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Abstract
Static equilibrium configurations of continua supported by surface tension are given 
by constant mean curvature (CMC) surfaces which are critical points of a variational 
problem to extremize the area while keeping the volume fixed. CMC surfaces are 
used as mathematical models of a variety of continua, such as tiny liquid drops, 
stars, and nuclei, to play important roles in both mathematics and physics. There-
fore, the geometry of CMC surfaces and their properties such as stability are of 
special importance in differential geometry and in a variety of physical sciences. In 
this paper we examine the stability of CMC hypersurfaces in arbitrary dimensions, 
possibly having boundaries on two parallel hyperplanes, by investigating the second 
variation of the area. We determine the stability of non-uniform liquid bridges or 
unduloids for the first time in all dimensions and all parameter (the ratio of the neck 
radius to bulge radius) regimes. The analysis is assisted by numerical computations.
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1 Introduction

A static equilibrium configuration of a continuum supported by surface tension is 
known to be well approximated by a constant-mean-curvature (CMC) surface, 
which extremizes the surface area for given volume and boundary conditions. CMC 
surfaces are used as mathematical models of a variety of continua, such as liquid 
drops, stars, and nuclei, to play important roles in both mathematics and physics [1, 
2].

In the three-dimensional Euclidean space ℝ3 , one of fundamental problems 
regarding CMC surfaces is to find stable CMC surfaces which possibly have bound-
aries on given two parallel planes Π1 and Π2 . Here, a CMC surface is said to be 
stable if the second variation of the area for any volume-preserving variation is 
non-negative. Since only stable surfaces are stably realized in natural phenomena, 
it is important to judge the stability for a CMC surface, which is difficult in general. 
Allowing no self-intersections of surface, it is shown that equilibrium surfaces con-
tained in the region bounded by Π1 and Π2 are axially-symmetric CMC surfaces with 
the straight line perpendicular to Πi as its rotation axis [3] (which will be called the 
z-axis throughout this paper), and they make contact angles �∕2 with Πi (i = 1, 2) 
[4, Sect.1.6]. Hence these surfaces are spheres, hemispheres, parts of cylinders and 
unduloids [5] (Fig.  1). Among them, only spheres, hemispheres, and thick cylin-
ders are stable. Thin cylinders and unduloids are unstable CMC surfaces, i.e., they 
extremize the area but do not minimize it for a given volume [6, 7].1 The insta-
bility of thin cylinder is known as the Plateau-Rayleigh instability [8, 9] in fluid 
mechanics.

An interesting non-trivial aspect of the above problem is that the stability of 
unduloids depends on the dimension. There is a higher-dimensional counterpart of 
the unduloid that is an axially-symmetric CMC hypersurface in ℝn+2 ( n = 1, 2,… ) 
which is periodic and has no self-intersection. We call it also an unduloid. A 
half period of an unduloid from a neck to the next bulge (such as the left figure 

Fig. 1  Left: An axially-symmetric hypersurface in ℝn+2 with the z-axis as the axis of rotation. Its profile 
curve is given by a function h = h(z) that represents the distance from the z-axis. Right: A part of an 
unduloid

1 In this paper, we are concerned with only the stability of a half period of unduloid U (from a neck to 
the next bulge or from a bulge to the next neck) since m × U (m ≥ 2) is always unstable. Note that if a 
half period of an unduloid is stable (resp. unstable) between two parallel hyperplanes in ℝn+2 (n ∈ ℕ) , 
one period of the unduloid is stable (resp. unstable) in ℝn+1 × S1 , and vice versa. This is proved in 
Appendix A.1.



235

1 3

Stability of hypersurfaces with constant mean curvature

in Fig. 1) satisfies the boundary condition. We define its non-uniformness param-
eter as s ∶= 1 − (hmin∕hmax) ∈ (0, 1) , where hmin and hmax denote the radii of the 
unduloid at the neck and bulge, respectively. Then, for any negative number H 
and s ∈ (0, 1) , up to rigid motion in ℝn+2 , there exists exactly one unduloid with 
mean curvature H with respect to the outward-pointing unit normal and having 
non-uniformness s. Denote by U = U(H, s) a half period of such unduloid. Then, 
for the Gromov-Hausdorff distance, lims→1−0 U(H, s) is a hemisphere with radius 
1∕|H| , and lims→0+0 U(H, s) is a cylinder with radius r = n∕[(n + 1)|H|] and height 
L = (

√
n�)((n + 1)�H�)−1 . While the unduloids in higher dimensions were numeri-

cally obtained and their geometric quantities were computed [12–14], their stability 
has not been clarified completely so far. Let U be a half period of an unduloid. Then 
the following results on the stability are known [6, 7, 10, 11] 

 (i) For any n ≥ 1 , if U is sufficiently close to a hemisphere, then U is unstable.
 (ii) For 1≤n≤ 6 , U is unstable.
 (iii) For 7≤ n≤9 (resp. n≥10 ), if U is sufficiently close to a cylinder, then U is 

unstable (resp. stable).
 (iv) For n ≥ 8 , there exists some U that is stable.

In this paper, which corresponds to an extended version of a letter by the present 
authors [15], we comprehensively examine the stability of unduloids U in all dimen-
sions and parameter regimes by investigating the second variation of area with 
the help of numerical computations. The results are summarized as statements 
(I)–(IV) in Sect. 5. A noteworthy result there is, roughly speaking, as follows: When 
7 ≤ n ≤ 9 , if U is sufficiently close to either a cylinder or a hemisphere, then U is 
unstable, and moreover there exists stable U . Especially, the existence of stable 
unduloid for n = 7 and instability of a half period of an unduloid close to a hemi-
sphere for 7 ≤ n ≤ 9 are found for the first time in this paper.

The geometric quantities of unduloid such as surface area, bulk volume, and 
mean curvature are obtained with the help of numerical integration. We will see that 
the stability is determined by the behaviors of these geometric quantities and stabil-
ity criteria. There, besides the standard criteria for the stability, we use the bifurca-
tion technique (see Sect. 3.1, A.4) developed in [16] in order to judge the stability, 
which was not used in the papers mentioned above. It is remarkable that the regions 
of s where the unduloid is stable (resp. unstable) completely coincide with those 
where the enclosed volume V(s) is non-increasing (resp. increasing) for any n (see 
Table 1, Sect. 5).

Before starting analysis, let us mention that the higher-dimensional CMC hyper-
surfaces attract much attention in the study of general relativity, in particular, black 
holes. The black-hole counterparts of the cylinder and unduloid are called uniform 
black strings and non-uniform black strings respectively, and they exhibit various 
similarities with their counterparts [17, 18]. Furthermore, the ‘surface’ of a black 
hole (i.e., event horizon) was recently shown to indeed be approximated by a time-
like CMC hypersurface in a large-dimension limit of general relativity [19]. We will 
return this point in Sect. 5.
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The organization of this paper is as follows. We begin by calculating the vari-
ations of surface area and bulk volume for axially symmetric hypersurfaces in 
Sect. 2.1. Then, an eigenvalue problem associated with the second variation of area 
is introduced in Sect. 2.2. In Sect. 3, the stability criteria for unduloids is presented 
in terms of the eigenvalues, mean curvature, and volume. The stability of unduloids 
is examined in Sect. 4, using the criteria prepared in the previous section. Section 5 
is devoted to summary and discussions. The proofs of mathematical propositions 
and the method to compute geometric quantities of unduloids are presented in 
Appendices A and B, respectively.

2  Variation and eigenvalue problem

2.1  Area, volume, and their variations

We consider axially symmetric hypersurfaces in the closed domain of ℝn+2 (n ∈ ℕ) 
bounded by two hyperplanes Π1 ∶= {z = z1} and Π2 ∶= {z = z2} . The local radius 
of a hypersurface is represented by height function h(z) (see Fig. 1).2

It is convenient to consider a one-parameter family of height function h(z, �) , 
where � is a variation parameter. Then, the surface area and bulk volume of the axi-
ally symmetric object between z = z1 and z = z2 are

Here, an and vn+1 are the volume of a unit n-sphere and that of a unit (n + 1)-ball, 
respectively, given by

A partial derivative is denoted by a subscript as hz ∶= �zh hereafter. The mean cur-
vature of the hypersurface is

(1)A = an
∫

z2

z1

√
1 + hz(z, �)

2 h(z, �)ndz,

(2)V = vn+1
∫

z2

z1

h(z, �)n+1dz.

(3)an = (n + 1)vn+1 =
2�

n+1

2

Γ
(

n+1

2

) .

2 Our main subject is to judge the stability of a half period of an unduloid. By using Schwarz symmetri-
zation, we see that it is sufficient to study only axially symmetric variations. Namely, if the second varia-
tion of area is nonnegative for all axially symmetric volume-preserving variations of unduloid, then such 
an unduloid is stable. See Lemma A.1 in Appendix A.2 for a more general statement.
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For a cylinder, hemisphere, and unduloid, H takes a negative value in the present 
convention.

The calculation of variations is equivalent to obtain the coefficients of the following 
expansion,

The coefficient of expansion is obtained by X
�
= ��

�
X|�=0 (� = 0, 1, 2,…).

The first variations of area and volume are easily obtained in terms of h0(z) and 
h1(z),

From Eqs. (6) and (7), one sees that the hypersurface which is the surface of revolu-
tion of h0 is an equilibrium configuration or a critical point if and only if the follow-
ing conditions hold,

The CMC condition for the equilibrium configuration (8) corresponds to the Young-
Laplace relation in fluid mechanics [20].

Now, let us focus on the volume-preserving variation ( V� ≡ 0 ) of CMC hypersur-
face, for which Eqs. (8) and (9) hold. For such a variation, the first derivative of area 
can be written as

(4)H =
1

n + 1

⎡
⎢⎢⎢⎣

hzz

(1 + h2
z
)3∕2

−
n

h
�

1 + h2
z

⎤
⎥⎥⎥⎦
.

(5)X(�) =

∞∑
�=0

X
�

�!
�� , X = h,A,V , or H.

(6)A1 = −(n + 1)an
∫

z2

z1

H0h
n
0
h1dz + an

⎡
⎢⎢⎢⎣

hn
0
h0z�

1 + h2
0z

h1

⎤
⎥⎥⎥⎦

z2

z1

,

(7)V1 = an
∫

z2

z1

hn
0
h1dz.

