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Abstract
Every polyhedron can be decomposed into a Minkowski sum (or vector sum) of a
bounded polyhedron and a polyhedral cone. This paper establishes similar statements
for some classes of discrete sets in discrete convex analysis, such as integrally convex
sets, L�-convex sets, and M�-convex sets.

Keywords Discrete convex analysis · Integrally convex set · L�-convex set ·
M�-convex set · Minkowski sum · Characteristic cone

1 Introduction

As is well known, every polyhedron can be decomposed into a Minkowski sum (or
vector sum) of a bounded polyhedron and a polyhedral cone. The objective of this
paper is to establish similar decomposition theorems with additional features of inte-
grality and discrete convexity using concepts from discrete convex analysis [3, 8–11].
Emphasis is laid on integrally convex sets. This notion in discrete convex analysis is
equivalent, via convex hull, to that of box-integer polyhedra in the theory of polyhedra
[19, 20] (see Proposition 2.2 for the precise statement).
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Integral convexity is a fundamental concept introduced by Favati–Tardella [2] for
functions on the integer latticeZ

n , and integrally convex sets are defined in [9, Section
3.4] as the set version of integral convexity; see Sect. 2.2 for the precise definition.
Integral convexity encompasses almost all kinds of discrete convexity proposed so
far, such as L�-convexity, M�-convexity, M�

2-convexity, and multimodularity [9]. A
discrete fixed point theoremwas formulated by Iimura–Murota–Tamura [4] in terms of
integrally convex sets (see also [10, Section 11.9], [11, Section 13.1] for expositions).
Mathematical properties of integrally convex sets and functions have been clarified
in recent studies (Moriguchi–Murota [5], Moriguchi–Murota–Tamura–Tardella [7],
Murota–Tamura [15, 16]). The reader is referred to Murota–Tamura [17] for a recent
comprehensive survey on integral convexity.

For any sets S1, S2 ⊆ R
n , we denote their Minkowski sum (or vector sum) by

S1 + S2, that is,

S1 + S2 = {x + y | x ∈ S1, y ∈ S2}.

Let P ⊆ R
n be a polyhedron. A fundamental fact in the theory of polyhedra says that it

can be represented as P = Q+C with a bounded polyhedron Q and a polyhedral cone
C (see Sect. 2.1 for details). In this decomposition, the cone C is uniquely determined
from P , coinciding with the characteristic (or recession) cone of P , whereas there
is some degree of freedom in the choice of Q. We are interested in integrality and
discrete convexity in this decomposition, and our contribution consists of two phases.

In the first phase we consider a box-integer polyhedron P and impose an additional
condition that Q and C be box-integer polyhedra. Our first main result, Theorem 3.3,
states that this is indeed possible. Furthermore, it is shown in Theorem 3.4 that if P
is an L�-convex (resp., M�-convex) polyhedron, then we can impose that Q and C
be L�-convex (resp., M�-convex). A technical challenge in establishing Theorem 3.3
for box-integer polyhedra stems from the lack of ‘outer description’ of box-integer
polyhedra in terms of inequality systems. In contrast, inequality systems are available
for L�-convex and M�-convex polyhedra, which makes the proof of Theorem 3.4
shorter and more transparent.

In the second phase we are concerned with discrete sets S ⊆ Z
n . Our second

main result, Theorem 3.6, states that an integrally convex set S can be represented as
S = T +G with a bounded integrally convex set T and a ‘conic’ integrally convex set
G. Furthermore, it is shown in Theorem3.7 that if S is an L�-convex (resp.,M�-convex)
set, then we can impose that T and G be L�-convex (resp., M�-convex). A technical
challenge in the second phase is to overcome the well-known difficulty of discreteness
in the Minkowski summation. Namely, for discrete sets S1, S2 ⊆ Z

n , the Minkowski
sum S1+S2 may possibly be different from (S1+S2)∩Z

n (see Fig. 1, Example 2.1 for
a concrete example). The possibility of (S1+ S2)∩Z

n �= S1+ S2 prevents us to derive
the decomposition theorem for integrally convex sets as a corollary of Theorem 3.3
for box-integer polyhedra.

This paper is organized as follows. Section2 is devoted to preliminaries on poly-
hedra and integrally convex sets. The main results are described in Sect. 3. Section3.1
deals with subsets of R

n such as box-integer polyhedra, L�-convex polyhedra, and
M�-convex polyhedra, while Sect. 3.2 treats subsets of Z

n such as integrally convex
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Discrete convex analysis 989

sets, L�-convex sets, and M�-convex sets. The proofs are given in Sect. 4, and Sect. 5
concludes the paper.

2 Preliminaries

2.1 Polyhedra

A subset P of R
n is called a polyhedron if it is described by a finite number of linear

inequalities, that is, P = {x | Ax ≤ b} for some matrix A and a vector b. In this
paper we always assume that a polyhedron is nonempty. A subset Q of R

n is called a
polytope if it is the convex hull of a finite number of points, that is, Q = S for a finite
subset S of R

n , where S denotes the convex hull of S. It is known that a polytope is
nothing but a bounded polyhedron. A subset C of R

n is called a cone if d ∈ C implies
λd ∈ C for all λ ≥ 0. We follow [19, 20] for terminology about polyhedra.

Let P be a polyhedron. The characteristic cone of P , denoted by char.cone P , is
the polyhedral cone given by

char.cone P = {d | x + d ∈ P for all x in P}. (2.1)

The characteristic cone is also called the recession cone. The following are basic facts
about the characteristic cone:

d ∈ char.cone P

⇐⇒ there is an x in P such that x + λd ∈ P for all λ ≥ 0, (2.2)

d ∈ char.cone P

⇐⇒ for all x in P, it holds that x + λd ∈ P for all λ ≥ 0, (2.3)

P + char.cone P = P, (2.4)

If P = {x | Ax ≤ b}, then char.cone P = {d | Ad ≤ 0}. (2.5)

The following is a fundamental theorem, stating that a polyhedron can be decom-
posed into a Minkowski sum of a polytope and a cone.

Proposition 2.1 (Decomposition theorem for polyhedra) (1) Every polyhedron P can
be represented as P = Q + C with some polytope Q and polyhedral cone C.
(2) If P = Q+C, with Q a polytope and C a polyhedral cone, then P is a polyhedron
and C = char.cone P.

It is emphasized that the choice of the polytope Q in P = Q + C is not unique,
while C is uniquely determined by P as stated in (2).

A polyhedron is said to be rational if it is described by a finite number of linear
inequalities with rational coefficients. A polyhedron P is an integer polyhedron if
P = P ∩ Zn , i.e., if it coincides with the convex hull of the integer points contained
in it, or equivalently, if P is rational and each face of P contains an integer vector.
A polyhedron P is called box-integer if P ∩ {x ∈ R

n | l ≤ x ≤ u} is an integer
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990 K. Murota, A. Tamura

polyhedron for each choice of integer vectors l, u ∈ Z
n with l ≤ u ( [20, Section 5.15]).

We call a subset B of R
n an integral box if B = {x ∈ R

n | l ≤ x ≤ u} for some
integer vectors l, u ∈ Z

n with l ≤ u.

2.2 Integrally convex sets

In this section we introduce the concept of integrally convex sets, as defined in [9,
Section 3.4], and discuss subtleties related to the Minkowski sum of integrally convex
sets. The reader is referred to Murota–Tamura [17] for technical details of integral
convexity including the most recent results.

