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Abstract
This article presents three classes of real square matrices. They are models of coef-
ficient matrices of linearized Galerkin’s equations. These Galerkin’s equations are
derived fromfirst order nonlinear delay differential equationwith smooth nonlinearity.
This paper shows results of computer experiments stating that the minimum singu-
lar values of these matrices are unchanged even if orders of matrices are increased.
A time variant Hutchinson equation is also considered. A computer experimental
result is shown about this equation. This result shows that “the minimum singular val-
ues invariant-ness” holds also for the coefficient matrices of linearized Galerkin’s
equations of this equation. A remark is presented that this property can be seen
experimentally for a wide class of nonlinear delay differential equation with smooth
nonlinearity. A theorem is presented based on the Schur complement. Through it, tight
lower bounds are derived for the minimum singular values of such three matrices. It is
proved that these lower bounds are unchanged even if orders of matrices are increased.

Keywords Generalized asymptotic diagonal dominant matrix · Minimum singular
value · Galerkin’s equation · Schur complement

Mathematics Subject Classification 65F45

1 Introduction

Recently, I have been engaged in computer assisted existence proof of periodic solu-
tions for nonlinear delay differential equations. For the purpose, I have used the verified
numerical computations. In this process, using the spectral method, I have calculated
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1570 S. Oishi

Galerkin’s approximations of periodic solutions for various delay differential equa-
tions. Then, linearizing original nonlinear equations around the calculated Galerkin’s
approximations. An interesting and surprising computer experimental observation is
that the minimum singular values of coefficient matrices of such linearized equations
are unchanged even if dimensions of Galerkin’s equations are increased provided that
orders of Galerkin’s approximations are sufficiently large.

In order to understand this phenomenon, in Sect. 2, it is presented three classes of
real square matrices, say G’s, modeling coefficients matrices of linearized Galerkin’s
equations for certain first order nonlinear delay differential equation with smooth
nonlinearity. We show computer experimental observations stating that the minimum
singular values of such classes of matrices are unchanged even if orders of matri-
ces are increased. Taking the time variant Hutchinson equation as example, it is also
pointed out that this property holds for a wide class of coefficients matrices of lin-
earized Galerkin’s equations for nonlinear delay differential equation with smooth
nonlinearity.

In Sect. 3, Theorem 1 is presented based on the Schur complement. This theorem
gives a lower bound of the minimum singular value of a certain class of 2 × 2 block
matrices. In case of calculating the minimum singular value of an n × n complex
matrix G, it is a sharpen version of the asymptotic diagonal dominant matrix theory
presented by Oishi and Sekine [1], because in [1] for the estimation of ‖G−1‖2, which
is the reciprocal of the minimum singular value of G, an overestimation ‖G−1‖2 �
‖G−1‖∞‖G−1‖1 is used. Here, n is positive integer, and ‖G‖2, ‖G‖∞ and ‖G‖1 are
matrix norms induced by the Euclid norm, ∞-norm and 1-norm in Cn , respectively.

In Sect. 4, it is shown that tight lower bounds of the minimum singular values for
matrices G’s presented in Sect. 2 as examples can be derived using Theorem 1 stated
in Sect. 3. These lower bounds of the minimum singular values are unchanged even if
orders of matrices are increased. Section5 gives conclusions.

2 Class of matrices modeling coefficient matrices of linearized
Galerkin’s equations

Let p and q be positive integers. Let Mp,q(C) and Mp,q(R) be the set of all p × q
complex and real matrices, respectively. Let G = (Gi j ) ∈ Mp,q(C), and G∗ =
(G ji ) ∈ Mq,p(C) be its Hermitian conjugate. Here, Gi j is the i- j th element of G, and
G ji is the complex conjugate of G ji . The singular values of G are the square roots
of eigenvalues of GG∗ or G∗G. Denote the smallest and the largest singular values of
G as σmin(G) and σmax(G), respectively. We call σmin(G) as the minimum singular
value of G. When there is no confusion, we denote simply σmin(G) and σmax(G) as
σmin and σmax, respectively. The matrix norm ‖G‖2 is given by ‖G‖2 = σmax(G).

