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Abstract
The numerical computation of the Euclidean norm of a vector is perfectly well con-
ditioned with favorite a priori error estimates. Recently there is interest in comput-
ing a faithfully rounded approximation which means that there is no other floating-
point number between the computed and the true real result. Hence the result is 
either the rounded to nearest result or its neighbor. Previous publications guarantee a 
faithfully rounded result for large dimension, but not the rounded to nearest result. In 
this note we present several new and fast algorithms producing a faithfully rounded 
result, as well as the first algorithm to compute the rounded to nearest result. Exe-
cutable MATLAB codes are included. As a by product, a fast loop-free error-free 
vector transformation is given. That transforms a vector such that the sum remains 
unchanged but the condition number of the sum multiplies with the rounding error 
unit.

Keywords Euclidean norm · Rounding error · Faithful rounding · Error-free 
transformation

Mathematics Subject Classification 65G99 · 65G50

1  Notation and introduction

We assume a precision-p binary floating-point arithmetic with rounding to nearest 
according to the IEEE 754 standard [10] to be given and denote the set of float-
ing-point numbers by �  . Then �  is symmetric, i.e., � = −�  , and there is a small-
est and largest positive normalized floating-point number realmin and realmax , 
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respectively. We define P ∶= [realmin, realmax] and call N ∶= −P ∪ {0} ∪ P the 
normalized range.

To be more precise, for “rounding to nearest” we assume RoundTiesToEven 
which means that a real number being the midpoint of two adjacent floating-point 
numbers is rounded to the one with even mantissa. Calling that rounding function 
fl ∶ ℝ → 𝔽  it follows that fl(a◦b) is the floating-point result of a◦b for a, b ∈ �  and 
◦ ∈ {+,−,×, ∕}.

In the computation of the Euclidean norm of a vector intermediate results may 
be outside N  but the final result in N  . That is taken care of by case distinctions 
and normalization, see [1, 3, 20]. Henceforth, we assume throughout this note 
without loss of generality that neither over- nor underflow occurs, i.e., all inter-
mediate results are in N .

For u ∶= 2−p denoting the relative rounding error unit [7] the refined error esti-
mate [4, 7, 23, 31]

holds true, and the same constant u

1+u
 bounds the relative error of every floating-

point operation.
Many of our results are also true for a precision-p floating-point arithmetic 

with general base � and u =
1

2
�1−p . Since we target on MATLAB implementa-

tions, we restrict our attention to binary.
Throughout this note ‖ ⋅ ‖ denotes the Euclidean, i.e., �2-norm. The result 

of a floating-point evaluation of an expression is denoted by float(⋅) , where 
parentheses are respected but otherwise any order of evaluation may be used. 
Hence float(a◦b) = fl(a◦b) is the floating-point result of a◦b for a, b ∈ �  and 
◦ ∈ {+,−,×, ∕} . For example, s ∶= float(‖x‖) denotes a floating-point approxima-
tion of the Euclidean norm of x ∈ �

n using any order of summation. Standard 
error estimates [7] yield

provided that (n + 1)u < 1 . In [11] we proved a refined estimate without restriction 
on n.

Lemma 1 Let x ∈ �
n and s ∶= float(

�∑n

i=1
x2
i
) computed in any order. Then

is true without restriction on n ∈ ℕ.

The bound is basically sharp, but practical experience and probabilistic argu-
ments [8, 9, 26] suggest that practically the relative error for the Euclidean norm 
and for summation is hardly larger than 

√
nu‖x‖.

(1)x ∈ N ∶ max{|x − f | ∶ f ∈ �} ≤
u

1 + u

|x|

�s − ‖x‖� ≤ �n+1‖x‖ where �k ∶=
ku

1 − ku

�s − ‖x‖� ≤
�
n

2
+ 1

�
u‖x‖
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Recently [6, 20] there is interest in algorithms computing a faithful approxima-
tion of the Euclidean norm. That means that there is no other floating-point number 
between the computed and the true real result. Both are based on error-free transfor-
mations and some kind of double-double arithmetic [2], where the latter was already 
considered in [5]. The computed result is thus equal to the rounded to nearest result 
or to one of its neighbors. If the true result is a floating-point number, that will be 
the result of the algorithms.