(8)H0(z) =const.,

(9)h0z(z1) =h0z(z2) = 0.

(10)A� = A� + (n + 1)H0V�

(11)= −(n + 1)an
∫

z2

z1

�
H(z, �) − H0

�
hnh�dz + an

⎡
⎢⎢⎢⎣

hnhzh��
1 + h2

z

⎤
⎥⎥⎥⎦

z2

z1

.
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Then, the second derivative of area is

Using Eqs. (8), (9) and (12), one obtains the second variation of area in terms of h0 , 
h1 , and H1,

It is noted that A2 is independent of h2 due to the addition of term (n + 1)H0V� in 
Eq. (10).

The first variation of mean curvature H1 in Eq. (13) can be written as

by defining the following linear operator

Therefore, A2 is written in a simple form,

2.2  Eigenvalue problem associated with second variation of area

An equilibrium is defined to be stable if the second variation is non-negative for 
all volume-preserving variations. This condition is equivalent to A2 ≥ 0 for all 
variations satisfying V1 = 0.

From this viewpoint, let us consider the following eigenvalue problem associ-
ated with A2.

(12)

A�� = − (n + 1)an
∫

z2

z1

�
H�h

nh� + n(H − H0)h
n−1h2

�
+ (H − H0)h

nh��

�
dz

+ an

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

hnhzh��
1 + h2

z

⎞
⎟⎟⎟⎠�

⎤
⎥⎥⎥⎦

z2

z1

.

(13)A2 = −(n + 1)an
∫

z2

z1

H1(z)h
n
0
h1dz + an

[
hn
0
h1h1z

]z2
z1
.

(14)H1(z) =
1

(n + 1)hn
0

Lh1,

(15)L ∶=
d

dz

(
�(z)

d

dz

)
+

nhn−2
0√

1 + h2
0z

,

(16)�(z) ∶=
hn
0(

1 + h2
0z

)3∕2
.

(17)A2 = −an
∫

z2

z1

h1Lh1dz + an
[
h1�(z)h1z

]z2
z1
.
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where i = 1, 2, 3,… labels the eigenvalue �i and eigenfunction �i(z) . Since L is a 
Sturm-Liouville operator, it is shown that 𝜆1 < 𝜆2 < 𝜆3 < … , and that �i(z) has 
exactly i − 1 zeros in (z1, z2).

The general variation of the height function is a linear combination of the eigen-
functions h1(z) =

∑∞

i=1
ci�i(z) , ci ∈ ℝ . Then, A2 and V1 are written in terms of ci and 

�i,

where the orthonormality ∫ z2
z1

�i�jdz = �ij is assumed.
From Eqs. (19) and (20), one sees that an equilibrium h0 is stable if �1 ≥ 0 since 

in such a case A2 > 0 for all non-trivial (i.e., h1 ≢ 0 ) volume-preserving variations 
satisfying V1 = 0 . One the other hand, one sees that an equilibrium h0 is unstable if 
�2 is negative. Namely,

holds since in such a case A2 < 0 for the volume-preserving variation given by

For a uniform cylinder h0 ≡ r = const. , Eq. (18) is

If one puts z1 = 0, z2 = L (> 0) , the eigenvalue of a cylinder �cyl
i

 is obtained by solv-
ing Eq. (23),

From Eq. (24), one can see that if

𝜆
cyl

2
< 0 holds and such a thin cylinder is unstable from criterion (21) (see also Refs. 

[21, 22] for a dynamical counterpart). More precisely, it is proved that the cylinder 

(18)
L�i(z) = −�i�i(z),

�iz(z1) = �iz(z2) = 0,

(19)A2 = an

∞∑
i=1

c2
i
�i,

(20)V1 = an

∞∑
i=1

ci
∫

z2

z1

hn
0
�idz,

(21)𝜆2 < 0 ⟹ unstable

(22)c1 = −
∫

z2
z1

hn
0
�2dz

∫
z2
z1

hn
0
�1dz

c2, c2 ≠ 0, ci = 0 (i ≥ 3).

(23)d2�i

dz2
+

nrn−2 + �
cyl

i

rn
�i = 0.

(24)�
cyl

i
=

([ (i − 1)�r

L

]2
− n

)
rn−2, i = 1, 2, 3,… .

(25)r < rc ∶=

√
nL

𝜋
,
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with radius r and length L is stable if and only if r ≥ rc holds (cf. [11]). We call the 
cylinder with critical radius rc a critical cylinder.

The sphere Sn+1 and the hemisphere with a boundary in either z = z1 or z = z2 are 
stable because Sn+1 is the minimizer of area among all closed hypersurfaces enclos-
ing the same volume.

3  Stability criteria of unduloids

It is convenient to introduce a quantity parameterizing the family of unduloids. As 
such a quantity, we adopt the non-uniformness parameter

introduced in Sect. 1 where hmin and hmax denote the radii of an unduloid at the neck 
and bulge, respectively. One can naturally assign s = 0 and s = 1 to the critical cyl-
inder and the largest hemisphere, that fits the interval, respectively. In the rest of this 
paper, we denote the half period of unduloid itself, mean curvature, volume, and 
eigenvalue of such an unduloid by U(s) , H(s), V(s), and �i(s) , respectively.3

For U(s) , one can show the negativity (resp. positivity) of �1 (resp. �3 ). Namely, 
the following holds,

See Appendix A.3 for a proof.
In the rest of this section, we will introduce mathematical theories which play 

crucial roles in the stability analysis of Sect. 4. In Sect. 3.1, we see how to determine 
the sign of �2(s) from the behavior of H(s). While 𝜆2(s) < 0 immediately implies the 
instability of U(s) from (21), another criterion is needed to determine the stability of 
U(s) when �2(s) ≥ 0 . Therefore, in Sect. 3.2, we see how the behavior of H(s) and 
V(s) determines the stability when �2(s) ≥ 0.

3.1  Sign of second eigenvalue �
2

From Eq. (24), one can see that the second eigenvalue of cylinder �cyl
2

 increases and 
changes sign from negative to positive as radius r increases. From the point where 
�2(0) = 0 , two branches of unduloid4 emanate (see Fig.  2). For these branches of 
unduloids bifurcating from the critical cylinder, the sign of �2(s) is determined by 
the relative value of the mean curvature to that of the critical cylinder. Namely, if the 
mean curvature of the emanating unduloid H(s) is larger (resp. smaller) than that 

(26)s = 1 −
hmin

hmax

∈ (0, 1),

(27)𝜆1(s) < 0 < 𝜆3(s), ∀s ∈ (0, 1).

3 In this paper, we assume the continuity of lims→+0 X = X|s=0 and lims→1−0 X = X|s=1 for X = A,V  and 
H.
4 The half period of unduloid with a neck at z1 and one with a bulge at z1 are distinguished in the current 
bifurcation theory, although their physical properties are identical.



241

1 3

Stability of hypersurfaces with constant mean curvature

of the critical cylinder H(0), the second eigenvalue of the unduloid �2(s) is negative 
(resp. positive),

This statement is derived from Theorem A.2 in Appendix A.4. The criterion is visu-
alized in Fig. 2. This criterion can be utilized to determine the sign of �2(s) for U(s) 
close to the cylinder 0 < s ≪ 1.

In order to know when �2(s) changes sign, the following criteria are quite useful.

Their proofs are presented in Appendix  A.5. What criteria (29) and (30) mean is 
that, under the assumption that H��(s) ≠ 0 and V �(s) ≠ 0 , �2(s) changes sign when 
H�(s) does. Although the possibility that �2(s) vanishes even when H�(s) ≠ 0 is not 
excluded by (29), it can be proved that

See Prop. A.2 in Appendix A.6. Thus, once the sign of �2(s) near s = 0 (the criti-
cal cylinder) is determined by (28), the sign of �2 in the full range of s is known by 
investigating H��(s) and V �(s) at zeros of H�(s).

3.2  Criteria when �
2
≥ 0

While 𝜆2(s) < 0 immediately implies that an unduloid U(s) is unstable from (21), 
another criteria is necessary to determine the stability of U(s) when �2(s) ≥ 0 . From 
the criteria for the stability given by Lemma A.2 in Appendix A.2, we have the fol-
lowing observations.

When �2(s) = H�(s) = 0 and V �(s) ≠ 0 hold, U(s) is unstable. Namely, the follow-
ing holds,

(28)H(s) ≷ H(0) ⟹ 𝜆2(s) ≶ 0.

(29)H′
≠ 0 at s ⟹ �2 does not change sign at s,

(30)H
� = 0&H

��
≠ 0&V

�
≠ 0 at s ⟹ �2 = 0& �2 changes sign at s.

(31)H�(s) ≠ 0 ⟹ �2(s) ≠ 0.

(s) (s)

(b)(a)

Fig. 2  Diagrams representing criterion (28). If the mean curvature of unduloid is (a) larger (resp. (b) 
smaller) than that of the critical cylinder H(s) > H(0) (resp. H(s) < H(0) ), �2 is negative (resp. positive). 
Note that H takes negative values in the present convention
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When 𝜆2(s) > 0 , the stability is related to the increase and the decrease of the mean 
curvature and volume. Namely, U(s) with 𝜆2(s) > 0 is unstable (resp. stable) if 
H�(s)V �(s) is negative (resp. non-negative).

We will utilize criteria (32) and (33) to determine the stability of U(s) whose �2(s) is 
non-negative.

3.3  Comment: no iteration is needed

In the next section, we numerically obtain the mean curvature and volume for each 
U(s) . Before starting such an analysis, let us see that obtaining H(s), V(s), and their 
derivatives numerically is a much simpler task than solving eigenvalue problem 
(18).

H(s) and V(s) can be computed by just obtaining the ‘background’ solution h0(z) . 
The function h0(z) is obtained by solving H0(z) = const. with boundary conditions 
h0z(z1) = h0z(z2) = 0 . At a first glance, this problem seems to be a two-boundary 
problem requiring an iterative integration. By reducing H0(z) = const. , which is a 
second-order ODE (ordinary differential equation), to an equivalent potential prob-
lem (a first-order ODE) and introducing an appropriate parameterization, however, 
no iteration turns out to be needed and the geometric quantities of unduloids, H(s) 
and V(s), are obtained by just estimating several improper integrals numerically (see 
Appendix B).