Let n be a positive integer. We simply denote Mn,n(C) and Mn,n(R) as Mn(C) and
Mn(R), respectively. If G ∈ Mn(C) is invertible, ‖G−1‖2 = 1/σmin(G).
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Generalized asymptotic diagonal dominant matrices 1571

2.1 Example 1

In the first place, let us consider the following matrix G ∈ Mn(R) with n being a
positive integer:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 3 0 0 0 · · · 0 0 0
2 2 3 0 0 · · · 0 0 0
0 2 3 3 0 · · · 0 0 0

...
. . .

0 0 0 0 0 · · · 2 n − 1 3
0 0 0 0 0 · · · 0 2 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Remark 1 Here, I would like to present a remark why I consider this type of matrix.
I have been engaged in computer assisted existence proof of periodic solutions for
nonlinear delay differential equations of the following form:

dx(t)

dt
= f (x(t), x(t − τ)). (2)

Here, τ is a positive real constant expressing a delay, and f is a sufficiently smooth
function of x(t) and x(t−τ). In order to prove the existence of periodic solutions, in the
first place, I usually calculate Galerkin’s approximations of periodic solutions. Then,
in the process of proving the existence of exact solutions, we linearize the original
nonlinear equations around calculated Galerkin’s approximations. If we want to have
2π periodic solutions, in the processes of calculating Galerkin’s approximations, x(t)
is assumed to have a form

x(t) = a0 +
n∑

n=1

(an cos nt + bn sin nt). (3)

Then,
dx(t)

dt
=

n∑
n=1

(−nan sin nt + nbn cos nt). (4)

The (2×2 block) diagonal elements of the coefficient matrices of linearizedGalerkin’s
equations correspond to coefficients of an cos nt or an sin nt . Thus, to treat linearized
Galerkin’s equations realistic way, we need to consider block matrices. However, to
make the things easy and to reveal essence, I would like to consider the simplified
matrix G defined by Eq. (1). In proving the existence of periodic solutions using
verified numerical computations, some times we should take large n, say n is more
than 107. See such an example in Ref. [1]. In this paper, we consider such a situation.

The diagonal part of G being (1, 2, . . . , n − 1, n) is a reflection of considering the
first order differential equation. Non-zero off-diagonal elements in G is coming both
from the existence of nonlinear terms and delay terms. Sparsity of G is coming from
polynomial nonlinearity. ��
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1572 S. Oishi

I have found using numerical experiments that the minimum singular value of G is
experimentally almost unchanged even if we increase n and given as

1

σmin
≈ 3.12221 (5)

provided that n � 100.

Remark 2 If we can prove that the minimum singular value of G is unchanged even if
we increase the order of matrixG, it is quite useful for the computer assisted existence
proof of solutions for nonlinear differential equations. This is a motivation of the
present paper. ��

2.2 Example 2

Let n > 5 be a positive integer. Next, let us consider G ∈ Mn(R) defined by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 6 7 0 0 0 0 0 · · · 0 0 0
5 4 7 9 9 0 0 0 0 0 · · · 0 0 0
5 8 4 7 10 0 0 0 0 0 · · · 0 0 0
1 2 10 5 7 0 0 0 0 0 · · · 0 0 0
9 3 10 6 1 3 0 0 0 0 · · · 0 0 0
0 0 0 0 2 6 3 0 0 0 · · · 0 0 0
0 0 0 0 0 2 7 3 0 0 · · · 0 0 0
0 0 0 0 0 0 2 8 3 0 · · · 0 0 0
0 0 0 0 0 0 0 2 9 3 · · · 0 0 0
0 0 0 0 0 0 0 0 2 10 · · · 0 0 0

...
. . .

...

0 0 0 0 0 · · · 0 0 0 0 0 2 n − 1 3
0 0 0 0 0 · · · 0 0 0 0 0 0 2 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

The first 5× 5 sub-matrix of G is a random matrix and the remaining part of G is the
same as that in Example 1.