For x ∈ R
n the integral neighborhood of x is defined by

N (x) = {z ∈ Z
n | |xi − zi | < 1 (i = 1, 2, . . . , n)}. (2.6)

It is noted that strict inequality “<” is used in this definition and N (x) admits an
alternative expression

N (x) = {z ∈ Z
n | 
xi� ≤ zi ≤ �xi
 (i = 1, 2, . . . , n)}, (2.7)

where, for t ∈ R in general, 
t� denotes the largest integer not larger than t (rounding-
down to the nearest integer) and �t
 is the smallest integer not smaller than t (rounding-
up to the nearest integer). That is, N (x) consists of all integer vectors z between

x� = (
x1�, 
x2�, . . . , 
xn�) and �x
 = (�x1
, �x2
, . . . , �xn
).

Let S be a subset of Z
n and recall that S denotes the convex hull of S. As is well

known, S coincides with the set of all convex combinations of (finitelymany) elements
of S. For any real vector x ∈ R

n , we call the convex hull of S ∩ N (x) the local convex
hull of S around x . A nonempty set S ⊆ Z

n is said to be integrally convex if the
union of the local convex hulls S ∩ N (x) over x ∈ R

n is convex. In other words, a set
S ⊆ Z

n is called integrally convex if

S =
⋃

x∈Rn

S ∩ N (x). (2.8)

This condition is equivalent to saying that every point x in the convex hull of S is
contained in the convex hull of S ∩ N (x), i.e.,

x ∈ S �⇒ x ∈ S ∩ N (x). (2.9)

Obviously, every subset of {0, 1}n is integrally convex.
We say that a set S ⊆ Z

n is hole-free if

S = S ∩ Z
n . (2.10)

It is known that an integrally convex set is hole-free; see [17, Proposition 2.2] for
a formal proof. It is also known that the convex hull of an integrally convex set is
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Fig. 1 Minkowski sum of discrete sets

a polyhedron (Murota–Tamura [15, Section 4.1]). However, no characterization is
known about the inequality systems to describe integrally convex sets.

The concept of integrally convex sets is closely related (or essentially equivalent)
to that of box-integer polyhedra as follows.

Proposition 2.2 ([13, Section 2.2]) If a set S ⊆ Z
n is integrally convex, then its convex

hull S is a box-integer polyhedron and S = S ∩ Z
n. Conversely, if P is a box-integer

polyhedron, then P ∩ Z
n is an integrally convex set and P = P ∩ Zn.

Minkowski summation is an intriguing operation in discrete setting. For two (dis-
crete) sets S1, S2 ⊆ Z

n , in general, we have

S1 + S2 = S1 + S2 (2.11)

(see, e.g., [9, Proposition 3.17(4)]). In contrast, the naive looking relation

S1 + S2 = (S1 + S2) ∩ Z
n (2.12)

is not always true, as Example 2.1 below shows.

Example 2.1 ([9, Example 3.15]) The Minkowski sum of S1 = {(0, 0), (1, 1)} and
S2 = {(1, 0), (0, 1)} is equal to S1 + S2 = {(1, 0), (0, 1), (2, 1), (1, 2)}, for which
(1, 1) ∈ (S1 + S2)\(S1 + S2). That is, the Minkowski sum S1 + S2 has a ‘hole’ at
(1, 1). See Fig. 1.

It may be said that if (2.12) is true for some class of discrete convex sets, this
equality captures a certain essence of the discrete convexity in question. For example,
(2.12) is true for two M�-convex sets, since the Minkowski sum of two M�-convex
sets remains to be M�-convex ( [9, Section 4.6], [12, Section 3.5]). The identity (2.12)
also holds for two L�-convex sets, since the Minkowski sum of two L�-convex sets is
integrally convex [9, Theorem 8.42], although it is not necessarily L�-convex.

For the Minkowski sum of integrally convex sets S1 and S2, we observe the follow-
ing.

• S1 + S2 may have a ‘hole’, that is, (2.12) may fail (see Example 2.1).
• S1 + S2 may not be integrally convex (see Example 2.1).
• (S1 + S2) ∩ Z

n may not be integrally convex (see Example 2.2 below).
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992 K. Murota, A. Tamura

Example 2.2 Consider S1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and S2 = {(0, 0, 0),
(1, 1, 1)}. Their Minkowski sum is given by S1 + S2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1),
(2, 1, 1), (1, 2, 1), (1, 1, 2)}. Let S = (S1 + S2) ∩ Z

3 and consider x = [(1, 0, 0) +
(1, 1, 2)]/2 = (1, 1/2, 1) belonging to S. We have N (x) = {(1, 0, 1), (1, 1, 1)},
N (x) ∩ S = {(1, 1, 1)}, and x /∈ N (x) ∩ S. Thus the condition (2.9) for integral
convexity of S is violated. This example also shows that the Minkowski sum of
box-integer polyhedra is not necessarily box-integer; see also Remark 3.1.

Discrepancy between S1 + S2 and S1 + S2 has attracted considerable attention
in (ordinary) convex analysis, leading to the Shapley–Folkman theorem, which has
applications in economics, optimization, etc. A recent paper [18] of the present
authors shows a Shapley–Folkman-type theorem for integrally convex sets.

3 Results

3.1 Decomposition of box-integer polyhedra

In this section we describe our first main result (Theorem 3.3), a decomposition the-
orem for box-integer polyhedra. The proof of this theorem relies on the following
technical results (in their equivalent reformulations in Propositions 4.1 and 4.4; see
Fig. 3 in Sect. 4).

Proposition 3.1 The characteristic cone of a box-integer polyhedron is generated by
{−1, 0,+1}-vectors.
Proposition 3.2 The characteristic cone of a box-integer polyhedron is box-integer.

The proofs of these propositions are quite long and involved, probably because no
characterization is known about inequality systems to describe box-integer polyhedra.
The proofs of Propositions 3.1 and 3.2 are given in Sects. 4.1 and 4.2, respectively.
Our decomposition theorem for box-integer polyhedra is as follows.

Theorem 3.3 Every box-integer polyhedron P can be represented as

P = Q + C (3.1)

with a bounded box-integer polyhedron Q and a box-integer polyhedral cone C.

Proof By Proposition 2.1, we can decompose P as P = Q̂+C , where Q̂ is a polytope
and C is the characteristic cone of P . The cone C is box-integer by Proposition 3.2.
Take a bounded integral box B containing Q̂ and define Q := P ∩ B, which is a
bounded box-integer polyhedron. Since

Q = P ∩ B = (Q̂ + C) ∩ B ⊇ Q̂ ∩ B = Q̂,

we obtain

Q + C ⊇ Q̂ + C = P.
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Discrete convex analysis 993

The reverse inclusion Q +C ⊆ P follows from Q ⊆ P and P +C = P in (2.4) as
Q + C ⊆ P + C = P . ��
Remark 3.1 In view of Proposition 2.1(2) we may be tempted to imagine that if Q is a
bounded box-integer polyhedron andC is a box-integer polyhedral cone, then Q+C is
a box-integer polyhedron.But this is not the case.A counterexample can be constructed
from Example 2.2. Let Q be the convex hull of S1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and
C be the polyhedral cone generated by S′

2 = {(1, 1, 1)}, that is, C = {λ(1, 1, 1) | λ ≥
0}. Both Q and C are box-integer, but Q +C is not. Indeed, T = (Q +C)∩ Z

3 is not
integrally convex, because x = [(1, 0, 0) + (0, 0, 1)]/2 + (1, 1, 1)/2 = (1, 1/2, 1) ∈
T , N (x) = {(1, 0, 1), (1, 1, 1)}, N (x) ∩ T = {(1, 1, 1)}, and x /∈ N (x) ∩ T .

