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Abstract
This paper presents a computer-assisted proof of the existence and unimodality of
steady-state solutions for the Proudman–Johnson equation which is representative of
two-dimensional fluid flow.The proposed approach is based on an infinite-dimensional
fixed-point theorem with interval arithmetic, and is another proof by Miyaji and
Okamoto (Jpn J Ind Appl Math 36:287–298, 2019). Verification results show the
validity of both proofs.
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Mathematics Subject Classification 65G20 · 34B15 · 76D05

1 Introduction

Consider the following fourth-order nonlinear differential equation:

{
u′′′′ = f (u) in Ω := (0, π),

u(0) = u(π) = u′′(0) = u′′(π) = 0,
(1)

where

f (u) := R(uu′′′ − u′u′′) + sin(kx), (2)
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R > 0, and k is a given positive integer. The aim of the present paper is to prove,
in a computer-assisted manner, that there exists a solution u satisfying (1) and that
this solution has a strict extremum at one and only one point in Ω . The proof of the
existence and extremum of the solution of (1) implies unimodality of the solution for
the Proudman–Johnson equation:

utxx + uuxxx − uxuxx = 1

R
(uxxxx − sin(kx)), −π < x < π, t > 0, (3)

which is derived from the two-dimensional Navier–Stokes equations. For more details
about the Proudman–Johnson equation and the unimodality of the solution, see the
references [2–4] and references therein. In a previous paper, one of the authors proved
the existence and unimodality for (1) in a rigorously mathematical manner via the
multiple shooting method and multiple-precision interval arithmetic for R ≤ 5000
[4]. In the present paper, we apply a verification algorithm FN-Int [5], which is based
on an infinite-dimensional fixed-pointNewton-like formulation, and prove the solution
has a unique extremum inΩ . The procedure does not need multiple-precision interval
arithmetic and for readers interested in the details of our computer program, the source
code is available for downloading from the first author’s web page. Our proposed
approach is another computer-assisted proof of unimodality of the solution for the
Proudman–Johnson equation. We do not describe in detail the relative merits of the
two approaches in the present paper but would like to point out a couple relative merits
as follows . The method described in [4] is applicable mainly to ordinary differential
equations, and the authors of [4] reported that there is a unimodal solution for k = 10,
as well as other values k. The approach presented herein is potentially applicable to
more direct multi-dimensional problems, and, for k = 2, we successfully prove the
existence of a unimodal solution for R ≤ 10000, which is a wider range than reported
in [4].

This paper is organized as follows. Section 2 describes a fixed-point formulation
using an approximate solution and verification procedure. Section 3 is devoted to
details of the verification procedure. In Sect. 4, we report an enclosing result for the
solution of (1). The final section reports on verification results of unimodality.

2 Fixed-point formulation and verification procedure

From the imposed boundary conditions, u(0) = u(π) = u′′(0) = u′′(π) = 0, we will
find the solutions of (1) in the function spaces Xl (l ≥ 0) by the closure in Hl(Ω) of
the linear hull of all functions: sin(mx),m ∈ N+ := {1, 2, . . . }. In particular, because
our aim is to enclose the weak solutions of (1), we set X := X3. We note that

( sin(mx), sin(nx) )L2 =
{ π

2
, if m = n,

0, otherwise

holds for any [m, n]T ∈ N
2+, where ( ·, · )L2 is the usual L2-inner product in Ω .

For φm := sin(mx), let XN := span{φm}Nm=1 be a finite-dimensional approxima-
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tion subspace of X that depends on a positive integer parameter N which is not less
than k. The subspace XN is the N -th truncation of the Fourier series of X . Let X∗
be the orthogonal complement of XN in X such that X = XN ⊕ X∗. Because of
{‖φ‖L2 , ‖φ′‖L2 , ‖φ′′‖L2} ≤ ‖φ′′′‖L2 for φ ∈ X (see proofs in Lemma 1), we define
the norm of X as ‖φ‖X := ‖φ′′′‖L2 by ‖φ‖2

L2 = ( φ, φ )L2 .
Next, we define a bilinear form B by

B(u, v) := uv′′′ − u′v′′ : X × X → X0. (4)

Note that û = sin(kx)/k4 is a solution of (1) for each R and k because B(û, û) = 0.
For each u, v ∈ X such that

u =
∞∑

m=1

Amφm, v =
∞∑
n=1

Dnφn, Am, Dn ∈ IR,

we can find the following:

B(u, v) =1

2

∑
m≥1
n≥1

n2AmDn
[
(m − n)φm+n − (m + n)φm−n

]
, (5)

f (u) = R

2

∑
m≥1
n≥1

n2Am An
[
(m − n)φm+n − (m + n)φm−n

]+ φk, (6)

f ′[u]v =R(B(u, v) + B(v, u))

= R

2

∑
m≥1
n≥1

AmDn(m
2 − n2)

[
(−m + n)φm+n + (m + n)φm−n

]
. (7)

By using φ0 = 0 and φ−m = −φm for m ≥ 1, each B(u, v), f (u), and f ′[u]v can be
expanded by {φm}∞m=1 as an element in X0.