Both approaches [6, 20] are devoted to the computation of the Euclidean norm. In 
[17] we introduced a novel pair arithmetic cpair and prove sufficient conditions that 
for a general arithmetic expression comprised of {+,−,×, ∕,√} the result computed 
using cpair is faithfully rounded. As a by-product it includes the Euclidean norm. 
One difference to the well-known double-double pair arithmetic [2], which is intrin-
sically used in [6, 20], is that a final error-free transformation is omitted. That speeds 
up the algorithms in cpair significantly. While there is not much penalty in the accu-
racy of the computed result, it bears the advantage that, in contrast to [2], the higher 
order part is equal to the ordinary floating-point result. In that sense cpair is a float-
ing-point arithmetic together with an error term.

In this note we will give some new algorithms for the computation of a faithfully 
rounding of the Euclidean norm as well as for the rounded to nearest result. All 
algorithms are given in executable MATLAB code [21]. We invest particular care in 
designing fast algorithms diminishing the interpretation overhead. In particular, we 
avoid loops as they may slow down the performance significantly.

This note is organized as follows. The next section recalls error-free transfor-
mations and some improvements, and mainly error estimates to ensure a faithfully 
rounded result. In Sect. 3 a vectorized error-free vector transformation is given, we 
recall recent sharp error estimates on summation and present the first two of our 
new algorithms to approximate ‖x‖ . Those are based on relative splittings and adopt 
methods presented in [25]. In the next section another two new algorithms are pre-
sented using absolute splitting as in [28, 29], again with sufficient conditions on a 
faithfully rounded result. In Sect. 5 an algorithm is presented computing the nearest 
approximation of ‖x‖ with proof of correctness. To our knowledge that is the first of 
its kind. The generation of ill-conditioned test examples, i.e., floating-point vectors 
x with ‖x‖ very close to a switching point is addressed in Sect. 6. The note is closed 
with computational results on the computing time and the accuracy of all algorithms 
and a conclusion.

2  Error‑free transformations and previous algorithms

Since a long time it is known [5, 13, 14, 22] that the sum and product of two 
floating-point numbers can be expressed as the sum x + y of two floating-point 
numbers, and that x and y can be computed using few pure floating-point opera-
tions. It was used implicitly by Neumaier, who wrote the remarkable paper [24] 
when he was a bachelor student, otherwise it was basically known to experts. The 
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methods received wide attention when I coined the term “error-free transforma-
tions” in [25] with numerous papers following thereafter.

For this note we need only the error-free transformations for sum and product; 
for details of other error-free transformations see e.g. [23] (Fig. 1). Consider

We display all algorithms in executable MATLAB code; later some longer 
algorithms appear so that we decided to add line numbers. The following is true 
[18, 22, 23, 25].

Lemma 2 Let a, b ∈ �  be given and x, y be the result of Algorithm TwoSum applied 
to a, b. Then

If |a| ≥ |b| , then (2) is also true for the result of Algorithm FastTwoSum.

The assumptions for Algorithm FastTwoSum can be weakened [18, 23], but 
we do not need this here. One might use Algorithm FastTwoSum together with 
an “if”-statement thereby reducing the number of operations from 6 to 3, how-
ever, that is often slower [25] than applying Algorithm TwoSum.

The proof of correctness [23] relies on the fact that all operations from row 3 
on are error-free, i.e., cannot cause a rounding error.

The key to the error-free transformation of multiplication is to split [5] 
both factors into a sum of two floating-point numbers such that the product of 
the addends does not cause a rounding error. The Algorithm Split for the 
binary64 format can be implemented as follows (Fig. 2).

In precision-p the factor in line 2 is to be replaced [5] by 2⌈p∕2⌉ + 1 . For various 
splitting methods and many details see [12]. For the calculation of the Euclidean 
norm we need only squares, so we add a specialized method for that (Fig. 3).

Since the input is split into two parts we use, for example, the notation 
Aa to indicate that A+a = Aa in line 3, and similarly for Bb in Algorithm 
TwoProduct.

(2)x + y = a + b and fl(x + y) = x.

