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Abstract
This paper deals with the geometric numerical integration of gradient flow and its 
application to optimization. Gradient flows often appear as model equations of vari-
ous physical phenomena, and their dissipation laws are essential. Therefore, dissi-
pative numerical methods, which are numerical methods replicating the dissipation 
law, have been studied in the literature. Recently, Cheng, Liu, and Shen proposed 
a novel dissipative method, the Lagrange multiplier approach, for gradient flows, 
which is computationally cheaper than existing dissipative methods. Although their 
efficacy is numerically confirmed in existing studies, the existence results of the 
Lagrange multiplier approach are not known in the literature. In this paper, we estab-
lish some existence results. We prove the existence of the solution under a relatively 
mild assumption. In addition, by restricting ourselves to a special case, we show 
some existence and uniqueness results with concrete bounds. As gradient flows also 
appear in optimization, we further apply the latter results to optimization problems.
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1  Introduction

In this paper, we consider the numerical integration of the gradient flow
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where x0 ∈ ℝ
n is an initial condition, V ∶ ℝ

n
→ ℝ is a differentiable function, and 

the matrix D ∈ ℝ
n×n is positive definite but not necessarily symmetric.

Gradient flows  (1) are important class of ordinary differential equations 
(ODEs) that describe various physical phenomena. Consequently, numerical 
methods for gradient flow  (1) have also been intensively studied. In particular, 
specialized numerical schemes that replicate the dissipation law d

dt
V(x(t)) ≤ 0 

have been devised and investigated. Techniques devising and analyzing such a 
specialized numerical scheme replicating a geometric property of ODEs are 
known as “geometric numerical integration” techniques (cf. [1]).

The discrete gradient method [2] (see also [3]) is the most popular special-
ized numerical method for gradient flows. Schemes based on the discrete gradient 
method are often superior to general-purpose methods, particularly for numeri-
cally difficult differential equations.

Although these schemes allow us to employ a larger step size than general-pur-
pose methods, they are usually more expensive per step. Most of these schemes 
require solving an n-dimensional nonlinear equation per step.

Consequently, several techniques to enhance the computational efficiency have 
been studied in the literature (see, e.g., [4] and references therein). In particular, 
Cheng, Liu, and Shen [5] proposed the Lagrange multiplier approach, which rep-
licates the dissipation law. Their proposed method is based on splitting the func-
tion V in the form

where Q ∈ ℝ
n×n is symmetric, and E ∶ ℝ

n
→ ℝ is a differentiable function. Note 

that the splitting is not unique (E may contain a quadratic term); however, when we 
consider physical problems, the function V often includes a quadratic term so that 
we can naturally obtain a splitting (see, e.g., [6]).

Then, we can construct a numerical scheme preserving the dissipation law by 
using the implicit midpoint rule for the quadratic term and special treatment for 
the nonlinear term E, respectively (see Sect. 2.1 for details). The resulting scheme 
requires solving a scalar nonlinear equation (and n-dimensional linear equations) 
per step, which is quite cheap.

Unfortunately, however, the existence of a solution of the scalar nonlinear 
equation is not known in the literature. Therefore, in this paper, we establish some 
existence results. First, we prove the existence of the solution under a relatively 
mild assumption (Sect. 3.1). Second, by restricting ourselves to a case where Q is 
the zero matrix, we establish several existence and uniqueness results with con-
crete bounds on the solution (Sect. 3.2).

The latter results are useful in the application of the Lagrange multiplier 
method to optimization problems because the gradient flow  (1) also appears in 
the context of optimization. Investigations on the relationship between optimi-
zation methods and the discretization of ordinary differential equations (ODEs) 

(1)ẋ = −D∇V(x), x(0) = x0,

(2)V(x) =
1

2
⟨x,Qx⟩ + E(x),
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have been reported in the 1980s (e.g., [7–9]). In addition, inspired by the pio-
neering work of Su, Boyd, and Candès [10] on Nesterov’s accelerated gradient 
method, research in this direction has been active again in recent years (see [11] 
and the references therein).

When considering the optimization, the dissipation law is also important: it is not 
merely a guarantee of the monotonic decrease of the function value, but can also be 
used to prove its convergence rate. Indeed, the discrete gradient method has recently 
been applied to optimization problems [12–14].

Because the Lagrange multiplier method is much cheaper than the discrete gradi-
ent method per step, we consider its application to optimization problems. Indeed, 
when Q is the zero matrix and D is the identity matrix, the resulting scheme can be 
regarded as the well-known steepest descent method, adopting a new step size crite-
rion. For the scheme, we show the convergence rates for several function classes: (i) 
general L-smooth functions, (ii) convex functions, and (iii) functions that satisfy the 
Polyak–Łojasiewicz inequality (Sect. 4). We also introduce a relaxation technique to 
further enhance the computational efficiency (Sect. 5).

It may seem as though the scheme is merely a variant of the basic existing 
method; moreover, as shown in numerical experiments later, the actual behavior is 
almost the same as that of the existing method.

However, the optimization methods proposed in this paper have the advantage 
that the relationship between continuous and discrete systems is clear in the proof 
of convergence rates (see, e.g., Theorems 2 and 10). In existing research considering 
the correspondence between continuous and discrete systems, although the discus-
sion on continuous systems is simple, it is often very complicated to prove the cor-
responding property in discrete systems. A limitation of this paper is that we deal 
with the simplest gradient flows; however, it suggests that the above issues can be 
overcome by geometric numerical integration techniques even when we are dealing 
with more complicated ODEs that appear in optimization.

The remainder of this paper is organized as follows. Section 2 presents the Lagrange 
multiplier approach and the relation between gradient flow and optimization. We show 
several existence results in Sect. 3 and convergence rates as an optimization method in 
Sect. 4. In Sect. 5, we introduce a relaxation technique. These results are confirmed by 
numerical experiments in Sect. 6. Finally, Sect. 7 concludes this paper.

2 � Preliminaries

2.1 � Lagrange multiplier approach

In this section, we review the numerical method proposed by Cheng et al. [5], which 
preserves the dissipation law.

By introducing an auxiliary variable � ∶ ℝ≥0 → ℝ , we consider the following 
ODE based on the splitting (2): 

(3a)ẋ = −D(Qx + 𝜂∇E(x)),
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 In view of the chain rule, the auxiliary variable � satisfies �(t) = 1 such that the 
ODE above is equivalent to the gradient flow (1).

Based on the reformulated ODE  (3), we consider the following scheme 
( xk ≈ x(kh) , �k ≈ �(kh) ): 

 Here, x∗
k+1∕2

 is a numerical approximation of x((k + 1∕2)h) , which can be computed 
without the unknown variables xk+1 and �k . For example, Cheng et al. [5] employed 
x∗
k+1∕2

≔ (
3xk − xk−1

)
∕2 , and we employ x∗

k+1∕2
≔ xk later.