On the other hand, the eigenvalue equation (18) is essentially a two-boundary 
problem requiring an iteration procedure such as the shooting method [23]. Further-
more, one has to numerically solve the “perturbation equation” (18) for �2(z) and �2 
on the numerical background h0(z) , which is a part of operator L in Eq. (15).

Thus, it is stressed here that the stability criteria presented in Sects. 3.1 and 3.2 
are not only easy to use but also enormously reduce the amount of numerical com-
putations required in the analysis. This demonstrates the merit of adopting the geo-
metric variational method throughout in our analysis, rather than ordinary mode-
decomposition methods which are the standard for stability analysis in physics.

4  Stability of unduloids in ℝn+2 ( n ∈ ℕ)

What are needs to do in order to examine the stability of all unduloids is to obtain 
the height function h0(z) corresponding to the half period of unduloid by numerically 
integrating the ODE H0(z) = const. with boundary conditions h0z(z1) = h0z(z2) = 0 , 
while taking the dimension n ∈ ℕ and non-uniformness s ∈ (0, 1) as free parameters. 
Then, one can estimate the mean curvature H and volume V as functions of s for 

(32)�2(s) = H
�(s) = 0 & V

�(s) ≠ 0 ⟹ unstable.

(33)𝜆2(s) > 0 &

{
H�(s)V �(s) < 0

H�(s)V �(s) ≥ 0
⟹

{
unstable

stable
.



243

1 3

Stability of hypersurfaces with constant mean curvature

each n.5 Finally, utilizing the stability criteria (21) and (28)–(33), one can determine 
the stability of every unduloid.

In the rest of this section, we will clarify the stability of unduloids in all dimen-
sions and parameter regimes of s. According to the behaviors of geometric quan-
tities, we classify the dimensions into four classes, A ( 1 ≤ n ≤ 6 ), B ( n = 7 ), C 
( 8 ≤ n ≤ 9 ), and D ( n ≥ 10 ), and examine the stability separately. Qualitative fea-
tures of diagrams and stability structures are common in each class. The results in a 
final form are summarized as four statements (I)–(IV) in Sect. 5.

The characteristic area-volume diagrams of the unduloid, cylinder, and hemi-
sphere are shown in Fig. 3. In addition, the numerical plots of H�(s) and V �(s) , the 
derivatives of mean curvature and volume of unduloid U(s) with respect to s, are 
presented also in Fig. 3.

The area in the area-volume diagram is normalized in such a way that the area 
of the hemisphere remains unity in all ranges of the volume. The volume is normal-
ized in such a way that the volume of the largest hemisphere, which fits the interval 
[z1, z2] , is unity. In the plots of H�(s) and V �(s) , H�(s) and V �(s) are normalized by 
lims→1−0 |H�(s)| = 1 and lims→1−0 |V �(s)| = 1 , respectively.

4.1  Class A: 1 ≤ n ≤ 6

It is characteristic of this class that any unduloid has larger area than the cylinder 
and hemisphere with the same volume, and the area-volume curve of an unduloid 
has no cusp.

From Fig. 3, one can see that H�(s) > 0, ∀s ∈ (0, 1) . Therefore, the sign of �2(s) 
is definite in the range of s by criteria (29) and (31). From the fact that H�(s) > 0 in 
a vicinity of s = 0 , H(s) > H(0) holds for the unduloid which just bifurcated from 
the critical cylinder, which implies 𝜆2(s) < 0 near s = 0 with criterion (28) (see also 
Fig. 2). Thus, 𝜆2(s) < 0 holds ∀s ∈ (0, 1) , from which (21) implies all unduloids are 
unstable in this class. This is consistent with known results in the literature, i.e., 
statement (ii).

4.2  Class B: n = 7

It is characteristic of this class that the area-volume curve of an unduloid has two 
cusps which form a swallowtail shape. We observe that both H�(s) and V �(s) have 
two simple zeros, which we denote by sk ( k = 0, 1, 2, 3 ) as

(34)
H�(s0) = V �(s1) = V �(s2) = H�(s3) = 0,

0 < s0 < s1 < s2 < s3 < 1.

5 In fact, the ODE H0(z) = const. can be reduced to an equivalent first-order ODE and the geometric 
quantities (area, volume, and mean curvature) of unduloids are then written as improper integrals, which 
are functions of only s (after fixing the period of unduloid) for each n. Therefore, what we need to do is 
to estimate such improper integrals accurately. See Appendix B for details.
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n = 6 ∈ Class A

n = 7 ∈ Class B

n = 8 ∈ Class C

n = 10 ∈ Class D

Fig. 3  Left: Area-volume diagrams of the cylinder (dashed black line), hemisphere (thick blue line), and 
unduloid (red dots with solid line) for n = 6, 7, 8 , and 10, from the top to the bottom. Right: H�(s) (solid 
orange line) and V �(s) (dashed green line) of unduloid U(s) for n = 6, 7, 8 , and 10 from the top to the bot-
tom
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From the behavior of H�(s) , one knows that �2(s) vanishes and changes sign only 
at s = s0 and s = s3 with criteria (29)-(31). From this fact and the behavior of H�(s) 
with criterion (28), one can see that 𝜆2(s) < 0 (resp. �2(s) ≥ 0 ) for s ∈ (0, s0) ∪ (s3, 1) 
(resp. s ∈ [s0, s3] ). Therefore, U(s) for s ∈ (0, s0) ∪ (s3, 1) is unstable with criterion 
(21). Since �2(s) ≥ 0 for s ∈ [s0, s3] , we have to see also the behavior of V �(s) in order 
to use criteria (32) and (33). From Fig. 3, V �(s) vanishes at neither s = s0 nor s = s3 , 
which with (32) implies that U(s0) and U(s3) are unstable. Since H�(s)V �(s) < 0 
(resp. H�(s)V �(s) ≥ 0 ), U(s) is unstable (resp. stable) for s ∈ (s0, s1) ∪ (s2, s3) (resp. 
s ∈ [s1, s2]).

The stability of the unduloid depending on s is summarized in Table 1, and val-
ues of sk (k = 0, 1, 2, 3) numerically obtained are presented in Table 2.

As mentioned before, the existence of stable unduloids for n = 7 has not been 
known. Thus, the stable unduloid for s ∈ [s1, s2] is found for the first time in this 
paper.

4.3  Class C: 8 ≤ n ≤ 9

In this class the area-volume curve of an unduloid has two cusps as in Class B. The 
quantity V �(s) has two simple zeros, but H�(s) has only one simple zero. Taking into 
account the correspondence with Class B, we denote these zeros as follows.

From the behavior of H�(s) , one sees that �2(s) changes sign only at s = s3 with cri-
teria (29)–(31). From this fact and the behavior of H�(s) with criterion (28), one 
can see that �2(s) ≥ 0 (resp. 𝜆2(s) < 0 ) for s ∈ (0, s3] (resp. s ∈ (s3, 1) ). Therefore, 
U(s) is unstable for s ∈ (s3, 1) with criterion (21). Since �2(s) ≥ 0 for s ∈ (0, s3] , one 
has to see the behavior of V �(s) to use criteria (32) and (33). Since V �(s3) ≠ 0 , U(s3) 
is unstable with (32). Since H�(s)V �(s) < 0 (resp. H�(s)V �(s) ≥ 0 ), U(s) is unstable 
(resp. stable) for s ∈ (0, s1) ∪ (s2, s3) (resp. s ∈ [s1, s2] ) with (33). These results are 
consistent with the known results in the literature, i.e., statements (i)–(iv).

4.4  Class D: n ≥ 10

In this class the area-volume curve of an unduloid has only one cusp. Both H�(s) 
and V �(s) have a simple zero. Taking into account the correspondence to the other 
classes, we denote the zeros as follows.

From the behavior of H�(s) and criteria (28)–(31), one sees that �2(s) changes sign 
only at s = s3 and �2(s) ≥ 0 (resp. 𝜆2(s) < 0 ) for s ∈ (0, s3] (resp. s ∈ (s3, 1) ). There-
fore, U(s) for s ∈ (s3, 1) is unstable with (21). Since �2(s) ≥ 0 for s ∈ (0, s3] , we have 
to see the behavior of V �(s) in order to use criteria (32) and (33). Since V �(s3) ≠ 0 , 
U(s3) is unstable with (32). Since H�(s)V �(s) < 0 (resp. H�(s)V �(s) ≥ 0 ), U(s) is 
unstable (resp. stable) for s ∈ (s2, s3) (resp. s ∈ (0, s2] ) with criterion (33).

(35)V �(s1) = V �(s2) = H�(s3) = 0, 0 < s1 < s2 < s3 < 1.

(36)V �(s2) = H�(s3) = 0, 0 < s2 < s3 < 1.
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5  Summary and discussions

The equilibrium configuration of continuum supported by only surface tension 
(i.e., ignoring external gravity and self-gravity) is well approximated by a CMC 
(constant-mean-curvature) surface that is a critical point of the variational problem 
extremizing the surface area while keeping the volume fixed. We have investigated 
the stability of CMC hypersurfaces in ℝn+2 (n ∈ ℕ) that possibly have boundaries on 
two parallel hyperplanes, by examining if the CMC hypersurfaces not only extrem-
ize but also minimize the surface area amongst all nearby surfaces while keeping the 
volume fixed. In particular, we have focused on the stability of non-uniform liquid 
bridges, known as the Delaunay unduloids [5], for which stability had been known 
partially [6, 7, 10, 11] as statements (i)–(iv) presented in Sect. 4.

Table 1  The sign of H�(s), �2(s) , and V �(s) and the stability of unduloid U(s) in ℝn+2 as functions of the 
non-uniformness parameter s ∈ (0, 1) in Class A, B, C, and D

Class A

s

H�(s) +

�2(s) −
V �(s) +
Stability Unstable

Class B

s s0 s1 s2 s3

H�(s) + 0 − 0 +

�2(s) − 0 + 0 −
V �(s) + 0 − 0 +

Stability Unstable Stable Unstable

Class C

s s1 s2 s3

H�(s) − 0 +

�2(s) + 0 −
V �(s) + 0 − 0 +

Stabil-
ity

Unsta-
ble

Stable Unstable

Class D

s s2 s3

H�(s) − 0 +

�2(s) + 0 −
V �(s) − 0 +

Stabil-
ity

Stable Unstable
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We have revealed the stability of unduloids for all n ∈ ℕ and for all range of 
non-uniformness parameter s ∈ (0, 1) , defined by Eq.  (26). After obtaining mean 
curvature H and volume V of unduloids as functions of s numerically, the stability 
of unduloids was determined using their derivatives and stability criteria (21) and 
(28)–(33) presented in Sect. 3.