1 function [x,y] = TwoSum(a,b) function [x,y] = FastTwoSum(a,b)
;b+a=x;b+a=x2

;b+)x-a(=y;a-x=z3
4 y = ( a - (x-z) ) + (b-z);

Fig. 1  Error-free sum

Fig. 2  Error-free split of a 
floating-point number for 
53-binary arithmetic

1 function [x,y] = Split(a)
2 y = ( pow2(27) + 1 ) * a;
3 x = y - ( y - a );
4 y = a - x;
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Lemma 3 Let a, b ∈ �
n be given and P, p ∈ �

n be the results of Algorithm Two-
Product applied to a, b. Then

In binary arithmetic the results P, p ∈ �
n of Algorithm TwoSquare applied to 

a ∈ �
n satisfy

Furthermore, for both algorithms |pi| ≤ u|Pi| for all i ∈ {1,… , n}.

Proof The first result (3) is well-known [14, 23], where the proof relies on the fact 
all operations in lines 3 − 5 do not cause a rounding error. That proves (4) as well 
because multiplication by 2 is error-free. The last estimate is a well-known property 
[23] of Algorithm TwoProduct.   ◻

For given x ∈ �
n , previous approaches [6, 20] borrow from the double-double 

pair arithmetic [2] to calculate a pair (T, t) such that T + t is an accurate approxima-
tion of the sum of squares 

∑n

i=1
x2
i
 . Another candidate for a pair arithmetic is the 

cpair arithmetic [17]. Both are implemented as toolboxes dd and cpair in INT-
LAB [27], the MATLAB toolbox for Reliable Computing.

In [6] TwoProduct is used to compute a pair approximation for x2
i
 , in [20] 

FMA instructions are used. While this is part of the new floating-point standard [10] 
and implemented on many computers, it is not available in MATLAB.1 Therefore 
some of our algorithms avoid that in this note.

Given (T, t) it remains to compute a good floating-point approximation of 
√
T + t . 

In [6] just sqrt(T) is used ignoring the lower order part t. In [20] the algorithm 

(3)Pi + pi = ai ⋅ bi for all i ∈ {1,… , n}.

(4)Pi + pi = a2
i

for all i ∈ {1,… , n}.

1 function [P,p] = TwoProduct(Aa,Bb) function [P,p] = TwoSquare(Aa)
;)aA(rqs=P;bB*.aA=P2

;)aA(tilpS=]a,A[;)aA(tilpS=]a,A[3
;)A*.a*2-)A*.A-P((-a*.a=p;)bB(tilpS=]b,B[4

5 p = a.*b - (((P-A.*B)-a.*B)-A.*b);

Fig. 3  Error-free product and square

Fig. 4  Accurate square root of 
T + t for a given pair (T, t)

1 function res = AccSqrt(T,t)
2 P = sqrt(T);
3 [H,h] = TwoSquare(P);
4 r = ( T - H ) - h;
5 r = t + r;
6 p = r / (2*P);
7 res = P + p;

1 There is a simulation of FMA in MATLAB’s “Fixed-Point Designer”-toolbox, however, until Version 
2023a there is no access to the FMA instruction provided by many processors.
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of our cpair arithmetic [17] is used adapted to one output P + p rather than the pair 
(P, p) (Fig. 4).

If (T, t) are such that the correction t is below the last bit of T, i.e., fl(T + t) = T  , 
then the result of AccSqrt is almost always equal to 

√
T  , at most one bit apart. In 

[20, Theorem 3.6] the following error estimate is proved.

Lemma 4 Let T , t ∈ �  be such that fl(T + t) = T  , and assume u ≤ 2−5 . Let P, p be 
the final values in Algorithm AccSqrt when applied to the pair [T, t]. Then

The theorem estimates the error of P + p rather than that of fl(P + p) , otherwise 
the additional rounding error u would spoil the result.

Now we can display the Algorithms normG from [6] and normL from [20]. 
Recall that the latter used an FMA instruction to calculate P, p in line 2, that is, they 
use �(�) = �(�).∧� and p(i) = FMA(x(i), x(i),−P(i)) inside the loop. Since the FMA 
instruction is not available in MATLAB, we replaced the computation in the loop 
by [P,p] = TwoSquare(x) splitting the whole vector x without loop. In that 
respect later time comparisons may be more fair (Fig. 5).

The summation scheme in Algorithms normG and normL is slightly different, 
but the main improvement is in the last line: Algorithm normG ignores the lower 
order part, whereas normL uses our Algorithm AccSqrt in Fig. 4 to compute the 
square root approximation of the pair S + s . As we will see in Sect. 7 that produces 
often a nearest rounding.

