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Abstract
A multi-unit assignment valuation is a function represented by a weighted bipartite 
graph. In this paper, we provide a characterization of such a function in terms of 
maximizer sets of perturbed functions. We then present an algorithm that checks 
whether a given bivariate function is a multi-unit assignment valuation, and if the 
answer is “yes,” computes a weighted bipartite graph representing the function.

Keywords  Assignment valuation · Bipartite graph · Discrete concave function · 
Polynomial-time algorithm

Mathematics Subject Classification  Primary 90C27 · Secondary 68Q25

1  Introduction

A valuation function is a function that for a given set of goods, returns the value of 
the set. This paper deals with multi-unit valuation functions defined on non-nega-
tive integral vectors ℤn

+
 , in which a vector x ∈ ℤ

n
+
 represents a multiset of n discrete 

goods. We consider a class of multi-unit valuation functions that are represented by 
weighted bipartite graphs, which are referred to as multi-unit assignment valuation 
functions.

Given a complete bipartite graph G = (V ,N;V × N) with a weight function 
w ∶ V × N → ℝ and a supply function � ∶ V → ℤ++ , a multi-unit assignment valua-
tion function f ∶ TΦ → ℝ is defined by
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where

In the case where the domain of function f is restricted to zero–one vectors, f is noth-
ing but an assignment valuation [16], which often appears in the literature of auction 
theory. In the following, we simply refer to function f as an assignment valuation 
when no confusion arises.

It is known that the class of assignment valuations is a proper subclass of 
strong-substitutes valuations (see, e.g., [13, 14, 17]). The strong-substitutes con-
dition for a multi-unit valuation [10] is a natural generalization of the gross-sub-
stitutes condition for a single-unit valuation due to Kelso and Crawford [8] (see 
also Gul and Stacchetti [6, 7]), and the former condition inherits various nice 
properties of the latter condition. In particular, strong-substitutes condition for 
bidders’ valuations implies the existence of Walrasian equilibrium in the auction 
market with multiple units of indivisible goods. Also, strong-substitutes valua-
tions are known to be equivalent to M ♮-concave functions in discrete convex anal-
ysis [4, 15] (see also [13, 14, 17]). This fact implies that an assignment valuation 
also enjoys nice properties as a discrete concave function.

We are interested in a special case of assignment valuations with N = {1, 2} , 
motivated by the “product-mix” auction used in Bank of England [9] (see also 
[1–3]). The auction in Bank of England deals with two kinds of multiple discrete 
goods. Each bidder of the auction expresses its demand to the goods by using a 
set of “weighted bid vectors;” a weighted bid vector is a pair (b,�) of a bidding 
price vector b ∈ ℝ

2 and its weight � ∈ ℤ++ . It turns out that sets of weighted 
bid vectors have a natural one-to-one correspondence with assignment valua-
tions, and the demand information represented by a set of weighted bid vectors is 
the same as the one represented by the corresponding assignment valuation; see 
Remark 4.1 in Sect. 4 for more details on this relationship.

Suppose that a bidder wants to participate the product-mix auction with its 
own valuation function. In such a situation a bidder wants to know whether its 
valuation can be represented as an assignment valuation, and if it is an assign-
ment valuation, the bidder also wants to know the representation by a weighted 
bipartite graph. This motivates us to consider the following Bivariate Assignment 
Valuation Checking Problem (BAVCP):

given a bivariate valuation function f ∶ TΦ → ℝ with some positive integer 
Φ , which is not necessarily an assignment valuation, answer whether f is an 

f (x) = max

{ ∑
(i,j)∈V×N

w(i, j)y(i, j)
||||
∑
i∈V

y(i, j) = x(j) (j ∈ N),

∑
j∈N

y(i, j) ≤ �(i) (i ∈ V),

y(i, j) ∈ ℤ+ (i ∈ V , j ∈ N)

}
(x ∈ TΦ),

N = {1, 2,… , n}, Φ =
∑
i∈V

�(i), TΦ =
{
x ∈ ℤ

n
+

|||
∑
j∈N

x(j) ≤ Φ
}
.
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assignment valuation, and if the answer is “yes,” then find a weighted bipar-
tite graph representing f.

Our goal in this paper is to propose an efficient algorithm for solving this 
problem.

To develop an algorithm for the problem (BAVCP), we first provide a charac-
terization of assignment valuations in terms of maximizer sets. For a bivariate 
function f ∶ TΦ → ℝ and a vector p ∈ ℝ

2 , we define a set

which is called a maximizer set (also called a demand set). As mentioned above, 
every assignment valuation is an M ♮-concave function, for which the following char-
acterization in terms of maximizer sets is known; definitions of M ♮-concave func-
tion and M ♮-convex set will be given in Sect. 2.

Theorem 1.1  (cf. [11, 12]) A bivariate function f ∶ TΦ → ℝ+ is M ♮-concave if and 
only if for every p ∈ ℝ

2 the maximizer set Df (p) is an M ♮-convex set.

Since an assignment valuation is an M ♮-concave function, its maximizer set is 
an M ♮-convex set, which is (the set of integral vectors in) a hexagon. We classify 
M ♮-convex sets into three types based on the length of six edges: positive-type, 
zero-type, and negative-type (see Sect. 2.2 for precise definitions), and show that 
an assignment valuation can be characterized by a stronger property for maxi-
mizer sets.

Theorem  1.2  A bivariate function f ∶ TΦ → ℝ with f (0, 0) = 0 is an assignment 
valuation if and only if for every p ∈ ℝ

2 the maximizer set Df (p) is an M ♮-convex set 
of positive-type or zero-type.

We will also show that for an assignment valuation f, the information about its 
representation can be obtained from maximizer sets of f that are M ♮-convex sets 
of positive-type. Based on the results, we propose an algorithm for the problem 
(BAVCP) that runs in O(Φ2) time, under the assumption that the value oracle for f 
is available; given a vector x, the value oracle returns the value f(x).

Finally, we note that a closely related problem is discussed by Goldberg, Lock, 
and Marmolejo-Cossío [5]. In our terminology, their problem is described as 
follows: the input is an n-variate multi-unit assignment valuation f ∶ TΦ → ℝ , 
represented by a demand oracle, and the output is a weighted bipartite graph 
representing f; given a vector p ∈ ℝ

n , the demand oracle returns a vector in the 
maximizer set Df (p) . The algorithm proposed in [5] runs in O(n|V| logW) time 
with W = max{w(i, j) ∣ i ∈ V , j ∈ N} . It is known (see, e.g., [13]) that a demand 
oracle can be realized by using a value oracle in O(n3 log(Φ∕n)) time. Hence, if the 
value oracle is available, then the algorithm in [5] runs in O(n4|V| logW log(Φ∕n)) 
time. In particular, if n = 2 (i.e., f is a bivariate function), then the algorithm runs 
in O(|V| logW logΦ) time, which is incomparable to the running time O(Φ2) of 

Df (p) = {x ∈ TΦ ∣ f (x) − p⊤x ≥ f (y) − p⊤y (y ∈ TΦ)},
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our algorithm since |V| ≤ Φ and the parameter W does not appear in ours. Also, it 
should be noted that our algorithm checks whether a given function is an assign-
ment valuation or not, while the algorithm in [5] does not.