Remark 3.2 By Proposition 3.1, a box-integer cone is generated by {−1, 0,+1}-
vectors, but the latter property does not characterize a box-integer cone. Consider
the cone C generated by (1, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), that is,

C = {x | x = α1(1, 1, 0, 1) + α2(0, 1, 1, 1) + α3(1, 0, 1, 1), α1, α2, α3 ≥ 0}
= {x | x = (α1 + α3, α1 + α2, α2 + α3, α1 + α2 + α3) : α1, α2, α3 ≥ 0}.

For α1 = α2 = α3 = 1/2, we have x = (1, 1, 1, 3/2) and N (x) = {(1, 1, 1, 2),
(1, 1, 1, 1)}. But (1, 1, 1, 2) /∈ C and (1, 1, 1, 1) /∈ C , and hence N (x) ∩C = ∅. This
shows that C ∩ Z

4 is not integrally convex, and hence C is not box-integer.

Theorem 3.3 can be adapted to some classes of integer polyhedra treated in dis-
crete convex analysis, such as L�-convex and M�-convex polyhedra. An L�-convex
polyhedron is, by definition, an integer polyhedron obtained as the convex hull of an
L�-convex set. It is known that an L�-convex polyhedron P can be described as

P = {x ∈ R
n | li ≤ xi (i ∈ I ), x j ≤ u j ( j ∈ J ), x j − xi ≤ di j ((i, j) ∈ E)}(3.2)

for some I , J ⊆ {1, 2, . . . , n}, E ⊆ {1, 2, . . . , n} × {1, 2, . . . , n}, li ∈ Z (i ∈ I ),
u j ∈ Z ( j ∈ J ), and di j ∈ Z ((i, j) ∈ E), and the converse is also true. An L�-convex
cone means an L�-convex polyhedron that is a cone. An M�-convex polyhedron is a
synonym of an integral generalized polymatroid, and hence anM�-convex polyhedron
P is described as

P = {x ∈ R
n | μ(X) ≤ x(X) ≤ ρ(X) (∀X ⊆ {1, 2, . . . , n})}, (3.3)

where x(X) = ∑
i∈X xi , for a (strong or paramodular) pair of an integer-valued

supermodular functionμ and an integer-valued submodular function ρ (cf., [3, Section
3.5(a)], [9, Section 4.7]); μ and ρ are allowed to take −∞ and +∞, respectively.
An M�-convex cone is defined in an obvious manner. Other kinds of polyhedra (such
as L�

2-convex polyhedron, M
�
2-convex polyhedron, and multimodular polyhedron) are

defined similarly from the corresponding notions for sets of integer vectors. More
precisely, an L�

2-convex set is defined as the Minkowski sum of two L�-convex sets

and an L�
2-convex polyhedron is the convex hull of an L

�
2-convex set, implying that an
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994 K. Murota, A. Tamura

L�
2-convex polyhedron can also be defined as the Minkowski sum of two L�-convex

polyhedra. Similarly, anM�
2-convex set is defined as the intersection of twoM

�-convex

sets and an M�
2-convex polyhedron is the convex hull of an M�

2-convex set; then it is

known (cf., e.g., [9, Theorem 4.22]) that anM�
2-convex polyhedron can also be defined

as the intersection of two M�-convex polyhedra.
The adaptation of Theorem 3.3 to specific classes is given in Theorem 3.4 below.

It should be clear that, although L�-convex polyhedra, etc., constitute subclasses of
box-integer polyhedra, Theorem 3.3 does not imply the corresponding statements
for these subclasses. It is worth noting that the proofs for these special cases do not
rely on Theorem 3.3 and that they are shorter and simpler because of the inequality
descriptions known for these special cases (see Murota [9], Moriguchi–Murota [6,
Table 1], Murota–Tamura [17, Table 1]).

Theorem 3.4 (1) Every L�-convex polyhedron P can be represented as P = Q + C
with a bounded L�-convex polyhedron Q and an L�-convex cone C.
(2) Every L�

2-convex polyhedron P can be represented as P = Q +C with a bounded

L�
2-convex polyhedron Q and an L�

2-convex cone C.
(3) Every M�-convex polyhedron P can be represented as P = Q+C with a bounded
M�-convex polyhedron Q and an M�-convex cone C. Similarly for an M-convex poly-
hedron P, with Q and C being M-convex.
(4) Every M�

2-convex polyhedron P can be represented as P = Q+C with a bounded

M�
2-convex polyhedron Q and an M�

2-convex cone C. Similarly for an M2-convex
polyhedron P, with Q and C being M2-convex.
(5) Every multimodular polyhedron P can be represented as P = Q + C with a
bounded multimodular polyhedron Q and a multimodular cone C.

Proof (1) The proof of Theorem 3.3 can be adapted to an L�-convex polyhedron on
the basis of the following properties of an L�-convex polyhedron.

1. The characteristic cone of an L�-convex polyhedron is L�-convex.
2. The intersection of an L�-convex polyhedron with an integral box is L�-convex.

We can prove the first statement by making use of the fact that an L�-convex
polyhedron P ⊆ R

n is described as (3.2). It follows from (3.2) and (2.5) that the
characteristic cone of P is given byC = {x | 0 ≤ xi (i ∈ I ), x j ≤ 0 ( j ∈ J ), x j−xi ≤
0 ((i, j) ∈ E)}, which is also an L�-convex polyhedron. The second statement also
follows from (3.2). We consider the decomposition P = Q̂ + C in Proposition 2.1,
take a bounded integral box B containing Q̂, and define Q := P ∩ B, for which we
can show P = Q + C as in the proof of Theorem 3.3.

(2)–(5) These cases are proved in Sect. 4.4 by using a unified proof scheme con-
sistent with the case of (1). ��
Remark 3.3 Theorem 3.4(1) gives a decomposition of an L�-convex polyhedron. How-
ever, we cannot obtain a similar statement for an L-convex polyhedron, simply because
there is no bounded L-convex polyhedron. Note that an L-convex polyhedron P has
the invariance in the direction of 1 = (1, 1, . . . , 1) in the sense that x ∈ P implies
x + λ1 ∈ P for all λ ∈ R. Similarly, there is no bounded L2-convex polyhedron.
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Remark 3.4 In each case of Theorem 3.4, the polyhedron P is necessarily an integer
polyhedron. Recall that we have defined P to be an L�-convex polyhedron if it is
the convex hull of an L�-convex set S (⊆ Z

n). In the literature of discrete convex
analysis, the notion of L�-convexity is generalized to non-integer polyhedra (Murota–
Shioura [14]). An L�-convex polyhedron (not necessarily integral) is described by
(3.2) with li ∈ R (i ∈ I ), u j ∈ R ( j ∈ J ), and di j ∈ R ((i, j) ∈ E). For an
L�-convex polyhedron P in this generalized sense, we also obtain the decomposition
P = Q + C . Similar generalizations are possible for M�-convex polyhedra, etc., in
(2)–(5) of Theorem 3.4.

3.2 Decomposition of integrally convex sets

Theorem 3.3 for box-integer polyhedra can be rephrased for integrally convex sets as
follows.

Corollary 3.5 The convex hull S of an integrally convex set S (⊆ Z
n) canbe represented

as

S = Q + C (3.4)

with a polytope Q and a polyhedral cone C such that Q∩Z
n and C∩Z

n are integrally
convex.

