of
road pricing on the spatial distribution of traffic flow. The traffic flow density, which
describes traffic flow as a function of position, is derived for a rectangular city with a
grid network. The analytical expression for the traffic flow density demonstrates how
the toll level, the size and shape of the toll area, and the shape of the city affect the
spatial distribution of traffic flow. As the size of the toll area increases, reducing the
traffic flow density at the city center becomes difficult. As the aspect ratio of the toll
area increases, the traffic flow density at the city center increases. The shape of the
city has less impact on the traffic flow density than the shape of the toll area.

Keywords Transportation · Traffic flow density · Rectilinear distance · Continuous
approximation

Mathematics Subject Classification 90B06 · 90B85

1 Introduction

Road pricing, which is regarded as one of the most effective means to reduce traffic
congestion, has been introduced in several cities such as London, Singapore, and
Stockholm. A toll is imposed on vehicles per crossing of the cordon line surrounding
a toll area (cordon-based pricing), per distance of travel (distance-based pricing), per
time of travel (time-based pricing), or per day in a toll area (area-based pricing). Road
pricing encourages travelers to adjust the number of trips and the travel route, thus
affecting the spatial distribution of traffic flow. Examining how road pricing affects the
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spatial distribution of traffic flow provides a fundamental understanding of the effect
of road pricing.

Two major approaches for addressing road pricing are based on discrete network
models and continuous approximation models. The former rely on detailed traffic data
and focus on developing efficient algorithms for large-scale problems, whereas the lat-
ter rely on approximated functions of travel demand and focus on finding fundamental
relationships between variables. By providing analytical solutions, the continuous
approximation models can help reveal managerial insights and supplement the dis-
crete network models. The discrete network models on road pricing have studied
cordon-based pricing [1–6] and area-based pricing [7–13] on actual networks. May
and Milne [14] compared cordon-based, distance-based, time-based, and delay-based
pricing schemes. The continuous approximation models have studied cordon-based
and area-based pricing in idealized structures such as a linear city [15–19], a circular
city [20], a grid network [21], and a radial-arc network [22, 23].

In this paper, we present a continuous approximation model for analyzing the effect
of road pricing on the spatial distribution of traffic flow. The continuous approximation
yields an analytical expression for the spatial distribution of traffic flow. The analytical
expression leads to a better understanding of how the toll level, the size and shape of
the toll area, and the shape of the city affect the spatial distribution of traffic flow. The
model is thus useful for determining the size and shape of the toll area and the toll
level. The model assumes a grid network, which can be found in Kyoto, Beijing, and
many cities in North America. Miyagawa [21] dealt with the effect of road pricing
in a grid network on the total amount of traffic flow inside the toll area. The effect
of road pricing, however, varies according to the location. We then extend the scope
to the spatial distribution of traffic flow, which describes traffic flow as a function of
position. This extension allows us to examine the locational variation of traffic flow
and identify potential congestion areas.

To describe the spatial distribution of traffic flow, the concept of traffic flow density
was introduced by Smeed [24] and Holroyd [25]. The traffic flow density expresses
the amount of traffic flow passing through a point as a density function. The traffic
flow density has been derived for a circular city with the Euclidean distance [26],
a circular city with a grid network [27] and a radial-arc network [28], and a square
city with a grid network [28]. Subsequent works have considered a sector-shaped city
with a radial-arc network [29], a rectangular city with a grid network and a barrier to
travel [30], and a circular city with a radial-arc network and road pricing [23]. The
time-dependent traffic flow density has also been derived [31, 32]. The traffic flow
density in a rectangular city with a grid network and road pricing has not been derived
previously.

The remainder of this paper is organized as follows. The next section introduces
a grid network model. The following section derives the spatial distribution of traffic
flow without road pricing. The penultimate section derives the spatial distribution of
traffic flow in road pricing. The final section presents concluding remarks.
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2 Grid networkmodel

Consider a rectangular city with side lengths a1 and a2, as shown in Fig. 1. Any point
in the city is expressed as (x, y) (0 ≤ x ≤ a1, 0 ≤ y ≤ a2), where the origin of the
coordinate systemO is at the southwest corner of the city. The city has a dense grid road
network. The shortest distance between two points (x1, y1) and (x2, y2) is then given
by the rectilinear distance |x1−x2|+|y1− y2|. A toll area is represented as a rectangle
with side lengths b1 and b2 located at the center of the city (a1/2, a2/2). Let (xb, yb)
be the southwest corner of the toll area, that is, xb = (a1 − b1)/2, yb = (a2 − b2)/2.
The road pricing system in the city is area pricing where all vehicles driving inside
the toll area are charged a fixed toll t .