Although the behaviors of both H(s) and V(s) have played the central roles in our 
stability analysis, an interesting point is that the regions of s where the unduloid is 
stable (resp. unstable) completely coincide with those where V(s) is non-increasing 
(resp. increasing) for any n (see Table 1). Therefore, the bottom line of the stability 
analysis is summarized without mentioning H(s) as follows.

Let s ∈ (0, 1) be the non-uniformness parameter of a half period of an unduloid 
between two parallel hyperplanes in ℝn+2 (n ∈ ℕ) defined by Eq.  (26). The half 
period of an unduloid with parameter s and its bulk (n + 2)-volume are denoted by 
U(s) and V(s), respectively (the distance between the two hyperplanes is fixed). Then, 
the following (I)–(IV) hold.

 (I) For any n ≥ 1 , U(s) is stable (reps. unstable) if and only if V �(s) ≤ 0 (resp. 
V �(s) > 0).

 (II) If 1 ≤ n ≤ 6 , then U(s) is unstable for any s ∈ (0, 1).
 (III) If 7 ≤ n ≤ 9 , there exist s1 and s2 such that V �(s1) = V �(s2) = 0 and 

0 < s1 < s2 < 1 . For any s ∈ [s1, s2] (resp. s ∈ (0, s1) ∪ (s2, 1) ), U(s) is stable 
(resp. unstable).

 (IV) If n ≥ 10 , there exists s2 such that V �(s2) = 0 and 0 < s2 < 1 . For any 
s ∈ (0, s2] (resp. s ∈ (s2, 1) ), U(s) is stable (resp. unstable).

The values of s1 and s2 are presented in Table 2 with other characteristic values, s0 
and s3 (see Eqs. (34), (35), and (36) for the definitions).

We have not paid much attention to hemispheres and cylinders since their stabil-
ity structure is completely understood as mentioned in Sect. 2.2. Nevertheless, let 
us have a look at them here, from which one can see the inevitability of the region 
where V �(s) ≤ 0 for n ≥ 8 . As can be seen in Fig. 3, the area-volume curves of hemi-
sphere and cylinder intersect for n ≤ 7 , but not for n ≥ 8 . A crucial reason of this is 
that the ratio of the volume of the critical cylinder V(0) to that of the largest hemi-
sphere (i.e., the hemisphere which fits the interval [z1, z2] ) V(1), given by

increases with n and becomes larger than unity for n ≥ 8 (see Table 3). Namely, for 
n ≥ 8 the branch of unduloids emanating from the critical cylinder at s = 0 must 

(37)
V(0)

V(1)
=

vn+1r
n+1L�r=rc

1

2
vn+2L

n+2
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(n + 2)n
n+3

2 (n − 1)!

2n−1�n+1(n + 1)
��

n−1

2

�
!
�2 (n ∶ odd)

2n+1(n + 2)n
n−1

2

��
n

2

�
!
�2

�n+2(n + 1)(n − 1)!
(n ∶ even)

,
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have a region where the volume decreases to reach the largest hemisphere at s = 1 . 
Although dimension n = 7 , at and above which the stable unduloid exists, differs 
from this critical number of dimension n = 8 by one, their closeness is clearly not a 
coincidence.

In passing, let us point out that the area-volume curve deforms continuously if 
n changes continuously. As n increases from 1, the ‘swallowtail’ (two cusps) of the 
area-volume curve appears at n ≃ 7 . As n increases further, the swallowtail becomes 
large. In other words, s1 decreases to approach 0 and s2 increases to approach 1. 
Indeed, s1 decreases as n increases to vanish finally at n ≃ 10 . As far as we know, s2 
continues to increase but does not vanish for arbitrarily large n ≫ 1 , which is con-
sistent with statement (i). If one treats n as a continuous parameter and examines the 
stability for non-integer n, which seems to bring no technical problem, the behaviors 
of area-volume curve and stability structure expected and described above would be 
observed.

In this paper, the stability of unduloids was determined by the behaviors of H(s) 
and V(s), which were obtained by numerical integration. Therefore, the correct-
ness of the conclusions is based on that of these numerical computations. It is noted 
that one needs highly accurate computation to show that s2 < s3 holds ( s2 and s3 
are defined as the zeros of V �(s) and H�(s) , respectively) for n ≥ 8 . For example, 
s3∕s2 − 1 ≃ +5.6 × 10−6 for n = 9 by our computation, and this quantity seems to 
decrease further as n increases. Nevertheless, we assumed that s2 < s3 continues to 
hold for arbitrarily large n, otherwise our conclusions on the stability might be dif-
ferent from those presented in the text. Therefore, any analytic method or alternative 
numerical methods that guarantee accuracy will be helpful to confirm the results in 
this paper.

Related to the results of this paper, one of the most interesting problems would 
be to investigate the implications to dynamical problems. While this was partially 
worked by one of the present authors in [22] using the surface-diffusion equation 
[24, 25], there are still many things to do in this direction.

We remark that the stability of black strings qualitatively exhibits a simi-
lar dependence on the dimension. Suppose a D-dimensional vacuum spacetime 
( D ≥ 5 ) with one spacelike dimension compactified to a circle S1 . Then, there exist 
non-uniform black strings of which horizon topology is SD−3 × S1 . The stability 
of such black strings has been examined using the thermodynamic criterion, and 
argued as follows [18]. If 5 ≤ D ≤ 11 , all non-uniform black strings are unstable. 
If 12 ≤ D ≤ 13 , there exists a critical non-uniformness below (resp. above) which 

Table 2  Values of 
sk (k = 0, 1, 2, 3) for several n 

There exists no sk (k = 0, 1, 2, 3) in Class A ( 1 ≤ n ≤ 6 ). The exist-
ence of sk (k = 0, 1, 2, 3) is the same in each class

n 7 8 9 10 11

s0 0.437 n/a n/a n/a n/a
s1 0.507 0.275 03 0.093 270 8 n/a n/a
s2 0.665 0.765 33 0.803 961 7 0.828 991 30 0.847 468 517
s3 0.671 0.765 41 0.803 966 2 0.828 991 56 0.847 468 533
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the non-uniform black strings are unstable (resp. stable). If D ≥ 14 , all black strings 
are stable. We are not so surprised at the similarity of stability between these black 
objects and CMC hypersurfaces since it was shown that the event horizon of a black 
hole is approximated by a CMC hypersurface in the large-dimension limit [19]. Nev-
ertheless, it is still interesting to pursue the similarity from various points of view 
such as the fluid/gravity correspondence [26, 27] and the gauge/gravity correspond-
ence [28].

Appendix A: Mathematical propositions and their proofs

A.1 Stability of a half period and one period of an unduloid

Here, we prove

Proposition A.1 If a half period of an unduloid is stable (resp. unstable) between 
two parallel hyperplanes in ℝn+2 (n ∈ ℕ) , one period of the unduloid is stable (resp. 
unstable) in ℝn+1 × S1 , and vice versa.

Proof Let X be a half period of an unduloid U with the z-axis as its axis of revolu-
tion which is generated by a curve

This implies that X is perpendicular to the hyperplanes Π0 = {z = 0} , Π2 = {z = z2} . 
Without loss of generality, we may assume that z = 0 , z = z2 corresponds to the 
bulge and the neck of U , respectively. Denote by Y the one period of U that is gener-
ated by

Assume that X is unstable. Then, there exists a volume-preserving variation X(�) of 
X such that

holds. By reflection with respect to Π0 , we get a volume-preserving variation Y(�) of 
Y which satisfies

(A1)(z, h(z)), h(z) > 0, 0 ≤ z ≤ z2.

(A2)(z, h(z)), h(z) > 0, −z2 ≤ z ≤ z2.

d2A(X(𝜖))

d𝜖2
|||𝜖=0 < 0

Table 3  The ratio of the volume of critical cylinder V(0) to the volume of largest hemisphere V(1), that 
fits the interval [z1, z2]

This quantity exceeds the unity at n = 8

n 1 ⋯ 6 7 8 9 10 11

V(0)/V(1) 0.152 ⋯ 0.408 0.623 1.005 1.707 3.033 5.621
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This implies that Y is also unstable.
Assume now that Y is unstable. Then, there exists a volume-preserving variation 

Y(�) of Y such that

holds. Let Ŷ(𝜖) be the Steiner symmetrization of Y(�) with respect to Π0 , that is, Ŷ(𝜖) 
is a hypersurface defined by the conditions (i) and (ii) below. Note that we consider 
only hypersurfaces close to Y. Set Π−2 = {z = −z2} . Denote by G(�) , Ĝ(𝜖) the closed 
domains bounded by Y(�) ∪ Π−2 ∪ Π2 , Ŷ(𝜖) ∪ Π−2 ∪ Π2 , respectively. For each point 
P ∈ Π0 , denote by LP the straight line that passes through P and is perpendicular 
to Π0 . Define two straight line segments by Γ̂(𝜖) ∶= LP ∩ Ĝ(𝜖) , Γ(�) ∶= LP ∩ G(�) . 
Note the following.

(i) The lengths of Γ̂(𝜖) and Γ(�) are the same, ( ∀P, �).
(ii) The middle point of Γ̂(𝜖) lies on Π0 , ( ∀�).
Then, it is well-known that
(a) V(G(𝜖)) = V(Ĝ(𝜖)) holds, ( ∀�),
(b) A(Y(𝜖)) ≥ A(Ŷ(𝜖)) holds, ( ∀�)
hold (cf. [29, Note A]). Therefore, Ŷ(𝜖) is a volume-preserving variation of Y such 

that it is symmetric with respect to Π0 and such that

holds. The restriction X̂(𝜖) of Ŷ(𝜖) to {0 ≤ z ≤ z2} is a volume-preserving variation 
of X such that

holds. Hence X is unstable.   ◻

A.2 Stability criteria for axially symmetric equilibrium hypersurfaces

Let

define an axially-symmetric equilibrium hypersurface X with the z-axis as its axis 
of revolution, that is, X is a part of either a cylinder or an unduloid with generating 
curve (A3) and it is perpendicular to the hyperplanes Πi = {z = zi} , ( i = 1, 2 ). Then, 
one can show the following lemma.

d2A(Y(𝜖))

d𝜖2
|||𝜖=0 = 2

d2A(X(𝜖))

d𝜖2
|||𝜖=0 < 0.

d2A(Y(𝜖))

d𝜖2
|||𝜖=0 < 0

d2A(Ŷ(𝜖))

d𝜖2
|||𝜖=0 ≤

d2A(Y(𝜖))

d𝜖2
|||𝜖=0 < 0

d2A(X̂(𝜖))

d𝜖2
|||𝜖=0 =

1

2

d2A(Ŷ(𝜖))

d𝜖2
|||𝜖=0 < 0

(A3)(z, h(z)), h(z) > 0, z1 ≤ z ≤ z2
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Lemma A.1 X is stable if and only if X is stable for axially-symmetric variations.