2 � Preliminaries

In this paper, we denote by ℤ+ (resp., ℤ++ ) the set of non-negative (resp., positive) 
integers.

2.1 � Multi‑unit assignment valuation and M ♮‑concave function

A bivariate assignment valuation f ∶ TΦ → ℝ is defined as follows by using 
a complete bipartite graph G = (V , {1, 2};V × {1, 2}) with weight function 
w ∶ V × {1, 2} → ℝ and supply function � ∶ V → ℤ++:

where

We may assume, without loss of generality, that

if there exist distinct i, i� ∈ V  with w(i, 1) = w(i�, 1) and w(i, 2) = w(i�, 2) , then we 
can replace �(i) with �(i) + �(i�) and delete the vertex i′ , which results in the same 
assignment valuation.

It is known that a (not necessarily bivariate) assignment valuation has a nice dis-
crete structure called M ♮-concavity (see, e,g., [13]).

Proposition 2.1  A (bivariate) assignment valuation is an M ♮-concave function.

A bivariate function f ∶ TΦ → ℝ is said to be M ♮ -concave if it satisfies the fol-
lowing exchange property for every x, y ∈ TΦ:

(M♮ -EXC) for each i ∈ N = {1, 2} with x(i) > y(i) , we have either (i), (ii), or 
both:
(i) y(N) < Φ and f (x) + f (y) ≤ f (x − �i) + f (y + �i),
(ii) there exists some i� ∈ N with x(i�) < y(i�) such that

(2.1)

f (x) = max

{∑
i∈V

(w(i, 1)y(i, 1) + w(i, 2)y(i, 2))
||||
∑
i∈V

y(i, j) = x(j) (j = 1, 2),

y(i, 1) + y(i, 2) ≤ �(i) (i ∈ V),

y(i, j) ∈ ℤ+ (i ∈ V , j = 1, 2)

}
(x ∈ TΦ),

Φ =
∑
i∈V

�(i), TΦ = {x ∈ ℤ
2
+

∣ x(1) + x(2) ≤ Φ}.

(2.2)∀i, i� ∈ V with i ≠ i�, w(i, 1) ≠ w(i�, 1) or w(i, 2) ≠ w(i�, 2) (or both);
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where �i ∈ {0, 1}2 denotes the characteristic vector of i ∈ {1, 2} , i.e., �1 = (1, 0) 
and �2 = (0, 1) . Note that x − �i, y + �i ∈ TΦ holds in the case of (i), and 
x − �i + �i� , y + �i − �i� ∈ TΦ holds in the case of (ii).

M♮-concave functions can be characterized by a local exchange property: f is M ♮
-concave if and only if (M♮-EXC) holds for every x, y ∈ TΦ with ‖x − y‖1 ≤ 4 . This 
local exchange property can be specialized for bivariate functions f as follows:

Proposition 2.2  A bivariate function f ∶ TΦ → ℝ is M ♮-concave if and only if it sat-
isfies the conditions (2.3), (2.4), and (2.5).

The conditions (2.3), (2.4), and (2.5) can be understood in terms of “triangles.” 
For k, h ∈ ℤ , we define an upper-right triangle Tur(k, h) ⊆ ℤ

2 and a lower-left trian-
gle Tll(k, h) ⊆ ℤ

2 by

The condition (2.3) means that the function f bends upward on 
Tur(k + 1, h + 1) ∪ Tll(k, h) . Similarly, (2.4) (resp., (2.5)) means that that f bends 
upward on Tur(k + 1, h + 1) ∪ Tll(k + 1, h) (resp. Tur(k + 1, h + 1) ∪ Tll(k, h + 1)).

2.2 � M♮‑convex set and its properties

We also define M ♮-convexity for a set S ⊆ ℤ
2 as follows. For a non-empty set 

S ⊆ ℤ
2 , we say that S is an M ♮ -convex set if it satisfies the following exchange prop-

erty for every x, y ∈ S:

for each i ∈ N = {1, 2} with x(i) > y(i) , at least one of (i) and (ii) holds:
(i) x − �i, y + �i ∈ S,
(ii) x − �i + �i� , y + �i − �i� ∈ S for some i� ∈ N with x(i�) < y(i�).

We present some properties on polyhedral structure of M ♮-convex sets in ℤ2 . M ♮
-convex sets can be described by simple inequalities.

Proposition 2.3  A bounded set S ⊆ ℤ
2 is an M ♮-convex set if and only if it can be 

represented by the following system of inequalities:

f (x) + f (y) ≤ f (x − �i + �i� ) + f (y + �i − �i� ),

(2.3)
f (k, h) + f (k + 1, h + 1) ≤ f (k + 1, h) + f (k, h + 1) ((k, h) ∈ ℤ

2
+
, k + h + 2 ≤ Φ),

(2.4)
f (k, h + 1) + f (k + 2, h) ≤ f (k + 1, h + 1) + f (k + 1, h) ((k, h) ∈ ℤ

2
+
, k + h + 2 ≤ Φ),

(2.5)
f (k + 1, h) + f (k, h + 2) ≤ f (k + 1, h + 1) + f (k, h + 1) ((k, h) ∈ ℤ

2
+
, k + h + 2 ≤ Φ).

Tur(k, h) = {(k, h), (k − 1, h), (k, h − 1)},

Tll(k, h) = {(k, h), (k + 1, h), (k, h + 1)}.
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We may assume that all inequalities in (2.6) are tight, i.e., it holds that

We see from the representation (2.6) that every bounded two-dimensional (2-d, 
for short) M ♮-convex set S can be represented as a union of upper-right triangles 
Tur(k, h) and lower-left triangles Tll(k, h).

Let S ⊆ ℤ
2 be a bounded 2-d M ♮-convex set. We denote by S ⊆ ℝ

2 the convex 
hull of S. Proposition 2.3 implies that the convex hull S is represented by the 
same set of inequalities in (2.6) and satisfies S ∩ ℤ

2 = S . In addition, S is a con-
vex hull of the six integral vertices given (in clockwise order) as

this shows that S is a hexagon in general, while some vertices may coincide and 
some edges may have zero length in a degenerate case.

This observation shows that an M ♮-convex set S can be identified with its con-
vex hull S . Hence, we can define an edge of S as the set of integral vectors in an 
edge of S . Since the convex hull S is a hexagon with six edges in general, we can 
define upper-horizontal (UH) edge, lower-horizontal (LH) edge, left-vertical (LV) 
edge, right-vertical (RV) edge, upper-right-diagonal (URD) edge, and lower-left-
diagonal (LLD) edge (see Fig. 1).

We also define the length of an edge in an M ♮-convex set S by the length of the 
corresponding edge in the convex hull S . We denote by

the length of UH-edge, LH-edge, LV-edge, RV-edge, URD-edge, and LLD-edge; it 
is possible that some edges may have length zero.

