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Abstract
In this paper, we consider a quasi-linear parabolic equation ut = up(xxx + u) . It is 
known that there exist blow-up solutions and some of them develop Type II singu-
larity. However, only a few results are known about the precise behavior of Type II 
blow-up solutions for p > 2 . We investigated the blow-up solutions for the equation 
with periodic boundary conditions and derived upper estimates of the blow-up rates 
in the case of 2 < p < 3 and in the case of p = 3 , separately. In addition, we assert 
that if 2 ≤ p ≤ 3 then limt↗T (T − t)

1

p
+�

max u(x, t) = 0 z for any 𝜀 > 0 under some 
assumptions.

Keywords Asymptotic behavior · Quasi-linear parabolic equation · Blow-up 
phenomena
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1 Introduction

In this paper, we consider classical solutions u = u(x, t) of
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with the following periodic boundary condition

and positive initial data. If p > 0 and L >
𝜋

2
 , then solutions of (1.1)–(1.2) blow 

up in finite time, T, which is called the blow-up time. It is well-known that when 
0 < p < 2 , they develop Type I singularity, that is,

(For instance, see [9].) On the other hand, if p ≥ 2 then some of them develop Type 
II singularity, that is,

We call such solutions Type II blow-up solutions. (For instance, see [4, 6, 10].) 
Since we are interested in Type II blow-up solutions, we consider the case p ≥ 2.

A background of (1.1)–(1.2) is the motion of the plane curve by the power of its 
curvature,

where � is a positive parameter and N  and k denote the outer unit normal vector and 
the curvature of the curve at the point X  , respectively. In the case where the curva-
ture is positive everywhere on the closed curve, we can parametrize the curve by 
the normal angle x and u(x, t) =

(
�
−

1

�+1 k(x, t)
)
� satisfies (1.1)–(1.2) with L = m� for 

some m ∈ ℕ and p = 1 + 1∕� . Here, k(x, t) is the curvature of the curve at the point 
with N = (cos x, sin x).

If m = 1 and 2 ≤ p < 4 , then all solutions of (1.1) blow up of Type I. (See [3, 8].) 
When m ≥ 2 and p ≥ 2 , the behavior of solutions is different from the case of m = 1 . 
In [4], Angenent proved that there exists a Type II blow-up solution of (1.1)–(1.2) 
for the case of p = 2 and m ≥ 2 . He treated the classical curve-shortening flow of 
a closed cardioid-like immersed curve with a self-crossing point (Fig. 1) which is 
corresponding to the case of p = 2 and L = m� with m ≥ 2 . This is the first result 

(1.1)ut = up(uxx + u) for (x, t) ∈ (−L,L) × (0, T)

(1.2)u(−L, t) = u(L, t) and ux(−L, t) = ux(L, t) for t ∈ (0, T)

lim sup
t↗T

(T − t)
1

p max
x∈[−L,L]

u(x, t) < ∞.

(1.3)lim sup
t↗T

(T − t)
1

p max
x∈[−L,L]

u(x, t) = ∞.

dX

dt
= −k�N,

Fig. 1  An example of immersed 
curves with self-crossing points
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for the blow-up rates of maxx∈[−L,L] u(x, t) . Furthermore, he also proved that for this 
blow-up solution, u in the case of p = 2,

[1, 5, 7] have investigated the blow-up rates of Type II blow-up solutions under the 
following conditions for initial data 

 (I1) u(x, 0) = u(−x, 0) for any x ∈ [−L, L],
 (I2) ux(x, 0) < 0 if x ∈ (0, L) and ux(x, 0) > 0 if x ∈ (−L, 0),
 (I3) there exists 𝜂0 > 0 such that u(x, 0) ≥ 𝜂0 > 0 for any x ∈ [−L, L],
 (I4) uxx(x, 0) + u(x, 0) ≥ 0 , ≢ 0 for any x ∈ (−L, L).

A typical example of the plane curve that satisfies (I1), (I2), (I3), and (I4) is a car-
dioid-like curve. The precise blow-up rates for p = 2 were established by Angenent 
and Velázquez [5] under the assumptions (I1), (I2), and (I3), that is, solutions of 
(1.1)–(1.2), u, satisfy

Moreover, in [1], the first and the second authors proved the same results as (1.5) for 
solutions with the Dirichlet boundary condition.

Some results for p > 2 and m ≥ 2 were provided by Poon [7]. Precisely, he 
showed that solutions of (1.1)–(1.2) satisfy the following.

– Let p > 2 , m ≥ 2 and assume (I1), (I2), and (I3). Then there exists t∗ ∈ (0, T) and 
a constant C = C(p) > 0 such that u satisfies 

– Let 2 < p < 3 , m ≥ 2 and assume (I1), (I2), (I3), and (I4). Then there exists 
t∗ ∈ (0, T) and a constant C = C(p) > 0 such that u satisfies 

In addition, [7] showed the same results for solutions with the Dirichlet boundary 
condition.

Our purpose of this paper is to improve upper estimates of blow-up rates for 
2 < p < 3 and provide one for p = 3 for solutions of (1.1) with the periodic bound-
ary condition (1.2). Precisely, our main result is as follows.

Theorem 1 (Main result) Let u be a solution of (1.1)–(1.2) with (1.3). Let L = m� , 
where m ≥ 2 is an integer. Assume (I1), (I2), (I3), and (I4). Then the following hold. 

(1.4)lim
t↗T

(T − t)
1

2
+𝜀 max

x∈[−L,L]
u(x, t) = 0 for any 𝜀 > 0.

(1.5)max
x∈[−L,L]

u(x, t) =
(
1 + o(1)

)√ 1

T − t
log log

1

T − t
as t ↗ T .

(1.6)max
x∈[−L,L]

u(x, t) ≥ C(p)

(
T

T − t

) 1

p

(
1

p
log

T

T − t

) p−2

p

if t ∈ (t∗, T).

(1.7)max
x∈[−L,L]

u(x, t) ≤ C(p)

√
T

T − t
if t ∈ (t∗, T).
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 (i) In the case of 2 < p < 3 , there exist t∗ ∈ (0, T) and a constant C = C(p) > 0 
such that u satisfies 

 (ii) In the case of p = 3 , there exist t∗ ∈ (0, T) and a constant C > 0 such that u 
satisfies 

We remark that the result of Angenent (1.4) can be extended to the case of 
2 < p ≤ 3 by Theorem 1 as follows:

Corollary 1 Let u be a solution of (1.1)–(1.2) with (1.3). Assume (I1), (I2), (I3), and 
(I4). Then if 2 ≤ p ≤ 3 then

Let us comment on expected blow-up rates for p = 2 , 2 < p < 3 , and p = 3 . The 
precise rate for p = 2 is known as (1.5). In the case of 2 < p < 3 , the two inequal-
ities, (1.6) and (1.8), suggest that there exists 𝛾 = 𝛾(p) > 0 such that the blow-up 
rates for 2 < p < 3 are the form of

where p−2
p

≤ �(p) ≤
p−2

p(3−p)
.