Remark 1  The setting x∗
k+1∕2

=
(
3xk − xk−1

)
∕2 is to achieve the second order accu-

racy, whereas the setting x∗
k+1∕2

= xk only achieves the first order accuracy. Although 
the former setting is better in terms of accuracy, the latter setting is easier to deal 
with in mathematical analysis. In addition, when we employ the latter, the Lagrange 
multiplier approach can be regarded as a special case of the discrete gradient method 
[2, 3, 15]: Q

(
xk+1+xk

2

)
+ �k∇E

(
xk
)
 satisfies the conditions of the discrete gradient.

From this point on, we always assume x∗
k+1∕2

≔ xk.

Theorem 1  [5] A solution xk+1 of the scheme (4) satisfies the discrete dissipation law 
f
(
xk+1

) ≤ f
(
xk
)
.

By introducing

we can rewrite (4a) as follows: xk+1 = pk − h�kqk . Here, pk and qk can be computed 
by solving the linear equations with the same coefficient matrix I + h

2
DQ , which is 

invertible for sufficiently small h. Thus, we can compute �k by solving

The scheme  (4) requires solving two linear equations with n variables and a sca-
lar nonlinear equation; moreover, because the coefficient matrix is constant, we can 
solve them quite efficiently. However, existence results for the nonlinear equation 
Fh(�k;xk) = 0 have not been established in the literature.

(3b)
d

dt
E(x) = 𝜂⟨∇E(x), ẋ⟩.

(4a)
xk+1 − xk

h
= −D

(
Q

(
xk+1 + xk

2

)
+ �k∇E

(
x∗
k+1∕2

))
,

(4b)E
(
xk+1

)
− E

(
xk
)
= �k

⟨
∇E

(
x∗
k+1∕2

)
, xk+1 − xk

⟩
.

pk ≔
(
I +

h

2
DQ

)−1(
I −

h

2
DQ

)
xk, qk ≔

(
I +

h

2
DQ

)−1

D∇E
(
xk
)
,

Fh(�k;xk) ≔ E
(
pk − h�kqk

)
− E

(
xk
)
− �k

⟨
∇E

(
xk
)
, pk − h�kqk − xk

⟩
= 0.
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2.2 � Gradient flow and optimization

In this section, we consider the unconstrained optimization problem

where the function f ∶ ℝ
n
→ ℝ is assumed to be L-smooth (see Definition 1) and 

satisfies argmin f ≠ � . Under this assumption, there is an optimal solution x⋆ and 
an optimal value f⋆ ≔ f (x⋆) . In particular, we consider the relationship between the 
problem and gradient flow (5):

which is a special case of the general gradient flow (1).
First, we introduce the following definitions.

Definition 1  Let f ∶ ℝ
n
→ ℝ be a function.

•	 A function f is called L-smooth for L > 0 if its gradient ∇f  is L-Lipschitz con-
tinuous, that is, ‖∇f (x) − ∇f (y)‖ ≤ L‖x − y‖ holds for all x, y ∈ ℝ

n.
•	 A function f is called �-strongly convex for 𝜇 > 0 if f − �

2
‖⋅‖2 is convex.

•	 A function f is called strictly convex if f (𝜆x + (1 − 𝜆)y) < 𝜆f (x) + (1 − 𝜆)f (y) 
holds for all � ∈ (0, 1) and all x, y ∈ ℝ

n such that x ≠ y.
•	 A function f is said to satisfy the Polyak–Łojasiewicz (PŁ) inequality with 

parameter 𝜇 > 0 (cf. [16]) if 

 holds for all x ∈ ℝ
n.

L-smooth functions satisfy the following inequalities.

Lemma 1  If f is L-smooth, the following inequalities hold for all x, y ∈ ℝ
n :

Note that a �-strongly convex function satisfies the PŁ inequality with param-
eter � . In addition, if a function is L-smooth and satisfies the PŁ inequality with 
parameter � , L ≥ � holds [17].

When the objective function f is strictly convex, the gradient flow (5) satisfies 
the following proposition.

Proposition 1  (cf. [18]) Let f be a strictly convex function. Then, f is a Lyapunov 
function of the gradient flow (1), that is, the solution x satisfies d

dt
f (x(t)) ≤ 0 for all 

t ∈ ℝ≥0 , and

min
x∈ℝn

f (x),

(5)ẋ = −∇f (x), x(0) = x0,

(6)
1

2
‖∇f (x)‖2 ≥ 𝜇

�
f (x) − f⋆

�
.

−
L

2
‖y − x‖2 ≤ f (y) − f (x) − ⟨∇f (x), y − x⟩ ≤ L

2
‖y − x‖2.
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holds for any initial condition x0 ∈ ℝ
n.

Based on the above fact, some researchers have posited the idea of using a 
numerical method for gradient flow as an optimization method. For example, the 
explicit Euler method

coincides with the steepest descent method. However, we should carefully choose 
the step size h to ensure the convergence of this method.

Here, because the convergence in continuous time, such as in Proposition 1, is 
based on the dissipation law, the numerical method replicating the dissipation law 
can be regarded as an optimization method (see, e.g., [14]). Before stepping into 
the property in discrete systems, we review the convergence in continuous sys-
tems in this section. The gradient flow (5) satisfies the following three theorems.

Theorem 2  [11] The solution x of the gradient flow (1) satisfies

Proof  Since f⋆ is an optimal value,

holds. 	�  ◻

Theorem 3  [10] If f is convex, the solution x of the gradient flow (5) satisfies

Proof  Let E be a function defined by

Then, E(t) decreases along time:

lim
t→∞

x(t) = x⋆

xk+1 − xk

h
= −∇f (xk)

�
t

0

‖∇f (x(𝜏))‖d𝜏 ≤ f
�
x0
�
− f⋆,

min
0≤𝜏≤t ‖∇f (x(𝜏))‖ ≤

�
f (x0) − f⋆

t
.

f (x0) − f⋆ ≥ f (x0) − f (x(t)) = �
0

t

⟨∇f (x(𝜏)), ẋ(𝜏)⟩d𝜏 = �
t

0

‖∇f (x(𝜏))‖2d𝜏
≥ t min

0≤𝜏≤t ‖∇f (x(𝜏))‖
2

f (x) − f⋆ ≤ ‖‖x0 − x⋆‖‖2
2t

.