Proof Assume that X is unstable. Then, there exists a volume-preserving variation 
X(�) of X such that

holds. Let X̂(𝜖) be the Schwarz symmetrization of X(�) , that is X̂(𝜖) is an axially-
symmetric hypersurface defined by the conditions (i) and (ii) below. Note that 
we may assume that X(�) does not have self-intersection and it is contained in 
the closed domain bounded by Π1 , Π2 , because we consider only hypersurfaces 
close to X. Denote by G(�) , Ĝ(𝜖) the closed domains bounded by X(�) ∪ Π1 ∪ Π2 , 
X̂(𝜖) ∪ Π1 ∪ Π2 , respectively. For each hyperplane Πc ∶= {z = c} , ( z1 ≤ c ≤ z2 ), set 
D̂(𝜖) ∶= Πc ∩ Ĝ(𝜖) , then it is a round (n + 1)-ball. 

 (i) D̂(𝜖) has the same (n + 1)-volume as D(�) ∶= Πc ∩ G(�) , ( ∀c, �).
 (ii) The center of D̂(𝜖) lies on the z-axis.

Then, it is well-known that 

(a) V(G(𝜖)) = V(Ĝ(𝜖)) holds, ( ∀�),
(b) A(X(𝜖)) ≥ A(X̂(𝜖)) holds, ( ∀�)

hold (cf. [29, Note A]). Therefore, X̂(𝜖) is a volume-preserving axially-symmetric 
variation of X such that

holds. Hence X is unstable for axially-symmetric variations.
The opposite direction is trivial.   ◻

Now we give two criteria for the stability of axially-symmetric equilibrium 
hypersurfaces. The first criterion (Lemma A.2) will be proved by using the second 
criterion (Lemma A.3) at the end of this subsection.

Lemma A.2 (First stability criterion) Assume that X(s) is a one-parameter smooth 
family of axially-symmetric equilibrium hypersurfaces generated by the curves

that is, X(s) are half periods of unduloids, and we assume that s is the parameter 
defined by (26). Denote by H(s), V(s) the mean curvature, the enclosed (n + 2)

-dimensional volume of X(s), respectively. Denote by �i(s) the i-th eigenvalue of the 
eigenvalue problem (18) for X(s). 

d2A(X(𝜖))

d𝜖2
|||𝜖=0 < 0

d2A(X̂(𝜖))

d𝜖2
|||𝜖=0 < 0

(A4)(z, h(z, s)), h(z, s) > 0, z1 ≤ z ≤ z2,
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 (I) If �1(s) ≥ 0 , then X(s) is stable.
 (II) If 𝜆1(s) < 0 < 𝜆2(s) , then the following (II-1)’ and (II-2)’ hold.

 (II-1)’ If H�(s)V �(s) ≥ 0 , then X(s) is stable.
 (II-2)’ If H�(s)V �(s) < 0 , then X(s) is unstable.

 (III) If �2(s) = 0 , then the following (III-a) and (III-b) hold:

 (III-a) Assume that H�(s) = 0 holds. If V �(s) ≠ 0 , then X(s) is unstable.
 (III-b) Assume that H�(s) ≠ 0 holds.

 (III-b1) If H′(s)V′(s) ≥ 0, then X(s) is stable.
 (III-b2) If H′(s)V′(s) < 0, then X(s) is unstable.

 (IV) If 𝜆2(s) < 0 , then X(s) is unstable.

Remark 5.1 In (III-a) in the above theorem, we assumed H�(s) = 0 and V �(s) ≠ 0 . If 
�2(s) = 0 , H�(s) = 0 and V �(s) = 0 , then all of the assumptions in (III-B) of Lemma 
A.3 are satisfied (see the proof of Lemma A.2). And hence, there exists such a func-
tion u indicated there and (III-B1), (III-B2) hold.

In view of Lemma A.1, the following lemma is proved by a modification of the 
proof of Theorem 1.3 in [30].

Lemma A.3 (Second stability criterion) Let X be an axially-symmetric equilibrium 
hypersurface generated by the curve

 

 (I) If �1 ≥ 0 , then X is stable.
 (II) If 𝜆1 < 0 < 𝜆2 , then there exists a uniquely determined C∞ function 

u ∶ [z1, z2] → ℝ which satisfies Lu = hn and u�(z1) = u�(z2) = 0 , and the fol-
lowing statements hold.

 (II-1) If ∫ z2
z1

uhn dz ≥ 0 , then X is stable.

 (II-2) If ∫ z2
z1

uhn dz < 0 , then X is unstable.
 (III) If 𝜆1 < 0 = 𝜆2 , then the following statements hold:
 (III-A) If there exists a �2-eigenfunction e which satisfies ∫ z2

z1
ehn dz ≠ 0 , then X is 

unstable.
 (III-B) If ∫ z2

z1
ehn dz = 0 for any �2-eigenfunction e, then there exists a uniquely deter-

mined C∞ function u ∶ [z1, z2] → ℝ which satisfies Lu = hn , u�(z1) = u�(z2) = 0 , 
and ∫ z2

z1
euhn dz = 0 holds for any �2-eigenfunction e. And the following state-

ments hold:
 (III-B1) If ∫ z2

z1
uhn dz ≥ 0 , then X is stable.

 (III-B2) If ∫ z2
z1

uhn dz < 0 , then X is unstable.
 (IV) If 𝜆2 < 0 , then X is unstable.

(A5)(z, h(z)), h(z) > 0, z1 ≤ z ≤ z2.
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The following observation will be used to prove Lemma A.2.

Lemma A.4 If X(s) defined by (A4) are half periods of unduloids and s is the param-
eter defined by (26), then for any fixed s,

holds for all z ∈ [z1, z2] , where hs = �h∕�s.

Proof Set

It is sufficient to prove that for any fixed �,

holds for all z ∈ [z1, z2],
Now we may assume that

holds. Differentiating both sides of (A9) with respect to � , we obtain

This implies that

never occurs.   ◻

Proof of Lemma A.2 (I) and (IV) are the same as those in Lemma A.3. So we will 
prove (II) and (III). As Eq. (14), one can show that

Note that H�(s) depends only on s.
First, we prove (II). Since hs ≢ 0 (Lemma A.4), and since zero is not an eigen-

value of (18), (A12) implies H�(s) ≠ 0 . Hence, the function u given in (II) of Lemma 
A.3 satisfies

From Eq. (2), the following holds (changing the variable from � to s),

(A6)hs(z, s) ≢ 0

(A7)� ∶= 1 − s.

(A8)h�(z, �) ≢ 0

(A9)� =
h(z1, �)

h(z2, �)

(A10)1 =
h�(z1, �)h(z2, �) − h(z1, �)h�(z2, �)

(h(z2, �))
2

.

(A11)h�(z, �) = 0, ∀z ∈ [z1, z2]

(A12)Lhs = (n + 1)hnH�(s).

(A13)u =
hs

(n + 1)H�(s)
.
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Equation (A13) with (A14) gives

which shows that (II) in Lemma A.2 is equivalent to (II) in Lemma A.3.
Next, we prove (III). Let e be an eigenfunction belonging to �2 = 0 . Then,

On the other hand, using (A12), we have

Equation (A16) combined with Eq. (A17) gives

First, assume that H�(s) = 0 holds. Then, since hs ≢ 0 (Lemma A.4), Eq. (A12) 
implies that hs is an eigenfunction belonging to �2 = 0 . Since each eigenspace is 
one-dimensional,

Hence,

Therefore, V �(s) ≠ 0 is equivalent to ∫ z2
z1

ehn dz ≠ 0 . From (III-A) in Lemma A.3, 
X(s) is unstable. This gives (III-a).

Lastly, we prove (III-b). Assume that H�(s) ≠ 0 holds. From (A18), there holds

Take the function u that is uniquely defined in (III-B) of Lemma A.3. Using (A12), 
hs is written as

Then,

(A14)V �(s) = an
∫

z2

z1

hnhsdz.

(A15)
∫

z2

z1

uhndz =
V �(s)

(n + 1)anH
�(s)

,

(A16)
∫

z2

z1

e Lhsdz =
∫

z2

z1

hsLe dz = 0.

(A17)
∫

z2

z1

e Lhsdz = (n + 1)H�(s)
∫

z2

z1

ehn dz.

(A18)H�(s)
∫

z2

z1

ehn dz = 0.

(A19)hs = ce, ∃c ∈ ℝ⧵{0}.

(A20)V �(s) = an
∫

z2

z1

hsh
n dz = can

∫

z2

z1

ehn dz.

(A21)
∫

z2

z1

ehn dz = 0.

(A22)hs = (n + 1)H�(s)u + be, ∃b ∈ ℝ.
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holds, which gives

Hence, from (III-B) of Lemma A.3, we obtain (III-b).   ◻

A.3 Negativity (resp. positivity) of the first (resp. third) eigenvalue for unduloids

In addition to the eigenvalue problem (18), we consider also the following eigenvalue 
problem with Dirichlet boundary condition:

and denote its i-th eigenvalue by �0
i
[z1, z2] = �0

i
 . Then, it is well-known that 

𝜆0
1
< 𝜆0

2
< ⋯ and

hold. Also recall that, since L is a Sturm-Liouville operator, each of �i(z) and �i(z) 
has exactly i − 1 zeros in (z1, z2) . Recall that Eq. (14) holds and consider the parallel 
translation

of the unduloid

Then, the mean curvature H(�) is the same as the mean curvature H0 of U . U(�) can 
be represented as

Hence, we have from (14) that

Since U is a half period of an unduloid,

holds and we may assume that hz > 0 on z1 < z < z2 . Hence, hz is an eigenfunction 
of (A25) and the corresponding eigenvalue zero is the first eigenvalue �0

1
 . Hence, by 

(A26),

(A23)V �(s) = an
∫

z2

z1

hsh
n dz = (n + 1)anH

�(s)
∫

z2

z1

uhn dz

(A24)
∫

z2

z1

uhn dz =
V �(s)

(n + 1)anH
�(s)

.