By using six vertices in (2.7), the length of six edges are given as

(2.6)
S = {(x(1), x(2)) ∈ ℤ

2 ∣ �1 ≤ x(1) ≤ �1, �2 ≤ x(2) ≤ �2, �0 ≤ x(1) + x(2) ≤ �0}.

�i = min{x(i) ∣ x ∈ S}, �i = max{x(i) ∣ x ∈ S} (i = 1, 2),

�0 = min{x(1) + x(2) ∣ x ∈ S}, �0 = max{x(1) + x(2) ∣ x ∈ S}.

(2.7)
(�1,�2), (�0 − �2,�2), (�1,�0 − �1), (�1, �2), (�0 − �2, �2), (�1, �0 − �1);

�UH(S), �LH(S), �LV(S), �RV(S), �URD(S), �LLD(S)

Fig. 1   Six edges of an M ♮
-convex set
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This immediately implies the following relations for the six edge lengths.

Proposition 2.4  For a two-dimensional M ♮-convex set D ⊆ ℤ
2 , it holds that

Using the edge length, we classify bounded 2-d M ♮-convex sets. We say 
that a bounded M ♮-convex set D ⊆ ℤ

2 is positive-type (resp., negative-type) if 
�LH(D) − �UH(D) > 0 (resp. �LH(D) − �UH(D) < 0 ), and zero-type otherwise (i.e., D 
is not two-dimensional or satisfies �LH(D) − �UH(D) = 0 ). See Figs. 2, 3, and 4 for 
examples.

2.3 � Properties of M ♮‑concave functions

We present some properties of M ♮-concave functions used in this paper. See [13] for 
more accounts on M ♮-concave functions.

For a bivariate function f ∶ TΦ → ℝ and a vector p ∈ ℝ
2 , the maximizer set 

Df (p) ⊆ TΦ is defined as

(2.8)

�UH(S) = (�0 − �2) − �1,
�LH(S) = �1 − (�0 − �2),
�LV(S) = �2 − (�0 − �1),
�RV(S) = (�0 − �1) − �2,

�URD(S) =
√
2(�1 − (�0 − �2)) =

√
2(�2 − (�0 − �1)),

�LLD(S) =
√
2((�0 − �2) − �1) =

√
2((�0 − �1) − �2).

⎫⎪⎪⎪⎬⎪⎪⎪⎭

�LH(D) − �UH(D) = �LV(D) − �RV(D) =
1√
2
(�URD(D) − �LLD(D)).

Fig. 2   M♮-convex sets of 
positive-type

Fig. 3   M♮-convex sets of zero-
type
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Df (p) is often referred to as a demand set in the context of auction, where f is 
regarded as a valuation for multisets of goods. If D ⊆ TΦ is a two-dimensional maxi-
mizer set, then there exists a unique p ∈ ℝ

2 such that D = Df (p) ; we call such p the 
slope vector of D.

M♮-concavity of a function can be characterized in terms of maximizer sets.

Proposition 2.5  A bivariate function f ∶ TΦ → ℝ is M ♮-concave if and only if Df (p) 
is an M ♮-convex set for every p ∈ ℝ

2.

An M ♮-concave function can be extended to a polyhedral concave function. For a 
function f ∶ TΦ → ℝ , the concave closure f̄ ∶ TΦ → ℝ is defined as

By definition, f̄  is a polyhedral concave function satisfying f̄ (x) ≥ f (x) for all 
x ∈ TΦ.

Proposition 2.6  For a function f ∶ TΦ → ℝ , if f is M ♮-concave, then f̄ (x) = f (x) 
holds for every x ∈ TΦ.

Let f ∶ TΦ → ℝ be a bivariate M ♮-concave function. It follows from Proposi-
tion 2.6 that for every p ∈ ℝ

2 , the convex hull Df (p) of the maximizer set of f coin-
cides with a maximizer set

of the concave closure f̄  . It is also known that a polyhedral subdivision of the poly-
tope TΦ can be obtained from the family {Df (p) ∣ p ∈ ℝ

2} of convex hulls of maxi-
mizer sets. These facts imply that the information about the set of 2-d maximizer 
sets uniquely determines the function values of f. For two 2-d maximizer sets D and 
D′ of f, we say that D and D′ are adjacent if they share an edge of positive length.

Proposition 2.7  Let f ∶ TΦ → ℝ be a bivariate M ♮-concave function with 
f (0, 0) = 0 . Then, the function values f(x) (x ∈ TΦ) are uniquely determined by the 
following information:

Df (p) = {x ∈ TΦ ∣ f (x) − p⊤x ≥ f (y) − p⊤y (y ∈ TΦ)};

f̄ (y) = inf{p⊤y + 𝜂 ∣ p ∈ ℝ
2, 𝜂 ∈ ℝ, p⊤x + 𝜂 ≥ f (x) (x ∈ TΦ)} (y ∈ TΦ).

{x ∈ TΦ ∣ f̄ (x) − p⊤x ≥ f̄ (y) − p⊤y (y ∈ TΦ)}

Fig. 4   M♮-convex sets of 
negative-type
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•	 the family D = {Di ∣ i ∈ V} of two-dimensional maximizer sets of f, where V is 
an appropriately chosen index set.

•	 the adjacency relation among maximizer sets in D,
•	 the slope vector pi ∈ ℝ

2 of Di for i ∈ V ,
•	 lengths �LH(Di), �UH(Di), �LV(Di), �RV(Di), �URD(Di), �LLD(Di) of six edges for 

i ∈ V .

3 � Characterization of multi‑unit assignment valuations 
and algorithm

Main results of this paper are presented in this section. We first provide a charac-
terization of bivariate assignment valuations by using the following condition for 
maximizer sets:

(MS ≥ ) every maximizer set of f is an M ♮-convex set of positive-type or zero-
type;

recall that every maximizer set of an M ♮-concave function f is an M ♮-convex set. In 
the following, we may simply say that a maximizer set of a bivariate M ♮-concave 
function is of positive-type (resp. zero-type) if it is an M ♮-convex set of positive-type 
(resp., zero-type).

We denote by M the family of bivariate M ♮-concave functions f ∶ TΦ → ℝ with 
f (0, 0) = 0 satisfying the condition (MS≥ ). We denote by A the family of bivariate 
assignment valuations defined on TΦ . That is,

We show that every bivariate assignment valuation satisfies the condition (MS≥ ), 
i.e., A ⊆ M holds.

Theorem 3.1  (necessary condition) Let f ∶ TΦ → ℝ be an assignment valuation in 
(2.1), and assume that weight function w satisfies the condition (2.2). For every vec-
tor p ∈ ℝ

2 , the maximizer set Df (p) is an M ♮-convex set of positive-type or zero-type.

Theorem  3.1 follows immediately from the following properties of assignment 
valuations. It should be noted that the condition (2.2) for the weight function w 
implies that if a vector p ∈ ℝ

2 satisfies p = (w(i, 1),w(i, 2)) for some i ∈ V  , then 
such i is uniquely determined.