(7)E(t) ≔ t
(
f (x) − f⋆

)
+

1

2
‖‖x − x⋆‖‖2.
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where the last inequality is due to convexity. Therefore,

holds, which proves the theorem. 	�  ◻

Theorem 4  (cf. [19]) If f satisfies the Polyak–Łojasiewicz inequality (6) with param-
eter 𝜇 > 0 , the solution x of the gradient flow (5) satisfies

Proof  Let L be a function defined by L(t) ≔ f (x) − f⋆ . Then,

therefore, L(t) ≤ exp (−2�t)L(0) holds, which proves the theorem. 	�  ◻

Ehrhardt et al. [14] showed that the discrete gradient method with several known 
constructions of the discrete gradient satisfies f (xk) − f⋆ = O(1∕k) for convex func-
tions, and f (xk) − f⋆ = O(exp(−Ck)) for functions satisfying PŁ inequality  (6) 
( C > 0 is a constant).

3 � Existence theorems

In this section, we establish existence theorems for the Lagrange multiplier 
method (4) under the assumption x∗

k+1∕2
= xk . First, we establish an existence result 

for general splitting in Sect. 3.1. Then, we restrict ourselves to a special case and 
obtain existence results with bounds on the solution �k.

3.1 � Existence results in general setting

In this section, we prove the existence of the solution � of the nonlinear equa-
tion Fh(�;xk) = 0 for sufficiently small h by using the intermediate value theo-
rem. For this purpose, we first prove that Fh(𝜂;xk) > 0 holds for sufficiently large 
� (Lemma  2). Then, we prove that there exists � satisfying Fh(𝜂;xk) < 0 when ⟨
∇E

(
xk
)
,D∇V

(
xk
)⟩ ≠ 0 (Lemma  3). These lemmas imply the desired existence 

theorem (Theorem 5) on the case 
⟨
∇E

(
xk
)
,D∇V

(
xk
)⟩ ≠ 0 . In addition, even in the 

case 
⟨
∇E

(
xk
)
,D∇V

(
xk
)⟩

= 0 , by introducing a small perturbation to the splitting, 
we can return to the case 

⟨
∇E

(
xk
)
,D∇V

(
xk
)⟩ ≠ 0.

Ė(t) = f (x) − f⋆ + t⟨∇f (x), ẋ⟩ + �
x − x⋆, ẋ

�

= f (x) − f⋆ +
�
x⋆ − x,∇f (x)

�
− t‖∇f (x)‖2

≤ −t‖∇f (x)‖2,

t
(
f (x) − f⋆

) ≤ E(t) ≤ E(0) =
1

2
‖‖x0 − x⋆‖‖2

f (x) − f⋆ ≤ exp (−2𝜇t)
(
f (x0) − f⋆

)
.

L̇(t) = ⟨∇f (x), ẋ⟩ = −‖∇f (x)‖2 ≤ −2𝜇
�
f (x) − f⋆

�
= −2𝜇L(t);



172	 K. Onuma, S. Sato

1 3

Let us denote the minimum value of the Rayleigh quotient of matrix A by 
�min(A) . Note that, if matrix A is symmetric, �min(A) coincides with the minimum 
eigenvalues of A. Moreover, since the matrix D is positive definite, 𝜔min(D) > 0 
and 𝜔min

(
D−1

)
> 0 hold.

Lemma 2  Let E ∶ ℝ
n
→ ℝ be an LE-smooth function. Suppose that ∇E(xk) ≠ 0 

holds and h satisfies h
(
𝜔min(Q) − LE

)
> −2𝜔min

(
D−1

)
 . Then, there exits � ∈ ℝ such 

that Fh(𝜂;xk) > 0 holds.

Proof  Because of the assumption on h, the matrix I + (h∕2)DQ is invertible. There-
fore, the assumption ∇E

(
xk
) ≠ 0 implies qk ≠ 0.

Since E is LE-smooth, we use Lemma 1 and obtain

The right-hand side is a quadratic function with respect to � , whose coefficient of the 
highest degree is positive:

Therefore, Fh

(
�;xk

)
 is positive for sufficiently large � . 	�  ◻

Lemma 3  Suppose that 
⟨
∇E

(
xk
)
,D∇V

(
xk
)⟩ ≠ 0 holds. Then, there exist � ∈ ℝ and 

h > 0 such that Fh

(
𝜂;xk

)
< 0 holds for any h < h.

Proof  Since

holds, we see

The right-hand side is a quadratic function with respect to � such that its coefficient 
of the highest degree is positive. In addition, under the assumption of the lemma, the 
quadratic function has two distinct real roots. Therefore, for any � between these two 
real roots, 𝜕

𝜕h
Fh

(
𝜂;xk

)|||h=0 < 0 holds. This implies the lemma because F0

(
�;xk

)
= 0 

holds and Fh

(
�;xk

)
 is continuous with respect to h for sufficiently small h. 	�  ◻

Fh

(
�;xk

) ≥ (1 − �)
⟨
∇E

(
xk
)
, pk − h�qk − xk

⟩
−

LE

2
‖‖pk − h�qk − xk

‖‖2.

h
⟨
∇E

(
xk
)
, qk

⟩
−

LEh
2

2
‖‖qk‖‖2 = h

⟨
D−1

(
I +

h

2
DQ

)
qk, qk

⟩
−

LEh
2

2
‖‖qk‖‖2

≥ h

(
𝜔min

(
D−1

)
+

h

2
𝜔min(Q) −

LEh

2

)
‖‖qk‖‖2

> 0.

�pk

�h
= −

(
I +

h

2
DQ

)−1

DQ
pk + xk

2

�

�h
Fh

(
�;xk

)||||h=0 =
⟨
∇E

(
pk − h�qk

)|||h=0 − �∇E
(
xk
)
,
�

�h

(
pk − h�qk

)||||h=0
⟩

= (1 − �)
⟨
∇E

(
xk
)
,−DQxk − �D∇E

(
xk
)⟩

.
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Combining Lemmas  2 and 3, we obtain the following existence theorem 
because of the intermediate value theorem.

Theorem  5  Let E ∶ ℝ
n
→ ℝ be an LE-smooth function. If xk satisfies ⟨

∇E
(
xk
)
,D∇V

(
xk
)⟩ ≠ 0 , then, for all sufficiently small h, there exists a solution of 

the scheme (4).

Remark 2  The above argument implies that the scalar nonlinear equation 
Fh(�;xk) = 0 has at least two solutions. In this sense, the usual uniqueness does not 
hold for the schemes. However, roughly speaking, the proof of Lemma  3 implies 
that, for sufficiently small h, the two solutions are close to 1 and 
−⟨∇E(xk),DQxk⟩∕⟨∇E(xk),D∇E(xk)⟩ , two distinct roots of �

�h
Fh

(
�;xk

)|||h=0 , respec-
tively (see Appendix A for details). Since the solution of the continuous system (4) 
is �(t) = 1 , the solution that is closest to 1 should be used in numerical computation.