Now, using the standard Newton–Raphson method, we compute uN ∈ XN satisfy-
ing

( u′′
N , φ′′

i )L2 = ( f (uN ), φi )L2 , 1 ≤ i ≤ N (8)

approximately. We note that uN need not to be the exact solution of (8). Fig. 1 shows
plots of the approximate solution uN = ∑N

m=1(uN )mφm and its derivatives of (8) for
R = 5000, N = 400, and k = 2. The principal coefficients of the Fourier expansion
are as follows:

(uN )1 = 1.999270784802591, (uN )2 = 4.444486852702385 × 10−5,

(uN )3 = −6.247933780811187 × 10−6, (uN )4 = 1.776479376506378 × 10−6,

(uN )5 = −6.935979514533375 × 10−7.
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uN (x) versus x

uN (x) versus x

uN (x) versus x

Fig. 1 Plots of approximate solution and its derivatives

Remark 1 If u(x) = ∑∞
m=1 Amφm(x) is a solution of (1) in Ω , then from (6), ũ(x) :=∑∞

m=1(−1)m Amφm(x) also satisfies (1) in the same interval Ω . Therefore, below, we
concentrate on the “maximum” type convex-upward solution, such as in Fig. 1.

Now we find the norm estimations in the following lemma.

Lemma 1 For each ψ∗ ∈ X∗, it is true that

‖ψ∗‖X ≤ C∗‖ψ ′′′′∗ ‖L2 if ψ ′′′′∗ ∈ L2(Ω), (9)

‖ψ ′′∗ ‖L2 ≤ C∗‖ψ∗‖X , (10)

‖ψ ′∗‖L2 ≤ C2∗‖ψ∗‖X , (11)

‖ψ∗‖L2 ≤ C3∗‖ψ∗‖X , (12)

‖ψ∗‖L∞(Ω) ≤ C∗0‖ψ∗‖X , (13)

‖ψ ′∗‖L∞(Ω) ≤ C∗1‖ψ∗‖X , (14)

‖ψ ′′∗ ‖L∞(Ω) ≤ C∗2‖ψ∗‖X , (15)

where

C∗ = 1

N + 1
, C∗0 =

√
2

5πN 5
, C∗1 =

√
2

3πN 3 , C∗2 =
√

2

πN
.

Proof Below, we represent each elementψ∗ ∈ X∗ byψ∗ =
∞∑

m=N+1

Amφm ∈ X∗, with

Am ∈ IR.
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Proof of (9):

‖ψ∗‖2X = π

2

∞∑
m=N+1

m6A2
m ≤ max

N+1≤m≤∞
1

m2 × ‖ψ ′′′′∗ ‖2L2 ≤ 1

(N + 1)2
× ‖ψ ′′′′∗ ‖2L2 .

Proof of (10):

‖ψ ′′∗ ‖2L2 = π

2

∞∑
m=N+1

m4A2
m ≤ max

N+1≤m≤∞
1

m2 × ‖ψ∗‖2X ≤ 1

(N + 1)2
× ‖ψ∗‖2X .

Proof of (11):

‖ψ ′∗‖2L2 = π

2

∞∑
m=N+1

m2A2
m ≤ max

N+1≤m≤∞
1

m4 × ‖ψ∗‖2X ≤ 1

(N + 1)4
× ‖ψ∗‖2X .

Proof of (12):

‖ψ∗‖2L2 = π

2

∞∑
m=N+1

A2
m ≤ max

N+1≤m≤∞
1

m6 × ‖ψ∗‖2X ≤ 1

(N + 1)6
× ‖ψ∗‖2X .

Proof of (13): From the Cauchy–Schwarz inequality, we have

‖ψ∗‖L∞(Ω) = max
x∈Ω

∣∣∣∣∣
∞∑

m=N+1

Am sin(mx)

∣∣∣∣∣ ≤
∞∑

m=N+1

|Am | =
∞∑

m=N+1

m3|Am | 1

m3

≤
(
2

π

∞∑
m=N+1

1

m6

)1/2 (
π

2

∞∑
m=N+1

A2
mm

6

)1/2

=
(
2

π

∞∑
m=N+1

1

m6

)1/2

‖ψ∗‖X ;

then from

∞∑
m=N+1

1

m6 ≤
∫ ∞

N
t−6 dt = 1

5N 5
,

we obtain the conclusion.
Proof of (14): Because

‖ψ ′∗‖L∞(Ω) = max
x∈Ω

∣∣∣∣∣
∞∑

m=N+1

mAm sin(mx)