Lemma 3.2  Let f ∶ TΦ → ℝ be an assignment valuation in (2.1), and assume that 
weight function w satisfies the condition (2.2). Also, let p ∈ ℝ

2 be a vector such that 
the maximizer set Df (p) is two-dimensional. 

M = {f ∶ TΦ → ℝ ∣ f (0, 0) = 0, f is an M♮ -concave function satisfying (MS ≥)},

A = {f ∶ TΦ → ℝ ∣ f is an assignment valuation in (2.1)}.
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	 (i)	 If p ≠ (w(i, 1),w(i, 2)) for all i ∈ V  , then Df (p) is of zero-type.
	 (ii)	 If p = (w(i, 1),w(i, 2)) holds for some i ∈ V  , then Df (p) is of positive-type and 

satisfies �LH(Df (p)) − �UH(Df (p)) = �(ip) with the (unique) vertex ip ∈ V such 
that p = (w(ip, 1),w(ip, 2)).

 Proof of Lemma 3.2 is given in Sect. 4.
We then show that the inclusion A ⊆ M holds with equality. For f ∈ M , 

denote by D+(f ) the family of positive-type maximizer sets of f, and by P+(f ) the 
set of slope vectors for maximizer sets in D+(f ) . The definitions imply the equa-
tion D+(f ) = {Df (p) ∣ p ∈ P+(f )}.

Theorem  3.3  (sufficient condition) Let f ∶ TΦ → ℝ+ be an M ♮-concave function 
with f (0, 0) = 0 satisfying the condition (MS≥ ). Then, f is an assignment valuation. 
Moreover, if P+(f ) is given as {pi ∣ i ∈ V} with an appropriately chosen index set 
V, then f is represented by the complete bipartite graph with vertex set V ∪ {1, 2} , 
weight function w ∶ V × {1, 2} → ℝ , and capacity function � ∶ V → ℤ++ given by

Note that the weight function w given by (3.1) satisfies the condition (2.2) 
since slope vectors in P+(f ) are all different.

Theorem  3.3 is proved by using the following key lemma, stating that every 
function f ∈ M is uniquely determined by the information about positive-type 
maximizer sets of f.

Lemma 3.4  For functions f , g ∈ M , we have f = g if the following conditions hold:

Proof of Lemma 3.4 is given in Sect. 5.

Proof of Theorem 3.3  Given a function f ∈ M , let us consider the assignment valua-
tion g represented by the weighted complete bipartite graph in the latter statement of 
Theorem 3.3, i.e., the assignment valuation g ∶ TΦ → ℝ is obtained from the com-
plete bipartite graph with vertex set V ∪ {1, 2} , weight function w ∶ V × {1, 2} → ℝ 
in (3.1), and capacity function � ∶ V → ℤ++ in (3.2). By Lemma 3.2 applied to g 
and the definition of g and w, we have P+(g) = {pi ∣ i ∈ V} = P+(f ) . It follows from 
Lemma 3.2 (ii) that

Hence, we have f = g by Lemma 3.4. 	�  ◻

The following characterization of bivariate assignment valuations can be 
obtained immediately from Theorems 3.1 and 3.3.

(3.1)w(i, j) = pi(j) (i ∈ V , j = 1, 2),

(3.2)𝜑(i) = �LH(Df (pi)) − �UH(Df (pi)) (> 0) (i ∈ V).

P+(f ) = P+(g), �LH(Df (p)) − �UH(Df (p)) = �LH(Dg(p)) − �UH(Dg(p)) (p ∈ P+(f )).

�LH(Dg(pi)) − �UH(Dg(pi)) = �(i) = �LH(Df (pi)) − �UH(Df (pi)) (i ∈ V).
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Corollary 3.5  An M ♮-concave function f ∶ TΦ → ℝ with f (0, 0) = 0 is an assign-
ment valuation if and only if it satisfies the condition (MS≥).

Based on the characterization of assignment valuations (Theorem  3.3, in 
particular), we propose an algorithm that determines whether a given function 
f ∶ TΦ → ℝ is an assignment valuation or not, and if the answer is “yes,” com-
putes its representation.

Algorithm for Checking Assignment Valuation

Step 1: [Check M ♮-concavity] Check whether f satisfies f (0, 0) = 0 and the condi-
tions (2.3), (2.4), and (2.5). If f satisfies these conditions, then go to Step 2; other-
wise, assert that f is not an assignment valuation.
Step 2: [Check assignment valuation] For each 2-d maximizer set D of f, com-
pute the length of edges �LH(D) and �UH(D) . If there exists some D with 
�LH(D) < �UH(D) , (i.e., D is of negative-type), then assert that f is not an assign-
ment valuation; otherwise, go to Step 3.
Step 3: [Compute a weighted bipartite graph] Let {pi ∣ i ∈ V} be the set of slope 
vectors for positive-type maximizer sets of f with an appropriately chosen index 
set V. Output the complete bipartite graph with vertex sets V ∪ {1, 2} , weight 
function w ∶ V × {1, 2} → ℝ given by (3.1), and capacity function u ∶ V → ℤ++ 
given by (3.2).

We analyze the running time of the algorithm. Checking the conditions (2.3), 
(2.4), and (2.5) in Step 1 can be done in O(Φ2) time by using the value oracle for f. 
For a bivariate M ♮-concave function f, all 2-d maximizer sets and their slope vectors 
can be computed in O(Φ2) time, as explained below. Once we obtain all 2-d maxi-
mizer sets, it is not difficult to compute their edge lengths in O(Φ2) time. Hence, 
Step 2 requires O(Φ2) time. It is easy to see that Step 3 can be done in O(V) = O(Φ2) 
time. Therefore, our algorithm runs in O(Φ2) time in total.

Theorem 3.6  Given a bivariate function f ∶ TΦ → ℝ , we can determine whether f is 
an assignment valuation or not in O(Φ2) time. Moreover, if f is an assignment valua-
tion, we can compute the complete bipartite graph with vertex sets V ∪ {1, 2} , weight 
function w ∶ V × {1, 2} → ℝ , and capacity function u ∶ V → ℤ++ representing f in 
O(Φ2) time.

We explain how to compute in O(Φ2) time all 2-d maximizer sets and their slope 
vectors of a bivariate M ♮-concave function f, where we use the fact that every 2-d 
M ♮-convex set is given as the union of triangles Tur(k, h) and Tll(k, h).

Algorithm for Computing All 2-d Maximizer Sets

Step 1: Let T  be the set of triangles contained in TΦ , i.e., 
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 For each T ∈ T  , set its slope vector pT ∈ ℝ
2 by 

Step 2: If there exists no distinct T , T � ∈ T  with pT = pT � , then stop. Otherwise, 
go to Step 3.
Step 3: Select any distinct T , T � ∈ T  with pT = pT � , delete T and T ′ from T  , and 
insert T ∪ T � , where we set pT∪T � = pT . Go to Step 3.

Step 1 can be done in O(Φ2) time. Since a bivariate M ♮-concave function can be 
extended to a polyhedral concave function, any two triangles contained in TΦ with 
the same slope vectors are adjacent. By using this fact, Steps 2 and 3 can be also 
done in O(Φ2) time.