Proof Since S is integrally convex, S is a box-integer polyhedron by Proposition 2.2.
By Theorem 3.3 applied to S we obtain the decomposition (3.4), where Q is a bounded
box-integer polyhedron and C is a box-integer cone. Then Q ∩ Z

n and C ∩ Z
n are

integrally convex by Proposition 2.2. ��
While the decomposition S = Q + C in (3.4) is defined via embedding of S

into R
n , our second main result (Theorem 3.6 below) establishes a decomposition of

an integrally convex set S directly within Z
n . We emphasize the difference between

S = Q + C and

S = (Q ∩ Z
n) + (C ∩ Z

n). (3.5)

We can show “(3.5) ⇒ (3.4)” as

S = (Q ∩ Zn) + (C ∩ Zn) = Q ∩ Zn + C ∩ Zn = Q + C,

where S1 + S2 = S1 + S2 in (2.11) is used. However, the converse “(3.5) ⇐ (3.4)” is
not always true (see Example 3.1 below). Thus, (3.5) is (strictly) stronger than (3.4).

To state the theorem we need to introduce a terminology. We call a set G (⊆ Z
n)

a conic set if its convex hull G is a cone. An integrally convex set G is conic if and
only if G = C ∩ Z

n for some box-integer cone C .
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Theorem 3.6 Every integrally convex set S (⊆ Z
n) can be represented as

S = T + G (3.6)

with a bounded integrally convex set T and a conic integrally convex set G.

Proof The proof, to be given in Sect. 4.3, is based on propositions equivalent to Propo-
sitions 3.1 and 3.2. ��

Example 3.1 We compare the decompositions in Corollary 3.5 and Theorem 3.6 for a
simple two-dimensional example. Let S be an infinite subset of Z

2 depicted at the top
left of Fig. 2, which can be described, e.g., as S = {x ∈ Z

2 | x1 + x2 ≥ 1, |x1 − x2| ≤
1}. This set S is integrally convex, and the convex hull S is a box-integer polyhedron
described as S = {x ∈ R

2 | x1 + x2 ≥ 1, |x1 − x2| ≤ 1}. Let Q be the line
segment connecting (1, 0) and (0, 1) and C be the semi-infinite line starting at (0, 0)
and emanating in the direction of (1, 1). Both Q and C are box-integer, and we obtain
the decomposition S = Q+C in Corollary 3.5. The semi-infinite lineC is, in fact, the
characteristic cone of S. Both Q∩Z

2 andC∩Z
2 are integrally convex, but the identity

S = (Q ∩Z
2)+ (C ∩Z

2) in (3.5) fails, because of the ‘holes’ in (Q ∩Z
2)+ (C ∩Z

2)

at x = (t, t) for integers t ≥ 1. With the choice of T = (Q ∩ Z
2) ∪ {(1, 1)} =

{(1, 0), (0, 1), (1, 1)} and G = C ∩ Z
2 = {(t, t) | t ≥ 0, t ∈ Z}, we obtain the

decomposition S = T +G in Theorem 3.6. Here both T and G are integrally convex.

Theorem 3.6 can be adapted to some classes of discrete convex sets in discrete con-
vex analysis, such as L�-convex and M�-convex sets (see Murota [9] for definitions of
these concepts). The corresponding statements for these subclasses are given in The-
orem 3.7 below. It is emphasized that Theorem 3.7 does not follow from Theorem 3.6
(for general integrally convex sets) nor from Theorem 3.4 (for L�-convex polyhedra,
etc.). Note that we have S, T ,G ⊆ Z

n in Theorem 3.7, whereas P, Q,C ⊆ R
n in

Theorem 3.4.

Theorem 3.7 (1) Every L�-convex set S can be represented as S = T + G with a
bounded L�-convex set T and a conic L�-convex set G.
(2) Every L�

2-convex set S can be represented as S = T +G with a bounded L�
2-convex

set T and a conic L�
2-convex set G.

(3)EveryM�-convex set S can be represented as S = T +G with a boundedM�-convex
set T and a conic M�-convex set G. Similarly for an M-convex set S, with T and G
being M-convex.
(4) Every M�

2-convex set S can be represented as S = T + G with a bounded M�
2-

convex set T and a conic M�
2-convex set G. Similarly for an M2-convex set S, with T

and G being M2-convex.
(5) Every multimodular set S can be represented as S = T + G with a bounded
multimodular set T and a conic multimodular set G.

Proof The proof is given in Sect. 4.5. ��

123



Discrete convex analysis 997

Fig. 2 Q + C = S, (Q ∩ Z
2) + (C ∩ Z

2) �= S, and T + G = S

4 Proofs

The structure of the proofs (dependence among propositions and theorems) is shown
in the diagram in Fig. 3.
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Fig. 3 Dependence among propositions and theorems

4.1 Proof of proposition 3.1

In this section we prove Proposition 3.1, stating that the characteristic cone of a box-
integer polyhedron is generated by {−1, 0,+1}-vectors. By Proposition 2.2, this
statement can be rephrased (equivalently) in terms of integral convexity as follows.

Proposition 4.1 Let S (⊆ Z
n) be an integrally convex set. The characteristic cone C

of its convex hull S is generated by vectors in {−1, 0,+1}n. In particular, C is an
integer polyhedron.

Proof Take any d ∈ C with ‖d‖∞ = 1. Proposition 4.2 below shows that there
exist d1, d2, . . . , dh ∈ N (d) such that d ∈ {d1, d2, . . . , dh}, where N (d) denotes
the integral neighborhood of d defined in (2.6). We have N (d) ⊆ {−1, 0,+1}n since
‖d‖∞ = 1. ��
Proposition 4.2 Let S (⊆ Z

n) be an integrally convex set, x0 ∈ S, and d ∈ R
n with

‖d‖∞ = 1. If

x0 + λd ∈ S for all λ ≥ 0, (4.1)

there exist d1, d2, . . . , dh ∈ N (d) such that d ∈ {d1, d2, . . . , dh} and

x0 + kd j ∈ S ( j = 1, 2, . . . , h; k = 1, 2, . . .). (4.2)

The condition (4.1) is equivalent to saying that d belongs to the characteristic cone
of S. The condition (4.2) implies that each d j belongs to the characteristic cone of
S, but the converse is not true because (4.2) imposes an additional requirement of
integrality. The role of integral convexity of S is illustrated in Fig. 4. In the left panel,
the set S is integrally convex, while S is not integrally convex in the right, where d1

does not meet the condition in (4.2).
To prove Proposition 4.2, we need the following general lemma concerning a set

of {0, 1}-vectors. Fig. 5 illustrates this lemma when X = {0, 1}2, where we think of
R and B as sets of ‘red’ and ‘black’ points, respectively, which are disjoint by (4.3).
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Fig. 4 Necessity of integral
convexity in Proposition 4.2

Fig. 5 Notations in Lemma 4.3

Lemma 4.3 Let X = {0, 1}m. For any R ⊆ X and d ∈ X\R, there exists some B ⊆ X
that satisfies the following conditions:

R ⊆ X \ B (i.e., R ∩ B = ∅), (4.3)

d /∈ X \ B, (4.4)

B ∩ (X \ B) = ∅. (4.5)

Moreover, the elements of B can be ordered as B = {d1, d2, . . . , dl} (where l = |B|)
so as to satisfy

{d1, d2, . . . , di } ∩ {di , di+1, . . . , dl} ∪ (X \ B) = {di } for i = 1, 2, . . . , l. (4.6)

Proof We first point out that (4.6) is a refinement of (4.5). Indeed, (4.6) for i = l reads
B ∩ {dl} ∪ (X\B) = {dl}. Since dl /∈ X\B, this implies B ∩ (X\B) = ∅ in (4.5).