∣∣∣∣∣ ≤
∞∑

m=N+1

m|Am | =
∞∑

m=N+1

m3|Am | 1

m2
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≤
(
2

π

∞∑
m=N+1

1

m4

)1/2 (
π

2

∞∑
m=N+1

A2
mm

6

)1/2

=
(
2

π

∞∑
m=N+1

1

m4

)1/2

‖ψ∗‖X ,

and

∞∑
m=N+1

1

m4 ≤
∫ ∞

N
t−4 dt = 1

3N 3 ,

we have the conclusion.
Proof of (15): Because

‖ψ ′′∗ ‖L∞(Ω) = max
x∈Ω

∣∣∣∣∣
∞∑

m=N+1

m2Am sin(mx)

∣∣∣∣∣ ≤
∞∑

m=N+1

m2|Am | =
∞∑

m=N+1

m3|Am | 1
m

≤
(
2

π

∞∑
m=N+1

1

m2

)1/2 (
π

2

∞∑
m=N+1

A2
mm

6

)1/2

=
(
2

π

∞∑
m=N+1

1

m2

)1/2

‖ψ∗‖X ,

and

∞∑
m=N+1

1

m2 ≤
∫ ∞

N
t−2 dt = 1

N
,

we have the conclusion.

��
Nowwe apply the verification procedure FN-Int [5, Sect. 2.1], where the name “FN-

Int” comes from “Finite,” “Newton,” and “Interval.” For the sake of self-containedness
of the manuscript, we give a detailed formulation for problem (1).

By setting

w := u − uN , (16)

r2N := −u′′′′
N + f (uN ) ∈ X2N , (17)

and

g(w) := R (B(w,w) + B(uN , w) + B(w, uN )) + r2N : X → X0, (18)
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problem (1) can be rewritten as an equivalent residual form in order to find w ∈ X
satisfying

w′′′′ = g(w) in Ω (19)

in a weak sense. The term r2N in (18) is the defect of the approximate solution uN

and can be re-expanded as an element of X2N . Therefore, we can compute its inner
product with {φi }Ni=1 and the L

2-norm by interval arithmetic [7]. It is expected that, if
uN is an accurate approximation, some norms of w satisfying (19) are small.

By virtue of the property regarding B, the map g from X to X0 is bounded and
continuous.Moreover, it can be shown that for allψ ∈ X0, the linear problem ξ ′′′′ = ψ

has a unique solution ξ ∈ X4 (the proof follows the same procedure as in [1]). If we
denote this map as Δ−2, then Δ−2 : X0 → X becomes a compact map because of the
compactness of the embedding H4(Ω) ↪→ H3(Ω). Therefore, (19) can be rewritten
as the fixed-point equation

w = F(w) (20)

for the compact operator F := Δ−2g on X .
Next, for u = ∑∞

m=1 Amφm ∈ X0, we define PN : X0 → XN as the truncation
PNu = ∑N

m=1 Amφm ∈ XN . Note that PN |X coincides with the H2
0 -projection such

that

( (u − PN |Xu)′′, v′′
N )L2 = 0, ∀vN ∈ XN , (21)

and from (9) of Lemma 1, we can find that

‖(I − PN )u‖X ≤ C∗‖(I − PN )u′′′′‖L2 , u ∈ X and u′′′′ ∈ X0.

Now, we apply a Newton-like method to the fixed-point equation (20). Using the
projection PN , the fixed-point problem w = F(w) can be uniquely decomposed as a
finite-dimensional (projection) part XN and an infinite-dimensional (error) part X∗ as
follows:

{
PNw = PN F(w),

(I − PN )w = (I − PN )F(w).
(22)

Here I stands for the identity map on X . Suppose that the restriction of the operator
PN (I − F ′[0]) : X → XN to XN has an inverse

[I − F ′[0]]−1
N : XN → XN , (23)

where F ′[w] denotes the Fréchet derivative of F at w. Note that this assumption is
equivalent to the invertibility of a matrix, and it can be checked numerically for actual
verified computations [6].
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We now define a Newton-like operator N : X → XN by

N (w) := PNw − [I − F ′[0]]−1
N PN (w − F(w)), (24)

and a compact map T : X → X by

T (w) := N (w) + (I − PN )F(w). (25)

We find that, if [I − F ′[0]]−1
N exists, then the two fixed-point problems,

w = T (w) (26)

and (20), are equivalent. If the approximate solution uN is sufficiently accurate, then
the operatorN (w) for the finite-dimensional part of T will possibly be a retraction. On
the other hand, because of (9) in Lemma 1, the magnitude of the infinite-dimensional
part of T is expected to be small when the truncation numbers of XN are taken to be
sufficiently large.