(A25)
L�i(z) = −�i�i(z), z1 ≤ z ≤ z2,

�i(z1) = �i(z2) = 0,

(A26)𝜆i < 𝜆0
i
, ∀i ∈ ℕ

U(�) ∶ (z + �, h(z)), z1 ≤ z ≤ z2

U ∶ (z, h(z)), z1 ≤ z ≤ z2.

U(�) ∶ (z, h(z − �)), z1 + � ≤ z ≤ z2 + �.

(A27)0 = Lh1 = L(−hz) = −L(hz).

hz(z1) = hz(z2) = 0
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holds. Next, we assume that

holds. Then, eigenfunction �3(z) has exactly two zeros �1, �2 , ( 𝜁1 < 𝜁2 ), in (z1, z2) . 
Hence, by the monotonicity of the eigenvalues of the problem (A25) with respect to 
the domain, we have

which is a contradiction. Hence, �3 must be positive.

A.4 Existence of bifurcation and estimate of eigenvalues in a bifurcation branch

Assume that I ⊂ ℝ is an non-empty open interval, and

defines a smooth one-parameter family of axially-symmetric equilibrium hypersur-
faces {X(�)}�∈I , that is, each X(�) is a part of either a cylinder or an unduloid and it 
is perpendicular to the hyperplanes Πi = {z = zi} , ( i = 1, 2 ), and X(�) is of C∞ in � . 
Denote by H(�) the mean curvature of X(�) . Denote by �i(X(�)) the i-th eigenvalue 
of the problem (18) for X(�).

Now we define the concept “bifurcation instant”.

Definition A.1 For � ∈ I , we say that � is a bifurcation instant for the family 
{X(�)}�∈I if there exists a sequence {�k}k∈ℕ in I and a sequence {Yk}k∈ℕ such that: 

 (i) �k → � as k → ∞.
 (ii) Each Yk is an axially-symmetric equilibrium hypersurface that is defined by 

 and the mean curvature of Yk is equal to H(�k) for all k.
 (iii) hk(z) → h(z, �) , ( z1 ≤ z ≤ z2 ), as k → ∞.
 (iv) hk(∗) ≠ h(∗, �) for all � ∈ I and k ∈ ℕ.

In other words, � is a bifurcation instant for the family {X(�)}�∈I if X(�) is an 
accumulation of equilibrium hypersurfaces that are not congruent to any of the 
hypersurface of the family {X(�)}�∈I.
Remark 5.2 The following Theorems A.1, A.2 are proved by modifications of the 
proofs of Theorems 1.1, 6.4 in [16], respectively.

Theorem A.1 (Existence of bifurcation) For simplicity, we assume that 
I = (−𝜖0, 𝜖0) ⊂ ℝ holds. Assume 

(A28)𝜆1 < 𝜆0
1
= 0

(A29)�3 ≤ 0

0 = 𝜆0
1
[z1, z2] < 𝜆0

1
[𝜁1, 𝜁2] = 0,

(z, h(z, 𝜖)), h(z, 𝜖) > 0, z1 ≤ z ≤ z2, 𝜖 ∈ I ⊂ ℝ

(z, hk(z)), hk(z) > 0, z1 ≤ z ≤ z2,
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 (i) H�(0) ≠ 0.
 (ii) �i(X(0)) = 0 for some i ∈ ℕ , and e is an eigenfunction belonging to zero eigen-

value.

Then, ∫
Σ
e dΣ = 0 , and there exists a differentiable map (−�1, �1) ∋ � ↦ �(�) ∈ ℝ , 

with 0 < 𝜖1 ≤ 𝜖0 , such that �(0) = 0 , �(�) is a simple eigenvalue of the eigenvalue 
problem (18) for X(�) , and there is no other eigenvalue of (18) near 0.

Assume further that ��(0) ≠ 0 holds. Then there is a unique smooth bifurcation 
branch {Y(t)}t of axially-symmetric equilibrium hypersurfaces issuing at X(0). More 
precisely, let E⟂ be the orthogonal complement of E ∶= {ae | a ∈ ℝ} in C∞([z1, z2]) 
with respect to the L2 inner product. Then, there exist an open interval Î ⊂ ℝ with 
0 ∈ Î , and C1 functions 𝜁 ∶ Î → E⟂ and 𝜖 ∶ Î → ℝ , such that �(0) = 0 , �(0) = 0 , 
and Y(t) is given by ĥ(z, t) ∶= h(z, 𝜖(t)) + te(z) + t𝜁(t)(z) with mean curvature 
Ĥ(t) ∶= H

(
𝜖(t)

)
.

Moreover, the hypersurfaces {X(�) ∶ � ∈ I} and {Y(t) ∶ t ∈ Î} are pairwise dis-
tinct except for X(0) = Y(0).

Theorem A.2 Under the assumptions of Theorem A.1, denote by {Y(s)}s∈Î the bifur-
cating branch of axially-symmetric equilibrium hypersurfaces given in Theorem A.1. 
Let Ĥ(s) be the mean curvature of Y(s), and �(s) the eigenvalue for the Jacobi opera-
tor LY(s) which was defined by (15). We may assume that H�(0) > 0 holds, by chang-
ing the parameter t to −t if necessary.

Then, the following statements are true. 

 (i) If Ĥ�(s) = 0 for s near 0 (i.e., if Ĥ is locally constant), then �(s) = 0 for s near 
0;

 (ii) If Ĥ�(s) ≠ 0 for s > 0 small, then, for a sufficiently small s0 > 0 , on each 
interval [−s0, 0) and (0, s0] , 𝜇(s) > 0 if 𝜆�(0)sĤ�(s) < 0 , and 𝜇(s) < 0 if 
𝜆�(0)sĤ�(s) > 0 . In particular, supercritical and subcritical pitchfork bifur-
cations correspond to the cases where sĤ�(s) does not change sign at s = 0 
(cf. Fig. 2), and transcritical bifurcation occurs when sĤ�(s) changes sign at 
s = 0.

A.5 Correspondence of sign change between the eigenvalue and mean‑curvature 
derivative

In this section we prove (29) and (30).
Assume that {X(�)}�∈I satisfies the same assumptions as that in Section A.4. 

Denote by H(�) the mean curvature of X(�) , and by V(�) the enclosed (n + 2)
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-dimensional volume by X(�) . Denote by �i(�) the i-th eigenvalue of the problem 
(18) for X(�).

The criterion (29) is proved as follows.

Proof of the criterion (29) Assume that X(s0) is a part of an unduloid. Assume also 
that H′ ≠ 0 holds at s0 . If �2 changes sign at s0 , we can see that s0 is a bifurca-
tion instant in the same way as in the proof of Proposition 2.14 in [31] which is an 
application of [32, Theorem 2.1]. However, in our variational problem, there is no 
bifurcation from any unduloid X(�) , which is a contradiction. Therefore, �2 does not 
change sign at s0 , which proves the criterion (29).   ◻

The criterion (30) is given by the following Lemma A.5.

Lemma A.5 Assume that, for a fixed � , H�(�) = 0 , H��(�) ≠ 0 , V �(�) ≠ 0 , and 
�j(�) = 0 for some j ∈ ℕ . Then, there exists a non-zero real number � such that

holds. In particular, �j changes sign at �.

Proof The formula (2.8) in [33] is about a functional F ∶ H ×ℝ → ℝ , where H is a 
real Hilbert space. In our case, let H be the space of real-valued C∞ functions on the 
interval [z1, z2] ⊂ ℝ with inner product

For any axially-symmetric (not necessarily equilibrium) hypersurface Xh generated 
by

set

and we define another parameter H as

Then, the equation (A30) is equivalent to the formula (2.8) in [33].   ◻

A.6 Equivalence between the vanishing of the eigenvalue and the vanishing 
of the mean‑curvature derivative

Proposition A.2 Let X(s) be a one-parameter smooth family of half periods of undu-
loids with mean curvature H(s) generated by the curves

(A30)�2��
j
(�) = −(n + 1)H��(�)V �(�)

⟨f , g⟩ ∶=
∫

z2

z1

f (z)g(z)h(z, �)n dz.

(A31)(z, h(z)), h(z) > 0, z1 ≤ z ≤ z2,

F(h, a) ∶= A(Xh) − aV(Xh),

−a ∶= (n + 1)H.
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with parameter s defined by (26). Then H�(s0) = 0 if and only if �2(s0) = 0 holds.

Proof We prove the following (i), (ii) one by one. 

 (i) H�(s0) = 0 ⇒ �2(s0) = 0

 (ii) �2(s0) = 0 ⇒ H�(s0) = 0

First, we prove (i). From Eq. (A12) and Lemma A.4, if H�(s0) = 0 , then 0 is an 
eigenvalue. This with (27) implies that �2(s0) = 0 holds.

Next, we prove (ii). Let the mean curvature of X(s0) be H0 . Then, we have a one-
parameter smooth family {X̂(s)} with X̂(s0) = X(s0) of half period of unduloids with 
mean curvature H0 generated by the curves

Note ĥ(∗, s0) = h(∗, s0) , and we denote it by h0.
Now, for a half period of an unduloid generated by the curve

denote by H[h] its mean curvature. Consider the equation

Then we have, using Eq. (A12),

Since X̂(s) is a suitable homothety of X(s), there exists a smooth positive function 
c(s) of s such that

holds. Hence we have

Since c(s0) = 1 , Eq. (A38) gives

that is

(A32)(z, h(z, s)), h(z, s) > 0, 0 ≤ z ≤ z2, s ∈ (s0 − 𝛿, s0 + 𝛿), 𝛿 > 0

(A33)(z, ĥ(z, s)), ĥ(z, s) > 0, 0 ≤ z ≤ 𝜁(s), s ∈ (s0 − 𝛿�, s0 + 𝛿�), 𝛿� > 0.