Finally, we consider the case 
⟨
∇E

(
xk
)
,D∇V

(
xk
)⟩

= 0 . If ∇V
(
xk
)
= 0 holds, xk 

is an equilibrium point of the system. Therefore, we focus on the case ∇V
(
xk
) ≠ 0 

hereafter. In this case, by introducing a small perturbation to the splitting (2), we 
can use Theorem 5.

For an arbitrary � ≠ 0 , we consider the splitting

Then, we see

where the most right-hand side is nonzero because D is positive definite and 
∇V(x) = Qx + ∇E(x) . Therefore, Theorem  5 implies that the Lagrange multiplier 
scheme with the splitting (8) has a solution. Consequently, by using the perturbed 
scheme only when 

⟨
∇E

(
xk
)
,D∇V

(
xk
)⟩

= 0 , we can continue to compute numeri-
cal solutions.

3.2 � Existence results in a special case

In this section, we further assume D = I and Q is the zero matrix. The results in 
this section can be extended to the case with general D (see Appendix B); how-
ever, here we focus on the simple gradient flow (5) because the existence results 
in this case can be utilized in optimization (see Sects. 2.2 and 4).

In this case, the scheme can be written in the form 

(8)V(x) =
1

2
⟨x,Q�x⟩ + E�(x), Q� ≔ (1 − �)Q, E�(x) ≔ E(x) +

�

2
⟨x,Qx⟩.

⟨
∇E�

(
xk
)
,D∇V

(
xk
)⟩

=
⟨
∇E

(
xk
)
+ �Qxk,D∇V

(
xk
)⟩

= �
⟨
Qxk,D∇V

(
xk
)⟩

= �
⟨
Qxk + ∇E

(
xk
)
,D∇V

(
xk
)⟩

,
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 Then, xk+1 can be computed by solving a scalar nonlinear equation:

This equation has a trivial solution �k = 0 (cf. Remark 2), and we prove an existence 
theorem below for a nontrivial solution.

Theorem 6  Let f ∶ ℝ
n
→ ℝ be an L-smooth function satisfying argmin f ≠ � . Then, 

for any xk ∈ ℝ
n , there exists an �k that satisfies Fh(�k;xk) = 0 and

Proof  In this proof, we use the notation dk ≔ −∇f (xk) for brevity. If dk = 0 , 
Fh(�k;xk) = 0 holds for any �k ∈ ℝ so that the theorem holds. Therefore, we focus on 
the case dk ≠ 0 hereafter. Then, because argmin f ≠ � , f is bounded from below so 
that lim�→∞ Fh(�;xk) = ∞ holds.

Because we assume that f is L-smooth, the second inequality of Lemma 1 implies

Therefore, Fh

(
�LB;xk

) ≤ 0 holds, which proves the theorem due to the intermediate 
value theorem. 	�  ◻

The theorem above gives the lower bound of the nontrivial solution, and the fol-
lowing theorem gives the upper bound for a sufficiently small step size h.

Theorem  7  Let f ∶ ℝ
n
→ ℝ be an L-smooth function satisfying argmin f ≠ � . 

Assume that ∇f (xk) ≠ 0 and h ≤ 2∕L hold. If 𝜂k > 0 satisfies Fh(�k;xk) = 0 , then

holds.

(9a)
xk+1 − xk

h
= −�k∇f (xk),

(9b)f (xk+1) − f (xk) = �k
⟨
∇f (xk), xk+1 − xk

⟩
.

Fh(�k;xk) = f
(
xk − h�k∇f (xk)

)
− f (xk) + h(�k)

2‖‖∇f (xk)‖‖2 = 0.

𝜂k ≥ 𝜂LB ≔ (
1 +

Lh

2

)−1

> 0.

(10)
Fh(�k;xk) ≤ ⟨∇f (xk), h�kdk⟩ + L

2
��h�kdk��2 + h(�k)

2��dk��2

= h�k
��dk��2

�
�k

�
1 +

Lh

2

�
− 1

�
.

�LB ≤ �k ≤
(
1 −

Lh

2

)−1
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Proof  From (10), Fh(𝜂k;xk) < 0 holds for any �k ∈
(
0, �LB

)
 . Then, by using the first 

inequality in Lemma 1, we see

(the proof is similar to the proof of Theorem 6). Therefore, Fh(𝜂k;xk) > 0 holds for 
any 𝜂k >

(
1 −

Lh

2

)−1

 , which proves the theorem. 	�  ◻

Moreover, if f is convex or satisfies the PŁ inequality  (6), there is an upper 
bound that is valid for any step size h.

Theorem 8  Let f ∶ ℝ
n
→ ℝ be an L-smooth function satisfying argmin f ≠ � . If f is 

convex and ∇f (xk) ≠ 0 holds, then there exists a unique nontrivial solution �k of the 
nonlinear equation Fh(�k;xk) = 0 such that �LB ≤ �k ≤ 1 holds.

Proof  The convexity of f implies that Fh(�k;xk) is strictly convex with respect to �k 
such that the nontrivial solution is unique.

Since f is convex, we see that

which proves the theorem owing to the intermediate value theorem. 	�  ◻

Theorem  9  Let f ∶ ℝ
n
→ ℝ be an L-smooth function satisfying argmin f ≠ � . If 

f satisfies the PŁ inequality  (6) with parameter 𝜇 > 0 and ∇f (xk) ≠ 0 holds, there 
exists a nontrivial solution �k of the nonlinear equation Fh(�k;xk) = 0 such that 
�LB ≤ �k ≤ (2�h)−

1

2 holds.

Proof  By introducing � = (2�h)−
1

2 and x = xk + h�dk , we obtain

which proves the theorem. 	�  ◻

4 � Convergence rates of the Lagrange multiplier method 
as an optimization method

The scheme (9) described in the previous section can be interpreted as the steep-
est descent method with a new step-size criterion (9b). In this section, we show 
the convergence rates corresponding to Theorems 2 to 4. Hereafter, we assume f 
is L-smooth and argmin f ≠ � holds.

First, we establish the discrete counterpart of Theorem 2 as follows.

Fh(�k;xk) ≥ h�k
‖‖dk‖‖2

(
�k

(
1 −

Lh

2

)
− 1

)

Fh(1;xk) = f (xk + hdk) − f (xk) + h��dk��2 ≥ ⟨∇f (xk), hdk⟩ + h��dk��2 = 0,

Fh(𝜂;xk) = f (x) − f (xk) +
1

2𝜇
‖‖∇f (xk)‖‖2 ≥ f (x) − f (xk) +

(
f (xk) − f⋆

) ≥ 0,
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Theorem 10  Let {(xk, �k)}
∞
k=1

 be a sequence satisfying (9). Suppose that {�k}∞k=1 is the 
solution guaranteed by Theorem 6, i.e., �k ≥ �LB holds for all non-negative integer k. 
Then, the following inequalities hold:

Proof  Similar to the proof of Theorem 2, we see that

By the definition of �LB , the estimation above proves the theorem. 	�  ◻

From the theorem above, we obtain the following result when f is coercive.