Origins and destinations are assumed to be uniformly distributed in the city. The
uniform distribution is important as the first approximation and serves as a basis for
further analysis with more realistic distributions. The travel cost C for trips of length
R is defined as

C = αR + t, (1)

whereα (> 0) is the travel cost per unit distance. Every traveler is assumed tominimize
the number of turns in choosing the least cost route. If there exist two least cost routes
with an equal number of turns, the amount of traffic flow is equally divided between
the two routes. The travel demand D is assumed to decrease with the travel cost C
and expressed as

D = D0e
−βC , (2)

where D0 is the travel demand when C = 0 and β (> 0) is a parameter for elasticity.
The exponential function has been widely used in spatial interaction models [33].

The traffic flow density is defined as the amount of traffic flow passing through a
point in the city. Let fx and fy be the densities of traffic flow passing through a point
(x, y) in the east–west and north–south directions, respectively. The amount of traffic
flow passing through the small segment with length dy (dx) in the east–west (north–
south) direction is then fxdy ( fydx). The amount of traffic flow passing through the
segment between two points (x, y1) and (x, y2) in the east–west direction, denoted by
Vx , is given by

Vx =
∫ y2

y1
fx dy, (3)

and the amount of traffic flow passing through the segment between two points (x1, y)
and (x2, y) in the north–south direction, denoted by Vy , is given by

Vy =
∫ x2

x1
fy dx, (4)

as shown in Fig. 1.
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Fig. 1 Rectangular city with a
grid network
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3 Traffic flow density without road pricing

In this section, we derive the traffic flow density when no toll is charged, that is, t = 0.
Although Vaughan [28] and Miyagawa [30] derived the traffic flow density without
road pricing, they assumed inelastic travel demand (β = 0 in Eq. (2)). We relax the
assumption to elastic travel demand.

First, we derive the traffic flowdensity in the east–west direction. Let P1(x1, y1) and
P2(x2, y2) be origin and destination of trips, respectively. The traffic passes through
the infinitesimal segment between two points (x, y) and (x, y + dy) in the easterly
direction if

P1(x1, y1) ∈ {(x1, y1) | 0 ≤ x1 ≤ x, y ≤ y1 ≤ y + dy}, (5)

P2(x2, y2) ∈ {(x2, y2) | x ≤ x2 ≤ a1, 0 ≤ y2 ≤ a2}, (6)

as shown in Fig. 2a, or

P1(x1, y1) ∈ {(x1, y1) | 0 ≤ x1 ≤ x, 0 ≤ y1 ≤ a2}, (7)

P2(x2, y2) ∈ {(x2, y2) | x ≤ x2 ≤ a1, y ≤ y2 ≤ y + dy}, (8)

as shown in Fig. 2b. Since the amount of traffic flow passing through the segment in
the westerly direction is the same as that in the easterly direction, the amount of traffic
flow passing through the segment in the east–west direction is

fxdy =
∫ y

0

∫ a1

x

∫ y+dy

y

∫ x

0
D0 exp{−αβ(x2 − x1 + y1 − y2)} dx1dy1dx2dy2

+
∫ a2

y

∫ a1

x

∫ y+dy

y

∫ x

0
D0 exp{−αβ(x2 − x1 + y2 − y1)} dx1dy1dx2dy2

+
∫ y+dy

y

∫ a1

x

∫ y

0

∫ x

0
D0 exp{−αβ(x2 − x1 + y2 − y1)} dx1dy1dx2dy2
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Fig. 2 Traffic flow in the east–west direction

+
∫ y+dy

y

∫ a1

x

∫ a2

y

∫ x

0
D0 exp{−αβ(x2 − x1 + y1 − y2)} dx1dy1dx2dy2.

(9)