(A34)(z, h(z)), h(z) > 0, 0 ≤ z ≤ 𝜁 ,

(A35)H[ĥ(∗, s)] = H0.

(A36)Lĥs
|||s=s0 = hn

0
(n + 1)

𝜕H[ĥ(∗, s)]

𝜕s

|||s=s0 = 0.

(c(s)z, ĥ(c(s)z, s)) = c(s)(z, h(z, s)), c(s0) = 1

(A37)ĥ(c(s)z, s) = c(s)h(z, s),

(A38)c�(s)ĥz(c(s)z, s) + ĥs(c(s)z, s) = c�(s)h(z, s) + c(s)hs(z, s).

(A39)c�(s0)ĥz(z, s0) + ĥs(z, s0) = c�(s0)h(z, s0) + hs(z, s0),

(A40)c�(s0)(h0)z + ĥs(z, s0) = c�(s0)h0 + hs(z, s0).
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Differentiating Eq. (A40) with respect to z and setting z = 0 , we have

On the other hand, because ĥ(z, s) = ĥ(−z, s) , we have

which imply

Assume now that �2(s0) = 0 holds. Then, from Eqs. (A36) and (A43), by choosing 
a suitable eigenfunction e belonging to zero, ĥs(z, s0) and e satisfy the same second 
order ODE, and their values and their first derivatives at z = 0 coincide. Hence, by 
the uniqueness of solutions of second order ODE, they coincide for all z, and hence 
ĥs(z, s0) is an eigenfunction belonging to zero. This implies

Similarly, from h(z, s) = h(−z, s) and h(z2 + z, s) = h(z2 − z, s) , we have

These facts with (A41) give

However, hzz(0, s0) = 0 does not occur, which will be proved at the end of this sec-
tion (Lemma A.6). Hence c�(s0) = 0 holds. In this case, from Eq. (A40), we have

Therefore, hs(z, s0) is an eigenfunction belonging to zero, and hence H�(s0) = 0 
holds.   ◻

Lemma A.6 Assume that X(s) satisfies the same assumptions as in Proposition A.2. 
Then, hz(0, s) = 0 and hzz(0, s) ≠ 0 hold.

Proof We assume that z = 0 corresponds to a bulge of X(s). In the case where z = 0 
corresponds to a neck of X(s), a similar proof works.

Recall Eq. (4), which is equivalent to

Hence, we have, for an integration constant a,

This a gives a one parameter family of unduloids with mean curvature H. Set

(A41)ĥsz(0, s0) = −c�(s0)hzz(0, s0) + c�(s0)hz(0, s0) + hsz(0, s0).

(A42)ĥs(z, s) = ĥs(−z, s), ĥsz(z, s) = −ĥsz(−z, s),

(A43)ĥsz(0, s) = 0.

(A44)ĥsz(z2, s) = 0.

hz(0, s) = 0, hsz(0, s) = 0, hz(z2, s) = 0, hsz(z2, s) = 0.

(A45)0 = −c�(s0)hzz(0, s0).

(A46)ĥs(z, s0) = hs(z, s0).

(A47)H(hn+1)z = −
(
hn(1 + h2

z
)−1∕2

)
z
.

(A48)Hhn+1 = −hn(1 + h2
z
)−1∕2 + a.
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Then, because hz = 0 at the bulge, we have

Note that for the cylinder,

and hence

Regard a a function of hmax , and differentiate the both sides of (A49) with respect to 
hmax to get

Since

we have

Hence,

and the equality holds if and only if the hypersurface is the cylinder. Therefore, a 
is a strictly-decreasing function in the family of unduloids with the cylinder as the 
initial surface.

Next we regard hmax as a function of a and differentiate the both sides of (A49) 
with respect to a to get

and hmax is a strictly-decreasing function in the family of unduloids with the cylinder 
as the initial surface. Hence,

However, if hzz(0, s) = 0 holds, using hz(0, s) = 0 , from (4), we have

hmax(s) ∶= h(0, s).

(A49)a = Hhn+1
max

+ hn
max

.

(A50)hmax(cylinder) =
−n

(n + 1)H
,

(A51)a(cylinder) =
nn

(n + 1)n+1|H|n .

(A52)a� = H(n + 1)hn
max

+ nhn−1
max

= {(n + 1)Hhmax + n}hn−1
max

.

hmax ≤ hmax(cylinder) =
−n

(n + 1)H
,

a′ ≥ 0.

a ≤
nn

(n + 1)n+1|H|n ,

(A53)h�
max

(a) = (a�)−1 =
1

{(n + 1)Hhmax + n}hn−1
max

> 0,

(A54)hmax < hmax(cylinder) =
−n

(n + 1)H
.
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which contradicts (A54). Hence, hzz(0, s) ≠ 0 must hold.   ◻

Appendix B Computation of geometric quantities

B.1 Integral representations of geometric quantities of unduloids

The equation for h(z) that the mean curvature of hypersurface is constant can be 
obtained as the Euler-Lagrange equation

with the following Lagrangian,

Here, H is a constant representing the mean curvature of the hypersurface. Since 
Lagrangian  (B57) does not depend on z explicitly, the following quantity is 
conserved,

which is called the Beltrami identity. Substituting (B57) into (B58), we obtain an 
equation like the law of conservation of mechanical energy:

Introducing a new variable w by

we have

Denote the zeros of U(w) by w± (0 < w− < w+) . Then, it is easy to see that

(A55)hmax = h(0, s) =
−n

(n + 1)H
,

(B56)
d

dz

(
�J

�hz

)
−

�J

�h
= 0,

(B57)J(z) =
√

1 + h2
z
hn(z) + Hhn+1(z).

(B58)J −
�J

�hz
hz =∶ C = const.,

(B59)
(
dh

dz

)2

+ 1 −
(

hn

C − Hhn+1

)2

= 0.

(B60)w ∶= −Hh,

(B61)
(
dw

dz

)2

+ (−H)2U(w) = 0,

(B62)U(w) ∶= 1 −
(

wn

K + wn+1

)2

, K ∶= (−H)nC.
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where � = 1 − s is given by Eqs. (26) and (A7).
Using U(w±) = 0 , one can express w± and K as functions of �,

Here, the last expressions in Eqs. (B64)–(B66) are convenient to avoid the round-off 
errors in the numerical estimation for 0 < 𝜌 ≪ 1 and large n.

From Eq. (B61) with the assumption that dw
dz

≥ 0 , we obtain

Integrating the left-hand (resp. right-hand) side this with respect to z (resp. w) from 
z1 to z2 (resp. from w− to w+ ), we obtain

where L ∶= z+ − z− is the half period of the unduloid. This is an integral representa-
tion of the mean curvature of an unduloid, which is a function of � (or equivalently 
s) and L. Then, using Eqs. (1), (2), (B60), and (B67), the integral representations of 
the area and volume of a half period of an unduloid are obtained as

which are also functions of � and L.
Without loss of generality, we can fix the interval L ( L = 1 for example) through-

out the stability analysis. Thus, we have expressed the mean curvature, volume, 
and area of an unduloid as integrals essentially depending only on the non-uni-
formness parameter � (or s), Eqs.  (B68), (B69), and (B70). Therefore, as argued 

(B63)� =
w−

w+

,

(B64)w+ =
1 − �n

1 − �n+1
=

∑n−1

m=0
�m∑n

m=0
�m

,

(B65)w− =
�(1 − �n)

1 − �n+1
=

∑n−1

m=0
�m+1∑n

m=0
�m

,

(B66)K =
(1 − �)�n(1 − �n)n

(1 − �n+1)n+1
=

(
∑n−1

m=0
�m+1)n

(
∑n

m=0
�m)n+1

.

(B67)dz =
dw

(−H)
√
−U(w)

.

(B68)H = −
1

L ∫

w+

w−

1√
−U(w)

dw,

(B69)V =
vn+1

(−H)n+2 ∫

w+

w−

wn+1

√
−U(w)

dw,

(B70)A =
an

(−H)n+1 ∫

w+

w−

wn
√
1 − U(w)√
−U(w)

dw,
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in Sect.  3.3, we do not have to solve H0(z) = const. with boundary conditions 
h0z(z1) = h0z(z2) = 0 , which needs an iterative integration to satisfy the boundary 
conditions at the both boundaries.

B.2 Manipulation for accurate numerical integration

What is necessary to obtain A(s), V(s),  and H(s), which play essential roles in the 
stability analysis, is to estimate the integrals numerically in Eqs. (B68), (B69), and 
(B70) as accurately as possible. Since U(w) vanishes at the both ends of integral 
range, the following manipulation helps us to estimate the integrals numerically 
[13]. Those who are not interested in the numerics do not need to read the rest of 
this section.

Integrals (B68), (B69), and (B70) can be rewritten as

where

In order to extract the poles of the integrand, w± , we rewrite the integral as

by defining

Here, the right-hand side defines the polynomial expression of g(w), which is regu-
lar at w = w± . The comparison of coefficients yields the following recursion relation 
and “boundary conditions” to be satisfied by gp (0 ≤ p ≤ n − 1),

(B71)Y =
∫

w+

w−

�Y (w)√
−U(w)

dw,

(B72)�Y (w) ∶=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−
1

L
(Y = H)

vn+1w
n+1

(−H)n+2
(Y = V)

anw
n
√
1 − U(w)

(−H)n+1
(Y = A)

.

(B73)Y =
∫

w+

w−

(wn+1 + K)�Y (w)√
(wn + wn+1 + K)(w+ − w)(w − w−)g(w)

dw,

(B74)g(w) ∶=
wn − wn+1 − K

(w+ − w)(w − w−)
=

n−1∑
p=0

gpw
p.

(B75)gn−1 = 1,

(B76)(w+ + w−)gn−1 − gn−2 = 1,
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These can be easily solved to give the following expression of general term,

Again, the final expression is for the avoidance of round-off error.
Finally, we fix the integration range as

by changing variable from w to �,

One can accurately estimate H, V, and A numerically for given s = 1 − � ∈ (0, 1) 
(after fixing L, L = 1 for example) using Eq. (B82) with Eqs. (B64)–(B66), (B72), 
(B74), (B81), and (B83).