In the (special) case where the given vector d belongs to X , d is an extreme point
of X and hence we can take B = {d} to meet the requirements (4.3), (4.4), and (4.6).
In the following we assume d /∈ X .

The given subset R may be empty or nonempty. Suppose first that R �= ∅. Since
d /∈ R, the pointd canbe separated from R byahyperplane.Moreprecisely, there exists
a hyperplane H = {x | a�x = δ}, where δ ∈ R, a ∈ R

n , and a�x = ∑n
i=1 ai xi , such

that the (open) half spaces H+ := {x | a�x > δ} and H− := {x | a�x < δ} contain
d and R, respectively. It follows from d ∈ H+ and R ⊆ H− that B := H+ ∩ X meets
the requirements of (4.3) and (4.4). Indeed, B ⊆ X\R in (4.3) follows from B ⊆ H+
and R ⊆ H−, and d /∈ X\B in (4.4) follows from d ∈ H+ and X\B ⊆ H− ∪ H .
To meet (4.6), we perturb the vector a so that a�x are distinct for x ∈ X ∪ {d}, and
number the elements of B = {d1, d2, . . . , dl} so that a�d1 > a�d2 > · · · > a�dl . In
the remaining (rather exceptional) case where R = ∅, we choose a vector a for which
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a�x are distinct for x ∈ X ∪ {d}, and define δ := a�d − ε with a sufficiently small
positive ε. Using such (a, δ) we define H , H+, H−, and B = H+ ∩ X . The rest of
the argument is the same as in the case of R �= ∅. ��

We are ready to begin the proof of Proposition 4.2. Without loss of generality,
we may assume d ≥ 0, since integral convexity of S is preserved under coordinate
inversions xi → −xi for i in an arbitrary subset of {1, 2, . . . , n}.

Let X := N (d). Then X ⊆ {0, 1}n and d ∈ X . Up to a permutation of coordinates,
X is equal to a set of the form {1}p × {0}q × {0, 1}m (p + q + m = n; p, q,m ≥ 0),
so that we may identify X with {0, 1}m . Define

R := {d ′ ∈ X | x0 + kd ′ ∈ S (k = 1, 2, . . .)}, (4.7)

or equivalently, R := X ∩ char.cone S. Then we have d ∈ R if and only if there exist
d1, d2, . . . , dh ∈ N (d) satisfying d ∈ {d1, d2, . . . , dh} and (4.2). That is, our goal is
to show d ∈ R. To prove this by contradiction, we assume d /∈ R.

We have R ⊆ X and d ∈ X\R, where X can be identified with {0, 1}m . This allows
us to use Lemma 4.3 to obtain B = {d1, d2, . . . , dl} (⊆ X) satisfying (4.3)–(4.6). Let
j∗ ∈ {0, 1, . . . , l} be the (uniquely determined) number such that

x0 + di /∈ S (i = 1, 2, . . . , j∗), x0 + d j∗+1 ∈ S, (4.8)

where j∗ = 0 if x0 + d1 ∈ S, and j∗ = l if x0 + di /∈ S for all i = 1, 2, . . . , l. Using
this index j∗ we define B∗ = {d1, d2, . . . , d j∗}. Note that B∗ = ∅ if j∗ = 0, and
B∗ = B if j∗ = l.

Let y := x0 + d. By the assumption (4.1), namely, d ∈ char.cone S, we have
y ∈ S, which, in turn, implies y ∈ N (y) ∩ S by integral convexity of S. It follows
from N (d) = X and the definition of B∗ that1

N (y) ∩ S = N (x0 + d) ∩ S = x0 + {d ′ ∈ X | x0 + d ′ ∈ S} ⊆ x0 + (X \ B∗).

Hence y ∈ N (y) ∩ S ⊆ x0+ X\B∗, that is, d ∈ X\B∗. On the other hand, d /∈ X \ B
as shown in (4.4). Thus we obtain

d ∈ X \ B∗, d /∈ X \ B. (4.9)

If B∗ = B, these two assertion contradict each other, and we are done. If B∗ is a
proper subset of B, we cannot derive a contradiction from (4.9).

We overcome this difficulty as follows. Although the definition of R in (4.7) refers
to x0, it is, in fact, independent of the initial point x0, as seen from the alternative
expression R = X ∩ char.cone S. The set B is also independent of x0, whereas B∗,
defined via (4.8), varies with x0, that is, B∗ = B∗(x0). Our strategy is to show that,
if B∗(x0) �= B, we can choose another initial point x1 satisfying B∗(x0) � B∗(x1).
By repeating this process, we can increase B∗ until B∗ = B. Then we obtain a
contradiction from (4.9), to complete the proof of Proposition 4.2.

1 For any vector x and set Y , we use abbreviation x + Y for {x} + Y .
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Since d j∗+1 ∈ B and R∩B = ∅ (cf. (4.3)), we have d j∗+1 /∈ R, while x0+d j∗+1 ∈
S by (4.8). Therefore, there exists a positive integer k∗ ≥ 1 such that

x0 + kd j∗+1 ∈ S (k = 1, 2, . . . , k∗), x0 + (k∗ + 1)d j∗+1 /∈ S. (4.10)

This integer k∗ represents the maximum number of steps from x0 toward d j∗+1 to
stay in S. We define x1 := x0 + k∗d j∗+1, which is a point in S. We shall show
B∗(x0) � B∗(x1) by proving

x1 + di /∈ S (i = 1, 2, . . . , j∗), (4.11)

x1 + d j∗+1 /∈ S. (4.12)

The second property (4.12) is easy to prove. Namely,

x1 + d j∗+1 = (x0 + k∗d j∗+1) + d j∗+1 = x0 + (k∗ + 1)d j∗+1 /∈ S

using the definition of k∗ in (4.10). To prove (4.11), we consider a sequence of
intermediate points, say, x ′, x ′′, . . . between x0 and x1, where x ′ := x0 + d j∗+1,
x ′′ := x0 + 2d j∗+1, etc.

Claim 4.1 For x ′ = x0 + d j∗+1 we have x ′ ∈ S and

x ′ + di /∈ S (i = 1, 2, . . . , j∗). (4.13)

Proof First, we see x ′ ∈ S from (4.10). To prove (4.13), fix i (1 ≤ i ≤ j∗) and define
d̂ := (d j∗+1 + di )/2. We have

d̂ = (d j∗+1 + di )/2 ∈ {d j∗+1, di } ⊆ B∗ ∪ {d j∗+1}.

Since d̂ �= d j∗+1 (which is equivalent to di �= d j∗+1) and

B∗ ∪ {d j∗+1} ∩ X \ B∗

= {d1, d2, . . . , d j∗+1} ∩ {d j∗+1, . . . , dl} ∪ (X \ B)

= {d j∗+1}

by (4.6), we have

d̂ /∈ X \ B∗. (4.14)

On the other hand, it follows from the definition of B∗ that

x0 + X \ B∗ ⊇ N (x0 + d̂) ∩ S. (4.15)
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Combining (4.14) and (4.15) we obtain

x0 + d̂ /∈ N (x0 + d̂) ∩ S. (4.16)

If x ′ + di ∈ S were true, we would obtain

x0 + d̂ = x0 + 1

2
(d j∗+1 + di ) = 1

2
x0 + 1

2
(x ′ + di ) ∈ S, (4.17)

which is a contradiction to (4.16), since S is integrally convex. Therefore, we must
have x ′ + di /∈ S, proving (4.13). ��

For the second intermediate point x ′′ = x0 + 2d j∗+1 = x ′ + d j∗+1, we can prove

x ′′ ∈ S, x ′′ + di /∈ S (i = 1, 2, . . . , j∗)

in a similar manner, by replacing (x0, x ′) in the proof of Claim 4.1 by (x ′, x ′′). Con-
tinuing in this way, we can show the statement (4.11) at the new initial point x1 where
B∗(x1) is strictly larger than B∗(x0).