We must now consider how to find a solution of (26) in a set W ⊂ X , which is
referred to as a candidate set. For n ≥ 1, an interval vector c = [c, c] for c, c ∈ IRn is
defined by

c = {v ∈ IRn | c ≤ v ≤ c}

(see [6, part 1, chapter 9]). Let IRN be the set of N -dimensional interval vectors,
and let [Bi ] ∈ IR

N . Because N = dim XN , we introduce a finite-dimensional set
WN ⊂ XN which is a set of linear combinations of base functions in XN with interval
coefficients {Bi }1≤i≤N as follows:

WN :=
{

N∑
i=1

biφi ∈ XN

∣∣∣∣∣ bi ∈ IR, bi ∈ Bi , 1 ≤ i ≤ N

}
. (27)

For α > 0, an infinite-dimensional set W∗ ⊂ X∗ and a candidate set W ⊂ X are
taken to be

W∗ := {w∗ ∈ X∗ | ‖w∗‖X ≤ α}, (28)

W := WN + W∗. (29)

Now, by defining an N × N matrix G = [Gi j ] by

Gi j := ( φ′′
j , φ

′′
i )L2 − ( g′[0]φ j , φi )L2 , 1 ≤ i, j ≤ N , (30)

we obtain a verification condition.
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Theorem 1 For the candidate set W ⊂ X defined by (29), let any element w ∈ W be
represented by

w = wN + w∗, wN ∈ WN , w∗ ∈ W∗.

Let d = [di ] ∈ IR
N denote an interval enclosure of the set whose i-th component

consists of

{ ( g(w) − g′[0]wN , φi )L2 ∈ IR | w ∈ W }, 1 ≤ i ≤ N . (31)

If, for an interval vector v = [vi ] ∈ IR
N enclosing the solution x ⊂ IR

N for the
linear equation

Gx = d, (32)

the conditions

vi ⊂ Bi , 1 ≤ i ≤ N , (33)

and

sup
w∈W

‖(I − PN )F(w)‖X ≤ α (34)

hold, then there exists a fixed point of F in W.

Proof For each w = wN + w∗ ∈ W , since

N (w) = wN − [I − F ′[0]]−1
N (wN − PN F(w))

= [I − F ′[0]]−1
N PN (F(w) − F ′[0]wN ),

by setting

vN := N (w) =
N∑
i=1

(vN )iφi , v := [(vN )i ] ∈ IRN ,

we obtain

PN (I − F ′[0])vN = PN (F(w) − F ′[0]wN ). (35)

From the definition of PN , equation (35) is equivalent to

N∑
i=1

{
( φ′′

i , φ′′
j )L2 − ( g′[0]φi , φ j )L2

}
vi = ( g(w) − g′[0]wN , φ j )L2 , 1 ≤ j ≤ N .

(36)
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Then, condition (33) ensures that N (w) ∈ WN . Condition (34) also shows that (I −
PN )F(w) ∈ W∗, so we obtain T (W ) ⊂ W , which, by the Schauder fixed-point
theorem, ensures the existence of a fixed point of T in the candidate set W . ��

Remark 2 Note that for all of the computation procedures in Theorem 1, we should
consider the effects of rounding errors.

Remark 3 If we obtain a fixed point w ∈ X by Theorem 1, we can also assure the
existence of a nontrivial solution u = uN + w ∈ X for (1) with the error bound

‖u − uN‖X ≤ ‖WN‖X + α.

Moreover, since w can be written as w = wN + w∗, wN ∈ WN , w∗ ∈ W∗, the
estimation (13) in Lemma 1 provides an L∞-error estimate:

‖u − uN‖L∞(Ω) ≤ ‖WN‖L∞(Ω) + C∗0α. (37)

3 Details of verification procedure

3.1 Finite-dimensional part

This subsection is devoted to the detailed estimation that satisfies (31). For each w ∈
W , setting w = wN + w∗ ∈ WN + W∗ and vN = uN + wN ∈ XN , we have

g(w) − g′[0]wN = R (B(uN , w∗) + B(w∗, uN ) + B(w,w)) + r2N
= R (B(vN , w∗) + B(w∗, vN ) + B(wN , wN ) + B(w∗, w∗)) + r2N

(38)

from (18). We note that it is important to reduce the number of differentiations of
infinite-dimensional error partw∗ because we only know its norm and cannot treatw∗
directly in computers. In order to do so, we use the following property regarding B.

Lemma 2 For each u, v, w ∈ X, it holds that

( B(u, v) + B(v, u), w )L2 = −( 4u′′w′ + 4u′w′′ + uw′′′, v )L2 . (39)
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Proof Because v′′, u′w, uw′, and v have zeros at 0 and π , applying partial integration,
we have

( B(u, v) + B(v, u), w )L2 = ( uv′′′ − u′v′′ + vu′′′ − v′u′′, w )L2

= ( uv′′′, w )L2 − ( u′v′′, w )L2 + ( vu′′′, w )L2 − ( v′u′′, w )L2

= ( v′′′, uw )L2 − ( v′′, u′w )L2 + ( u′′′w, v )L2 − ( v′, u′′w )L2

= −( v′′, u′w )L2 − ( v′′, uw′ )L2 − ( v′′, u′w )L2 + ( u′′′w, v )L2 − ( v′, u′′w )L2