Theorem 11  Assume that f is coercive. Let {(xk, �k)}
∞
k=1

 be a sequence satisfying (9). 
Suppose that {�k}∞k=1 is the solution guaranteed by Theorem 6, i.e., �k ≥ �LB holds for 
all non-negative integer k. Then, the sequence {xk}

∞
k=0

 has an accumulation point; 
moreover, ∇f (x∗) = 0 holds for any accumulation point x∗.

Proof  The set {x ∈ ℝ
n|f (x) ≤ f (x0)} is compact because f is coercive. Since the dis-

crete dissipation law implies {xk}
∞
k=0

⊂ {x ∈ ℝ
n|f (x) ≤ f (x0)} , {xk}

∞
k=0

 has an accu-
mulation point.

For an accumulation point x∗ , there exists a convergent subsequence {xk(i)}
∞

i=0
 . 

The first equation of Theorem 10 implies that limk→∞
‖‖∇f (xk)‖‖ = 0 . Due to the con-

tinuity of the norm and ∇f  , we see

which proves the theorem. 	�  ◻

Moreover, if f is convex or satisfies the PŁ inequality, we show the discrete coun-
terparts of Theorems 3 and 4.

Theorem 12  Suppose that f is convex. Let {(xk, �k)}
∞
k=1

 be a sequence satisfying (9). 
Suppose that {�k}∞k=1 is the solution guaranteed by Theorem  8, i.e., �LB ≤ �k ≤ 1 
holds for all non-negative integer k. Then, the sequence {xk}

∞
k=0

 satisfies 
f (xk) − f⋆ = O

(
1

k

)
 . In particular, if h ≤ 2

L
 , then

∞∑
k=0

‖‖∇f (xk)‖‖2 ≤
(
Lh

2
+ 1

)2 f (x0) − f⋆

h
,

min
0≤i≤k

‖‖∇f (xi)‖‖ ≤ (
Lh

2
+ 1

)√ f (x0) − f⋆

(k + 1)h
.

f (x0) − f⋆ ≥ f (x0) − f (xk) = −

k−1∑
i=0

(
f (xi+1) − f (xi)

)
= h

k−1∑
i=0

(𝜂k)
2‖‖∇f (xk)‖‖2

≥ h(𝜂LB)
2

k−1∑
i=0

‖‖∇f (xk)‖‖2.

‖∇f (x∗)‖ =
����∇f

�
lim
i→∞

xk(i)

����� = lim
i→∞

���∇f
�
xk(i)

���� = 0,
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holds.

Proof  Let us introduce the discrete counterpart

of E defined by (7). Then, we see

Here, the last term on the right-hand side can be evaluated as follows:

Using this evaluation, we see that

Because �k ≥
(

Lh

2
+ 1

)−1

 , there exists k0 ∈ ℕ such that 1
2
−
∑k

i=0
�i ≤ 0 holds for 

any k ≥ k0 . Therefore, we see that

which implies f (xk) − f⋆ = O
(
1

k

)
 . Moreover, if h ≤ 2

L
 , then �k ≥

(
Lh

2
+ 1

)−1 ≥ 1

2
 

holds. Since Ek+1 ≤ Ek holds for any k,

f (xk) − f⋆ ≤ (
Lh + 2

4

)‖‖x0 − x⋆‖‖2
kh

Ek ≔
(

k−1∑
i=0

h𝜂i

)(
f (xk) − f⋆

)
+

1

2
‖‖xk − x⋆‖‖2

Ek+1 − Ek =

(
k∑

i=0

h𝜂i

)
(f (xk+1) − f (xk)) + h𝜂k(f (xk) − f⋆)

+
1

2

⟨
xk+1 − xk, xk+1 + xk − 2x⋆

⟩
.

1

2

�
xk+1 − xk, xk+1 + xk − 2x⋆

�
=

1

2

�
xk+1 − xk, xk+1 − xk + 2(xk − x⋆)

�

=
1

2
‖h𝜂k∇f (xk)‖2 +

�
h𝜂k∇f (xk), x

⋆ − xk
�

≤ 1

2
‖h𝜂k∇f (xk)‖2 + h𝜂k(f

⋆ − f (xk)).

Ek+1 − Ek ≤
�

k�
i=0

h�i

��
−h(�k)

2‖∇f (xk)‖2
�
+

1

2
‖h�k∇f (xk)‖2

=

�
1

2
−

k�
i=0

�i

�
‖h�k∇f (xk)‖2.

Ek0
≥ Ek ≥

(
k−1∑
i=0

h𝜂i

)
(f (xk) − f⋆) ≥ kh

(
Lh

2
+ 1

)−1

(f (xk) − f⋆),
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holds. 	�  ◻

Theorem  13  Suppose that f satisfies the Polyak–Łojasiewicz inequality  (6) with 
parameter 𝜇 > 0 . Let {(xk, �k)}

∞
k=1

 be a sequence satisfying (9). Suppose that {�k}∞k=1 
is the solution guaranteed by Theorem 9, i.e., �LB ≤ �k ≤ (2�h)−

1

2 holds for all non-
negative integer k. Then, the sequence {xk}

∞
k=0

 satisfies

Proof  We introduce the discrete counterpart Lk ≔ f (xk) − f⋆ of L in the proof of 
Theorem 4. Then, we see that

and

Because 1 + r ≤ er holds for any real number r, we obtain

	�  ◻

5 � Some relaxations of the Lagrange multiplier method

As an optimization method, the scheme (9) is still more expensive than the standard 
optimization methods. Note that, the computational cost of the scheme (9) is similar 
to that of the steepest descent method with the exact line search, which is sometimes 
regarded as impractical and usually replaced by backtracking in actual computation. 
Therefore, in this section, we propose a relaxation of the scheme (9) that allows us to 
use a backtracking technique. Throughout this paper, we assume that the backtracking 
parameter � satisfies 0 < 𝛼 < 1.

In view of the dissipation law (Theorem 1), condition (9b) can be relaxed to 

1

2
‖‖x0 − x⋆‖‖2 = E0 ≥ Ek ≥ kh

(
Lh

2
+ 1

)−1

(f (xk) − f⋆)

f (xk) − f⋆ ≤ exp

(
−

8𝜇kh

(Lh + 2)2

)(
f (x0) − f⋆

)
.