The blow-up rate for 2 < p < 3 , (1.10), has a completely different form that for 
p = 2 . Since the exponent �(2) = 0 , the estimate (1.10) fails for p = 2 . Hence, the 
more subtle correction term, which has log log form, appears for p = 2 , (1.5). Fur-
thermore, Theorem 1 seems to support that the blow-up rate may drastically change 
at p = 3 . Indeed, the divergence of the upper estimate (1.8) as p → 3 is the reason 
that �(p) might also diverge as p → 3 according to (1.10).

Let us explain our strategy to prove our main theorem briefly. First, we introduce 
a function,

where 𝜆 > 0 and U(x, �) = e
−

�

p u(x, T − e−�) ( � = log
1

T−t
 ), which is sometimes 

called type I rescaling. The estimates for �
�
(�) play an important role in the proof 

(1.8)max
x∈[−L,L]

u(x, t) ≤ C(p)

(
1

T − t

) 1

p
(
log

1

T − t

) p−2

p(3−p)

if t ∈ (t∗, T).

(1.9)max
x∈[−L,L]

u(x, t) ≤
(

1

T − t

) 1

3

exp

(
C

√
log

1

T − t

)
if t ∈ (t∗, T).

lim
t↗T

(T − t)
1

p
+𝜀

max
x∈[−L,L]

u(x, t) = 0 for any 𝜀 > 0.

(1.10)max
x∈[−L,L]

u(x, t) = O

((
1

T − t

) 1

p
(
log

1

T − t

)�(p)
)

as t ↗ T ,

𝜓
𝜆
(𝜎) ∶=

∫

∞

𝜎

1

U(0, �̃�)
2

p−2

e−𝜆(�̃�−𝜎) d�̃�,
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of our main results. The function �
�
 is the novel device employed in this paper. Sec-

ond, the function

can be estimated from above. We note that the upper bound of Wp(t) has different 
forms in the cases of 2 < p < 3 and p = 3 . The former case was obtained in [7], and 
the latter case is newly proved in this paper. Finally, using the bound of Wp(t) , we 
estimate �

�
 from below for suitable � , and we can obtain Theorem 1.

2  Upper bounds for solutions

When (I1), (I2), (I3), and (I4) hold, solutions u of (1.1)–(1.2) also satisfy the 
following.

– If (I1) holds then u(x, t) = u(−x, t) for any x ∈ [−L, L] and t ∈ (0, T).
– If (I2) holds then ux(x, t) < 0 if x ∈ (0, L) and t ∈ (0, T) and ux(x, t) > 0 if 

x ∈ (−L, 0) and t ∈ (0, T).
– If (I3) holds then u(x, t) ≥ 𝜂0 > 0 for any x ∈ [−L, L] and t ∈ (0, T).
– If (I4) holds then uxx(x, t) + u(x, t) ≥ 0 for any x ∈ (−L, L) and t ∈ (0, T).

Some features for u are already known (for instance, see [7]). For the readers’ 
convenience, we summarize them in the following proposition.

Proposition 1 Assume (I1) and (I4). If 0 < x < 𝜋∕2 , then u satisfies

and

Proof Since (I1) and (I4) imply ux(0, t) = 0 and uxx(y, t) + u(y, t) ≥ 0 for any 
y ∈ (−L, L) and t ∈ (0, T) , we have

(1.11)

Wp(t) ∶= (T − t)u

(
�

2
, t
)
u(0, t)p−1

= U

(
�

2
, �

)
U(0, �)p−1

(2.1)u(x, t) ≥ u(0, t) cos x,

(2.2)u(x, t) ≤ u(0, t) cos x + u

(
�

2
, t
)
sin x,

(2.3)
−u(0, t) sin x ≤ ux(x, t) ≤ −

u(x, t) sin x

cos x
+

u

(
�

2
, t
)

cos x
.

u(x, t) = u(0, t) cos x +
�

x

0

(
uxx(y, t) + u(y, t)

)
sin(x − y) dy ≥ u(0, t) cos x
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and

Next, it holds

This implies that

and

Hence, we have

Since it holds that ut
(
�

2
, t
)
= u

(
�

2
, t
)p(

uxx

(
�

2
, t
)
+ u

(
�

2
, t
))

≥ 0 due to (I4), in 
the case of p ≥ 2 , it can be verified

u(x, t) = u(0, t) cos x + sin x
�

x

0

(
uxx(y, t) + u(y, t)

)
cos y dy

− cos x
�

x

0

(
uxx(y, t) + u(y, t)

)
sin y dy

≤ u(0, t) cos x + sin x
�

�

2

0

(
uxx(y, t) + u(y, t)

)
cos y dy

= u(0, t) cos x + u

(
�

2
, t

)
sin x.

∫

x

0

(
uxx(y, t) + u(y, t)

)
sin y dy = ux(x, t) sin x − u(x, t) cos x + u(0, t).

ux(x, t) = −u(0, t) sin x +
�

x

0

(
uxx(y, t) + u(y, t)

)
cos(x − y) dy ≥ −u(0, t) sin x

ux(x, t) = −u(0, t) sin x + cos x
�

x

0

(
uxx(y, t) + u(y, t)

)
cos y dy

+ sin x
�

x

0

(
uxx(y, t) + u(y, t)

)
sin y dy

≤ cos x
�

�

2

0

(
uxx(y, t) + u(y, t)

)
cos y dy

+ ux(x, t) sin
2 x − u(x, t) sin x cos x

= u

(
�

2
, t

)
cos x + ux(x, t) sin

2 x − u(x, t) sin x cos x.

u
x
(x, t) ≤ −

u(x, t) sin x

cos x
+

u

(
�

2
, t

)

cos x
. □
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In addition, by (2.1), u(y, t) ≥ u(0, t) cos y holds under assumptions (I1) and (I4). 
Therefore, u satisfies

where Wp(t) is defined by (1.11) and B(�, �) ∶= 2
∫

�

2

0

(
sin y

)2�−1(
cos y

)2�−1
dy is 

the beta function. The estimate of (2.5) for 2 < p < 3 was given in [7]. Furthermore, 
we prove the following theorem in the case of p = 3 in this paper.

Theorem 2 Let p = 3 and u be a solution of (1.1)–(1.2) with (1.3). Assume (I1), (I2), 
(I3), and (I4). Then u satisfies

where W3(t) is given by (1.11) with p = 3.