= −2( v′′, u′w )L2 − ( v′′, uw′ )L2 + ( u′′′w, v )L2 − ( v′, u′′w )L2

= 2( v′, u′′w )L2 + 2( v′, u′w′ )L2 + ( v′, u′w′ )L2 + ( v′, uw′′ )L2 + ( u′′′w, v )L2

−( v′, u′′w )L2

= ( v′, u′′w )L2 + 3( v′, u′w′ )L2 + ( v′, uw′′ )L2 + ( u′′′w, v )L2

= −( v, u′′′w )L2 − ( v, u′′w′ )L2 − 3( v, u′′w′ )L2 − 3( v, u′w′′ )L2

−( v, u′w′′ )L2 − ( v, uw′′′ )L2 + ( u′′′w, v )L2

= −4( v, u′′w′ )L2 − 4( v, u′w′′ )L2 − ( v, uw′′′ )L2

= −( 4u′′w′ + 4u′w′′ + uw′′′, v )L2 .

��
By using Lemma 2, the orthogonality of PN , the Cauchy–Schwarz inequality, and

(12) in Lemma 1, the inner product with φi of B(vN , w∗) + B(w∗, vN ) in (38) can be
bounded as

( B(vN , w∗) + B(w∗, vN ), φi )L2

= −( 4v′′
Nφ′

i + 4v′
Nφ′′

i + vNφ′′′
i , w∗ )L2

= −( (I − PN )(4v′′
Nφ′

i + 4v′
Nφ′′

i + vNφ′′′
i ), w∗ )L2

∈ [−1, 1] × ‖(I − PN )(4v′′
Nφ′

i + 4v′
Nφ′′

i + vNφ′′′
i )‖L2‖w∗‖L2

⊂ [−1, 1] × ‖(I − PN )(4v′′
Nφ′

i + 4v′
Nφ′′

i + vNφ′′′
i )‖L2C3∗α

⊂ [−1, 1] × (z1)i C
3∗α,

where z1 = [(z1)i ] ∈ IRN satisfies

‖(I − PN )(4v′′
Nφ′

i + 4v′
Nφ′′

i + vNφ′′′
i )‖L2 ≤ (z1)i , 1 ≤ i ≤ N . (40)

The inner product with φi of B(wN , wN ) in (38) can be enclosed by z2 = [(z2)i ] ∈
IR

N as

( B(wN , wN ), φi )L2 ∈ (z2)i 1 ≤ i ≤ N (41)

(see Sect. 3.3.2). Additionally, the inner product between φi and B(w∗, w∗) in (38) is
evaluated as

( B(w∗, w∗), φi )L2 = ( w∗w′′′∗ − w′∗w′′∗, φi )L2 = ( w∗, φiw
′′′∗ )L2 − ( w′∗, φiw

′′∗ )L2

∈ [−1, 1] (‖w∗‖L2‖φiw
′′′∗ ‖L2 + ‖w′∗‖L2‖φiw

′′∗‖L2
)

⊂ [−1, 1] (‖w∗‖L2‖w′′′∗ ‖L2 + ‖w′∗‖L2‖w′′∗‖L2
)
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⊂ [−1, 1]
(
C3∗αα + C2∗αC∗α

)

⊂ [−2, 2]C3∗α2

by using ‖φi‖L∞(Ω) = 1, (10), (11), and (12).
Consequently, setting z3 = [(z3)i ] ∈ IR

N by

( r2N , φi )L2 ⊂ (z3)i , 1 ≤ i ≤ N , (42)

the interval enclosure di (1 ≤ i ≤ N ) for (31) in Theorem 1 can be computed to satisfy

R
(
[−1, 1](z1)iC3∗α + (z2)i + [−2, 2]C3∗α2

)
+ (z3)i ⊂ di 1 ≤ i ≤ N .

3.2 Infinite-dimensional part

This subsection is devoted to the detailed estimation that satisfies (34). For each w ∈
W , since g(w) ∈ X0 and PN is the truncation of the Fourier series, we have

(I − PN )F(w) = (I − PN )Δ−2g(w) = Δ−2(I − PN )g(w)

= (I − PN )Δ−2(I − PN )g(w).