If B∗(x1) = B, we are done, with a contradiction from (4.9). Otherwise, we repeat
the same procedure to obtain a (finite) sequence x0, x1, . . . xs of initial points such
that the associated B∗ increases to B, i.e., B∗(x0) � B∗(x1) · · · � B∗(xs) = B. This
completes the proof of Proposition 4.2.

4.2 Proof of Proposition 3.2

In this section we prove Proposition 3.2, stating that the characteristic cone of a box-
integer polyhedron is box-integer. By Proposition 2.2, this statement can be rephrased
(equivalently) in terms of integral convexity as follows.

Proposition 4.4 Let S (⊆ Z
n) be an integrally convex set. The characteristic cone C

of its convex hull S has the property that C ∩ Z
n is integrally convex.

We begin the proof of Proposition 4.4 by observing that the convex hull S can be
represented as S = Q+C with a bounded box-integer polyhedron Q and a polyhedral
cone C . Indeed, by Proposition 2.1, we can decompose S as S = Q̂ + C , where Q̂
is a polytope and C is the characteristic cone of S. Take a bounded integral box B
containing Q̂ and define Q := S ∩ B, which is a bounded box-integer polyhedron.
Since Q = S ∩ B = (Q̂ + C) ∩ B ⊇ Q̂ ∩ B = Q̂, we obtain Q + C ⊇ Q̂ + C = S.
The reverse inclusion Q +C ⊆ S follows from Q ⊆ S and S +C = S (cf. (2.4)) as
Q + C ⊆ S + C = S.

We prove Proposition 4.4 by contradiction. Namely, we assume that C ∩ Z
n is

not integrally convex and derive a contradiction to the integral convexity of S. We
shall construct a point y∗ ∈ S with the property y∗ /∈ N (y∗) ∩ S. We start with an
arbitrary x0 ∈ Q ∩ Z

n and find a point y0 ∈ x0 + C with some properties (Claim 4.2
below). We consider a system of inequalities describing x0 + C . With reference to

123



Discrete convex analysis 1003

Fig. 6 Notations in the proof of
Claim 4.2 (The square
represents N (z) and the triangle
is N (z) ∩ D)

the inequalities tight at y0, we find a vertex x∗ of Q. Then the point y∗ is constructed
as y∗ = y0 + (x∗ − x0) in (4.29) below.

Recalling that Q is a nonempty integer polyhedron, take any x0 ∈ Q ∩ Z
n and

define

D := x0 + C, DI := D ∩ Z
n .

By Proposition 4.1, C is an integer polyhedron, which implies that D is an integer
polyhedron and D = DI . The set DI is not integrally convex as a consequence of the
assumption that C ∩ Z

n is not integrally convex.

Claim 4.2 There exists y0 ∈ D that satisfies the following conditions:

y0 /∈ N (y0) ∩ DI , (4.18)

y0 is a vertex of N (y0) ∩ D, (4.19)

y0 is a relative interior point of N (y0). (4.20)

Proof Since DI is not integrally convex, there exists z ∈ DI such that z /∈ N (z) ∩ DI .
Take such z with the smallest dimension of N (z). Note that N (z) is an integral box
of the form {x ∈ R

n | l ≤ x ≤ u} for some l, u ∈ Z
n with ‖u − l ‖∞ ≤ 1 and the

dimension of N (z) is equal to the number of indices i satisfying ui − li = 1.
The set N (z)∩ D is a bounded polyhedron, and (N (z)∩ D)\N (z) ∩ DI �= ∅ since

z ∈ (N (z) ∩ D)\N (z) ∩ DI . Hence there is a vertex v of N (z) ∩ D not contained in
N (z) ∩ DI (see Figure 6). The vertex v is a relative interior point of N (z), because,
otherwise, we would have dim N (v) < dim N (z) while v /∈ N (v) ∩ DI from v /∈
N (z) ∩ DI ⊇ N (v) ∩ DI , a contradiction to our choice of z. Since v is a relative
interior point of N (z), we have N (v) = N (z). Let y0 := v, which satisfies the three
conditions (4.18)–(4.20). ��

Consider a (non-redundant) systemof inequalities describing D. Since y0 is a vertex
of N (y0) ∩ D lying in the relative interior of N (y0), at least one inequality is tight
(i.e., satisfied in equality). Enumerate all such inequalities as

a�
1 x ≤ β1, a�

2 x ≤ β2, . . . , a�
k x ≤ βk, (4.21)

where k ≥ 1. By definition we have a�
i y0 = βi for i = 1, 2, . . . , k. Since D = x0+C

and C is a cone, all the inequalities in (4.21) are also tight at x0, that is, a�
i x0 = βi

for i = 1, 2, . . . , k.
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Claim 4.3 There exist some positive coefficients μ1, μ2, . . . , μk > 0 such that a =∑k
i=1 μi ai and β = ∑k

i=1 μiβi satisfy

a�x0 = β, a�y0 = β, (4.22)

a�x ≤ β (∀x ∈ D), (4.23)

a�x ≤ 0 (∀x ∈ C), (4.24)

a�x �= β (∀x ∈ N (y0) \ DI ). (4.25)

Proof (4.22)–(4.24) hold for any μ1, μ2, . . . , μk > 0. (4.22) is immediate from the
tightness a�

i x0 = a�
i y0 = βi for i = 1, 2, . . . , k. (4.23) holds since the inequalities

in (4.21) are valid for D. (4.24) follows from (4.22) and (4.23) because D = x0 + C
and C is a cone. (4.25) can be shown as follows. Since y0 is a vertex, the intersection
of N (y0) and the hyperplanes a�

i x = βi (i = 1, 2, . . . , k) consists of a single vector

y0, that is, for x ∈ N (y0), we have a�
i x = βi for all i = 1, 2, . . . , k if and only if

x = y0. Therefore, for each x ∈ N (y0)\DI , there is some i with a�
i x �= βi . It then

follows that (4.25) holds for randomly chosen μ1, μ2, . . . , μk > 0. ��
Claim 4.4

y0 /∈ N (y0) ∩ {x ∈ Zn | a�x ≤ β}. (4.26)

Proof Recall from (4.23) that {x ∈ Z
n | a�x ≤ β} ⊇ DI . Using notation E := {x ∈

Z
n | a�x ≤ β}\DI , we can rewrite (4.26) as

y0 /∈ N (y0) ∩ (E ∪ DI ) = (N (y0) ∩ DI ) ∪ (N (y0) ∩ E). (4.27)

We have y0 /∈ N (y0) ∩ DI in (4.18) and a�y0 = β in (4.22), whereas a�x < β for
all x ∈ N (y0) ∩ E by (4.25). Then (4.27) follows. ��

Let β∗ denote the maximum value of a�x over Q, that is,

β∗ := max{a�x | x ∈ Q}. (4.28)

Since Q is a bounded integer polyhedron, we may assume that this maximum is
attained by an integer vector x∗ ∈ Q ∩ Z

n . Define y∗ ∈ R
n by

y∗ := y0 + (x∗ − x0). (4.29)

We have y∗ ∈ S, since y∗ = x∗ + (y0 − x0) ∈ Q + (D − x0) = Q + C = S.