An alternative is to use the double-double and the cpair toolbox directly (Fig. 6):
The goal is to guarantee a faithfully rounded approximation to ‖x‖ or even the 

rounded to nearest result. In [6] it is proved that, if computed in binary64, the 
result is a faithfully rounded approximation to ‖x‖ if n < (24u + u

2)−1 , corresponding 

�P + p −
√
T + t� ≤ 25

8
u
2
√
T + t.

1 function res = normG(x) function res = normL(x)
;)x(erauqSowT=]p,P[;0=S2

;))2(P,)1(P(muSowT=]s,S[;0=s3
)x(htgnel:3=irof)x(htgnel:1=irof4

5 [P,p] = TwoProduct(x(i),x(i)); [H,h] = TwoSum(S,P(i));
6 [H,h] = TwoSum(S,P); [S,s] = TwoSum(H,s+h);

dne;p+s=c7
;)p(mus=pmus;c+h=d8

9 [S,s] = FastTwoSum(H,d); [H,h] = TwoSum(S,sump);
;)h+s,H(muSowTtsaF=]s,S[dne01

;)s,S(trqSccA=ser;)S(trqs=ser11

Fig. 5  Algorithms by Graillat et al. [6] and Lefèvre et al. [20]

1 function res = normDD(x) function res = normCpair(x)
2 S = sum(dd(x).*x); S = sum(cpair(x).*x);
3 res = AccSqrt(S.hi,S.lo); res = AccSqrt(S.hi,S.lo);

Fig. 6  Algorithms using double-double and cpair arithmetic
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to n ≲ 3.7 ⋅ 1014 . Our cpair arithmetic proves similar conditions for general arith-
metic expressions. Applied to the Euclidean norm the the result is faithful for 
n ≤ (�u)−

1

2 when using base-� arithmetic, and that corresponds to n ≲ 8.3 ⋅ 107 in 
binary64. In [20] we did not find an explicit limit for n, but the error estimates 
suggest that it should be a little larger than that for Algorithm normG.

In order to prove a faithful rounding for our algorithms to be presented we use 
the following criterion [17, Lemma 5.3]. That is a specialized version; the original 
allows for a much more general computer arithmetic.

Lemma 5 Let r, � ∈ ℝ and assume |𝛿| < u

2−u
|r| . Then fl(r) is a faithful rounding of 

r + �.

In a typical application a pair (T, t) with r ∶= T + t is an approximation to some 
real quantity q. If |r − q| < u

2−u
|r| , then fl(r) is a faithful rounding of q. An applica-

tion is the following criterion that fl(T + t) is a faithful rounding of q ∶=
√
x.

Lemma 6 Let T , t ∈ �  with T + t > 0 be given, and let 0 ≤ q ∈ ℝ . Assume

for some � ∈ ℝ with 𝛼 < 1 . Let r ∈ ℝ be such that

for some 𝛽 < 1 . Then

implies that fl(r) is a faithful rounding of q.

Proof Note that

for positive x, y ∈ ℝ . We show

We distinguish two cases. First, suppose T + t ≤ q2 . Then (5) gives

Second, suppose T + t > q2 . Then using again q2 ≤ T+t

1−�
 and (5) give

(5)|T + t − q2| ≤ �q2

(6)�r −
√
T + t� ≤ �

√
T + t

(7)(1 − 𝛽)−1
(
𝛽 +

𝛼

2(1 − 𝛼)

)
<

u

2 − u

�
√
x −

√
y� = �x − y�

√
x +

√
y

(8)�
√
T + t − q� ≤ �

2(1 − �)

√
T + t.

�
√
T + t − q� = �T + t − q2�

√
T + t + q

≤
�q2

2
√
T + t

≤
�

2(1 − �)

√
T + t.
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and proves (8). Hence (6) yields

and r ≥ (1 − �)
√
T + t together with Lemma 5 implies the result.   ◻

In our applications � is very small. A sufficient criterion that AccSqrt(T,t) is 
a faithful rounding of 

√
x follows.

Corollary 1 Let T , t ∈ �  with fl(T + t) = T  , assume u ≤ 2−8 and let res be the result 
of Algorithm AccSqrt applied to [T, t]. If 0 ≤ x ∈ ℝ satisfies

then res is a faithful rounding of 
√
x.