Letting dy → +0 gives the traffic flow density in the east–west direction

fx =
∫ y

0

∫ a1

x

∫ x

0
D0 exp{−αβ(x2 − x1 + y − y2)} dx1dx2dy2

+
∫ a2

y

∫ a1

x

∫ x

0
D0 exp{−αβ(x2 − x1 + y2 − y)} dx1dx2dy2

+
∫ a1

x

∫ y

0

∫ x

0
D0 exp{−αβ(x2 − x1 + y − y1)} dx1dy1dx2

+
∫ a1

x

∫ a2

y

∫ x

0
D0 exp{−αβ(x2 − x1 + y1 − y)} dx1dy1dx2

= 2D0

α3β3

(
1 − eαβx) (

eαβa1 − eαβx) (
eαβa2 + e2αβ y − 2eαβ(a2+y)

)
e−αβ(a1+a2+x+y).

(10)

Next, we derive the traffic flow density in the north–south direction. The traffic
passes through the infinitesimal segment between two points (x, y) and (x + dx, y)
in the northerly direction if

P1(x1, y1) ∈ {(x1, y1) | x ≤ x1 ≤ x + dx, 0 ≤ y1 ≤ y}, (11)

P2(x2, y2) ∈ {(x2, y2) | 0 ≤ x2 ≤ a1, y ≤ y2 ≤ a2}, (12)

as shown in Fig. 3a, or

P1(x1, y1) ∈ {(x1, y1) | 0 ≤ x1 ≤ a1, 0 ≤ y1 ≤ y}, (13)

P2(x2, y2) ∈ {(x2, y2) | x ≤ x2 ≤ x + dx, y ≤ y2 ≤ a2}, (14)
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Fig. 3 Traffic flow in the north–south direction

as shown in Fig. 3b. Since the amount of traffic flow passing through the segment in
the southerly direction is the same as that in the northerly direction, the amount of
traffic flow passing through the segment in the north–south direction is

fydx =
∫ a2

y

∫ x

0

∫ y

0

∫ x+dx

x
D0 exp{−αβ(x1 − x2 + y2 − y1)} dx1dy1dx2dy2

+
∫ a2

y

∫ a1

x

∫ y

0

∫ x+dx

x
D0 exp{−αβ(x2 − x1 + y2 − y1)} dx1dy1dx2dy2

+
∫ a2

y

∫ x+dx

x

∫ y

0

∫ x

0
D0 exp{−αβ(x2 − x1 + y2 − y1)} dx1dy1dx2dy2

+
∫ a2

y

∫ x+dx

x

∫ y

0

∫ a1

x
D0 exp{−αβ(x1 − x2 + y2 − y1)} dx1dy1dx2dy2.

(15)

Letting dx → +0 gives the traffic flow density in the north–south direction

fy =
∫ a2

y

∫ x

0

∫ y

0
D0 exp{−αβ(x − x2 + y2 − y1)} dy1dx2dy2

+
∫ a2

y

∫ a1

x

∫ y

0
D0 exp{−αβ(x2 − x + y2 − y1)} dy1dx2dy2

+
∫ a2

y

∫ y

0

∫ x

0
D0 exp{−αβ(x − x1 + y2 − y1)} dx1dy1dy2

+
∫ a2

y

∫ y

0

∫ a1

x
D0 exp{−αβ(x1 − x + y2 − y1)} dx1dy1dy2

= 2D0

α3β3

(
1 − eαβ y) (

eαβa2 − eαβ y) (
eαβa1 + e2αβx − 2eαβ(a1+x)

)
e−αβ(a1+a2+x+y).

(16)
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Fig. 4 Detour around the toll
area
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4 Traffic flow density in road pricing

In this section, we derive the traffic flow density in road pricing. We then examine
how the toll level, the size and shape of the toll area, and the shape of the city affect
the traffic flow density. To see the effect of road pricing on the traffic flow inside the
toll area, we focus on the traffic flow density inside the toll area.