Claim 4.5

y∗ /∈ N (y∗) ∩ {x ∈ Zn | a�x ≤ β∗}. (4.30)
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Proof Recall from (4.26) that

y0 /∈ N (y0) ∩ {x ∈ Zn | a�x ≤ β}.

By adding x∗ − x0 to the left-hand side, we obtain y∗ = y0 + (x∗ − x0). On the
right-hand side, we have N (y0)+ (x∗ − x0) = N (y0 + x∗ − x0) = N (y∗), where the
first equality is true by x∗ − x0 ∈ Z

n . Since a�x∗ = β∗ by the definition of x∗ and
a�x0 = β by (4.22), we also have

{x | a�x ≤ β} + (x∗ − x0) = {x + (x∗ − x0) | a�x ≤ β}
= {z | a�(z − x∗ + x0) ≤ β} = {z | a�z ≤ β∗}.

Thus we obtain (4.30). ��
Claim 4.6

S ⊆ {x ∈ Z
n | a�x ≤ β∗}. (4.31)

Proof We have Q ⊆ {x | a�x ≤ β∗} by the definition (4.28) of β∗, whereas C ⊆ {x |
a�x ≤ 0} by (4.24). Therefore, every x ∈ S = Q + C satisfies a�x ≤ β∗. ��

It follows from (4.30) and (4.31) that y∗ /∈ N (y∗) ∩ S, whereas y∗ ∈ S. This is a
contradiction to the integral convexity of S, completing the proof of Proposition 4.4.

4.3 Proof of Theorem 3.6

In this section we prove Theorem 3.6, stating that every integrally convex set S (⊆ Z
n)

can be represented as S = T +G with a bounded integrally convex set T and a conic
integrally convex set G.

By Proposition 2.1, the convex hull S of S can be represented as

S = Q̂ + C (4.32)

with a polytope Q̂ and the characteristic cone C of S. By Proposition 4.4, C ∩ Z
n is

integrally convex. With reference to the polytope Q̂, define

li := ⌊
min{xi | x ∈ Q̂} ⌋

, ui := ⌈
max{xi | x ∈ Q̂} ⌉

for i = 1, 2, . . . , n. The numbers li , ui are (finite) integers with li ≤ ui , since Q̂ is a
nonempty and bounded polyhedron.

Let {d1, d2, . . . , dL} be a generating set of cone C , where we may assume d j ∈
{−1, 0,+1}n by Proposition 4.1. With reference to the number L of the generators of
C , define a bounded integral box B by

B := {x ∈ R
n | li − L ≤ xi ≤ ui + L (i = 1, 2, . . . , n)}
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and put Q := S ∩ B, which is a bounded box-integer polyhedron containing Q̂. We
have S = Q + C , since S = Q̂ + C ⊆ Q + C ⊆ S + C = S.

Define

T := Q ∩ Z
n = S ∩ B ∩ Z

n = S ∩ B, G := C ∩ Z
n, (4.33)

which are, respectively, a bounded integrally convex set and a conic integrally convex
set. In the following we show S = T + G by a sequence of claims.

Claim 4.7 S ⊇ T + G.

Proof For two (discrete) sets S1, S2 ⊆ Z
n , in general, we have

(S1 + S2) ∩ Z
n ⊇ S1 + S2.

Using this for (S1, S2) = (T ,G) as well as S = Q + C = T + G, we obtain

S = S ∩ Z
n = (T + G) ∩ Z

n ⊇ T + G.

��
To show the reverse inclusion S ⊆ T +G, take any z ∈ S. By S = Q̂+C in (4.32),

there exist real vectors x̂ ∈ Q̂ and d̂ ∈ C satisfying

z = x̂ + d̂.

The vector d̂ can be represented as a nonnegative combination of the generators
{d1, d2, . . . , dL} of C as

d̂ =
L∑

j=1

λ j d
j , λ j ≥ 0 ( j = 1, 2, . . . , L).

With reference to this expression, define vectors d∗ and x∗ by

d∗ :=
L∑

j=1


λ j� d j , (4.34)

x∗ := x̂ +
L∑

j=1

(λ j − 
λ j�) d j , (4.35)

for which we have

x∗ + d∗ = x̂ + d̂ = z. (4.36)
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Claim 4.8 d∗ ∈ G.

Proof (4.34) shows d∗ ∈ C . We also have d∗ ∈ Z
n , since 
λ j� ∈ Z and d j ∈

{−1, 0,+1}n for j = 1, 2, . . . , L by Proposition 4.1. Therefore, d∗ ∈ C ∩ Z
n = G.

��
Claim 4.9 x∗ ∈ T .

Proof Since T = S ∩ B ∩ Z
n (see (4.33)), it suffices to show (i) x∗ ∈ Z

n , (ii) x∗ ∈ S,
and (iii) x∗ ∈ B. We have x∗ ∈ Z

n , since z ∈ Z
n , d∗ ∈ Z

n , and x∗ = z−d∗ by (4.36).
We have x∗ ∈ S, since x∗ ∈ Q̂ + C by (4.35) and Q̂ + C = S by (4.32). Finally, we
show x∗ ∈ B. For the first term x̂ on the right-hand side of (4.35), we have l ≤ x̂ ≤ u
since x̂ ∈ Q̂. Each component of the second term

∑L
j=1(λ j − 
λ j�) d j lies between

−L and +L , since 0 ≤ λ j − 
λ j� < 1 and d j ∈ {−1, 0,+1}n for j = 1, 2, . . . , L by
Proposition 4.1. Therefore, x∗ ∈ B. ��

The inclusion S ⊆ T + G follows from Claims 4.8 and 4.9, while S ⊇ T + G is
already shown in Claim 4.7. This completes the proof of Theorem 3.6.

4.4 Proof of Theorem 3.4

In this section we prove Theorem 3.4 for polyhedra P (⊆ R
n) with particular discrete

convexities such as L�-convexity, M�-convexity, etc. The proof for the case (1) of L�-
convex polyhedra has already been given in Sect. 3.1, right after Theorem 3.4. Here
we present a unified proof scheme for all cases including L�-convex polyhedra. We
use a generic name “A-convex” to mean any of L�-convex, L�

2-convex, M
�-convex,

M-convex, M�
2-convex, M2-convex, and multimodular.

The unified proof scheme is as follows. Let P be an A-convex polyhedron. By
Proposition 2.1, we can decompose P as P = Q̂ + C , where Q̂ is a polytope and C
is the characteristic cone of P . We assume that

The characteristic cone of an A-convex polyhedron is A-convex. (4.37)

There exists a bounded A-convex polyhedron Q satisfying Q̂ ⊆ Q ⊆ P. (4.38)

By Q̂ ⊆ Q ⊆ P in (4.38), we have P = Q̂ + C ⊆ Q + C ⊆ P + C = P . This
shows P = Q + C , where Q is a bounded A-convex polyhedron by (4.38) and C is
an A-convex cone by (4.37).

The first assumption (4.37) is met by each discrete convexity in (1)–(5). Indeed, a
polyhedron P with such discrete convexity can be described as P = {x | Ax ≤ b},
where a necessary and sufficient condition on (A, b) for that discrete convexity of P is
known. For example, an L�-convex polyhedron is described by (3.2) and anM�-convex
polyhedron by (3.3); see Murota [9], Moriguchi–Murota [6, Table 1], and Murota–
Tamura [17, Table 1] for other cases. This enables us to prove that the characteristic
cone C = {d | Ad ≤ 0} is also endowed with the same kind of discrete convexity.