Remark 3 This type of matrix is a generalized model for the case of considering
autonomous nonlinear delay differential equation. In this case, one of the independent
variables is fixed and add a phase conditions in order to remove the translation invari-
ance of solution with respect to time variables. We refer, for instance, Shinohara [2].
In such a case, of course no random numbers appear. Here, generalizing this situation,
we want to consider the case in which a part of matrix G presented in Example 1
received a random perturbation. Of course, this perturbed matrix has a different min-
imum singular value if a perturbation is different. Here, taking the matrix G given by
Eq. (6) as an example, we would like to show that the minimum singular value of the
perturbed matrix is almost unchanged if we increase the order of matrix. ��
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Generalized asymptotic diagonal dominant matrices 1573

Table 1 Numerically calculated
inverse of the minimum singular
values (without verification)

k 0.6 0.7 0.8 0.9

1/σmin 1.39648 1.58327 1.86593 2.38819

Numerical experiments show that the minimum singular value of G is experimen-
tally almost unchanged even if we increase n and given as

1

σmin
≈ 1.53479 (7)

provided that n � 100. This bound is specific for this matrix, i.e., if we change the
random matrix part, then the minimum singular value of G is changed.

2.3 Example 3

Let n > 10 be a positive integer. As the third example, let us consider G ∈ Mn(R)

given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 k k2 k3 k4 k5 k6 k7 · · ·
k 2 k k2 k3 k4 k5 k6 · · ·
k2 k 3 k k2 k3 k4 k5 · · ·
k3 k2 k 4 k k2 k3 k4 · · ·
k4 k3 k2 k 5 k k2 k3 · · ·
k5 k4 k3 k2 k 6 k k2 · · ·
k6 k5 k4 k3 k2 k 7 k · · ·
k7 k6 k5 k4 k3 k2 k 8 · · ·

...
. . .

. . . n − 1 k

. . . k n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

with 0.5 < k < 1.

Remark 4 This type of off-diagonal elements are coming from smooth non-polynomial
nonlinear terms. ��

In this case, numerical experiments declare that 1/σmin are almost unchanged even
if we increase n provided n � 100 as shown in Table 1.

2.4 Example 4

The above mentioned examples are simplified models. Back to the nonlinear delay
differential equations. As an example, let us consider the periodically time variant
Hutchinson equation defined by

dx(t)

dt
− α

(
1 + β sinωt)x(t)(1 − x(t − τ)

K

)
= 0. (9)
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1574 S. Oishi

Fig. 1 Subharmonic Solutions (τ = 3, α = 0.5, β = 0.6, ω = 1, K = 2)

Table 2 Calculated inverse of the minimum singular value σmin of the coefficient matrix of the linearized
Galerkin equation (without verification)

m 50 100 150 200 300 400 500

1/σmin 12.990 12.780 12.722 12.687 12.661 12.640 12.631

We refer section 10.1 of Ruan’s survey article [3] about this equation. For τ = 3, α =
0.5, β = 0.6, ω = 1, K = 2, it has an 1/2 subharmonic solution of 4π periodic
solution shown in Fig. 1.

For this solution, we have calculated Galerkin’s approximations by the spectral
method. At these approximate solutions, we have calculated the minimum singular
values σmin for the coefficient matrices of linearized Galerkin equations. As shown in
Table 2, via numerical experiments it is seen that a tight upper bound 1/σmin � 13 is
valid for 50 � m � 500. Here, m is an order of Fourier expansion used in Galerkin’s
approximation so that 2m + 1 is a dimension of Galerkin’s equation.

Using verified numerical computations, based on Theorem 1, which will be pre-
sented in Sect. 3, we can show that there exist an exact 1/2-subharmonic solution
near the approximate solutions. However, to discuss this, we need the derivation of
Galerkin’s equation precisely. It needs long calculations. Thus, this time we will not
discuss this example in the rest of this paper and describe it in a separate paper.

Remark 5 This kind of “the minimum singular values invariant-ness” property for
coefficient matrices of linearized Galerkin’s equations can be seen experimentally for
a wide class of nonlinear delay differential equation with smooth nonlinearity. For
example, an another example has been presented in case of analyzing the forced El
Niño equation in Ref. [1].