Proof Let [P,  p] be the final values in Algorithm AccSqrt when applied to the 
pair [T, t], so that res = fl(P + p) . Lemma 4 shows that (6) is true for r ∶= P + p and 
� ∶=

25

8
u
2 . Moreover, (5) is true by assumption for � ∶=

31

32
u and q ∶=

√
x . Hence 

(7) is true if, and only if,

Using u ≤ 2−8 yields 64d = −4u + 862u2 − 775u3 ≤
(
−4 + 862 ⋅ 2−8

)
u < 0 , and 

Lemma 6 finishes the proof.   ◻

3  Faithfully rounding of ‖x‖ based on relative splitting of x

The Algorithms TwoProduct and TwoSquare as in Fig. 3 apply to vector input 
as well. As a consequence we obtain the following lemma.

Lemma 7 For a, b ∈ �
n the output [P, p] of Algorithm TwoProduct as in Fig. 3 

applied to a, b satisfies 
∑n

i=1
Pi + pi =

∑n

i=1
aibi , and the output [P, p] of Algorithm 

TwoSquare applied to a satisfies 
∑n

i=1
Pi + pi =

∑n

i=1
a2
i
 . Furthermore, Pi ≥ 0 and 

|pi| ≤ uPi for all i ∈ {1,… , n}.

Thus one way to approximate ‖x‖ is to compute vectors P, p ∈ �
n with 

P + p = ‖x‖2 and apply some accurate summation algorithm. Both [6] and [20] fol-
low that scheme. Note that the vectors P, p are computed based on a relative split-
ting of x; later we will an absolute splitting.

�
√
T + t − q� ≤ �q2

2q
≤

�

2
√
1 − �

√
T + t ≤

�

2(1 − �)

√
T + t

�r − q� ≤ �r −
√
T + t� + �

√
T + t − q� ≤

�
� +

�

2(1 − �)

�√
T + t,

|T + t − x| ≤ 31

32
ux,

d ∶= (2 − u)(2(1 − 𝛼)𝛽 + 𝛼) − 2(1 − 𝛼)(1 − 𝛽)u < 0.
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In [25] efficient summation algorithms are developed based on TwoSum. First, 
q = VecSum(p) transforms an input vector p into a vector q without chang-
ing its sum S but with the property that q1…n−1 is small in absolute value and 
qn = float(

∑n

i=1
pi) . The error estimates in [25] imply that res = float(

∑n

i=1
qi) is a 

very good approximation of the true sum S.
Before continuing, we need to estimate the error of ordinary floating-point 

summation. To that end the traditional Wilkinson-type estimate �n−1 can be used. 
However, new and optimal bounds are available. The following sharp bound was 
shown in [16, Theorem 5].

Lemma 8 For p ∈ �
n denote S = float(

∑n

i=1
pi) for summation in any order, 

and denote by �i the errors in the n − 1 nodes of the evaluation tree. Hence 
∑n

i=1
pi = S +

∑n−1

i=1
�i . Suppose n ≤ 1 +

1

2
u
−1 . Then

and that bound is sharp as for the input vector p = (1,u,… ,u)T.

The Algorithm VecSum is realized by a loop in [25]. In MATLAB we face 
some interpretation overhead, so loops should be avoided where possible. That 
has been done in TwoSquare, and next we give a new, loop-free version of 
VecSum, see Fig. 7.

It is easily verified that Algorithms VecSum and FastVecSum produce iden-
tical results. The error analysis follows by Lemma 8.

Lemma 9 For given p ∈ �
n let [S,  s] be the output of Algorithm FastVecSum. 

Suppose n ≤ 1 +
1

2
u
−1 . Then s ∈ �

n−1 , 
∑n

i=1
pi = S +

∑n−1

i=1
si and

and that bound is sharp as by the input vector p = (1,u,… ,u)T.

(9)
|||||
S −

n∑

i=1

pi

|||||
≤

n−1∑

i=1

|�i| ≤ �n−1

n∑

i=1

|pi| with �k ∶=
ku

1 + ku
,

(10)
n−1∑

i=1

|si| ≤ �n−1

n∑

i=1

|pi| with �k ∶=
ku

1 + ku
,

)p(muSceVtsaF=]s,S[noitcnuf)p(muSceV=pnoitcnuf1
;)p(htgnel=n;)p(htgnel=n2
;)p(musmuc=xn:2=irof3

4 [p(i),p(i-1)] = TwoSum(p(i),p(i-1)); a = [ 0 ; x(1:n-1) ];
;a-x=zdne5

;)z-p(+))z-x(-a(=y6
;)n(x=S7

;)n:2(y=s8

Fig. 7  Error-free vector transformation
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We mention that (10) is true [15, Theorem 2.1] without restriction on n when 
replacing �k by ku

1+u
.