4 � Proof of Lemma 3.2

We give a proof of Lemma 3.2. Let f ∶ TΦ → ℝ be an assignment valuation in (2.1), 
and assume that weight function w satisfies the condition (2.2). Also, let p ∈ ℝ

2 be a 
vector such that the maximizer set Df (p) is two-dimensional.

By the formula (2.1) for f, the value

is equal to the optimal value of the following optimization problem:

and the set Df (p) is represented by using optimal solutions of (P) as follows:

The problem (P) can be decomposed into |V| independent problems (Pi ) (i ∈ V) 
given as

with wp(i, j) = w(i, j) − p(j) (j = 1, 2) . Denote by Y∗
i
⊆ ℤ

2
+
 the set of optimal solu-

tions of (Pi ), which is given as

T ∶={Tur(k, h) ∣ k ≥ 1, h ≥ 1, k + h ≤ Φ}

∪ {Tll(k, h) ∣ k ≥ 0, h ≥ 0, k + h ≤ Φ − 1}.

pT =

{
(f (k, h) − f (k − 1, h), f (k, h) − f (k, h − 1)) if T = Tur(k, h),

(f (k + 1, h) − f (k, h), f (k, h + 1) − f (k, h)) if T = Tll(k, h).

max{f (k, h) − p(1)k − p(2)h ∣ (k, h) ∈ TΦ}

(P) Maximize
∑
i∈V

(w(i, 1) − p(1))y(i, 1) +
∑
i∈V

(w(i, 2) − p(2))y(i, 2)

subject to y(i, 1) + y(i, 2) ≤ �(i) (i ∈ V),

y(i, j) ∈ ℤ+ (i ∈ V , j = 1, 2),

(4.1)

Df (p) =

{
x ∈ ℤ

2
+

|||| x(j) =
∑
(i,j)∈V

y(i, j) (j = 1, 2), y is an optimal solution of (P)

}
.

(Pi) Maximize wp(i, 1)y(i, 1) + wp(i, 2)y(i, 2)

subject to y(i, 1) + y(i, 2) ≤ �(i), y(i, j) ∈ ℤ+ (j = 1, 2)
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That is, Y∗
i
 is the set of vectors x ∈ ℤ

2
+
 satisfying

We see that y is an optimal solutions of (P) if and only if (y(i, 1), y(i, 2)) ∈ Y∗
i
 

holds for every i ∈ V  . This relation and (4.1) imply that the set Df (p) is given as the 
Minkowski sum of Y∗

i
 as follows:

with

Here, we denote �(V �) =
∑

i∈V � �(i) for V ′ ⊆ V .
It follows from (2.8) that

Suppose that p ≠ (w(i, 1),w(i, 2)) for all i ∈ V  . Then, we have V00 = � , which, 
together with (4.4), implies �LH(Df (p)) − �UH(Df (p)) = 0 , i.e., Df (p) is of zero-type.

We then suppose that p = (w(i, 1),w(i, 2)) holds for some i ∈ V  . Then, 
such i = ip ∈ V  is uniquely determined by the condition (2.2) for the weight 
function w. Hence, we have V00 = {ip} , which, together with (4.4), implies 

(4.2)Y∗
i
=

⎧
⎪⎨⎪⎩
x ∈ ℤ

2
+

��������

x(1) + x(2) ≤ 𝜑(i),
x(1) + x(2) = 𝜑(i) if 0 < max(wp(i, 1),wp(i, 2)),

x(1) = 0 if wp(i, 1) < max(0,wp(i, 2)),

x(2) = 0 if wp(i, 2) < max(0,wp(i, 1))

⎫
⎪⎬⎪⎭
.

x(1) = 𝜑(i), x(2) = 0 if i ∈ V+1 ≡ {i� ∈ V ∣ wp(i�, 1) > max(0,wp(i�, 2))},

x(1) = 0, x(2) = 𝜑(i) if i ∈ V+2 ≡ {i� ∈ V ∣ wp(i�, 2) > max(0,wp(i�, 1))},

x(1) + x(2) = 𝜑(i) if i ∈ V+= ≡ {i� ∈ V ∣ wp(i�, 1) = wp(i�, 2) > 0},

x(1) + x(2) ≤ 𝜑(i) if i ∈ V00 ≡ {i� ∈ V ∣ wp(i�, 1) = wp(i�, 2) = 0},

x(1) = 0, x(2) ≤ 𝜑(i) if i ∈ V−0 ≡ {i� ∈ V ∣ wp(i�, 1) < 0, wp(i�, 2) = 0},

x(1) ≤ 𝜑(i), x(2) = 0 if i ∈ V0− ≡ {i� ∈ V ∣ wp(i�, 1) = 0, wp(i�, 2) < 0},

x(1) = x(2) = 0 if i ∈ V−− ≡ {i� ∈ V ∣ wp(i�, 1) < 0, wp(i�, 2) < 0}.

(4.3)

Df (p) =

{
x ∈ ℤ

2
+

|||| x(j) =
∑

(i,j)∈V

y(i, j) (j = 1, 2), (y(i, 1), y(i, 2)) ∈ Y∗
i
(i ∈ V)

}
=
⨁
i∈V

Y∗
i

= {(x(1), x(2)) ∈ ℤ
2 ∣ �1 ≤ x(1) ≤ �1, �2 ≤ x(2) ≤ �2, �0 ≤ x(1) + x(2) ≤ �0}

�1 = �(V+1), �1 = �(V+1 ∪ V+= ∪ V00 ∪ V0−),

�2 = �(V+2), �2 = �(V+2 ∪ V+= ∪ V00 ∪ V−0),

�0 = �(V+1 ∪ V+2 ∪ V+=), �0 = �(V ⧵ V−−).

(4.4)

�LH(Df (p)) − �UH(Df (p))

= �1 + �2 − �0 + �1 + �2 − �0

= �(V+1 ∪ V+= ∪ V00 ∪ V0−) + �(V+2 ∪ V+= ∪ V00 ∪ V−0) − �(V ⧵ V−−)

+ �(V+1) + �(V+2) − �(V+1 ∪ V+2 ∪ V+=)

= �(V+= ∪ V00) − �(V+=) = �(V00).
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�LH(Df (p)) − �UH(Df (p)) = 𝜑(ip) > 0 , i.e., Df (p) is of positive-type. This concludes 
the proof of Lemma 3.2.

Remark 4.1  As mentioned in Introduction, the demand information of a bidder in the 
product-mix auction in Bank of England is represented by a set of weighted bid vec-
tors [9]. We observe below that sets of weighted bid vectors and assignment valu-
ations can represent the same sets of bidders’ demand information. Moreover, we 
show that sets of weighted bid vectors and assignment valuations have a natural one-
to-one correspondence.

A weighted bid vector is a pair (b,�) of a bid b ∈ ℝ
2 and its weight � ∈ ℤ++ . 