Proof Let t be fixed in (0, T) and

We note that by the type II singularity of u, (1.3),

It is verified by (2.4) that

By (2.1), the first term is estimated as follows:

(2.4)

(T − t)u

(
�

2
, t
)
≤
�

T

t

u

(
�

2
, s
)
ds

= −
1

p − 1 �

T

t
�

�

2

0

(
u(y, s)−(p−1)

)
s
cos y dy ds

=
1

p − 1 �

�

2

0

cos y

u(y, t)p−1
dy.

(2.5)Wp(t) ≤
1

2(p − 1)
B

(
1

2
,
3 − p

2

)
< ∞ for 2 < p < 3,

(2.6)lim sup
t↗T

W3(t)

log
[
(T − t)

1

3 u(0, t)
] ≤

3

2
,

(2.7)x(t) ∶= arccos
1

(T − t)u(0, t)3
.

(2.8)x(t) →
�

2
as t ↗ T .

(2.9)

(T − t)u

(
�

2
, t
)
≤

1

2 �

�

2

0

cos y

u(y, t)2
dy

=
1

2

(
�

x(t)

0

cos y

u(y, t)2
dy +

�

�

2

x(t)

cos y

u(y, t)2
dy

)
.
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Furthermore, by (I2), (2.2), and (2.3), it holds that, for 0 < y <
𝜋

2
 , ux(y, t) < 0,

and

Hence, the second term is estimated as follows:

(2.10)

�

x(t)

0

cos y

u(y, t)2
dy ≤

1

u(0, t)2 �

x(t)

0

1

cos y
dy

=
1

u(0, t)2
log

||||
1 + sin x(t)

cos x(t)

||||
<

1

u(0, t)2
log

[
2(T − t)u(0, t)3

]
.

(2.11)sin y ≤ −
ux(y, t) cos y

u(y, t)
+

u

(
�

2
, t
)

u(y, t)
≤ −

ux(y, t)

u(0, t)
+

u

(
�

2
, t
)

u(y, t)
,

(2.12)
u(x(t), t) ≤ u(0, t) cos x(t) + u

(
𝜋

2
, t
)
sin x(t)

<
1

(T − t)u(0, t)2
+ u

(
𝜋

2
, t
)

(2.13)

�

𝜋

2

x(t)

sin y

u(y, t)2
dy =

cos x(t)

u(x(t), t)2
− 2

�

𝜋

2

x(t)

ux(y, t) cos y

u(y, t)3
dy

≤
cos x(t)

u(x(t), t)2
−

2

u(0, t) �

𝜋

2

x(t)

ux(y, t)

u(y, t)2
dy

≤
1

u(0, t)u(x(t), t)
+

2

u(0, t)

⎛⎜⎜⎜⎝
1

u

�
𝜋

2
, t
� −

1

u(x(t), t)

⎞⎟⎟⎟⎠
<

2

u(0, t)u
�
𝜋

2
, t
� .
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Here, we use (2.1) for the first inequality, (2.11) for the third one, and (2.12) and 
(2.13) for the fifth one. Therefore, by (2.9), (2.10) and (2.14), W3(t) satisfies

Since

it holds that

Noting sin x(t) → 1 as t ↗ T  by (2.8), this implies that

(2.14)

�

𝜋

2

x(t)

cos y

u(y, t)2
dy

≤
1

u(0, t) �

𝜋

2

x(t)

1

u(y, t)
dy

<
1

u(0, t) sin x(t) �

𝜋

2

x(t)

sin y

u(y, t)
dy

≤ −
1

u(0, t)2 sin x(t) �

𝜋

2

x(t)

ux(y, t)

u(y, t)
dy +

u

(
𝜋

2
, t
)

u(0, t) sin x(t) �

𝜋

2

x(t)

1

u(y, t)2
dy

<
1

u(0, t)2 sin x(t)
log

|||||||
u(x(t), t)

u

(
𝜋

2
, t
)
|||||||
+

u

(
𝜋

2
, t
)

u(0, t) sin2 x(t) �

𝜋

2

x(t)

sin y

u(y, t)2
dy

<
1

u(0, t)2 sin x(t)
log

|||||||
1

(T − t)u

(
𝜋

2
, t
)
u(0, t)2

+ 1

|||||||
+

2

u(0, t)2 sin2 x(t)

<
1

u(0, t)2 sin x(t)
⋅

1

(T − t)u

(
𝜋

2
, t
)
u(0, t)2

+
2

u(0, t)2 sin2 x(t)
.

W3(t) <
1

2 sin x(t)
⋅

1

W3(t)
+

1

sin2 x(t)
+

1

2
log

[
2(T − t)u(0, t)3

]
.

W3(t)
2
<

[
1

sin2 x(t)
+

1

2
log

[
2(T − t)u(0, t)3

]]
⋅W3(t) +

1

2 sin x(t)

<
1

2

[
1

sin2 x(t)
+

1

2
log

[
2(T − t)u(0, t)3

]]2
+

1

2
W3(t)

2 +
1

2 sin x(t)
,

W3(t) <

√[
1

sin2 x(t)
+

1

2
log

[
2(T − t)u(0, t)3

]]2
+

1

sin x(t)
.

lim sup
t↗T

W3(t)

log
[
(T − t)

1

3 u(0, t)
] ≤

3

2
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which completes this proof.   ◻

In addition, we can give some properties of u for 2 < p < 3 and p = 3.

Corollary 2 Let 2 < p ≤ 3 , u be a solution of (1.1)–(1.2) with (1.3) and assume (I1), 
(I2), (I3), and (I4). Then u satisfies the following. 

 (i) lim
t↗T

u

(
�

2
, t
)

u(0, t)
= 0.

 (ii) If 𝜋
2
< x < L , then there exists Cx > 0 such that sup

t∈(0,T)

u(x, t) ≤ Cx < ∞.

Proof We only prove the case of L = m� , where m ≥ 2 is an integer, for the simplic-
ity of the description. The general case can be proved similarly.

It is obtained by (2.5) and Theorem 2 that

and

which implies (i) holds because of (1.3). Next, if 𝜋∕2 < x < 𝜋 , then

If 2 < p < 3 , then it is obtained by (2.1) and (2.15) that

If p = 3 , then it is verified by (2.10) and (2.14) that

(2.15)
u

(
𝜋

2
, t
)

u(0, t)
≤

1

2(p − 1)
B

(
1

2
,
3 − p

2

)
⋅

1

(T − t)u(0, t)p
if 2 < p < 3

(2.16)lim sup
t↗T

u

(
�

2
, t
)

u(0, t)
≤

3

2
⋅ lim sup

t↗T

log
[
(T − t)

1

3 u(0, t)
]

(T − t)u(0, t)3
if p = 3

∫

x

0

cos y

u(y, t)p−1
dy =

∫

𝜋

2

0

cos y

u(y, t)p−1
dy +

∫

x

𝜋

2

cos y

u(y, t)p−1
dy

<
∫

𝜋

2

0

cos y

u(y, t)p−1
dy −

1

u

(
𝜋

2
, t
)p−1

(1 − sin x).