Our first algorithm is based on Algorithm Sum2 in [25], which in turn is 
equivalent to Algorithm IV in [24] (Fig. 8).

Theorem 1 Let res be the result of Algorithm normSum2 applied to x ∈ �
n . Sup-

pose n ≤

√
31

32
u
−1∕2 and u ≤ 2−8 . Then res is a faithful rounding of ‖x‖.

Proof We will prove

for the scalars [T, t] computed in line 4 of Algorithm normSum2 in order to apply 
Corollary 1. We know

by Lemma 7, so that Lemma 9 implies

Denote the floating-point sum sum(s) by �s , and correspondingly of the floating-
point sum sum(p) by �p . Note that s ∈ �

n−1 and p ∈ �
n . Then Lemma 8 gives

and

Furthermore, T + t = S + fl(�s + �p) . Hence, using S +
∑n−1

i=1
si +

∑n

i=1
pi =

∑n

i=1
x2
i
,

(11)
|||||
T + t −

n∑

i=1

x2
i

|||||
≤

31

32
u

n∑

i=1

x2
i

(12)
n∑

i=1

x2
i
=

n∑

i=1

(Pi + pi) and |pi| ≤ uPi for all i ∈ {1,… , n}

n∑

i=1

Pi = S +

n−1∑

i=1

si and

n−1∑

i=1

|si| ≤ �n−1

n∑

i=1

Pi.

||||||
�s −

n−1∑

i=1

si

||||||
≤ �n−2

n−1∑

i=1

|si| ≤ �n−2�n−1

n∑

i=1

Pi

|||||
�p −

n∑

i=1

pi

|||||
≤ �n−1

n−1∑

i=1

|pi| ≤ �n−1u

n∑

i=1

Pi.

���T + t −
∑n

i=1
x2
i

��� ≤ �S + �s + �p −
∑n

i=1
x2
i
� + u��s + �p�

≤
�
�n−2�n−1 + �n−1u

�∑n

i=1
Pi + u��s + �p�.

Fig. 8  Algorithm normSum2 1 function res = normSum2(x)
2 [P,p] = TwoSquare(x(:));
3 [S,s] = FastVecSum(P);
4 [T,t] = FastTwoSum(S,sum(s)+sum(p));
5 res = AccSqrt(T,t);
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Hence

and

and a calculation shows

For n = 1 the left hand side in (11) is zero and the result is faithful by Corollary 1. 
For n ≥ 2 , we use (12) to see

and again by Corollary 1 the result is faithful if 32(n2 − n + 1)u ≤ 31(1 − u) , and a 

computation shows that this is true because n ≤

√
31

32
u
−1∕2 .   ◻

Algorithm VecSum is an error-free vector transformation, so as in [25] we may 
apply it a second time, thus further diminishing the condition number of the sum 
(Fig. 9).

Theorem  2 Let x ∈ �
n be given and apply Algorithm normSum3 to x. Suppose 

n ≤ (
17

4
u
2)−1∕3 and u ≤ 2−8 . Then res is a faithful rounding of ‖x‖.

Proof We proceed as in the proof of Theorem 1 and show that the scalars [T, t] in 
Algorithm normSum3 satisfy

|�s| ≤
(
1 + �n−2

) n−1∑

i=1

|si| ≤
(
1 + �n−2

)
�n−1

n∑

i=1

Pi

|�p| ≤
(
1 + �n−1

) n−1∑

i=1

|pi| ≤
(
1 + �n−1

)
u

n∑

i=1

Pi

���T + t −
∑n−1

i=1
x
2

i

��� ≤
�
�
n−1

�
�
n−2 + u + u + �

n−2u + u
2
�
+ u

2
�∑n

i=1
P
i

=
�
�
n−1

�
(1 + u)�

n−2 + 2u + u
2
�
+ u

2
�∑n

i=1
P
i

≤
�
�
n−1(n + u)u + u

2
�∑n

i=1
P
i

≤ (n2 − n + 1)u2
∑n

i=1
P
i
.