With a weighted bid vector (b,�) , a demand set D(p;b,�) is defined as

Using a set of weighted bid vectors B = {(bi,�(i)) ∣ i ∈ V} with an appropriately 
chosen index set V, we represent a demand set DB(p) given as the Minkowski sum of 
D(p;bi,�(i)):

We see from (4.2), (4.3), (4.5), and (4.6) that sets of weighted bid vectors can 
represent the same sets of bidders’ demand information as assignment valuations. 
Indeed, for a set of weighted bid vectors B = {(bi,�(i)) ∣ i ∈ V} , define a complete 
bipartite graph G = (V , {1, 2};V × {1, 2}) with weight function w ∶ V × {1, 2} → ℝ 
and supply function � ∶ V → ℤ++ given as

and let f ∶ TΦ → ℝ be the associated assignment valuation. Then, it follows from 
(4.2), (4.3), (4.5), and (4.6) that DB(p) = Df (p) for every p ∈ ℝ

2 . This shows that 
sets of weighted bid vectors have a natural one-to-one correspondence with weighted 
complete bipartite graphs representing assignment valuations. 	� ◻

5 � Proof of Lemma 3.4

To prove Lemma 3.4, we show that for each function f ∈ M , its function values 
are uniquely determined by the set P+(f ) and the values �LH(D(p)) − �UH(D(p)) for 
p ∈ P+(f ) . To show this, we first investigate the structure of functions in M.

Let f ∈ M , and denote by D the family of 2-d maximizer sets of f. Then, every 
D ∈ D is an M ♮-convex set of positive-type or zero-type by the definition of M . 

(4.5)

D(p;b,𝜔) =

⎧
⎪⎨⎪⎩
x ∈ ℤ

2
+

��������

x(1) + x(2) ≤ 𝜔,
x(1) + y(2) = 𝜔 if 0 < max(b(1) − p(1), b(2) − p(2)),

x(1) = 0 if b(1) − p(1) < max(0, b(2) − p(2)),

x(2) = 0 if b(2) − p(2) < max(0, b(1) − p(1))

⎫
⎪⎬⎪⎭
.

(4.6)DB(p) =
⨁
i∈V

D(p;bi,�(i)).

w(i, j) = bi(j) (i ∈ V , j = 1, 2), �(i) = �(i) (i ∈ V),
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Also, denote by D+ ⊆ D the family of positive-type maximizer sets of f. Recall that 
every D ∈ D is an M ♮-convex set and therefore D ∩ ℤ

2 = D holds.
We classify maximizer sets in D according to their slopes. Denote by D(�, �) the 

maximizer set Df (p) with p = (�, �) . For �, �, � ∈ ℝ , define

Also, define

That is, BH ∪ BV ∪ BD is the family of 2-d maximizer sets that touch the boundary of 
the domain TΦ of f.

We observe that BH contains at most one maximizer set in DH(�) for every � ∈ ℝ . 
For D ∈ D and � ∈ ℝ , we say that � is the slope of D in the (+1, 0)-direction if 
D = D(�, �) for some � ∈ ℝ.

Proposition 5.1  Let D,D′ be distinct maximizer sets in BH , and � (resp., �′ ) be the 
slope of D (resp., D′ ) in the (+1, 0)-direction. Then, we have � ≠ �′ ; moreover, D is 
closer to the origin than D′ if and only if 𝛼 > 𝛼′.

Proof  This follows from the fact that f can be extended to a polyhedral concave 
function f̄  , and that the convex hull of a 2-d maximizer set of f corresponds to a 
facet of the epigraph of  f̄  . 	� ◻

For a sequence D0,D1,… ,Dt of distinct 2-d maximizer sets of f, we say that it is

•	 an H-sequence if Ds and Ds+1 share a horizontal edge of positive length for 
s = 0, 1,… , t − 1 (i.e., LH-edge of Ds is the same as UH-edge of Ds+1 , or UH-
edge of Ds is the same as LH-edge of Ds+1),

•	 a V-sequence if Ds and Ds+1 share a vertical edge of positive length for 
s = 0, 1,… , t − 1.

•	 a D-sequence if Ds and Ds+1 share a diagonal edge of positive length for 
s = 0, 1,… , t − 1.

See Fig. 5 for an example of H-sequence.
We show that there exists a unique H-sequence consisting of all maximizer sets 

in DH(�).

DH(𝛼) = {D ∈ D ∣ �LH(D) > 0, D = D(𝛼, 𝛽�) for some 𝛽� ∈ ℝ},

DV(𝛽) = {D ∈ D ∣ �LV(D) > 0, D = D(𝛼�, 𝛽) for some 𝛼� ∈ ℝ},

DD(𝛾) = {D ∈ D ∣ �URD(D) > 0, D = D(𝛼�, 𝛼� − 𝛾) for some 𝛼� ∈ ℝ}.

BH = {D ∈ D ∣ LH-edge of D has positive length

and is contained in the horizontal edge of TΦ},

BV = {D ∈ D ∣ LV-edge of D has positive length

and is contained in the vertical edge of TΦ},

BD = {D ∈ D ∣ URD-edge of D has positive length

and is contained in the diagonal edge of TΦ}.
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Proposition 5.2  For every � ∈ ℝ with DH(�) ≠ � , there exists a unique H-sequence 
D0,D1,… ,Dt of all 2-d maximizer sets in DH(�) satisfying the following conditions:

(a)	 D0 ∈ D
+ and its UH-edge has length zero,

(b)	 For s = 0, 1,… , t − 1 , LH-edge of Ds is the same as UH-edge of Ds+1,
(c)	 DH(�) ∩ BH = {Dt},
(d)	 Ds = D(�, �s) (s = 0, 1,… , t) holds with some real numbers 𝛽0 < 𝛽1 < ⋯ < 𝛽t.

Moreover, for s = 0, 1,… , t, the length �LH(Ds) of LH-edge in Ds is equal to 

Figure 5 shows an example of H-sequence satisfying the conditions (a), (b), (c), 
and (d). Since D0,D2 ∈ D

+ and D1,D3 ∉ D
+ , (5.1) implies that

Proof of Proposition 5.2  We prove this proposition by using the following properties 
of 2-d maximizer sets. 

Claim 1   Let � ∈ ℝ be a real number with D(�, �) ∈ DH(�) . 

	 (i)	 If D(�, �) ∉ BH and its LH-edge has positive length, then there exists a unique 
real number �′ with 𝛽′ > 𝛽 such that D(�, ��) ∈ DH(�) and UH-edge of D(�, ��) 
is the same as LH-edge of D(�, �).

(5.1)�LH(Ds) =
∑

{�LH(Ds� ) − �UH(Ds� ) ∣ 0 ≤ s� ≤ s, Ds� ∈ D
+}.

�LH(D3) = �LH(D2) = (�LH(D2) − �UH(D2)) + (�LH(D0) − �UH(D0)) = 1 + 1 = 2,

�LH(D1) = �LH(D0) = �LH(D0) − �UH(D0) = 1.

Fig. 5   An example of 
H-sequence. The dotted triangle 
represents the set TΦ
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	 (ii)	 If UH-edge of D(�, �) has positive length, then there exists a unique real 
number �′′ with 𝛽′′ < 𝛽 such that D(�, ���) ∈ DH(�) and LH-edge of D(�, ���) 
is the same as UH-edge of D(�, �).