For the second assumption (4.38), we consider Q := P ∩ B for a bounded integral
box B containing Q̂, expecting that Q is endowed with A-convexity as a consequence
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of the assumed A-convexity of P . This construction is indeed valid for all discrete
convexities in question, with the exception of L�

2-convexity in (2) (see Remark 4.1
below).

In Case (2) of an L�
2-convex polyhedron P , we construct an L�

2-convex (integer)
polyhedron Q as follows. Let P = P1 + P2 with two L�-convex polyhedra P1 and
P2. Enumerate all vertices of the polytope Q̂ as {z1, z2, . . . , zm}, where z j ∈ R

n for
j = 1, 2, . . . ,m. By z j ∈ Q̂ ⊆ P1+P2, each z j can be expressed as z j = x j+y j with
x j ∈ P1 and y j ∈ P2. Take integral boxes B1 and B2 satisfying {x1, x2, . . . , xm} ⊆ B1
and {y1, y2, . . . , ym} ⊆ B2, respectively, and define Q1 := P1 ∩ B1, Q2 := P2 ∩ B2,
and Q := Q1 + Q2. Then Q1 and Q2 are L�-convex (integer) polyhedra, and hence
Q is an L�

2-convex (integer) polyhedron. Then we have

Q̂ = {z1, z2, . . . , zm} = {x1 + y1, x2 + y2, . . . , xm + ym}
⊆ {x1, x2, . . . , xm} + {y1, y2, . . . , ym}
⊆ (P1 ∩ B1) + (P2 ∩ B2) = Q1 + Q2 = Q

and Q = Q1 + Q2 ⊆ P1 + P2 = P . Thus we obtain Q̂ ⊆ Q ⊆ P .
This completes the proof of Theorem 3.4.

Remark 4.1 The intersection of an L�
2-convex polyhedron with an integral box is not

necessarily L�
2-convex. For example, let P1 be the line segment connecting (0, 0, 0)

and (1, 1, 0) and P2 be the one connecting (0, 0, 0) and (0, 1, 1). Then P = P1 + P2
(⊆ R

3) is an L�
2-convex polyhedron, which is a parallelogram lying on the plane

x1 − x2 + x3 = 0 in R
3. For the unit box B = {x | 0 ≤ xi ≤ 1 (i = 1, 2, 3)}, the

intersection P ∩ B is a triangle with vertices at (0, 0, 0), (0, 1, 1), and (1, 1, 0). This
triangle is not L�

2-convex.

Remark 4.2 Here is an alternative proof of Theorem 3.4(2) that relies on (1) for an
L�-convex polyhedron. Let P = P1 + P2 with L�-convex polyhedra P1 and P2. By (1)
we have Pi = Qi + Ci with a bounded L�-convex polyhedron Qi and an L�-convex
cone Ci , where i = 1, 2. Then P = (Q1 + Q2) + (C1 + C2), where Q1 + Q2 is a
bounded L�

2-convex polyhedron and C1 + C2 is an L�
2-convex cone.

4.5 Proof of Theorem 3.7

In this sectionwe prove Theorem 3.7 for discrete sets S (⊆ Z
n)with particular discrete

convexities such as L�-convexity, M�-convexity, etc. The proof relies on Theorem 3.6
for integrally convex sets. Just as in Sect. 4.4, we present a unified proof scheme by
using a generic name “A-convex” to mean any of L�-convex, L�

2-convex, M
�-convex,

M-convex, M�
2-convex, M2-convex, and multimodular.

The unified proof scheme is as follows. Let S be an A-convex set. This implies that
S is an integrally convex set. By Theorem 3.6 we can decompose S as S = T̂ + G,
where T̂ is a bounded integrally convex set and G is a conic integrally convex set. We
have G = C ∩ Z

n for the characteristic cone C of the convex hull S of S, where S is
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an A-convex polyhedron. We assume that

The characteristic cone of an A-convex polyhedron is A-convex. (4.39)

There exists a bounded A-convex set T satisfying T̂ ⊆ T ⊆ S. (4.40)

By T̂ ⊆ T ⊆ S in (4.40), we have S = T̂ +G ⊆ T +G ⊆ S+G ⊆ S, where the last
inclusion follows from S + G = S + G = S + C = S, S + G ⊆ S + G ∩ Z

n , and
S ∩ Z

n = S. Therefore, S = T + G, where T is a bounded A-convex set by (4.40)
and G is a conic A-convex set by (4.39).

The first assumption (4.39), which is the same as (4.37), is met by each discrete
convexity in (1)–(5), as explained in the proof of Theorem 3.4 in Sect. 4.4. Recall that
the inequality representations are used here.

For the second assumption (4.40), we consider T := S ∩ B for a bounded integral
box B containing T̂ , expecting that T is endowed with A-convexity as a consequence
of the assumed A-convexity of S. This construction is indeed valid for all discrete
convexities in question (see [9, 12]), with the exception of L�

2-convexity in (2) (see
Remark 4.3 below).

In Case (2) of an L�
2-convex set S, we construct T as follows. Represent S as

S = S1 + S2 with two L�-convex sets S1 and S2. Enumerate all members of the finite
set T̂ as T̂ = {z1, z2, . . . , zm}. Each z j ∈ T̂ ⊆ S = S1 + S2 can be expressed
as z j = x j + y j with x j ∈ S1 and y j ∈ S2. Take integral boxes B1 and B2
satisfying {x1, x2, . . . , xm} ⊆ B1 and {y1, y2, . . . , ym} ⊆ B2, respectively, and define
T1 := S1 ∩ B1, T2 := S2 ∩ B2, and T := T1 + T2. Then T1 and T2 are L�-convex,
and hence T is L�

2-convex. We have T̂ ⊆ T , since x j ∈ S1 ∩ B1 and y j ∈ S2 ∩ B2
imply that z j = x j + y j ∈ (S1 ∩ B1) + (S2 ∩ B2) = T1 + T2 = T . Finally we note
T = T1 + T2 ⊆ S1 + S2 = S, to obtain T̂ ⊆ T ⊆ S.

This completes the proof of Theorem 3.7.

Remark 4.3 The intersection of an L�
2-convex set with an integral box is not necessarily

L�
2-convex. For example, consider an L�

2-convex set S = S1 + S2 given by two L�-
convex sets S1 = {(0, 0, 0), (1, 1, 0)} and S2 = {(0, 0, 0), (0, 1, 1)}. That is, S = S1+
S2 = {(0, 0, 0), (0, 1, 1), (1, 1, 0), (1, 2, 1)}. For B = {x | 0 ≤ xi ≤ 1 (i = 1, 2, 3)}
we have S ∩ B = {(0, 0, 0), (0, 1, 1), (1, 1, 0)}, which is not L�

2-convex.

Remark 4.4 Here is an alternative proof of Theorem 3.7(2) that relies on (1) for an
L�-convex set. Let S = S1 + S2 with L�-convex sets S1 and S2. By (1) we have
Si = Ti + Gi with a bounded L�-convex set Ti and a conic L�-convex set Gi , where
i = 1, 2. Then S = (T1 + T2) + (G1 + G2), where T1 + T2 is a bounded L�

2-convex

set and G1 + G2 is a conic L
�
2-convex set. Note that G1 + G2 = G1 + G2 is a cone.

5 Conclusion

Our proofs given in Sects. 4.1–4.3 are long and primitive based on the very definition
of integral convexity. On the other hand, it is known (Chervet–Grappe–Robert [1])
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that a polyhedral cone is box-integer if and only if it is box-TDI. It is left for future
investigation to find shorter or more transparent proofs, possibly making use of this
equivalence.
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