Road pricing can affect not only travel demand but also travel routes, reducing the
amount of traffic flow passing through the toll area. The traveler passes through the
toll area only if the travel cost of passing through the toll area is smaller than that of
making a detour around the toll area. Miyagawa [21] showed that the traveler passes
through the toll area if both origin and destination are inside the gray regions in Fig. 4.
For example, the travel cost between origin

P1(x1, y1) ∈ {(x1, y1) | 0 ≤ x1 ≤ xb, yb ≤ y1 ≤ y2} (17)

and destination

P2(x2, y2) ∈ {(x2, y2) | xb + b1 ≤ x2 ≤ a1, yb ≤ y2 ≤ yb + b2} (18)

is given by

C =

⎧⎪⎨
⎪⎩

α(x2 − x1 + y2 − y1) + t, y1 > yb + t
2α , y2 ≤ yb + b2 − t

2α ,

α(x2 − x1 + y1 + y2 − 2yb), y1 ≤ yb + t
2α , y1 + y2 ≤ 2yb + b2,

α(x2 − x1 − y1 − y2 + 2yb + 2b2), y2 > yb + b2 − t
2α , y1 + y2 > 2yb + b2.

(19)

The traveler then passes through the toll area if y1 > yb + t/(2α), y2 ≤ yb + b2 −
t/(2α).

The traffic flow density in the east–west direction is obtained by considering the
traffic passing through the infinitesimal segment between two points (x, y) and (x, y+
dy), as shown in Fig. 5. If yb ≤ y ≤ yb + t/(2α) or yb + b2 − t/(2α) ≤ y ≤ yb + b2,
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Fig. 5 Traffic flow in the east–west direction

travelers whose origin and destination are outside the toll area do not pass through the
segment. The traffic flow density in the east–west direction is given by

fx = f ax + f bx + f cx + f dx , (20)

where

f ax =
∫ y

yb

∫ xb+b1

x

∫ xb

0
D0 exp[−β{α(x2 − x1 + y − y2) + t}] dx1dx2dy2

+
∫ yb+b2

y

∫ xb+b1

x

∫ xb

0
D0 exp[−β{α(x2 − x1 + y2 − y) + t}] dx1dx2dy2,

(21)

f bx =
∫ y

0

∫ a1

x

∫ x

xb
D0 exp[−β{α(x2 − x1 + y − y2) + t}] dx1dx2dy2

+
∫ a2

y

∫ a1

x

∫ x

xb
D0 exp[−β{α(x2 − x1 + y2 − y) + t}] dx1dx2dy2, (22)

f cx =
∫ xb+b1

x

∫ y

0

∫ x

0
D0 exp[−β{α(x2 − x1 + y − y1) + t}] dx1dy1dx2
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+
∫ xb+b1

x

∫ a2

y

∫ x

0
D0 exp[−β{α(x2 − x1 + y1 − y) + t}] dx1dy1dx2, (23)

f dx =
∫ a1

xb+b1

∫ y

yb

∫ x

xb
D0 exp[−β{α(x2 − x1 + y − y1) + t}] dx1dy1dx2

+
∫ a1

xb+b1

∫ yb+b2

y

∫ x

xb
D0 exp[−β{α(x2 − x1 + y1 − y) + t}] dx1dy1dx2.

(24)

Note that f ax , f bx , f cx , f dx correspond to the four cases shown in Fig. 5. If yb+t/(2α) <

y < yb + b2 − t/(2α), travelers whose origin and destination are outside the toll area
can pass through the segment, and f ax and f dx are replaced by

f ax =
∫ y

yb

∫ xb+b1

x

∫ xb

0
D0 exp[−β{α(x2 − x1 + y − y2) + t}] dx1dx2dy2

+
∫ yb+b2

y

∫ xb+b1

x

∫ xb

0
D0 exp[−β{α(x2 − x1 + y2 − y) + t}] dx1dx2dy2

+
∫ y

yb+t/(2α)

∫ a1

xb+b1

∫ xb

0
D0 exp[−β{α(x2 − x1 + y − y2) + t}] dx1dx2dy2

+
∫ yb+b2−t/(2α)

y

∫ a1

xb+b1

∫ xb

0
D0 exp[−β{α(x2 − x1 + y2 − y) + t}] dx1dx2dy2,

(25)

f dx =
∫ a1

xb+b1

∫ y

yb

∫ x

xb
D0 exp[−β{α(x2 − x1 + y − y1) + t}] dx1dy1dx2

+
∫ a1

xb+b1

∫ yb+b2

y

∫ x

xb
D0 exp[−β{α(x2 − x1 + y1 − y) + t}] dx1dy1dx2

+
∫ a1

xb+b1

∫ y

yb+t/(2α)