0 ≤ lim
t↗T

u

(
�

2
, t
)p−1

�

�

2

0

cos y

u(y, t)p−1
dy

≤ lim
t↗T

u

(
�

2
, t
)p−1

u(0, t)p−1
⋅
1

2
B

(
1

2
,
3 − p

2

)
= 0.
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where x(t) is defined by (2.7). Hence, we have

and it is obtained by (2.16) that

They imply that if 2 < p ≤ 3 then for 𝜋

2
< x < 𝜋 there exists t∗(x) such that 

∫

x

0

cos y

u(y, t∗(x))
p−1

dy < 0 . On the other hand, if 𝜋
2
< x < 𝜋 then ux(x, t) cos x > 0 and

Hence, there exists C∗(x) > 0 such that

Therefore, if 2 < p ≤ 3 and 𝜋
2
< x < 𝜋 , then

∫

𝜋

2

0

cos y

u(y, t)2
dy

<
1

u(0, t)2
log

[
2(T − t)u(0, t)3

]

+
1

u(0, t)2 sin x(t)
⋅

1

(T − t)u

(
𝜋

2
, t
)
u(0, t)2

+
2

u(0, t)2 sin2 x(t)
,

0 < u

(
𝜋

2
, t
)2

∫

𝜋

2

0

cos y

u(y, t)2
dy

<

u

(
𝜋

2
, t
)2

u(0, t)2
log

[
2(T − t)u(0, t)3

]

+

u

(
𝜋

2
, t
)

u(0, t) sin x(t)
⋅

1

(T − t)u(0, t)3
+

2u
(
𝜋

2
, t
)2

u(0, t)2 sin2 x(t)

lim
t↗T

u

(
�

2
, t
)2

∫

�

2

0

cos y

u(y, t)2
dy = 0 for p = 3.

(
∫

x

0

cos y

u(y, t)p−1
dy

)

t

= −(p − 1)
∫

x

0

(
uxx(y, t) + u(y, t)

)
cos y dy

= −(p − 1)
(
ux(x, t) cos x + u(x, t) sin x

)
< 0 for any t ∈ (0, T).

−
1 − sin x

u(x, t)p−1
<
�

x

𝜋

2

cos y

u(y, t)p−1
dy

< sup
t∗(x)≤t<T

�

x

0

cos y

u(y, t)p−1
dy < −C∗(x) if t∗(x) ≤ t < T .
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Furthermore, if � ≤ x ≤ L , then u(x, t) ≤ sup0<t<t∗(y) u(y, t) < ∞ with 𝜋
2
< y < 𝜋 by 

the monotonicity of u with respect to x > 0 due to (I2), which completes the proof of 
(ii).   ◻

3  The Proof of Theorem 1

Let u be a solution of (1.1)–(1.2) with (1.3) and consider rescaled function

where � ∶= log
1

T−t
 . This rescaling, which is called Type I rescaling, is widely used 

in the literature, for instance, [4, 5, 7]. Then U is a solution of

and satisfies

due to (1.3). In particular, it is shown in [7] under assumptions (I1), (I2), and (I3) 
that there exists 𝜏∗ > 0 such that

and

(See Proposition 2.2 in [7].) We also note that [5, 7] provided a special traveling 
wave solution of (3.2) to prove (1.5) and (1.6). In addition, [2] gave some details for 
the special traveling wave solution. Precisely, [2] proved that if 𝜅 > p

−
1

p then there 
exist 𝜀

𝜅
> 0 and R = R( ⋅ ;�) such that

with the following conditions.

u(x, t) ≤ max

{(
1 − sin x

C∗(x)

) 1

p−1

, sup
0<t<t∗(x)

u(x, t)

}
< ∞.

(3.1)U(x, �) ∶= e
−

�

p u(x, T − e−�) = (T − t)
1

p u(x, t),

(3.2)U
�
= Up(Uxx + U) −

1

p
U

lim sup
�↗∞

max
x∈[−L,L]

U(x, �) = ∞

(3.3)U
𝜎
(0, 𝜎) > 0 for 𝜎 ≥ 𝜏∗

U(0, �) = (T − t)
1

p u(0, t) ↗ ∞ as � ↗ ∞ or t ↗ T .

(3.4)

⎧⎪⎨⎪⎩

R��(x;�) + R(x;�) =
1

pR(x;�)p−1
+

�
�
R�(x;�)

R(x;�)p
for x ∈ ℝ,

R(0;�) = �

R�(0;�) = 0
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– �
�
= O

(
1

�

p

p−2

)
 as � ↗ ∞.

– R�(x;𝜅) < 0 if x > 0.
– R(x;�) ↘ 0 as x ↗ ∞.
– R��(x;𝜅) + R(x;𝜅) > 0 for any x ∈ ℝ.

Let 𝜏 > 0 and � = U(0, �) . Then U(x, �) ∶= R
(
x + �

�
(� − �);�

)
 is a solution of 

(3.2) with U(x, �) = R(x;�).

Remark The traveling wave solution provided in [5] and [7] is the same as 
V(x, �) ∶= R

(
− x − �

�
(� − �);�

)
 . For small 𝜀

𝜅
> 0 , U and V are called “slowly 

traveling wave”.

The following properties for the special traveling wave solution had very 
important roles in the proof of (1.6) and (1.7). (See Lemma 3.3 and 3.4 in [7].) 

 (R1) there exist positive constants E1(p) and E2(p) such that E1 and E2 depend only 
on p and 

 (R2) There exists 𝜏R > 0 such that the solution R of (3.4) with � = U(0, �) satisfies 

In addition, in [2], we derived additional information for R as follows. (See Theo-
rem 1 and 2 in [2].) 

 (R3) If 2 < p < 3 , then �p−1R

(
�

2
;�
)
=

1

2p
B

(
1

2
,
3 − p

2

)
+ o(1) as � ↗ ∞ , where 

B(⋅, ⋅) is the beta function.

 (R4) If p = 3 , then 
�
2R

(
�

2
;�
)

log �
= 1 + o(1) as � ↗ ∞.

 (R5) 
R�

(
�

2
;�
)

�

= −1 + o(1) as � ↗ ∞ for 2 < p ≤ 3.

In the following lemma, we list the properties of U and R, which are needed to 
prove our main result.