Thus, (9) in Lemma 1 gives us

‖(I − PN )F(w)‖X ≤ C∗‖(I − PN )g(w)‖L2 . (43)

We note that, for a practical verification, to keep overestimation as low as possible,
removing the XN part of g(w) is important. From (18), we obtain

‖(I − PN )g(w)‖L2 ≤ R‖(I − PN ) (B(w,w) + B(uN , w) + B(w, uN )) ‖L2

+‖(I − PN )r2N‖L2 . (44)

The L2-norm ‖(I − PN )r2N‖L2 in (44) can be bounded by using interval arithmetic
with thefixed approximate solutionuN .We take a bound z9 > 0of the defect satisfying

‖(I − PN )r2N‖L2 ≤ z9. (45)

Next, let us consider the first L2-norm in (44). Setting w = wN + w∗ ∈ WN + W∗
and vN = uN + wN ∈ XN , we obtain

B(w,w) + B(uN , w) + B(w, uN )

= B(uN + wN , wN ) + B(wN , uN ) + B(uN + wN , w∗) + B(w∗, uN + wN )

+B(w∗, w∗)
= B(vN , wN ) + B(wN , uN ) + B(vN , w∗) + B(w∗, vN ) + B(w∗, w∗),

123



Another computer-assisted proof of unimodality of solutions for Proudman–Johnson equation

and thus

‖(I − PN ) (B(w,w) + B(uN , w) + B(w, uN )) ‖L2

≤ ‖(I − PN ) (B(vN , wN ) + B(wN , uN )) ‖L2︸ ︷︷ ︸
(a)

+‖B(vN , w∗)‖L2︸ ︷︷ ︸
(b)

+‖B(w∗, vN )‖L2︸ ︷︷ ︸
(c)

+‖B(w∗, w∗)‖L2︸ ︷︷ ︸
(d)

.

(46)

The upper bound for part (a) on the right-hand side of (46) can be computed by
interval arithmetic. We define z4 > 0 satisfying

‖(I − PN ) (B(vN , wN ) + B(wN , uN )) ‖L2 ≤ z4. (47)

By using Lemma 1 and (28), and setting positive values zk > 0 for k = 5, 6, 7, 8
satisfying

‖vN‖L∞(Ω) ≤ z5, (48)

‖v′
N‖L∞(Ω) ≤ z6, (49)

‖v′′
N‖L∞(Ω) ≤ z7, (50)

‖v′′′
N‖L∞(Ω) ≤ z8, (51)

we find that the rest of the L2-norm terms are bounded as

(b) ‖B(vN , w∗)‖L2 ≤ ‖vN‖L∞(Ω)‖w′′′∗ ‖L2 + ‖v′
N‖L∞(Ω)‖w′′∗‖L2

≤ z5‖w∗‖X + z6C∗‖w∗‖X
≤ α(z5 + z6C∗),

(c) ‖B(w∗, vN )‖L2 ≤ ‖w∗‖L2‖v′′′
N‖L∞(Ω) + ‖w′∗‖L2‖v′′

N‖L∞(Ω)

≤ C3∗‖w∗‖X z8 + C2∗‖w∗‖X z7
≤ αC2∗(z8C∗ + z7),

(d) ‖B(w∗, w∗)‖L2 ≤ ‖w∗‖L∞(Ω)‖w′′′∗ ‖L2 + ‖w′∗‖L∞(Ω)‖w′′∗‖L2

≤ C∗0‖w∗‖X‖w∗‖X + C∗1‖w∗‖XC∗‖w∗‖X
≤ α2(C∗0 + C∗1C∗).

Consequently, the infinite-dimensional part of (34) can be computed as

sup
w∈W

‖(I − PN )F(w)‖L2

≤ C∗
{
R(z4 + α(z5 + z6C∗) + αC2∗(z8C∗ + z7) + α2(C∗0 + C∗1C∗)) + z9

}
.
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In our algorithm, when the Reynolds number is large, the truncation number N should
be larger, because each di and ‖(I − PN )F(w)‖L2 are proportional to R.

3.3 zk (1 ≤ k ≤ 3) and zk (4 ≤ k ≤ 9)

In this subsection, we describe detailed computations for z1 ∈ IRN , z2, z3 ∈ IR
N , and

zk ∈ IR (4 ≤ k ≤ 9) introduced in previous subsections.
Below, using (uN )m, (wN )m, (vN )m ∈ IR (1 ≤ m ≤ N ), we express uN ∈ XN of

(8), any element wN ∈ WN (WN is defined by (27)), and vN = uN + wN ∈ XN as

uN =
N∑

m=1

(uN )mφm, wN =
N∑

m=1

(wN )mφm, vN =
N∑

m=1

(vN )mφm,

respectively. Here, note that (wN )m ∈ Bm , (vN )m ∈ (uN )m + Bm for 1 ≤ m ≤ N . We
also use the same symbols E2N and em throughout the calculations, redefining them
as necessary.

3.3.1 z1 = [(z1)i]

For each i (1 ≤ i ≤ N ), setting ξm = cos(mx), we re-expand

Ei
2N := 4v′′

Nφ′
i + 4v′

Nφ′′
i + vNφ′′′

i

= −4
N∑

m=1

m2i(vN )mφmξi − 4
N∑

m=1

mi2(vN )mξmφi −
N∑

m=1

i3(vN )mφmξi

= −
N∑

m=1

[
i(4m2 + i2)φmξi + 4mi2φiξm

]
(vN )m

= −1

2

N∑
m=1

⎡
⎢⎣i(4m2 + i2)(φm+i + φm−i ) + 4mi2(φm+i + φi−m︸ ︷︷ ︸

−φm−i

)

⎤
⎥⎦ (vN )m

= − i

2

N∑
m=1

[
(i + 2m)2φm+i + (i − 2m)2φm−i

]
(vN )m ∈ X2N .