Lk+1 − Lk = f (xk+1) − f (xk) = −h(𝜂k)
2‖‖∇f (xk)‖‖2 ≤ −2𝜇h(𝜂k)

2
(
f (xk) − f⋆

)

≤ −2𝜇h
(
Lh

2
+ 1

)−2

Lk

Lk+1 ≤
(
1 −

8�h

(Lh + 2)2

)
Lk.

Lk ≤
(
1 −

8𝜇h

(Lh + 2)2

)k

L0 ≤ exp

(
−

8𝜇kh

(Lh + 2)2

)(
f (x0) − f⋆

)
.
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 Finding the solution of this inequality is easier than finding a solution of the 
scheme  (9). For example, if f is convex, and the unique nonzero solution of the 
scheme (9) is �∗

k
 , then all �k ∈ [0, �∗

k
] satisfy (11).

Theorem 14  A solution xk+1 of the scheme (11) satisfies the discrete dissipation law 
f (xk+1) ≤ f (xk).

Proof  We see that

which proves the theorem. 	�  ◻

Because the discrete dissipation law is crucial in the discussion in the previous 
section, we can prove the convergence rates even after this relaxation (Sect. 5.1); 
moreover, we propose another method to adaptively change h at every step, and 
also show convergence rates for it in Sect. 5.2.

5.1 � A relaxation of the Lagrange multiplier method

In this section, we consider Algorithm 1.

Because Theorems 10, 12 and 13 rely on the lower bound of �k as well as the 
discrete dissipation law, we establish the following lemma.

Lemma 4  The number of iterations of backtracking in Algorithm  1 is at most 
⌈log� �LB⌉ . In addition, when the backtracking stops, �k ≥ ��LB holds.

(11a)
xk+1 − xk

h
= −�k∇f (xk),

(11b)f (xk+1) − f (xk) ≤ �k
⟨
∇f (xk), xk+1 − xk

⟩
.

f (xk+1) − f (xk) ≤ �k
⟨
∇f (xk), xk+1 − xk

⟩
= −h

(
�k
)2‖‖∇f (xk)‖‖2,
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Proof  As shown in the proof of Theorem  6, Fh(�;xk) ≤ 0 holds for any � ≤ �LB . 
Because �⌈log� �LB⌉ ≤ �log� �LB = �LB , the iteration stops at most ⌈log� �LB⌉ times. 
Therefore, we see that �k ≥ �⌈log� �LB⌉ ≥ �log� �LB+1 = ��LB . 	�  ◻

By using the lemma, we obtain the following convergence results. We omit the 
proof because it can be proved in a manner similar to that in Theorems 10, 12 and 13.

Theorem 15  The sequence {xk}∞k=0 obtained by Algorithm 1 satisfies

Moreover, if f is convex,

holds. If f satisfies the Polyak–Łojasiewicz inequality (6) with parameter 𝜇 > 0,

holds.

5.2 � Adaptive step size

In this section, we consider adaptively changing the step size hk in every step. Here, 
instead of Fh(�k;xk) ≤ 0 , we use the condition Fhk

(�k;xk) ≤ 0 . Then, hk+1 is defined 
by hk+1 = hk�k∕�

∗ , which is intended to maintain �k+1 around a fixed constant �∗ . As 
shown in the numerical experiments in the next section, this simple strategy reduces 
the number of backtracking iterations, and the numerical result does not depend sig-
nificantly on the choice of h0.

min
0≤i≤k

‖‖∇f (xi)‖‖ ≤ Lh + 2

2𝛼

√
f (x0) − f⋆

(k + 1)h
.

f (xk) − f⋆ = O
(
1

k

)

f (xk) − f⋆ ≤ exp

(
−

8𝛼2𝜇kh

(Lh + 2)2

)(
f (x0) − f⋆

)
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In view of Lemma  4, we see �k ≥ 2�

Lhk+2
 . The assumption 𝜂∗ < 𝛼 ensures that 

{hk}
∞
k=0

 is bounded from below, as shown in the lemma below. This lower bound of 
{hk}

∞
k=0

 will be used in the proof of convergence rates.

Lemma 5  If h0 ≥ hLB ≔ 2(�−�∗)

�∗L
 , then hk ≥ hLB holds for any positive integer k.

Proof  We prove the lemma by induction. Suppose that hk ≥ hLB holds. Then, we see 
that

which proves the lemma. 	�  ◻

5.2.1 � Convex functions

In this section, we deal with convex functions.

Theorem 16  We assume that h0 ≥ hLB and �∗ ≥ 1

2
 hold. If f is convex, the sequence 

{xk}
∞
k=0

 obtained by Algorithm 2 satisfies

Proof  Let us introduce the discrete counterpart

of E defined by (7). Then, similar to the proof of Theorem 12, we see that

Since

holds owing to the assumption �∗ ≥ 1

2
 , we see that Ek+1 − Ek ≤ 0 . Therefore, we see 

that

hk+1 =
hk�k

�∗
≥ 2�hk

�∗(Lhk + 2)
≥ 2�hLB

�∗(LhLB + 2)
= hLB,

f (xk) − f⋆ ≤
(

L

4(𝛼 − 𝜂∗)

)‖‖x0 − x⋆‖‖2
k

.

Ek ≔
(

k−1∑
i=0

hi𝜂i

)(
f (xk) − f⋆

)
+

1

2
‖‖xk − x⋆‖‖2

Ek+1 − Ek ≤
(
1

2
hk −

k∑
i=0

hi�i

)
hk(�k)

2‖‖∇f (xk)‖‖2.

1

2
hk −

k∑
i=0

hi�i =
1

2
hk − hk�k − �∗

k−1∑
i=0

hi+1 =
(
1

2
− �k − �∗

)
hk − �∗

k−1∑
i=1

hi ≤ 0
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which proves the theorem. 	�  ◻

5.2.2 � Functions satisfying PŁ inequality

In this section, we deal with functions satisfying PŁ inequality. In this case, we need 
the upper bound of {hk}∞k=0 as well as the lower bound.

Lemma 6  Assume that f satisfies the Polyak–Łojasiewicz inequality (6) with param-
eter 𝜇 > 0 , and h0 ≤ hUB ≔ 1

2�(�∗)2
 holds. Then, hk ≤ hUB holds for any positive inte-

ger k.

Proof  In a manner similar to the proof of Theorem 9, we see that �k ≤
√

1

2�hk
 . Then, 

we prove the lemma by induction. Suppose that hk ≤ hUB holds. Then, we see that

which proves the lemma. 	�  ◻

Theorem 17  Assume that h0 ∈ [hLB, hUB] holds. If f satisfies the Polyak–Łojasiewicz 
inequality (6) with parameter 𝜇 > 0 , the sequence {xk}

∞
k=0

 obtained by Algorithm 2 
satisfies

where � ≔ L∕� is the condition number.