Lemma 1 Assume (I1), (I2), (I3), and (I4). Let � and U be defined by (3.1). Then 
there exist �0 , C1(p) , C2(p) such that for � ≥ �0 and the solution R of (3.4) with 
� = U(0, �) the following hold. 

 (i) U
𝜏
(0, 𝜏) > 0 and U(0, 𝜎) > U(0, 𝜏) if 𝜎 > 𝜏 ≥ 𝜏0.

E1(p) < 𝜀
𝜅
𝜅

p

p−2 < E2(p).

U(x, 𝜏) > R
(
x;U(0, 𝜏)

)
for any x > 0 and 𝜏 ≥ 𝜏R.



394 K. Anada et al.

1 3

 (ii) 
C1(p)

U(0, 𝜏)
p

p−2

< 𝜀U(0,𝜏) <
C2(p)

U(0, 𝜏)
p

p−2

 . Here, �U(0,�) is �
�
 which satisfies (3.4) for 

� = U(0, �).
 (iii) If 2 < p < 3 , then 

 (iv) If p = 3 , then 

 (v) U(x, 𝜎) > R
(
x + 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

)
 if x > 0 and 𝜎 > 𝜏 ≥ 𝜏0.

 (vi) −U(0, 𝜏) < R�
(
x;U(0, 𝜏)

)
< 0 for any x > 0.

Proof (3.3) and (R1) can directly lead to (i) and (ii), respectively. (iii) can be 
obtained by (R2), (R3), and the upper bound of Wp , (2.5). In addition, (iv) can also 
be proved by (R2), (R4), and the upper bound of W3 , (2.6).

(v) can be shown by (R2) and the maximum principle because if 𝜎 > 𝜏 ≥ 𝜏0 then 
U(x, �) and U(x, �) = R

(
x + �U(0,�)(� − �);U(0, �)

)
 are solution of

with U(x, 𝜏) > R
(
x;U(0, 𝜏)

)
= U(x, 𝜏) , U(0, �) > U(0, �) = R

(

0;U(0, �)
)

≥
R
(

�U(0,�)(� − �);U(0, �)
)

=  (0, �) , R
(
x;U(0, �)

)
↘ 0 as x → ∞ , and 

U(x, 𝜎) ≥ e
−

𝜎

p 𝜂0 > 0 , where �0 is given in (I3). Furthermore, (vi) is obtained by 
R�
(
x;U(0, 𝜏)

)
< 0 and R��

(
x;U(0, 𝜏)

)
+ R

(
x;U(0, 𝜏)

)
> 0 for any x > 0 . Indeed, 

since R�
(
x;U(0, 𝜏)

)
R��

(
x;U(0, 𝜏)

)
+ R�

(
x;U(0, 𝜏)

)
R
(
x;U(0, 𝜏)

)
< 0 for any x > 0 , 

we have 
(
R�
(
x;U(0, 𝜏)

))2
<

(
R�
(
x;U(0, 𝜏)

))2
+ R

(
x;U(0, 𝜏)

)2
< U(0, 𝜏)2 and thus 

0 > R�
(
x;U(0, 𝜏)

)
> −U(0, 𝜏) which complete this proof.   ◻

In addition, we prepare the following lemma. For the solution U of (3.2) and 
𝜆 > 0 , we define

Lemma 2 Assume (I1), (I2), (I3), and (I4). Let �0 be given in Lemma 1. For 𝜆 > 0 it 
holds that

C1(p)

U(0, 𝜏)p−1
< R

(
𝜋

2
;U(0, 𝜏)

)
< U

(
𝜋

2
, 𝜏
)
<

C2(p)

U(0, 𝜏)p−1
.

C1(p) logU(0, 𝜏)

U(0, 𝜏)2
< R

(
𝜋

2
;U(0, 𝜏)

)
< U

(
𝜋

2
, 𝜏
)
<

C2(p) logU(0, 𝜏)

U(0, 𝜏)2
.

V
�
= Vp(Vxx + V) −

1

p
V in (0,∞) × (�,∞)

(3.5)𝜓
𝜆
(𝜎) ∶=

∫

∞

𝜎

1

U(0, �̃�)
2

p−2

e−𝜆(�̃�−𝜎) d�̃�.

(3.6)0 < 𝜓
𝜆
(𝜎) <

1

𝜆U(0, 𝜎)
2

p−2

< ∞ if 𝜎 ≥ 𝜏0.
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Furthermore, �
�
 satisfies

Proof Since U
𝜏
(0, �̃�) > 0 if �̃� ≥ 𝜏0 , we have

Hence, it is obtained by letting �� ↗ ∞ that 0 < 𝜓
𝜆
(𝜎) < (𝜆U(0, 𝜎)

2

p−2 )−1 < ∞ , that 
is, (3.6) holds. Here, use has been made of

Furthermore, by (3.6), we have

which implies (3.7) holds.   ◻

Next, we give lower estimates for �
�
 as follows.

Lemma 3 Assume (I1), (I2), (I3), and (I4). Let �0 be given in Lemma 1 and 
� ∈ (�0,∞) be fixed arbitrarily. Then �

�
 defined in (3.5) satisfies the following.

– If 2 < p < 3 and � = U(0,�)
−

p(3−p)

p−2  , then there exists a positive constant 
C∗ = C∗(p) such that C∗ is independent of � and 

– If p = 3 and � =
(
logU(0,�)

)−1 , then there exists a positive constant 
C∗ = C∗(p) such that C∗ is independent of � and 

(3.7)𝜓
�

𝜆
(𝜎) < 0 if 𝜎 ≥ 𝜏0

0 <
∫

𝜎
�

𝜎

1

U(0, �̃�)
2

p−2

e−𝜆(�̃�−𝜎) d�̃�

= −
1

𝜆U(0, 𝜎�)
2

p−2

e−𝜆(𝜎
�−𝜎)

+
1

𝜆U(0, 𝜎)
2

p−2

−
2

(p − 2)𝜆 ∫

𝜎
�

𝜎

U
𝜏
(0, �̃�)

U(0, �̃�)
p

p−2

e−𝜆(�̃�−𝜎) d�̃�.

∫

∞

𝜎

U
𝜏
(0, �̃�)

U(0, �̃�)
p

p−2

e−𝜆(�̃�−𝜎) d�̃� > 0.

𝜓
�

𝜆
(𝜎) = −

1

U(0, 𝜎)
2

p−2

+ 𝜆𝜓
𝜆
(𝜎) < 0

(3.8)𝜓
𝜆
(𝜏) ≥

C∗

U(0, 𝜏)p−1
if 𝜇 > 𝜏 ≥ 𝜏0.