(13)
n∑

i=1

Pi =
|||||

n∑

i=1

x2
i
− pi

|||||
≤

n∑

i=1

x2
i
+

n∑

i=1

|pi| ≤
n∑

i=1

x2
i
+ u

n∑

i=1

Pi,

(14)
||||||
T + t −

n−1∑

i=1

x2
i

||||||
≤

31

32
u

n∑

i=1

x2
i
.

Fig. 9  Algorithm normSum3 1 function res = normSum3(x)
2 [P,p] = TwoSquare(x(:));
3 [Q,q] = FastVecSum(P);
4 [S,s] = FastVecSum([p;q]);
5 [T,t] = FastTwoSum(Q,S+sum(s));
6 res = AccSqrt(T,t);
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The quantities in Algorithm normSum3 are scalars Q, S, T and t as well as vectors 
P, p ∈ �

n , q ∈ �
n−1 and s ∈ �

2n−2 . As before 
∑n

i=1
x2
i
=
∑n

i=1
(Pi + pi) with |pi| ≤ uPi 

for all i ∈ {1,… , n} . Furthermore, Lemma 9 implies 
∑n

i=1
Pi = Q +

∑n−1

i=1
qi and 

∑n

i=1
pi +

∑n−1

i=1
qi = S +

∑2n−2

i=1
si as well as 

∑n−1

i=1
�qi� ≤ �n−1

∑n

i=1
Pi and 

∑2n−2

i=1
�si� ≤ �2n−2

�∑n

i=1
�pi� +

∑n−1

i=1
�qi�

�
 . Denote the floating-point sum sum(s) 

by �s . Then

Furthermore, T + t = Q + fl(S + �s) . Hence

and using (13) yields

The factor � is monotonically increasing in n. A direct computation for 
u ∈ {2−e ∶ 8 ≤ e ≤ 53} and the maximal value n ∶= ⌊( 17

4
u
2)−1∕3⌋ verifies

Hence (14) is true and Corollary 1 finishes the proof.   ◻

The error of floating-point summation in Lemma 9 is sharp but, as has been men-
tioned after Lemma 1, highly overestimated in practice: We hardly find cases with rela-
tive error exceeding 

√
nu—unless we looked for them. In particular it seems unlikely 

that the worst case bound (10) is attained for all summations in Algorithms normSum2 
or normSum3.

Theorems 1 and 2 prove that Algorithms normSum2 and normSum3 compute a 
faithfully rounded result if the vector length n satisfies 32

31
n2u ≤ 1 or 4n3u2 ≤ 1 , respec-

tively. These are sufficient criteria, but in practice the results are faithful for much larger 
n.

||||||
�s −

2n−2∑

i=1

si

||||||
≤ �2n−3

2n−2∑

i=1

|si|.

���T + t −
∑n

i=1
x2
i

��� ≤ �Q + S + �s −
∑n

i=1
x2
i
� + u�S + �s�

= ��s −
∑2n−2

i=1
si� + u�S +∑2n−2

i=1
si + �s −

∑2n−2

i=1
si�

≤ (1 + u)��s −
∑2n−2

i=1
si� + u�∑n

i=1
pi +

∑n−1

i=1
qi�

≤ �2n−3(1 + u)
∑2n−2

i=1
�si� + u�∑n

i=1
pi +

∑n−1

i=1
qi�

≤
�
�2n−3�2n−2(1 + u) + u

��∑n

i=1
�pi� +

∑n−1

i=1
�qi�

�

≤
�
�2n−3�2n−2(1 + u) + u

��
u + �n−1

�∑n

i=1
Pi

=∶ �
∑n

i=1
Pi

|||||
T + t −

n∑

i=1

x2
i

|||||
≤ (1 − u)−1�

n∑

i=1

x2
i
.

(1 − u)−1� ≤
31

32
u.
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A rough estimate of this limit under practical assumptions, i.e., when replacing �k 
in Lemma 8 by 

√
ku , suggests a faithfully rounded result for n ≲ u

−1 for Algorithm 
normSum2 and n ≲

1

4
u
−4∕3 for Algorithm normSum3. In other words, in practical 

applications it suffices to use Algorithms normSum2 and we can always expect a faith-
fully rounded result.