3 Theorem for generalized asymptotic diagonal dominant matrix

To derive lower bounds of minimum singular values of the matrices G’s presented as
Examples in Sect. 2, we show the following theorem:
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Generalized asymptotic diagonal dominant matrices 1575

Theorem 1 Let n be a positive integer, and m be a non-negative integer satisfying
m � n. Let G ∈ Mn(R) be defined by

G =
(
A B
C D

)
(10)

with A ∈ Mm(R), B ∈ Mm,n−m(R), C ∈ Mn−m,m(R), and D ∈ Mn−m,n−m(R). Let
Dd and D f be the diagonal part and the off-diagonal part of D, respectively. Assume
that A and Dd are invertible. If

‖A−1B‖2 < 1, ‖CA−1‖2 < 1, and ‖D−1
d (D f − CA−1B)‖2 < 1, (11)

G is invertible and the following estimate holds:

‖G−1‖2 �
max

{
‖A−1‖2, ‖D−1

d ‖2
1 − ‖D−1

d (D f − CA−1B)‖2

}

(1 − ‖A−1B‖2)(1 − ‖CA−1‖2) . (12)

Proof From the invertibility of A, we can define the Schur complement with respect
to A as

SA = D − CA−1B.

From ‖D−1
d (D f − CA−1B)‖2 < 1, it follows that SA is invertible. In fact, from the

invertibility of Dd , we can define D−1
d (SA − Dd). From

‖D−1
d (SA − Dd)‖2 = ‖D−1

d (D f − CA−1B)‖2 < 1,

we can use Banach’s contraction mapping principle to prove SA is invertible and

‖S−1
A ‖2 �

‖D−1
d ‖2

1 − ‖D−1
d (D f − CA−1B)‖2)

. (13)

Then, G is known to be invertible and G−1 is given by1

G−1 =
(

Im −A−1B
On−m,m In−m

) (
A−1 Om,n−m

On−m,m S−1
A

) (
Im Om,n−m

−CA−1 In−m

)
. (14)

1 If A is invertible, it is known G can be factorized as

G =
(

Im Om,n−m
CA−1 In−m

) (
A Om,n−m

On−m,m SA

)(
Im A−1B

On−m,m In−m

)
.

This can be checked easily via direct calculations. Then, we can check easily GG−1 = G−1G = In via
direct calculations provided that G−1 is given by Eq. (14).
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1576 S. Oishi

Here, Im is the m-th order identity matrix and Ok,l is the k × l zero matrix. Thus, we
have

‖G−1‖2 �
∥∥∥∥
(

Im −A−1B
On−m,m In−m

)∥∥∥∥
2

∥∥∥∥∥

(
A−1 Om,n−m

On−m,m S−1
A

)∥∥∥∥∥
2

∥∥∥∥
(

Im Om,n−m
−CA−1 In−m

)∥∥∥∥
2
.

It is easy to see that

∥∥∥∥
(

Im −A−1B
On−m,m In−m

)∥∥∥∥
2

� ‖In‖2
1 −

∥∥∥∥
(

Om −A−1B
On−m,m On−m

)∥∥∥∥
2

= 1

1 − ‖A−1B‖2 .

Similarly, we have

∥∥∥∥
(

Im Om,n−m

−CA−1 In−m

)∥∥∥∥
2

� 1

1 − ‖CA−1‖2 ,

and

∥∥∥∥
(

A−1 Om,n−m

On−m,m S−1
A

)∥∥∥∥
2

� max

{
‖A−1‖2, ‖D−1

d ‖2
1 − ‖D−1

d (D f − CA−1B)‖2)

}
.

This completes the proof. ��
If m = 0, then conditions given by Eq. (11) becomes

‖G−1
d G f ‖2 < 1. (15)

Here, Gd and G f are the diagonal and the off-diagonal parts of G, respectively. The
condition given by Eq. (15) expresses, in some sense, diagonal dominant-ness of G.
For diagonal dominant matrix theory, we refer Refs. [4] and [5]. Thus, for m � 1, I
would like to call the conditions given by Eq. (11) as generalized asymptotic diagonal
dominant-ness of G.