∫ xb

0
D0 exp[−β{α(x2 − x1 + y − y1) + t}] dx1dy1dx2

+
∫ a1

xb+b1

∫ yb+b2−t/(2α)

y

∫ xb

0
D0 exp[−β{α(x2 − x1 + y1 − y) + t}] dx1dy1dx2.

(26)

The traffic flow density in the north–south direction is obtained by considering
the traffic passing through the infinitesimal segment between two points (x, y) and
(x + dx, y), as shown in Fig. 6. If xb ≤ x ≤ xb + t/(2α) or xb + b1 − t/(2α) ≤ x ≤
xb + b1, travelers whose origin and destination are outside the toll area do not pass
through the segment. The traffic flow density in the north–south direction is given by

fy = f ay + f by + f cy + f dy , (27)
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Fig. 6 Traffic flow in the north–south direction

where

f ay =
∫ yb+b2

y

∫ x

xb

∫ yb

0
D0 exp[−β{α(x − x2 + y2 − y1)} + t}] dy1dx2dy2

+
∫ yb+b2

y

∫ xb+b1

x

∫ yb

0
D0 exp[−β{α(x2 − x + y2 − y1) + t}] dy1dx2dy2,

(28)

f by =
∫ a2

y

∫ x

0

∫ y

yb
D0 exp[−β{α(x − x2 + y2 − y1)} + t}] dy1dx2dy2

+
∫ a2

y

∫ a1

x

∫ y

yb
D0 exp[−β{α(x2 − x + y2 − y1) + t}] dy1dx2dy2, (29)

f cy =
∫ yb+b2

y

∫ y

0

∫ x

0
D0 exp[−β{α(x − x1 + y2 − y1) + t}] dx1dy1dy2

+
∫ yb+b2

y

∫ y

0

∫ a1

x
D0 exp[−β{α(x1 − x + y2 − y1) + t}] dx1dy1dy2, (30)

f dy =
∫ a2

yb+b2

∫ y

yb

∫ x

xb
D0 exp[−β{α(x − x1 + y2 − y1) + t}] dx1dy1dy2
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+
∫ a2

yb+b2

∫ y

yb

∫ xb+b1

x
D0 exp[−β{α(x1 − x + y2 − y1) + t}] dx1dy1dy2.

(31)

Note that f ay , f by , f cy , f dy correspond to the four cases shown in Fig. 6. If xb+t/(2α) <

x < xb + b1 − t/(2α), travelers whose origin and destination are outside the toll area
can pass through the segment, and f ay and f dy are replaced by

f ay =
∫ yb+b2

y

∫ x

xb

∫ yb

0
D0 exp[−β{α(x − x2 + y2 − y1)} + t}] dy1dx2dy2

+
∫ yb+b2

y

∫ xb+b1

x

∫ yb

0
D0 exp[−β{α(x2 − x + y2 − y1) + t}] dy1dx2dy2

+
∫ a2

yb+b2

∫ x

xb+t/(2α)

∫ yb

0
D0 exp[−β{α(x − x2 + y2 − y1)} + t}] dy1dx2dy2

+
∫ a2

yb+b2

∫ xb+b1−t/(2α)

x

∫ yb

0
D0 exp[−β{α(x2 − x + y2 − y1) + t}] dy1dx2dy2,

(32)

f dy =
∫ a2

yb+b2

∫ y

yb

∫ x

xb
D0 exp[−β{α(x − x1 + y2 − y1) + t}] dx1dy1dy2

+
∫ a2

yb+b2

∫ y

yb

∫ xb+b1

x
D0 exp[−β{α(x1 − x + y2 − y1) + t}] dx1dy1dy2

+
∫ a2

yb+b2

∫ yb

0

∫ x

xb+t/(2α)

D0 exp[−β{α(x − x1 + y2 − y1) + t}] dx1dy1dy2

+
∫ a2

yb+b2

∫ yb

0

∫ xb+b1−t/(2α)

x
D0 exp[−β{α(x1 − x + y2 − y1) + t}] dx1dy1dy2.