(3.9)𝜓
𝜆
(𝜏) ≥

C∗ logU(0, 𝜏)

U(0, 𝜏)2
if 𝜇 > 𝜏 ≥ 𝜏0.
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Proof The following notations are used in the proofs below:

and

where C2(p) is defined in Lemma 1 and

In contrast to the case of p = 3 , M1 and M2 depend on p only in the case of 2 < p < 3

.
Let � ∈ [�0,�) be fixed and R be a solution of (3.2) with � = U(0, �) . By Lemma 

1 (i), (iii), (v) and (vi), if 𝜎 > 𝜏 ≥ 𝜏0 , then U and R satisfy

and

This implies that if 𝜎 > 𝜏 ≥ 𝜏0 then

Hence, if 𝜎 > 𝜏 ≥ 𝜏0 , then

M1(p,U(0, 𝜎)) ∶=

{
C2(p) (2 < p < 3),

C2(p) logU(0, 𝜎) (p = 3)

M2(p,U(0, 𝜎)) ∶=

{
C3(p) (2 < p < 3),

C3(p)(logU(0, 𝜎))−
3

2 (p = 3),

C3(p) ∶=
(p − 1)(p − 2)

C2(p)
p

(p−1)(p−2) (p2 − 2p + 2)
.

(3.10)R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

)
< U

(
𝜋

2
, 𝜎

)
<

M1(p,U(0, 𝜎))

U(0, 𝜎)p−1

(3.11)−U(0, 𝜎) < −U(0, 𝜏) < R�
(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

)
< 0.

𝜓
�

𝜆
(𝜎) − 𝜆𝜓

𝜆
(𝜎) = −

1

U(0, 𝜎)
2

p−2

<
1

U(0, 𝜎)
p

p−2

R
�
(
𝜋

2
+ 𝜀

U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

)

<
1

M1(p,U(0, 𝜎)))
p

(p−1)(p−2)

R

(
𝜋

2
+ 𝜀

U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) p

(p−1)(p−2)

× R
�
(
𝜋

2
+ 𝜀

U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

)

=
M2(p,U(0, 𝜎))

𝜀
U(0,𝜏)

(
R

(
𝜋

2
+ 𝜀

U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) p

(p−1)(p−2)
+1
)

𝜎

.



397

1 3

Upper estimates for blow-up solutions of a quasi-linear parabolic equation

and it is obtained by integrating from � to ∞ with respect to � that

When 2 < p < 3 , we have

Since it is verified by (3.10) that

if � = U(0,�)
−

p(3−p)

p−2  , then 𝜆U(0, 𝜏)
p(3−p)

p−2 < 1 for 𝜇 > 𝜏 ≥ 𝜏0 and thus it is obtained by 
Lemma 1 (ii) that

(
e−𝜆(𝜎−𝜏)𝜓

𝜆
(𝜎)

)
𝜎

<

M2(p,U(0, 𝜎))

𝜀U(0,𝜏)

e−𝜆(𝜎−𝜏)
(
R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) p

(p−1)(p−2)
+1
)

𝜎

(3.12)

− 𝜓
𝜆
(𝜏)

=
∫

∞

𝜏

(
e−𝜆(𝜎−𝜏)𝜓

𝜆
(𝜎)

)
𝜎

d𝜎

<

M2(p,U(0, 𝜎))

𝜀U(0,𝜏)
∫

∞

𝜏

e−𝜆(𝜎−𝜏)
(
R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) p

(p−1)(p−2)
+1
)

𝜎

d𝜎.

−𝜓
𝜆
(𝜏) < −

C3(p)

𝜀U(0,𝜏)

R

(
𝜋

2
;U(0, 𝜏)

) p

(p−1)(p−2)
+1

+
C3(p)𝜆

𝜀U(0,𝜏)
∫

∞

𝜏

e−𝜆(𝜎−𝜏)R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) p

(p−1)(p−2)
+1

d𝜎.

∫

∞

𝜏

e−𝜆(𝜎−𝜏)R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) p

(p−1)(p−2)
+1

d𝜎

< C2(p)
p

(p−1)(p−2)
+1

∫

∞

𝜏

1

U(0, 𝜎)
2

p−2
+p

e−𝜆(𝜎−𝜏) d𝜎

<

C2(p)
p

(p−1)(p−2)
+1

U(0, 𝜏)p
𝜓
𝜆
(𝜏),

C3(p)

𝜀U(0,𝜏)

R

�
𝜋

2
;U(0, 𝜏)

� p

(p−1)(p−2)
+1

<

�
1 +

C3(p)C2(p)
p

(p−1)(p−2)
+1
𝜆

𝜀U(0,𝜏)U(0, 𝜏)p

�
𝜓
𝜆
(𝜏)

<

⎛⎜⎜⎝
1 +

C3(p)C2(p)
p

(p−1)(p−2)
+1
𝜆U(0, 𝜏)

p(3−p)

p−2

C1(p)

⎞⎟⎟⎠
𝜓
𝜆
(𝜏)

<

�
1 +

C3(p)C2(p)
p

(p−1)(p−2)
+1

C1(p)

�
𝜓
𝜆
(𝜏) if 𝜇 > 𝜏 ≥ 𝜏0.
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Furthermore, Lemma 1 (ii) and (iii) imply that if 2 < p < 3 then

Therefore, it is obtained that there exists C∗ = C∗(p) such that C∗ is independent of 
� and

Next, when p = 3 , by (3.12), we have

Now, we can assume that U(0, �0) ≥ e
1

3 and then it holds that

because f (s) = log s

s3
 is decreasing for s > e

1

3 . Hence, it is verified by (3.10) that

and

1

𝜀U(0,𝜏)

R

(
𝜋

2
;U(0, 𝜏)

) p

(p−1)(p−2)
+1

>

C1(p)
p

(p−1)(p−2)
+1

C2(p)
⋅

1

U(0, 𝜏)p−1
.

𝜓
𝜆
(𝜏) ≥

C∗

U(0, 𝜏)p−1
if 2 < p < 3,𝜇 > 𝜏 ≥ 𝜏0 and 𝜆 =

1

U(0,𝜇)
p(3−p)

p−2

.