Remark 6 It is obvious that Theorem 1 holds for anymatrix norms induced from vector
norms. Thus, it also holds if ‖ · ‖2 is replaced by ‖ · ‖∞ or ‖ · ‖1.
Remark 7 Theorem 1 states that for a given m � 1 if

max

{
‖A−1‖2, ‖D−1

d ‖2
1 − ‖D−1

2 (D f − CA−1B)‖2

}
= ‖A−1‖2, (16)

and if ‖A−1B‖2 and ‖CA−1‖2 are sufficiently small, the bound of ‖G−1‖2 given by
Eq. (12) becomes almost same as ‖A−1‖2.

Furthermore, for a given m � 1 if Eq. (16) holds for any n greater than or equal
to m, and if estimates of upper bounds for ‖A−1B‖2 and ‖CA−1‖2 can be derived
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Generalized asymptotic diagonal dominant matrices 1577

independently on n, then the bound of ‖G−1‖2 given by Eq. (12) holds for any n
greater than or equal to m.

In the next section, we will show that both facts are true for the matrices G’s
presented as Examples in Sect. 2. ��

4 Lower bounds of minimum singular values for matrices presented
as examples in Sect. 2

In this section, it will be shown that lower bounds for the minimum singular values of
the matrices G’s given in Sect. 2 can be derived using Theorem 1 presented in Sect. 3.
The emphasis will be that these lower bounds of the minimum singular values are
reasonably tight if we take m=100 and unchanged even if orders of matrices G’s are
increased.

4.1 Example 1

Let n � 10 be positive integer. Let us consider the matrix G ∈ Mn(R) defined by Eq.
(1). Let m be a non-negative integer satisfying m � n. Let us divide G ∈ Mn(R) as

G =
(
A B
C D

)
(17)

with A ∈ Mm(R), B ∈ Mm,n−m(R), C ∈ Mn−m,m(R), and D ∈ Mn−m,n−m(R). If
we take m = 9, then

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 0 0 0 0 0 0 0
2 2 3 0 0 0 0 0 0
0 2 3 3 0 0 0 0 0
0 0 2 4 3 0 0 0 0
0 0 0 2 5 3 0 0 0
0 0 0 0 2 6 3 0 0
0 0 0 0 0 2 7 3 0
0 0 0 0 0 0 2 8 3
0 0 0 0 0 0 0 2 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
3 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, using verified numerical computations, we have

‖A−1‖2 � 3.122.

Remark 8 Nowadays, if m is small, say less than several thousands, using verified
numerical computations, we can easily calculate a tight and rigorous upper bound of
‖A−1‖2 via lap-top computers provided that A is not so ill-conditioned. However, if n
is large, say more than 107, usually it is difficult to compute ‖G−1‖2 with guaranteed
accuracy even via super computers. The typical situation we suppose is that m is
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1578 S. Oishi

small and n is large. In computer assisted existence proof of solutions for nonlinear
differential equations, such a situation arises not rarely, see, for instance, Ref. [1]. ��
If v is the 9th column vector of the matrix A−1, we have

A−1B = (3v, 09, 09, . . . , 09).

Here, 09 is 9-dimensional zero column vector. Using verified numerical computations,
we have

‖A−1B‖2 � 0.458.

Noticing that

C =

⎛
⎜⎜⎜⎝

0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

...

⎞
⎟⎟⎟⎠ ,

if u is 9th low vector of A−1, we have

CA−1 =

⎛
⎜⎜⎜⎜⎜⎝

2u
0 0 · · · 0
0 0 · · · 0

...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

Thus, using verified numerical computations, it is seen that

‖CA−1‖2 � 0.26.

FromDd =diag(10, 11, . . . , n),wehave‖D−1
d ‖∞ = ‖diag(10−1, 11−1, . . . , n−1)‖∞ =

0.1.
Let c be 9-9th component of A−1, we have

CA−1B =

⎛
⎜⎜⎜⎝

6c 0 · · · 0
0 0 · · · 0

...