[Proof of Claim 1]      We prove (i) only since (ii) can be proved in a similar way. 
Since D(�, �) is a 2-d maximizer set, there exists a unique p ∈ ℝ

2 such that Df (p) is 
a 2-d maximizer set and UH-edge of Df (p) is the same as LH-edge of D(�, �) . Since 
Df (p) ∩ D(�, �) is a horizontal edge, we have p(1) = � . Since f can be extended to a 
polyhedral concave function, we have p(2) > 𝛽 . 	�  ◻

Let D0 be a maximizer set in DH(�) such that LH-edge of D0 is the highest (i.e., 
farthest from the horizontal edge of TΦ ); recall that �LH(D) > 0 holds for every 
D ∈ DH(�).

We show that D0 satisfies the condition (a). Assume, to the contrary, that 
�UH(D0) > 0 . Then, Claim 1 (ii) implies that there exists some maximizer set 
D ∈ DH(�) such that UH-edge of D0 is equal to LH-edge of D. This, however, is a 
contradiction to the choice of D0 . Hence, we have �UH(D0) = 0 . Since LH-edge of 
D0 has positive length, we have �LH(D0) − �UH(D0) > 0 , i.e., D0 ∈ D

+ , implying the 
condition (a).

Let D0,D1,… ,Dt be a maximal sequence of (not necessarily all) maximizer 
sets in DH(�) satisfying the conditions (a) and (b). It follows from Claim 1 that the 
sequence satisfies the condition (d).

We prove that the maximizer set Dt satisfies the condition (c). Assume, to the 
contrary, that Dt ∉ BH . Since �LH(Dt) > 0 , Claim 1 (i) implies that there exists some 
maximizer set D ∈ DH(�) such that LH-edge of Dt coincides with UH-edge of D. 
This, however, is a contradiction to the maximality of the sequence. Hence, we have 
Dt ∈ BH , which, together with Proposition 5.1, that DH(�) ∩ BH = {Dt} , i.e., the 
condition (c) holds.

We next prove that the sequence D0,D1,… ,Dt contains all maximizer sets in 
DH(�) . Assume, to the contrary, that there exists some D� ∈ DH(�) that is not in 
{D0,D1,… ,Dt} ; this implies D� ∉ BH by the condition (c). We further assume that 
LH-edge of D′ is the lowest (i.e., nearest to the horizontal edge of TΦ ) among all 
such maximizer sets.

Since D� ∉ BH , Claim 1 (i) implies that there exists a maximizer set D�� ∈ DH(�) 
such that UH-edge of D′′ is the same as LH-edge of D′ . Since D′′ is lower than D′ , 
the choice of D′ implies that D′′ is contained in the sequence D0,D1,… ,Dt . Since 
UH-edge of D′′ has positive length, we have D′′ ≠ D0 by the condition (a). Hence, 
we have D�� = Ds for some s > 0 , implying that D′ is the same as Ds−1 by Claim 
1  (ii), a contradiction to the assumption that D� ∉ {D0,D1,… ,Dt} . Therefore, the 
sequence contains all maximizer sets in DH(�) . This concludes the proof for the first 
half of the proposition.

We finally prove the equation (5.1) by induction on s. Since D0 ∈ D
+ and 

�UH(D0) = 0 by the condition (a), the equation (5.1) holds if s = 0.
We then consider the case with s > 0 . It holds that
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where the second equality is by the condition (b), the third by the induction 
hypothesis, and the last by the fact that if Ds ∉ D

+ then Ds is of zero-type and 
�LH(Ds) = �UH(Ds) holds. Hence, (5.1) holds. 	�  ◻

We can also prove the following properties of DV(�) and DD(�) in a similar way 
as in Proposition 5.2. It should be noted that the two equations (5.2) and (5.3) for the 
length of LV-edges and URD-edges given below are described in terms of the length 
of LH-edges and UH-edges, where we use the equation

Proposition 5.3  For every � ∈ ℝ with DV(�) ≠ � , there exists a unique V-sequence 
D0,D1,… ,Dt of all 2-d maximizer sets in DV(�) satisfying the following conditions:

(a)	 D0 ∈ D
+ and its RV-edge has length zero.

(b)	 For s = 0, 1,… , t − 1 , LV-edge of Ds coincides with RV-edge of Ds+1.
(c)	 DV(�) ∩ BV = {Dt}.
(d)	 Ds = D(�s, �) (s = 0, 1,… , t) holds with some real numbers 𝛼0 < 𝛼1 < ⋯ < 𝛼t.

Moreover, for s = 0, 1,… , t, the length �LV(Ds) of LV-edge in Ds is given as

Proposition 5.4  For every � ∈ ℝ with DD(�) ≠ � , there exists a unique D-sequence 
D0,D1,… ,Dt of all 2-d maximizer set in DD(�) satisfying the following conditions:

(a)	 D0 ∈ D
+ and its LLD-edge has length zero.

(b)	 For s = 0, 1,… , t − 1 , URD-edge of Ds coincides with LLD-edge of Ds+1.
(c)	 DD(�) ∩ BD = {Dt}.
(d)	 Ds = D�(�s, �s − �) (s = 0, 1,… , t) holds with some real  numbers 

𝛼0 > 𝛼1 > ⋯ > 𝛼t.

Moreover, for s = 0, 1,… , t, the length �URD(Ds) of URD-edge in Ds is given as

�LH(Ds) = (�LH(Ds) − �UH(Ds)) + �UH(Ds)

= (�LH(Ds) − �UH(Ds)) + �LH(Ds−1)

= (�LH(Ds) − �UH(Ds)) +
∑

{�LH(Ds� ) − �UH(Ds� ) ∣ 0 ≤ s� ≤ s − 1, Ds� ∈ D
+}

=
∑

{�LH(Ds� ) − �UH(Ds� ) ∣ 0 ≤ s� ≤ s, Ds� ∈ D
+},

�LH(Ds
) − �UH(Ds

) = �LV(Ds
) − �RV(Ds

) =
1√
2

(�URD(Ds
) − �LLD(Ds

))

(s = 0, 1,… , t).

(5.2)�LV(Ds) =
∑

{�LH(Ds� ) − �UH(Ds� ) ∣ 1 ≤ s� ≤ s, Ds� ∈ D
+}.

(5.3)𝓁URD(Ds) =
√
2 ⋅

�
{𝓁LH(Ds� ) − 𝓁UH(Ds� ) ∣ 1 ≤ s� ≤ s, Ds� ∈ D

+}.
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Recall that P+(f ) denotes the set of slope vectors for all positive-type maximizer 
sets. We show that vectors in P+(f ) can be used to compute slope vectors of all 2-d 
maximizer sets, including those of zero-type.

Proposition 5.5  For p ∈ ℝ
2 , Df (p) is a 2-d maximizer set of zero-type if and only if 

p ∈ P0
HV

∪ P0
HD

∪ P0
VD

⧵P+(f ) with

Proof  We denote Dp = Df (p) in the following.
[Proof of “only if” part]    Suppose that Dp is a 2-d maximizer set of zero-type. 