Proof  We introduce the discrete counterpart Lk ≔ f (xk) − f⋆ of L in the proof of 
Theorem 4. Then, we see that

By using hk(�k)2 = �∗hk+1�k ≥ �∗hLB
2�

LhUB+2
=

8��(�−�∗)(�∗)2

L(L+4�(�∗)2)
 , we obtain

which proves the theorem. 	�  ◻

1

2
‖‖x0 − x⋆‖‖2 = E0 ≥ Ek ≥

(
k−1∑
i=0

hi𝜂i

)
(f (xk) − f⋆) ≥ k𝜂∗hLB(f (xk) − f⋆),

hk+1 =
hk�k

�∗
≤ 1

�∗

√
hk

2�
≤ 1

�∗

√
hUB

2�
= hUB,

f (xk) − f⋆ ≤ exp

(
−
16𝛼(𝛼 − 𝜂∗)(𝜂∗)2

𝜅
(
𝜅 + 4(𝜂∗)2

) k

)(
f (x0) − f⋆

)
,

Lk+1 − Lk = f (xk+1) − f (xk) ≤ −hk(𝜂k)
2‖‖∇f (xk)‖‖2 ≤ −2𝜇hk(𝜂k)

2
(
f (xk) − f⋆

)
.

Lk+1 ≤
(
1 −

16��2(� − �∗)(�∗)2

L
(
L + 4�(�∗)2

)
)
Lk,
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6 � Numerical experiments

The efficacy of the Lagrange multiplier method for differential equations is well 
described by Cheng et al. [5]. Therefore, in this section, we focus on the application 
for optimization: we compare Algorithms 1 and 2 with the steepest descent method 
with a fixed step size h = 1∕L and the step size satisfying the standard Armijo rule:

where c ∈ (0, 1) is a parameter, and hk is obtained by a standard backtracking line 
search with the parameter � ∈ (0, 1).

Throughout the numerical experiment in this section, the parameter � in the Arm-
ijo rule and Algorithms 1 and 2 is fixed at � = 0.8 . Because we investigate the differ-
ence in the results depending on the step size criteria in this experiment, we choose 
the parameter � corresponding to a relatively precise line search. In addition, we fix 
the parameter �∗ = 0.5 in view of Theorem 16.

6.1 � Quadratic function

First, we consider the quadratic function

where A ∈ ℝ
n×n and b ∈ ℝ

n . In this section, we fix n = 500 and b ∈ ℝ
n , whose ele-

ments are independently sampled from the normal distribution N(0, 5) . We also fix 
the symmetric positive definite matrix A ∈ ℝ

n×n , defined as A = Q⊤ΛQ by using 
a diagonal matrix Λ , whose elements are sampled from a uniform distribution on 
[0.001,  1], and an orthogonal matrix Q that was sampled from the Haar measure 
on the orthogonal group. The resulting matrix A has the maximum eigenvalue of 
L ≈ 0.998 and minimum eigenvalue of � ≈ 0.0022 . We set the initial step size of the 
backtracking line search for the Armijo rule to 10. 

Figure 1 summarizes the evolution of function values and Table 1 summarizes the 
average step size and the average number of backtracking iterations. Here, the average 

f (xk − hk∇f (xk)) − f (xk) ≤ −chk
‖‖∇f (xk)‖‖2,

(12)f (x) =
1

2
⟨x,Ax⟩ + ⟨b, x⟩,

0 200 400 600 800 1,000 1,200 1,400
10−8

10−2

104

Iteration

f
−

f
�

Algorithm 1 (h = 1)
Algorithm 1 (h = 10)
Algorithm 2 (h0 = 10)
Armijo (c = 10−4)
Armijo (c = 0.5)

Fixed step size (1/L)

Fig. 1   Evolution of function values for the quadratic function (12)
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step size is the average of hk for the Armijo rule, h�k for Algorithm 1, and hk�k for 
Algorithm 2, respectively. Note that, for each method, the number of backtracking iter-
ations in each step is the same as the number of function value evaluations.

In Fig.  1, we omit the Armijo rule with c = 0.1 , Algorithm 1 with h = 100 , and 
Algorithm 2 with h0 = 1, 100 because they are very similar to the Armijo rule with 
c = 10−4 , Algorithm 1 with h = 10 , and Algorithm 2 with h0 = 10 , respectively.

The results of Algorithm 1 with an appropriate h and Algorithm 2 are similar to 
those of the Armijo rule with a small c. Because the Armijo rule with c = 0.5 is similar 
to the exact line search for quadratic functions, it overwhelms the other methods.

6.2 � Log‑Sum‑Exp function

Second, we consider the Log-Sum-Exp function:

where ai ∈ ℝ
n (1 ≤ i ≤ m) , bi ∈ ℝ (1 ≤ i ≤ m) and 𝜌 > 0 . In this section, we fix 

n = 50 , m = 200 , and � = 20 . We also fix ai and bi , whose elements are indepen-
dently sampled from the normal distribution N(0, 1) and N(0,

√
2) , respectively. 

The resulting ai satisfies max1≤k≤m ‖‖ak‖‖2 ≈ 42.687 , and the Lipschitz constant L sat-
isfies L ≤ max1≤k≤m ‖‖ak‖‖2 . We set the initial step size of the backtracking line search 
for the Armijo rule to 100.

Figure 2 summarizes the evolution of function values and Table 2 summarizes the 
average step size and the average number of backtracking iterations. The results of 
Algorithm 1 with an appropriate h and Algorithm 2 are similar to those of the Arm-
ijo rule with a small c. Although the Armijo rule with c = 0.5 converges faster than 
the other methods, the rate itself is similar to Algorithm 1 with an appropriate h and 
Algorithm 2.

6.3 � A nonconvex function satisfying PŁ inequality

Finally, we consider the function

(13)f (x) = � log

�
m�
i=1

exp

�⟨ai, x⟩ − bi

�

��
.

(14)f (x) = ‖x‖2 + 3 sin2 (⟨b, x⟩)

Table 1   Average step size and number of backtracking iterations for the quadratic function (12)

Method Armijo (c) Algorithm 1 (h) Algorithm 2 ( h
0
)

Parameter 10
−4 0.1 0.5 1 10 100 1 10 100

Step size 2.017 2.016 3.398 0.8 2.016 2.024 2.022 2.020 2.020
# iterations 7.19 7.19 6.16 1 7.19 17.51 3.10 3.11 3.12
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used in [14], where b ∈ ℝ
n is a vector that satisfies ‖b‖ = 1 . This function is 

8-smooth, nonconvex, and satisfies the Polyak–Łojasiewicz inequality 6 with param-
eter � = 1∕32 . In this section, we fix n = 50 and b = v∕‖v‖ ∈ ℝ

n , where the ele-
ments of v ∈ ℝ

n are independently sampled from the normal distribution N(0, 1) . 
We set the initial step size of the backtracking line search for the Armijo rule to 10.