0 0 · · · 0

⎞
⎟⎟⎟⎠

with 6c = 0.738 . . .. Then, we have

‖D f − CA−1B‖2 � ‖D f ‖2 + ‖CA−1B‖2 � 5 + 0.739 � 6,
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Fig. 2 Dependency on m of the
present upper bounds for
‖G−1‖2

which implies that ‖D−1
d ‖2‖(D f − CA−1B)‖2 � 0.1 · 6 = 0.6. Thus, conditions of

Theorem 1 are satisfied.2 In this example,

max

{
‖A−1‖2, ‖D−1

d ‖2
1 − ‖D−1

2 ‖2‖D f − CA−1B‖2

}
= ‖A−1‖2

is satisfied. Theorem 1 implies

‖G−1‖2 �
max

{
‖A−1‖2, ‖D−1

d ‖2
1 − ‖D−1

2 (D f − CA−1B)‖2

}

(1 − ‖A−1B‖2)(1 − ‖CA−1‖2)
� 3.122

(1 − 0.458)(1 − 0.26)
� 7.79.

If we further increase m, we have more tight verified bounds as shown in Fig. 2.
These upper bounds of ‖G−1‖2 are mathematically rigorous and valid for any

positive integer n greater than m.
For m=100, we have a verified bound ‖G−1‖2 � 3.285, which holds for any

n > 100. We think this is reasonably tight compared with numerical experimental
value given by Eq. (5) in Sect. 2.1 as 1/σmin = 3.12221 . . ..

2 From ‖D f ‖2 �
√‖D f ‖∞‖D f ‖1 and ‖D f ‖∞ = ‖D f ‖1 = 5, it follows that ‖D f ‖2 � 5. Similarly,

from ‖CA−1B‖∞ = ‖CA−1B‖1 = 6|c|, we have ‖CA−1B‖2 � 6|c|.
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4.2 Example 2

Let n � 10 be a positive integer. Next, let us consider the matrix G ∈ Mn(R) defined
by Eq. (6). We divide G as Eq. (17) with m = 9. Then, we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 6 7 0 0 0 0
5 4 7 9 9 0 0 0 0
5 8 4 7 10 0 0 0 0
1 2 10 5 7 0 0 0 0
9 3 10 6 1 3 0 0 0
0 0 0 0 2 6 3 0 0
0 0 0 0 0 2 7 3 0
0 0 0 0 0 0 2 8 3
0 0 0 0 0 0 0 2 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·
3 0 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using verified numerical computations, it is seen

‖A−1‖2 � 1.54.

If v is the 9th column vector of the matrix A−1, we have

A−1B = (3v, 09, 09, . . . , 09).

Here, 09 is 9-dimensional aero column vector. Using verified numerical computations,
we have

‖A−1B‖2 � 0.42.

Noticing that

C =

⎛
⎜⎜⎜⎝

0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

...

⎞
⎟⎟⎟⎠ ,

if u is 9th low vector of A−1, we have

CA−1 =

⎛
⎜⎜⎜⎜⎜⎝

2u
0 0 · · · 0
0 0 · · · 0

...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.
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Thus, using verified numerical computations, it is seen that

‖CA−1‖2 � 0.26.

FromDd =diag(10, 11, . . . , n),wehave‖D−1
d ‖∞ = ‖diag(10−1, 11−1, . . . , n−1)‖∞ =

0.1.
Let c be 9-9th component of A−1, we have

CA−1B =

⎛
⎜⎜⎜⎝

6c 0 · · · 0
0 0 · · · 0

...

0 0 · · · 0

⎞
⎟⎟⎟⎠

with 6c = 0.736 · · · . Then, we have

‖D f − CA−1B‖2 � 6,

which implies that ‖D−1
d ‖2‖(D f − CA−1B)‖2 � 0.1 · 6 = 0.6. Thus, conditions of

Theorem 1 are satisfied. As Example 1, we have

max

{
‖A−1‖2, ‖D−1

d ‖2
1 − ‖D−1

2 (D f − CA−1B)‖2

}
= ‖A−1‖2.