B.3 Area‑volume diagrams

We describe here how to draw the area-volume diagrams in Fig. 3.
First, let us normalize the volume V by the volume of the largest hemisphere, which 

has a radius identical to the length of the interval L ∶= z2 − z1 , and normalize the sur-
face area A by the surface area of the hemisphere whose radius is R ∈ (0, L],

Here, V and A are the volume and surface area, respectively, of a hemisphere, cylin-
der, or half-period of unduloid.

(B77)w+w−gp+2 − (w+ + w−)gp+1 + gp = 0, (0 ≤ p ≤ n − 3),

(B78)w+w−g1 − (w+ + w−)g0 = 0,

(B79)w+w−g0 = K.

(B80)gp = (1 − �p+1)(1 − �n)n−2−p
(

�

1 − �n+1

)n−1−p

(B81)=

�∑p

m=0
�m+1

��∑n−1

�=0
��+1

�n−2−p

�∑n

k=0
�k
�n−1−p , (0 ≤ p ≤ n − 1).

(B82)Y =
∫

1

−1

(wn+1 + K)�Y (w)√
(wn + wn+1 + K)(1 − �2)g(w)

d� ,

(B83)w =
w+ + w−

2
+

w+ − w−

2
� .

(B84)V̂ ∶=
V

1

2
vn+2L

n+2
,

(B85)Â ∶=
A

1

2
an+1R

n+1
.
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For the hemisphere with radius R ∈ (0, L] , the normalized volume and area are

respectively. These give a parametric representation of the area-volume curve of 
hemisphere in Fig. 3 with R∕L ∈ (0, 1] being the parameter.

For the cylinder with radius r ∈ (0,+∞) , the normalized volume and area are given 
by

respectively. Solving V̂hem = V̂cyl for R, and then substituting it into the right-hand 
side of Eq. (B89), one obtains

Equations (B88) and (B90) give a parametric representation of the area-volume 
curve of cylinder in Fig. 3 with r∕L ∈ (0,+∞) being the parameter.

Denoting the volume and area of a half period of unduloid in the form of 
Eq. (B82) by V(s) and A(s), the normalized volume and area of unduloid are given 
by

Solving V̂hem = V̂und for R to obtain R = L(V̂und)
1

n+2 , and substituting this into the 
right-hand side of Eq. (B92), one obtains

(B86)V̂hem =

1

2
vn+2R

n+2

1

2
vn+2L

n+2
=
(
R

L

)n+2

, (0 ≤ R ≤ L),

(B87)Âhem = 1,

(B88)V̂cyl =
vn+1r

n+1L

1

2
vn+2L

n+2
=

2vn+1

vn+2

(
r

L

)n+1

, (0 ≤ r < +∞),

(B89)Âcyl =
anr

nL

1

2
an+1R

n+1
=

2an

an+1

(
r

L

)n(L
R

)n+1

,

(B90)Âcyl =

(
2an

an+1

) 1

n+2(n + 1

n + 2

) n+1

n+2
(
L

r

) 1

n+2

.

(B91)V̂und =
V(s)

1

2
vn+2L

n+2
,

(B92)Âund =
A(s)

1

2
an+1R

n+1
.

(B93)Âund =
A(s)

1
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an+1R

n+1|
R=L(V̂und)

1
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Equations (B91) and (B93) give a parametric representation of the area-volume 
curve of unduloids in Fig. 3 with s ∈ (0, 1) being the parameter.

Acknowledgements The authors wish to thank the anonymous reviewer for many useful comments on 
the earlier version of this paper. This work was partially supported by JST CREST GrantNumber JPM-
JCR1911. It was supported in part also by JSPS KAKENHI Grant Numbers JP18H04487, JP20H01801, 
JP20H04642 (K.M.), JP18K03652, and JP22K03623 (U.M.).

Data availability A Mathematica program generating data and figures in this paper is available in GitHub, 
at https:// github. com/ Umpei Miyam oto.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Kenmotsu, K.: Surfaces with Constant Mean Curvature. Translations of Mathematical Monographs, vol. 
221. American Mathematical Society, Providence (2003)

 2. Gennes, P.-G., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, 
Pearls, Waves. Springer, New York (2004)

 3. Koiso, M.: Symmetry of hypersurfaces of constant mean curvature with symmetric boundary. Math. Z. 
191, 567–574 (1986)

 4. Finn, R.: Equilibrium Capillary Surfaces. Springer, New York (1986)
 5. Delaunay, C.: Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. 6, 

309–320 (1841)
 6. Athanassennas, M.: A variational problem for constant mean curvature surfaces with free boundary. J. 

Reine Angew. Math. 377, 97–107 (1987)
 7. Vogel, T.I.: Stability of a liquid drop trapped between two parallel planes. SIAM J. Appl. Math. 47(3), 

516–525 (1987)
 8. Plateau, J.A.F.: Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Molécu-

laires, Vol. II. Gauthiers-Villars, Paris, p. 319 (1873)
 9. Rayleigh, L.: On the instability of jets. Proc. Lond. Math. Soc. 10, 4–13 (1879)
 10. Pedrosa, H.L., Ritoré, M.: Isoperimetric domains in the Riemannian product of a circle with a simply 

connected space form and applications to free boundary problems. Indiana U. Math. J. 48, 1357–1394 
(1999)

 11. Li, H., Xia, Y., Xiong, C.: Stability of unduloid bridges with free boundary in a Euclidean slab. Sci. 
China Math. 61, 917–928 (2018)

 12. Miyamoto, U., Maeda, K.-I.: Liquid bridges and black strings in higher dimensions. Phys. Lett. B 664, 
103 (2008)

 13. Maeda, K.-I., Miyamoto, U.: Black hole-black string phase transitions from hydrodynamics. JHEP 
0903, 066 (2009)

 14. Caldarelli, M.M., Dias, O.J.C., Emparan, R., Klemm, D.: Black holes as lumps of fluid. JHEP 0904, 
024 (2009)

 15. Koiso, M., Miyamoto, U.: Stability of hypersurfaces of constant mean curvature with free boundary in 
two parallel hyperplanes (to appear in JSIAM Letters)

 16. Koiso, M., Palmer, B., Piccione, P.: Stability and bifurcation for surfaces with constant mean curvature. 
J. Math. Soc. Jpn. 69–4, 1519–1554 (2017)

 17. Sorkin, E.: Critical dimension in the black string phase transition. Phys. Rev. Lett. 93, 031601 (2004)

https://github.com/UmpeiMiyamoto
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


268 M. Koiso, U. Miyamoto

1 3

 18. Figueras, P., Murata, K., Reall, H.S.: Stable non-uniform black strings below the critical dimension. 
JHEP 1211, 071 (2012)

 19. Emparan, R., Shiromizu, T., Suzuki, R., Tanabe, K., Tanaka, T.: Effective theory of Black Holes in the 
1/D expansion. JHEP 1506, 159 (2015)

 20. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Course of Theoretical Physics, vol. 6, 2nd edn. Butter-
worth-Heinemann, Burlington (1987)

 21. Cardoso, V., Dias, O.J.C.: Rayleigh–Plateau and Gregory–Laflamme instabilities of black strings. Phys. 
Rev. Lett. 96, 181601 (2006)

 22. Miyamoto, U.: Curvature driven diffusion, Rayleigh–Plateau, and Gregory–Laflamme. Phys. Rev. D 78, 
026001 (2008)

 23. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes : The Art of Scien-
tific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

 24. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28(3), 333 (1957)
 25. Bernoff, A.J., Bertozzi, A.L., Witelski, T.P.: Axisymmetric surface diffusion: dynamics and stability of 

self-similar Pinchoff. J. Stat. Phys. 93, 725 (1998)
 26. Aharony, O., Minwalla, S., Wiseman, T.: Plasma-balls in large N gauge theories and localized black 

holes. Class. Quant. Grav. 23, 2171 (2006)
 27. Bhattacharyya, S., Hubeny, V.E., Minwalla, S., Rangamani, M.: Nonlinear fluid dynamics from gravity. 

JHEP 0802, 045 (2008)
 28. Azuma, T., Morita, T., Takeuchi, S.: Hagedorn instability in dimensionally reduced large-N gauge theo-

ries as Gregory–Laflamme and Rayleigh–Plateau instabilities. Phys. Rev. Lett. 113, 091603 (2014)
 29. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics: Annals of Mathematics Stud-

ies, vol. 27. Princeton University Press, Princeton (1951)
 30. Koiso, M.: Deformation and stability of surfaces with constant mean curvature. Tohoku Math. J. 2(54), 

145–159 (2002)
 31. Koiso, M., Palmer, B., Piccione, P.: Bifurcation and symmetry breaking of nodoids with fixed bound-

ary. Adv. Calc. Var. 8(4), 337–370 (2015)
 32. Smoller, J., Wasserman, A.G.: Bifurcation and symmetry-breaking. Invent. Math. 100, 63–95 (1990)
 33. Maddocks, J.H.: Stability and folds. Arch. Ration. Mech. Anal. 99, 301–328 (1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Stability of hypersurfaces with constant mean curvature trapped between two parallel hyperplanes
	Abstract
	1 Introduction
	2 Variation and eigenvalue problem
	2.1 Area, volume, and their variations
	2.2 Eigenvalue problem associated with second variation of area

	3 Stability criteria of unduloids
	3.1 Sign of second eigenvalue 
	3.2 Criteria when 
	3.3 Comment: no iteration is needed

	4 Stability of unduloids in  ( )
	4.1 Class A: 
	4.2 Class B: 
	4.3 Class C: 
	4.4 Class D: 

	5 Summary and discussions
	Appendix A: Mathematical propositions and their proofs
	A.1 Stability of a half period and one period of an unduloid
	A.2 Stability criteria for axially symmetric equilibrium hypersurfaces
	A.3 Negativity (resp. positivity) of the first (resp. third) eigenvalue for unduloids
	A.4 Existence of bifurcation and estimate of eigenvalues in a bifurcation branch
	A.5 Correspondence of sign change between the eigenvalue and mean-curvature derivative
	A.6 Equivalence between the vanishing of the eigenvalue and the vanishing of the mean-curvature derivative

	Appendix B Computation of geometric quantities
	B.1 Integral representations of geometric quantities of unduloids
	B.2 Manipulation for accurate numerical integration
	B.3 Area-volume diagrams

	Acknowledgements 
	References