Then, by using the interval (uN )m + Bm ∈ IR enclosing (vN )m for 1 ≤ m ≤ N , we
can compute eim ∈ IR (1 ≤ m ≤ 2N ) satisfying

Ei
2N ∈

2N∑
m=1

eimφm ⊂ X2N .

123



Another computer-assisted proof of unimodality of solutions for Proudman–Johnson equation

Therefore, (z1)i ≥ 0 (1 ≤ i ≤ N ) for (40) can be taken to satisfy

‖(I − PN )Ei
2N‖L2 ≤

∥∥∥∥∥
2N∑

m=N+1

eimφm

∥∥∥∥∥
L2

=
√

π

2
·
√√√√ 2N∑

m=N+1

(eim)2 ≤ (z1)i ,

which is an upper bound for all wN ∈ WN .

3.3.2 z2 = [(z2)i]

The equation (5) implies

B(wN , wN ) = 1

2

N∑
m=1

N∑
n=1

n2(wN )m(wN )n
[
(m − n)φm+n − (m + n)φm−n

] ∈ X2N .

Then, by using the interval Bm ∈ IR enclosing (wN )m for 1 ≤ m ≤ N , we can
compute em ∈ IR (1 ≤ m ≤ 2N ) satisfying

B(wN , wN ) ∈
2N∑
m=1

emφm ⊂ X2N .

Therefore, for each i such that 1 ≤ i ≤ N , we can take (z2)i of (41) to satisfy

( B(wN , wN ), φi )L2 ∈ π

2
ei ⊂ (z2)i ,

which holds for all wN ∈ WN .

3.3.3 z3 = [(z3)i] and z9
Using (6), the defect r2N ∈ X2N of (17) can be expanded as

r2N = −
N∑

m=1

m4(uN )mφm

+ R

2

∑
m≥1
n≥1

n2(uN )m(uN )n
[
(m − n)φm+n − (m + n)φm−n

]+ φk . (52)

Then, interval arithmetic gives em ∈ IR (1 ≤ m ≤ 2N ) satisfying

r2N = −u′′′′
N + f (uN ) ∈

2N∑
m=1

emφm .
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In the actual computations for the right-hand side of (52), each (uN )m ∈ IR (1 ≤ m ≤
N ) is translated to an interval that includes (uN )m .

Therefore, the interval vector z3 = [(z3)i ] ∈ IR
N for (42) and the positive value

z9 for (45) can be obtained to satisfy

π

2
ei ⊂ (z3)i , 1 ≤ i ≤ N

and

√
π

2
×
√√√√ 2N∑

m=N+1

e2m ≤ z9.

3.3.4 z4

From (5), it holds that

E2N := B(vN , wN ) + B(wN , uN )

= 1

2

N∑
m=1

N∑
n=1

n2(vN )m(wN )n
[
(m − n)φm+n − (m + n)φm−n

]

+1

2

N∑
m=1

N∑
n=1

n2(wN )m(uN )n
[
(m − n)φm+n − (m + n)φm−n

]

= 1

2

N∑
m=1

N∑
n=1

[
n2((vN )m(wN )n + (wN )m(uN )n) × (m − n)φm+n

−n2((vN )m(wN )n + (wN )m(uN )n) × (m + n)φm−n
] ∈ X2N .

Then, by using Bm ∈ IR with (wN )m ∈ Bm and (uN )m + Bm ∈ IR enclosing (vN )m
for 1 ≤ m ≤ N , we can compute em ∈ IR (1 ≤ m ≤ 2N ) satisfying

E2N ∈
2N∑
m=1

emφm ⊂ X2N .

Therefore, (z4)i ≥ 0 (1 ≤ i ≤ N ) for (47) can be taken to satisfy

‖(I − PN )E2N‖L2 ≤
∥∥∥∥∥

2N∑
m=N+1

emφm

∥∥∥∥∥
L2

≤
√

π

2
·
√√√√ 2N∑

m=N+1

e2m ≤ z4,

which is an upper bound for all wN ∈ WN .
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3.3.5 z5, z6, z7, z8

For each vN = uN + wN ∈ uN + WN , it is true that

‖vN‖L∞(Ω) = max
x∈Ω

∣∣∣∣∣
N∑

m=1

(vN )m sin(mx)

∣∣∣∣∣ ≤
N∑

m=1

|(vN )m | ,

‖v′
N‖L∞(Ω) = max

x∈Ω

∣∣∣∣∣
N∑

m=1

m(vN )m cos(mx)

∣∣∣∣∣ ≤
N∑

m=1

|m(vN )m | ,

‖v′′
N‖L∞(Ω) = max

x∈Ω

∣∣∣∣∣−
N∑

m=1

m2(vN )m sin(mx)

∣∣∣∣∣ ≤
N∑

m=1

∣∣∣m2(vN )m

∣∣∣ ,

‖v′′′
N‖L∞(Ω) = max

x∈Ω

∣∣∣∣∣−
N∑

m=1

m3(vN )m cos(mx)

∣∣∣∣∣ ≤
N∑

m=1

∣∣∣m3(vN )m

∣∣∣ .