Then, we have

by definition of zero-type. These equations, together with the fact that Dp is a two-
dimensional set, imply that at least two of the edge lengths �LH(Dp) , �LV(Dp) , and 
�URD(Dp) are positive. Moreover, Propositions  5.2, 5.3, and  5.4 (condition (a), in 
particular) imply that

•	 if �LH(Dp) > 0 , then there exists some q ∈ P+(f ) such that q(1) = p(1) and 
q(2) < p(2).

•	 if �LV(Dp) > 0 , then there exists some q� ∈ P+(f ) such that q�(1) < p(1) and 
q�(2) = p(2).

•	 if �URD(Dp) > 0 , then there exists some q�� ∈ P+(f ) such that 
q��(1) − q��(2) = p(1) − p(2) , q��(1) > p(1) , and q��(2) > p(2).

If �LH(Dp) > 0 and �LV(Dp) > 0 hold, then we have

implying that p ∈ P0
HV

 . If �LH(Dp) > 0 and �URD(Dp) > 0 hold, then we have

implying that

i.e., p ∈ P0
HD

 holds. Similarly, if �LV(Dp) > 0 and �URD(Dp) > 0 , then we have 
p ∈ P0

VD
.

P0
HV

= {(q(1), q�(2)) ∣ q, q� ∈ P+(f ), q(1) > q�(1), q(2) < q�(2)},

P0
HD

= {(q(1), q(1) − q�(1) + q�(2)) ∣ q, q� ∈ P+(f ), 0 < q�(1) − q(1) < q�(2) − q(2)},

P0
VD

= {(q(2) − q�(2) + q�(1), q(2)) ∣ q, q� ∈ P+(f ), 0 < q�(2) − q(2) < q�(1) − q(1)}.

�LH(Dp) = �UH(Dp), �LV(Dp) = �RV(Dp), �URD(Dp) = �LLD(Dp)

q(1) = p(1) > q�(1), q(2) < p(2) = q�(2),

q(1) = p(1) < q��(1), q(1) − q(2) > p(1) − p(2) = q��(1) − q��(2),

p(2) = p(1) − q��(1) + q��(2), q��(2) − q(2) > q��(1) − q(1) > 0,
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[Proof of “if” part]    We assume p ∈ (P0
HV

∪ P0
HD

∪ P0
VD

)⧵P+(f ) , and show that 
Dp is a 2-d maximizer set. In the following, we consider the case p ∈ P0

HV
 only since 

the remaining cases can be proven similarly.
By the definition of P0

HV
 , there exist some q, q� ∈ P+(f ) such that 

p(1) = q(1) > q�(1) and q(2) < q�(2) = p(2) . Propositions  5.2 and 5.3 imply that 
there exist two sequences of 2-d maximizer sets

with Dt = Df (q) and Cs = Df (q
�) satisfying the following conditions (see Fig. 6 for 

illustration):

•	 D0,D1,… ,Dt−1,Dt is the H-sequence from the unique maximizer set D0 in 
DH(q(1)) ∩ BH to Dt,

•	 Dt,Dt+1,… ,Dt∗−1,Dt∗ is the V-sequence from Dt to the unique maximizer set Dt∗ 
in DV(q(2)) ∩ BV,

•	 C0,C1,… ,Cs−1,Cs is the H-sequence from the unique maximizer set C0 in 
DH(q

�(1)) ∩ BH to Cs,
•	 Cs,Cs+1,… ,Cs∗−1,Cs∗ is the V-sequence from Cs to the unique maximizer set Cs∗ 

in DV(q
�(2)) ∩ BV.

We show that Dt� = Cs� holds for some t′ and s′ with 0 ≤ t′ ≤ t and s ≤ s� ≤ s∗ ; 
such a 2-d maximizer set satisfies Dt� = Cs� = Dp since Dt� ∈ DH(p(1)) and 
Cs� ∈ DV(p(2)) . To show this, we use the following properties on the geometry of 
the two sequences.

Claim 1   

	 (i)	 H-sequence D0,D1,… ,Dt is closer to the origin than H-sequence 
C0,C1,… ,Cs.

D0,D1,… ,Dt−1,Dt,Dt+1,… ,Dt∗−1,Dt∗ , C0,C1,… ,Cs−1,Cs,Cs+1,… ,Cs∗−1,Cs∗

Fig. 6   Illustration of the two 
sequences D0,D1,… ,Dt∗ 
and C0,C1,… ,Cs∗ . Here, 
D3 = Df (q) , C1 = Df (q

�) , and 
D1 = C3 = Df (p) hold. The 
dotted triangle represents the set 
TΦ . D0,D1,D2,D3 and C0,C1 are 
H-sequences, while D3,D4,D5 
and C1,C2,C3,C4,C5 are 
V-sequences
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	 (ii)	 V-sequence Cs,Cs+1,… ,Cs∗ is closer to the origin than V-sequence 
Dt,Dt+1,… ,Dt∗.

Proof of Claim 1  We prove (i) only. Since D0 ∈ DH(q(1)) , C0 ∈ DH(q
�(1)) , and 

q(1) > q�(1) , Proposition  5.1 implies that the maximizer set D0 is closer to the 
origin than C0 . Hence, the statement of the claim follows since the H-sequence 
D0,D1,… ,Dt−1,Dt starts from D0 , the H-sequence C0,C1,… ,Cs−1,Cs starts from 
C0 , and the two H-sequences are disjoint. 	�  ◻

We see that maximizer sets C0,C1,… ,Cs∗ are connected, and two sets C0 and Cs∗ 
are on the boundary of TΦ . This means that the sequence C0,C1,… ,Cs∗ separates 
TΦ into two region, the one containing the origin and another one not containing the 
origin. Moreover, D0,C0 ∈ BH , Dt∗ ,Cs∗ ∈ BV , D0 is closer to the origin than C0 , and 
Dt∗ is farther from the origin than Cs∗ . This observation and Claim 1 imply that

i.e., Dt� = Cs� holds for some t′ and s′ with 0 ≤ t′ ≤ t and s ≤ s� ≤ s∗ . This concludes 
the proof for “if” part of Proposition 5.5. 	�  ◻

We now give a proof of Lemma 3.4. Proposition 5.5 implies that the set P(f) of 
slope vectors of all 2-d maximizer sets for function f is uniquely determined by the 
set P+(f ) . Using the set P(f) and the values �LH(D(p)) − �UH(D(p)) for p ∈ P+(f ) , 
we can compute the lengths of six edges of all 2-d maximizer sets with the aid of 
the equations (5.1), (5.2), and (5.3) in Propositions 5.2, 5.3, and 5.4. We can also 
obtain the information on the adjacency relationship among 2-d maximizer sets of f 
by Propositions 5.2, 5.3, and 5.4. Hence, the function values of f at all points in TΦ 
are uniquely determined by Proposition 2.7. This concludes the proof of Lemma 3.4.
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