Figure  3 summarizes the evolution of function values and Table  3 summa-
rizes the average step size and the average number of backtracking iterations. 
The results of Algorithm 1 with an appropriate h and Algorithm 2 are similar to 
those of the Armijo rule.

0 10 20 30 40 50
10−13

10−6

101

Iteration

f
−

f
�

Algorithm 1 (h = 1)
Algorithm 1 (h = 10)
Algorithm 1 (h = 100)
Algorithm 2 (h0 = 1)
Algorithm 2 (h0 = 10)
Algorithm 2 (h0 = 100)

Armijo (c = 10−4)
Armijo (c = 10−1)
Armijo (c = 0.5)

Fixed step size (1/L)

Fig. 2   Evolution of function values for the Log-Sum-Exp function (13)

Table 2   Average step size and number of backtracking iterations for the Log-Sum-Exp function (13)

Method Armijo (c) Algorithm 1 (h) Algorithm 2 ( h
0
)

Parameter 10
−4 0.1 0.5 1 10 100 1 10 100

Step size 15.44 15.29 18.80 0.8 7.97 15.18 14.66 15.67 15.07
# iterations 8.42 8.46 8.14 1 1.02 8.48 2.80 3.02 3.22
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Fig. 3   Evolution of function values for the nonconvex function (14)
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7 � Conclusion

In this paper, we established existence results on the Lagrange multiplier 
approach, a recent geometric numerical integration technique, for the gradient 
system. In addition, we showed that, when Q is the zero matrix, the Lagrange 
multiplier approach reads a new step-size criterion for the steepest descent 
method. Thanks to the discrete dissipation law, the convergence rates of the pro-
posed method for several cases can be proved in a form similar to the discussions 
on ODEs. In this paper, we focused only on the simplest gradient flow, but the 
results suggest that geometric numerical integration techniques can be effective 
for other ODEs appearing in optimization problems.

Several issues remain to be investigated. First, it would be interesting to inves-
tigate the application of geometric numerical integration techniques to other 
ODEs that appear during optimization. Second, the existence results in this paper 
are only for a special case of the Lagrange multiplier approach. Because the 
assumption x∗

k+1∕2
∶= xk is a bit restrictive in the usual numerical integration of 

ODEs and PDEs, it is important to generalize the existence results.

Appendix A.  Details on Remark 2

Let us consider the behavior of the solutions of the scalar nonlinear equation 
Fh(�;xk) = 0 for sufficiently small h. We show the following proposition which 
reveals that a solution of the nonlinear equation is close to 1. (The same proposi-
tion holds for � ≔ −

⟨∇E(xk),DQxk⟩
⟨∇E(xk),D∇E(xk)⟩ instead of 1, which is another root of the quad-

ratic function �
�h
Fh

(
�;xk

)|||h=0).

Proposition 2  For any 𝜀 > 0 , there exits 𝛿 > 0 such that, for all h ∈ (0, �) , there 
exists �h satisfying Fh(�h;xk) = 0 and |1 − 𝜂h| < 𝜀.

Proof  For given 𝜀 > 0 , we define �� ≔ min

{
�,

1

2
|1 − �|

}
 . Then, if 1 > 𝜉 holds,

Table 3   Average step size and number of backtracking iterations for the nonconvex function 14

Method Armijo (c) Algorithm 1 (h) Algorithm 2 ( h
0
)

Parameter 10
−4 0.1 0.5 0.1 1 10 1 10 100

Step size 0.260 0.227 0.235 0.08 0.205 0.249 0.207 0.204 0.215
# iterations 16.6 17.2 17.2 1 7.1 16.8 3.04 3.15 3.26
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is satisfied. Otherwise, the same relation holds with > and < interchanged. Since 
the discussion is essentially the same, we focus on the former case. In this case, due 
to the continuity of Fh(�;xk) with respect to h, there exists 𝛿 > 0 such that, for all 
h ∈ (0, �) , Fh(𝜂;xk) < 0 holds for all � ∈ [1 − ��, 1 −

1

2
��] and Fh(𝜂;xk) > 0 holds for 

all � ∈ [1 +
1

2
��, 1 + ��] . Therefore, the intermediate value theorem implies that, for 

all h ∈ (0, �) , there exists �h ∈ (1 −
1

2
��, 1 +

1

2
��) such that Fh(�h;xk) = 0 holds. This 

proves the proposition. 	�  ◻

Appendix B. An extension of Sect. 3.2

In this section, we consider the scheme (4) with the assumption x∗
k+1∕2

= xk and 
Q = 0 (note that we further assume D = I in Sect. 3.2). In this case, the scheme 
can be written as

Then, xk+1 can be computed by solving a scalar nonlinear equation

Even in this case, the counterparts of Theorems 6 to 9 hold as follows. We omit their 
proofs because they are similar to those of the counterparts in Sect. 3.2.

Theorem 18  For any xk ∈ ℝ
n , there exists an �k that satisfies Fh(�k;xk) = 0 and

Theorem 19  Assume that ∇f (xk) ≠ 0 and h ≤ 2�min

(
D−1

)
∕L hold. If 𝜂k > 0 satisfies 

Fh(�k;xk) = 0 , then

holds.

𝜕

𝜕h
Fh

�
𝜂;xk

�����h=0

⎧
⎪⎨⎪⎩

< 0 (𝜂 ∈ [1 − 𝜀�, 1)),

= 0 (𝜂 = 1),

> 0 (𝜂 ∈ (1, 1 + 𝜀�, 1])

xk+1 − xk

h
= −�kD∇f (xk),

f (xk+1) − f (xk) = �k
⟨
∇f (xk), xk+1 − xk

⟩
.

Fh(�k;xk) = f
�
xk − h�kD∇f (xk)

�
− f (xk) + h(�k)

2⟨∇f (xk),D∇f (xk)⟩ = 0.

𝜂k ≥
(
1 +

Lh

2𝜔min

(
D−1

)
)−1

> 0.

(
1 +

Lh

2�min

(
D−1

)
)−1

≤ �k ≤
(
1 −

Lh

2�min

(
D−1

)
)−1



188	 K. Onuma, S. Sato

1 3

Theorem  20  If f is a convex function and ∇f (xk) ≠ 0 holds, there exists a unique 
nontrivial solution �k of the nonlinear equation Fh(�k;xk) = 0 satisfying

Theorem 21  If f satisfies the PŁ inequality (6) with parameter 𝜇 > 0 and ∇f (xk) ≠ 0 
holds, there exists a nontrivial solution �k of the nonlinear equation Fh(�k;xk) = 0 
satisfying
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