Then, by using the interval (uN )m + Bm ∈ IR enclosing (vN )m for 1 ≤ m ≤ N , we
can compute z5, z6, z7, and z8 for (48)–(51) by interval arithmetic, which holds for all
wN ∈ WN .

4 Enclosing results

This section reports on several computer-assisted results of (1) obtained by Theorem 1.
All computationswere carried out on the Fujitsu PRIMERGYCX2570M4; Intel Xeon
Gold 6140 (Skylake-SP); 2.3 GHz (Turbo 3.7 GHz) by using INTerval LABoratory
Version 11, a toolbox in MATLAB R2019a (9.7.0.1261785) 64-bit (glnxa64) devel-
oped by Rump [7] for self-validating algorithms. Therefore, all numerical values in
these tables are verified data in the sense of strict rounding error control in the math-
ematical sense (see [6, part 1, chapter 3]).

Table 1 shows some verification results for k = 2. In the table, |Bi | := max{|b| | b ∈
Bi } is obtained by the INTLAB function mag.

5 Verification of unimodality

In the final section, we prove the unimodality of enclosed solutions in the previous
section. Let u ∈ X be a verified solution of (1). Then the following conditions assure
the unimodality of u [4, Lemma 3.2].

1. h is a real number such that 0 < h < π/2,
2. 0 /∈ u′([0, h]) ∪ u′([π − h, π ]),
3. sgn(u′([0, h]) �= sgn(u′([π − h, π ])),
4. 0 /∈ u′′([h, π − h]).
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Table 1 Enclosing result of solutions of (1)

R N max
1≤i≤N

|Bi | in (27) α z5

3.6 200 3.4781 × 10−12 1.9960 × 10−17 0.13

4 500 3.9744 × 10−14 5.1171 × 10−15 0.72

6 600 4.5087 × 10−14 1.1173 × 10−13 1.33

10 200 8.6760 × 10−14 9.7860 × 10−13 1.64

20 200 1.2000 × 10−13 1.1053 × 10−11 1.84

50 200 2.2333 × 10−13 2.0384 × 10−10 1.95

100 300 3.0734 × 10−13 1.7145 × 10−09 1.98

200 500 4.1260 × 10−13 1.4938 × 10−08 2.00

300 800 4.1963 × 10−13 4.6477 × 10−08 2.00

500 1300 3.6940 × 10−13 2.2259 × 10−07 2.00

1000 2500 5.2464 × 10−13 1.9390 × 10−06 2.01

2000 5000 7.4400 × 10−13 1.5585 × 10−05 2.01

5000 15000 2.3017 × 10−12 2.2700 × 10−04 2.01

10000 30000 4.7822 × 10−11 1.8171 × 10−03 2.01

The verified solution of (1) by FN-Int can be enclosed in the set as follows:

u ∈ uN + WN + W∗, uN ∈ XN , WN ⊂ XN , W∗ ⊂ X∗, sup
w∗∈X∗

‖w∗‖X ≤ α.

Setting

uN + WN =
N∑

m=1

Vmφm, Vm ∈ IR,

there exist vN ∈ uN +WN and v∗ ∈ W∗ such that u = vN +v∗. Then, for each x ∈ Ω ,
(14) and (15) imply

u′(x) = v′
N (x) + v′∗(x)

∈ v′
N (x) + [−1, 1] × ‖v′∗‖L∞(Ω)

⊂
N∑

m=1

Vmm cos(mx) + [−1, 1] × C∗1α,

and

u′′(x) = v′′
N (x) + v′′∗(x)

∈ v′′
N (x) + [−1, 1] × ‖v′′∗‖L∞(Ω)
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Fig. 2 Enclosing ranges of u′(J ) (black) and u′′(J ) (blue dots) in each subinterval J (color figure online)

⊂ −
N∑

m=1

Vmm
2 sin(mx) + [−1, 1] × C∗2α.

Therefore, for a subinterval J of Ω = (0, π), we can enclose the ranges u′(J ) and
u′′(J ) by interval arithmetic. Fig. 2 shows enclosing ranges of u′(J ) (black) and u′′(J )

(blue dots) in each J . Using this procedure, we can validate the unimodality of all
solutions in Table 1 with h = 2π/5.
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