(3.13)

− 𝜓
𝜆
(𝜏)

=
∫

∞

𝜏

(
e−𝜆(𝜎−𝜏)𝜓

𝜆
(𝜎)

)
𝜎

d𝜎

<
∫

∞

𝜏

M2(3,U(0, 𝜎))e−𝜆(𝜎−𝜏)

𝜀U(0,𝜏)

(
R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) 5

2

)

𝜎

d𝜎

< −
C3(3)

𝜀U(0,𝜏)

(
logU(0, 𝜎)

) 3

2

R

(
𝜋

2
;U(0, 𝜏)

) 5

2

+
C3(3)𝜆

𝜀U(0,𝜏)
∫

∞

𝜏

e−𝜆(𝜎−𝜏)

(
logU(0, 𝜎)

) 3

2

R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) 5

2

d𝜎

+
3C3(3)

2𝜀U(0,𝜏)
∫

∞

𝜏

U
𝜏
(0, 𝜎)e−𝜆(𝜎−𝜏)

U(0, 𝜎)
(
logU(0, 𝜎)

) 5

2

R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) 5

2

d𝜎.

logU(0, 𝜎)

U(0, 𝜎)3
<

logU(0, 𝜏)

U(0, 𝜏)3
(𝜎 > 𝜏 ≥ 𝜏0)

(3.14)

∫

∞

𝜏

1
(
logU(0, 𝜎)

) 3

2

e
−𝜆(𝜎−𝜏)

R

(
𝜋

2
+ 𝜀

U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)
) 5

2

d𝜎

< C2(3)
5

2

∫

∞

𝜏

logU(0, 𝜎)

U(0, 𝜎)5
e
−𝜆(𝜎−𝜏)

d𝜎

<

C2(3)
5

2 logU(0, 𝜏)

U(0, 𝜏)3
𝜓
𝜆
(𝜏)
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If � =
(
logU(0,�)

)−1 , then 𝜆 logU(0, 𝜏) < 1 for 𝜇 > 𝜏 ≥ 𝜏0 and thus, by (3.13), 
(3.14) and (3.15), we have

Furthermore, Lemma 1 (ii) and (iv) imply that if p = 3 then

and

Therefore, it is obtained that there exists C∗ = C∗(p) such that C∗ is independent of 
� and

which completes this proof.   ◻

(3.15)

∫

∞

𝜏

U
𝜏
(0, 𝜎)

U(0, 𝜎)
(
logU(0, 𝜎)

) 5

2

e−𝜆(𝜎−𝜏)R

(
𝜋

2
+ 𝜀U(0,𝜏)(𝜎 − 𝜏);U(0, 𝜏)

) 5

2

d𝜎

< C2(3)
5

2

∫

∞

𝜏

U
𝜏
(0, 𝜎)

U(0, 𝜎)6
e−𝜆(𝜎−𝜏) d𝜎

< C2(3)
5

2

(
1

5U(0, 𝜏)5
−

𝜆

5 ∫

∞

𝜏

1

U(0, 𝜎)5
e−𝜆(𝜎−𝜏) d𝜎

)

<

C2(3)
5

2

5U(0, 𝜏)5
.

C3(3)

𝜀U(0,𝜏)

(
logU(0, 𝜎)

) 3

2

R

(
𝜋

2
;U(0, 𝜏)

) 5

2

−
3C3(3)C2(3)

5

2

10𝜀U(0,𝜏)U(0, 𝜏)5

<

(
1 +

C3(3)C2(3)
5

2 𝜆 logU(0, 𝜏)

𝜀U(0,𝜏)U(0, 𝜏)3

)
𝜓
𝜆
(𝜏)

<

(
1 +

C3(3)C2(3)
5

2

C1(3)

)
𝜓
𝜆
(𝜏) if 𝜇 > 𝜏 ≥ 𝜏0.

1

𝜀U(0,𝜏)

(
logU(0, 𝜏)

) 3

2

R

(
𝜋

2
;U(0, 𝜏)

) 5

2

>

C1(3)
5

2 logU(0, 𝜏)

C2(3)U(0, 𝜏)2

1

𝜀U(0,𝜏)U(0, 𝜏)5
<

1

C1(3)U(0, 𝜏)2
.

𝜓
𝜆
(𝜏) ≥

C∗ logU(0, 𝜏)

U(0, 𝜏)2
if p = 3,𝜇 > 𝜏 ≥ 𝜏0 and 𝜆 =

1

logU(0,𝜇)
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We make use of �
�
 defined by (3.5) with Lemmas 2 and 3 and prove the fol-

lowing theorem.

Theorem  3 Assume (I1), (I2), (I3), and (I4). There exists a positive constant 
C = C(p) such that the following hold.

– If 2 < p < 3 then lim sup
�↗∞

U(0,�)

�

p−2

p(3−p)

≤ C.

– If p = 3 then lim sup
�↗∞

U(0,�)

exp
�
C
√
�

� ≤ 1.

Proof First, we consider the case of 2 < p < 3 . By (3.7) and (3.8), if 2 < p < 3 , 
𝜇 > 𝜏 ≥ 𝜏0 and � = U(0,�)

−
p(3−p)

p−2  , then it holds that

Hence, we have

and thus

where

In addition, (3.6) and (3.8) imply that if � = U(0,�)
−

p(3−p)

p−2  then

Therefore, it is obtained that

0 > 𝜓
�

𝜆
(𝜏) = −

1

U(0, 𝜏)
2

p−2

+ 𝜆𝜓
𝜆
(𝜏)

> −

(
1

U(0, 𝜏)p−1

) 2

(p−1)(p−2)

> −
1

C

2

(p−1)(p−2)

∗

𝜓
𝜆
(𝜏)

2

(p−1)(p−2) .

(
𝜓
𝜆
(𝜏)

−
p(3−p)

(p−1)(p−2)

)
𝜏

< C4(p) if 𝜏 ≥ 𝜏0

𝜓
𝜆
(𝜇)

−
p(3−p)

(p−1)(p−2) − 𝜓
𝜆
(𝜏0)

−
p(3−p)

(p−1)(p−2) < C4(p)(𝜇 − 𝜏0) if 𝜇 > 𝜏0,

C4(p) =
p(3 − p)

(p − 1)(p − 2)C

2

(p−1)(p−2)

∗

.

𝜓
𝜆
(𝜇) <

1

𝜆U(0,𝜇)
2

p−2

=
1

U(0,𝜇)p−1
and 𝜓

𝜆
(𝜏0) ≥

C∗(p)

U(0, 𝜏0)
p−1

.
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Since (3.16) holds for any � ∈ (�0,∞) and �0 , C4 and C∗ are independent of � , it can 
be shown that there exists C = C(p) such that

Next, we consider the case of p = 3 . (3.7) and (3.9) imply that if 𝜇 > 𝜏 ≥ 𝜏0 and 
� =

(
logU(0,�)

)−1 then

Hence, there exists C5 such that

We note that C5 is independent of � . Since it is verified by (3.6) and (3.9) that

and

we have

(3.16)

U(0,𝜇)
p(3−p)

p−2

< 𝜓
𝜆
(𝜇)

−
p(3−p)

(p−1)(p−2)

< C4(p)(𝜇 − 𝜏0) + C∗(p)
−

p(3−p)

(p−1)(p−2)U(0, 𝜏0)
p(3−p)

p−2 .

lim sup
�↗∞

U(0,�)

�

p−2

p(3−p)

≤ C.