(33)

The traffic flow densities f = fx + fy inside the toll area for the three toll levels
(t = 0, 0.1, 0.5) are shown in Fig. 7, where a1 = a2 = 1, b1 = b2 = 0.6, D0 =
1, α = 1, β = 1. As the toll level increases, the traffic flow density inside the toll area
decreases. Note that the traffic flow density jumps at x = xb+t/(2α), xb+b1−t/(2α)

and y = yb + t/(2α), yb + b2 − t/(2α). This is because for xb + t/(2α) < x <

xb + b1 − t/(2α) and yb + t/(2α) < y < yb + b2 − t/(2α), some travelers whose
origin and destination are outside the toll area pass through the toll area, as shown in
Fig. 4.

To examine the effect of the size of the toll area on the traffic flow density, we
consider two sizes of the toll area: b1 = b2 = 0.4 and b1 = b2 = 0.6. The traffic
flow densities inside the toll area at y = a2/2 for the two sizes are shown in Fig. 8,
where a1 = a2 = 1, D0 = 1, α = 1, β = 1. Note that if the toll area is small, the
traffic flow density at the city center decreases rapidly with the toll level t . This is
because as the size of the toll area becomes smaller, the detour distance to avoid the
toll area decreases and much traffic makes a detour around the toll area. It follows that
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Fig. 7 Traffic flow density inside the toll area: a t = 0; b t = 0.1; c t = 0.5
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Fig. 8 Traffic flow density inside the toll area at y = a2/2: a b1 = b2 = 0.4; b b1 = b2 = 0.6

to reduce the amount of traffic flow at the city center, the toll area should be small and
the toll level should be high.

To examine the effect of the shape of the toll area on the traffic flow density, we
consider two shapes of the toll area: b1/b2 = 2 (b1 = 0.4

√
2, b2 = 0.4/

√
2) and

b1/b2 = 3 (b1 = 0.4
√
3, b2 = 0.4/

√
3). The traffic flow densities inside the toll area

at y = a2/2 for the two shapes are shown in Fig. 9, where a1 = a2 = 1, D0 = 1, α =
1, β = 1. The traffic flow density for b1/b2 = 1 (b1 = b2 = 0.4) is shown in Fig. 8a.
Note that as the aspect ratio of the toll area b1/b2 becomes larger, the traffic flow
density at the city center increases. Thus, reducing the amount of traffic flow at the
city center is easier when the toll area is a square.

To examine the shape of the city on the traffic flow density, we consider two shapes
of the city: a1/a2 = 2 (a1 = √

2, a2 = 1/
√
2) anda1/a2 = 3 (a1 = √

3, a2 = 1/
√
3).

The traffic flow densities inside the toll area at y = a2/2 for the two shapes are shown
in Fig. 10, where b1 = b2 = 0.4, D0 = 1, α = 1, β = 1. The traffic flow density for
a1/a2 = 1 (a1 = a2 = 1) is shown in Fig. 8a. Note that the shape of the city has less
impact on the traffic flow density than the shape of the toll area.
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Fig. 9 Traffic flow density inside the toll area at y = a2/2: a b1/b2 = 2; b b1/b2 = 3
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Fig. 10 Traffic flow density inside the toll area at y = a2/2: a a1/a2 = 2; b a1/a2 = 3

5 Conclusions

This paper has developed a continuous approximation model for analyzing the spatial
distribution of traffic flow in road pricing. The traffic flowdensity has been derived for a
rectangular city with a grid network. Themodel provides a fundamental understanding
of the effect of road pricing on the spatial distribution of traffic flow.

The traffic flow density is useful for designing road pricing systems. The analytical
expression for the traffic flow density demonstrates how the toll level, the size and
shape of the toll area, and the shape of the city affect the spatial distribution of traffic
flow. As the size of the toll area increases, reducing the traffic flow density at the city
center becomes difficult. As the aspect ratio of the toll area increases, the traffic flow
density at the city center increases. The shape of the city has less impact on the traffic
flow density than the shape of the toll area. Note that finding these relationships by
using discrete network models requires the computation of traffic flow for various
combinations of the parameters. These relationships help planners determine the size
and shape of the toll area and the toll level.

Not only area-based pricing but also other pricing schemes such as cordon-based
and distance-based pricing have been studied. In particular, marginal cost pricing is the
first-best pricing in that the social welfare is maximized by internalizing externalities
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of congestion [34]. Future research should compare these pricing schemes in terms of
the spatial distribution of traffic flow.
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