Theorem 1 implies

‖G−1‖∞ �
max

{
‖A−1‖2, ‖D−1

d ‖2
1 − ‖D−1

2 (D f − CA−1B)‖2

}

(1 − ‖A−1B‖2)(1 − ‖CA−1‖2)
� 1.54

(1 − 0.42)(1 − 0.26)
� 3.59.

If we further increase m, we have more tight verified bounds as shown in Fig. 3.
These upper bounds of ‖G−1‖2 are mathematically rigorous and valid for any

positive integer n greater than m.
For m=100, we have a verified bound ‖G−1‖2 � 1.615, which holds for any

n > 100. We think this is reasonably tight compared with numerical experimental
value given by Eq. (7) in Subsection 2.2 as 1/σmin = 1.53479 . . ..

4.3 Example 3

Let n � 21 be a positive integer. Let G ∈ Mn(R) be defined by Eq. (8) with 0.5 <

k < 1.
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Fig. 3 Dependency on m of the
present upper bounds for
‖G−1‖2

If we divide G as Eq. (17) with m = 20, we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 k k2 k3 · · ·
k 2 k k2 · · ·
k2 k 3 k · · ·

...
. . .

. . . 19 k

. . . k 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k20 k21 k22 · · ·
k19 k20 k21 · · ·
k18 k19 k20 · · ·
...

k2 k3 k4 · · ·
k k2 k3 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Let v = (k20, k19, · · · , k2, k)t . We assume n − m = pq with positive integers p and
q. Assume also that p is small, say p � 1000. Put

Bp = (v, kv, k2v, . . . , k p−1v).

Then, from

B = [Bp, k
pBp, . . . , k

p(q−1)Bp]
= [Bp, Om,p, . . . , Om,p] + [Om,p, k

pBp, Om,p, . . . , Om,p] + · · ·
+[Om,p, . . . , Om,p, k

p(q−1)Bp],

it follows

‖A−1B‖2 � ‖A−1Bp‖2
1 − k p

.

Since p is small, we can estimate a tight upper bound of ‖A−1Bp‖2 rigorously with
verified numerical computations. Thus, using these formula and verified numerical
computations, we have results shown in Table 3.

From the symmetry of G, we have At = A and C = Bt so that the value of
‖CA−1‖2 coincides with ‖A−1B‖2. From Dd =diag(21, 22, . . . , n), it follows that
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Table 3 Verified upper bound of
‖A−1‖2 and ‖A−1B‖2. The
bound for ‖A−1B‖2 is valid for
any n � 20

k 0.6 0.7 0.8 0.9

‖A−1‖2 1.40 1.59 1.87 2.39

‖A−1B‖2 0.046 0.066 0.103 0.203

Table 4 Verified upper bounds
of ‖D−1

d ‖2‖D f − CA−1B‖2.
These bounds are valid for any
n � 20

k 0.6 0.7 0.8 0.9

‖D−1
d ‖2‖D f − CA−1B‖2 0.147 0.229 0.395 0.908

Table 5 Upper bounds of
‖G−1‖2. These upper bounds
are mathematically rigorous and
valid for any positive integer
n > 20

k 0.6 0.7 0.8 0.9

‖G−1‖2 1.54 1.82 2.32 3.76

Fig. 4 Dependency on m of the
present upper bounds for
‖G−1‖2

‖D−1
d ‖∞ = ‖diag(21−1, 22−1, . . . , n−1)‖∞ � 0.048. Here, we note that

‖D f − Bt A−1B‖2 � ‖D f ‖2 + ‖Bt
p A

−1Bp‖2
(1 − k p)2

. (19)

Then, from ‖D−1
d ‖∞ � 0.048 and the bound given by Eq. (19), using verified numer-

ical computations, we have estimates of ‖D−1
d ‖2‖D f −CA−1B‖2 as shown in Table

4.
Thus, it is seen that conditions of Theorem 1 are satisfied for k = 0.6, k = 0.7, k =

0.8, and k = 0.9. As Examples 1 and 2, we have

max

{
‖A−1‖2, ‖D−1

d ‖2
1 − ‖D−1

2 (D f − CA−1B)‖2

}
= ‖A−1‖2.