0 > 𝜓
�

𝜆
(𝜏) = −

1

U(0, 𝜏)2
+ 𝜆𝜓

𝜆
(𝜏)

> −
1

logU(0, 𝜏)
⋅
logU(0, 𝜏)

U(0, 𝜏)2

> −
𝜓
𝜆
(𝜏)

C∗ logU(0, 𝜏)
.

[(
log

1

𝜓
𝜆
(𝜏)

)2
]�

= −
2𝜓 �

𝜆
(𝜏)

𝜓
𝜆
(𝜏)

log
1

𝜓
𝜆
(𝜏)

<
2

C∗ logU(0, 𝜏)

(
log

U(0, 𝜏)2

C∗ logU(0, 𝜏)

)

=
2
(
2 logU(0, 𝜏) − log(C∗ logU(0, 𝜏))

)
C∗ logU(0, 𝜏)

< C5 if 𝜇 > 𝜏 ≥ 𝜏0.

𝜓
𝜆
(𝜇) <

1

𝜆U(0,𝜇)2
=

logU(0,𝜇)

U(0,𝜇)2

�
�
(�0) ≥

C∗ logU(0, �0)

U(0, �0)
2

if � =
1

logU(0,�)
,
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Here, we note that logU(0,𝜇) < U(0,𝜇) for any � . Hence, it holds that

Since (3.17) holds for any � ∈ (�0,∞) and �0 , C5 and C∗ are independent of � , it can 
be obtained that there exists C = C(p) such that

which completes this proof.   ◻

Theorem  3 directly leads to the results of Theorem  1, that is, there exists 
t∗ ∈ (0, T) and C = C(p) > 0 such that if t∗ < t < T  then

and

which completes the proof of Theorem 1.

Remark It has been shown in [4] (the case of p = 2 ) or [7] (the case of 2 ≤ p < 3 ) 
that

(
logU(0,𝜇)

)2

<

(
log

U(0,𝜇)2

logU(0,𝜇)

)2

<

(
log

1

𝜓
𝜆
(𝜇)

)2

< C5(𝜇 − 𝜏0) +

(
log

1

𝜓
𝜆
(𝜏0)

)2

≤ C5(𝜇 − 𝜏0) +

(
log

U(0, 𝜏0)
2

C∗ logU(0, 𝜏0)

)2

(3.17)

U(0,𝜇)

exp(
√
C5𝜇)

< exp

⎛⎜⎜⎝

�
C5(𝜇 − 𝜏0) +

�
log

U(0, 𝜏0)
2

C∗ logU(0, 𝜏0)

�2

−
√
C5𝜇

⎞⎟⎟⎠
.

lim sup
�↗∞

U(0,�)

exp
�
C
√
�

� ≤ 1

max
x∈[−L,L]

u(x, t) = u(0, t) ≤ C(p)

(
1

T − t

) 1

p
(
log

1

T − t

) p−2

p(3−p)

for 2 < p < 3

max
x∈[−L,L]

u(x, t) = u(0, t) ≤
(

1

T − t

) 1

3

exp

(
C

√
log

1

T − t

)
for p = 3

(3.18)lim
t↗T

u

(
�

2
, t
)
= ∞.
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We can mention that (3.18) also holds in the case of p = 3 because (2.4) and Theo-
rem 1 (ii) imply u satisfies

and thus, if u
(
�

2
, t
)
 would be bounded as t ↗ T  , then we have a contradiction.   ◻

In addition, we can obtain Corollary 1.

Proof of Corollary 1 [4] has shown that if p = 2 then

Furthermore, Theorem 1 implies that the same features hold in the case of 2 < p ≤ 3 
under assumptions (I1), (I2), (I3), and (I4) because of

and

for any 𝜀 > 0 .   ◻

4  Conclusion

In this paper, we provided the upper estimation of the blow-up rates for solutions 
of (1.1) with the periodic boundary condition (1.2) in the case of 2 < p < 3 and 
p = 3 in Theorem 1. No results on the upper estimate of blow-up rate are previously 
known for p ≥ 3 . Our upper estimate for p = 3 is the first result for this issue.

Clarifying the relationship between the value of p and the blow-up rate of the solu-
tion is an interesting problem. As a known result, it was shown in [5] that solution with 

1

T − t �

T

t

u

(
�

2
, s
)
ds

=
1

2(T − t) �

�

2

0

cos y

u(y, t)2
dy

≥
1

2(T − t)
1

3

exp

(
−2C

√
log

1

T − t

)

=
1

2
exp

(
1

3
log

1

T − t
− 2C

√
log

1

T − t

)
for any t ∈ (t∗, T)

lim
t↗T

(T − t)
1

2
+𝜀 max

x∈[−L,L]
u(x, t) = 0 for any 𝜀 > 0.

lim
t↗T

(T − t)𝜀
(
log

1

T − t

) p−2

p(3−p)

= 0 in the case of 2 < p < 3

lim
t↗T

(T − t)� exp

(
C

√
log

1

T − t

)
= 0 in the case of p = 3
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the rate of Type II appears at p = 2 . Another known result was given in [7], where the 
blow-up rate changes between p = 2 and 2 < p < 3 . In addition to these, our results in 
this paper suggest the need for a discussion on the possible change in the rate between 
2 < p < 3 and p = 3 . The reason why the upper estimates for p = 3 of Theorem  1 
differ from 2 < p < 3 is due to the drastic change in the behavior at �

2
 of the slowly 

traveling waves R at 2 < p < 3 and p = 3 as proved in [2]. On the other hand, it is still 
unclear whether the blow-up rate of the solution, in fact, changes for 2 < p < 3 and 
p = 3 , which is one of our future issues.

Although the precise form of the blow-up rate for 2 < p ≤ 3 and the reason that gen-
erates the difference in blow-up rate between p = 2 and p > 2 is unclear, combining 
our results in this paper with [7], we are closer to the conclusion that the blow-up rate 
for 2 < p < 3 would have the form (1.10), which is different from p = 2.

In our proof, we use the slowly traveling wave R to evaluate the blow-up solu-
tions. This method is valid under periodic boundary conditions. However, this is not 
directly applicable to the case of the Dirichlet boundary condition since the comparison 
between the solution and R fails due to the boundary condition. And, in the case of 
p > 3 , the estimation of R( �

2
;�) is more involved than the case of p ≤ 3 . Hence, our 

strategy for upper estimates of the blow-up rate does not work well so far and there are 
no results on upper estimates of the blow-up rates for p > 3 . These are also our future 
works.
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