Form Theorem 1, we have verified upper bounds for ‖G−1‖2 as Table 5.
If we increase m, we have more tight bounds as shown in Fig. 4.
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Table 6 Upper bounds of
‖G−1‖2. These upper bounds
are mathematically rigorous and
valid for any positive integer
n > 100

k 0.6 0.7 0.8 0.9

‖G−1‖2 1.43 1.63 1.96 2.63

Here, in Fig. 4 lines from bottom to top correspond to k = 0.6, k = 0.7, k = 0.8,
and k = 0.9, respectively. These upper bounds of ‖G−1‖2 aremathematically rigorous
and valid for any positive integer n greater than m.

For m=100, we have verified upper bounds for ‖G−1‖2 as Table 6.
We think these bounds are reasonably tight compared with numerical experimental
values shown as Table 1 in Sect. 2.3.

5 Conclusions

Before presenting conclusions, we note that in this paper, we have used Matlab 2022a
for the calculation without verification. For the verified numerical computations, we
use VCP library developed by Kouta Sekine.3 To handle smoothly various data types
in verified computations,Masahide Kashiwagi has developed C++ class library named
kv library.4 This library is written on the philosophy of policy-based programming.
VCP library is written on kv library to enjoy high performance computing technol-
ogy based on the optimized BLAS such as MKL. Thus, using VCP one can write a
high performance verification program with a policy-based programming philosophy.
Details are referred to the cited home pages.

Let A ∈ Mn(R). For example, for the calculation the verified minimum singular
value of A, we have used the following algorithm:

// Assume each elements of A is representable as double.
B = ltransmul(A); // B <= A’ * A. Since computation errors

// are counted, B is calculated as interval matrix.
// Via rounding errors, B becomes not symmetric.

compsym(B); // This makes B as symmetric interval matrix
// by inflating B a little bit.

eigsym(B, E); // Eigenvalues of B is putted into
// the diagonal of E.

D = diag(E); // Getting a diagonal elements of E.
std::cout << sqrt((min(D))(0)) << std::endl;

// Output the minimum of the square roots of
// elements of D.

Here, A′ is the transpose of A. You can get these functions from Sekine’s home page.5

3 VCP library can be dowloaded from https://verified.computation.jp/VCP_Lib/vcp_latest.zip.
4 C++ numerical verification library with guaranteed accuracy. See details of kv library, http://verifiedby.
me/kv/.
5 Thanks are due to K. Sekine for providing this program.
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Now, conclusions are in order. In this paper, we have presented three classes of
matrices modeling coefficients matrices of linearized Galerkin’s equations. These
Galerkin’s equations are coming from certain first order nonlinear delay differential
equation with smooth nonlinearity. We have shown results of computer experiments.
The results exhibit the fact that theminimumsingular values of such classes ofmatrices
are unchanged even if orders of matrices are increased.

In Sect. 3, to derive lower bounds of minimum singular values of the matrices G’s
presented as Examples in Sects. 2.1, 2.2, and 2.3, we have presented Theorem 1.
Theorem 1 is derived based on the Schur complement. We have proposed a concept
of a generalized asymptotic diagonal dominant matrix. Then, it is shown that lower
bounds of the minimum singular values of G’s can be derived using Theorem 1.
These lower bounds become reasonably tight if we takem=100. Emphasis is that they
are unchanged even if orders of matrices G’s are increased. This corresponds to the
experimental observation that the minimum singular values of matrices G’s presented
in Sect. 2 are unchanged even if orders of matrices are increased.

Wide classes of coefficient matrices, sayG’s, of linearized Galerkin’s equations for
nonlinear differential equations with smooth nonlinearity have generalized asymptotic
diagonal dominant-ness. We think this is a reason why the minimum singular values
of G’s are unchanged even if orders of approximations are increased.
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