4  Faithfully rounding of ‖x‖ based on absolute splitting of x

The error-free transformation of ‖x‖2 into (P, p) with P + p = ‖x‖2 , as used in [6] and 
[20] and our algorithms up to now, is based on a relative splitting of the xi , i.e., each xi 
is transformed into a sum of two floating-point numbers.

Once the vectors P, p are available, any good summation algorithm may be applied. 
An alternative to a relative splitting of the xi was first proposed in [32]. A constant � 
larger in absolute value than all summands is chosen. The split of the vector x into a 
pair of vectors (r, s) with respect to � is such that x = r + s and all bits of r reside in the 
same range and such that the sum(r) is error-free. The same principle can be applied 
successively.

In [32] the splitting was performed using scaling and integer rounding, and no analy-
sis was given. In [28] we pursued that principle in Algorithm AccSum with an effi-
cient implementation and thorough error analysis. Based on that Algorithm AccDot 
is presented in [28] for the accurate computation of a dot product xTy . Basically, it first 
splits xTy = r + s as in TwoProduct and then applies AccSum. That algorithm can 
be used for ‖x‖ as well.

Following we split the input vector x into vectors q, b directly such that sum(q.*q) 
is error-free. That avoids the costly splitting ‖x‖2 = P + p by Algorithm TwoSquare. 
The Algorithm normExtract is presented in Fig.  10. Note that M, in contrast to 
Algorithm AccSum in [28], is not a power of 2.

The bound on the dimension n as for Algorithm normSum2 to guarantee that the 
approximation res is a faithful rounding of ‖x‖ is very conservative. We present this 
algorithm because it is very fast and, as explained at the end of the previous section, we 
can expect a faithful result up to n ≲ 79 million. That may be sufficient in most practi-
cal applications.

To that end we need “ufp” as introduced in [28], the unit in the first place

1 function res = normExtract(x)
2 x = abs(x);
3 u = pow2(-53); % u relative rounding error unit
4 M = 4/(2-(length(x)+8)*u) * norm(x)/sqrt(u);
5 q = ( M + x ) - M;
6 b = x - q; % x = q + b
7 S = sum(q.*q);
8 s = sum( (q+x).*b );
9 [T,t] = FastTwoSum(S,s);

10 res = AccSqrt(T,t);

Fig. 10  Algorithm normExtract
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and ufp(0) ∶= 0 . Compared to the often used “ulp”, the unit in the last place, 
it bears the advantage that it is independent of a floating-point format and 
applies to real numbers as well. The following properties are proved in [28]. For 
� = 2k, k ∈ ℤ, r ∈ ℝ we have

Note that, if b ≠ 0 , fl(a + b) ∈ u ⋅ ufp(b)ℤ in (20) holds as well.

Theorem 3 Let x ∈ �
n be given and apply Algorithm normExtract to x. Suppose 

n ≤
11

59
u
−1∕3 and u ≤ 2−8 . Then res is a faithful rounding of ‖x‖.

Proof As in the previous proofs we will show that the scalars [T,  t] in Algorithm 
normExtract satisfy

Henceforth we assume xi ≥ 0 as justified by line 2 of Algorithm normExtract. 
Denote by x̂ ∶= ����(�) MATLAB’s floating-point approximation to ‖x‖ . Then 
Lemma 1 with � = (

n

2
+ 1)u shows

Note that 4(n + 2)u ≤ 16nu ≤ 1 implies 1 − 2(n + 2)u ≥ 1∕2 , so that 
float(1 − 2(n + 2)u) = 1 − 2(n + 2)u by Sterbenz’ lemma [31], and a calculation 
using (1) yields for all i ∈ {1,… , n}

0 ≠ r ∈ ℝ ⇒ ufp(r) ∶= 2⌊log2 �r�⌋

(15)r ≠ 0 ⇒ ufp(r) ≤ |r| < 2ufp(r)

(16)𝜎� = 2m, m ∈ ℤ, 𝜎� ≥ 𝜎 ⇒ u𝜎�
ℤ ⊆ u𝜎ℤ

(17)f ∈ � and |f | ≥ � ⇒ ufp(f ) ≥ �

(18)f ∈ 𝔽 ⇒ f ∈ 2u ⋅ ufp(f )ℤ

(19)r ∈ u�ℤ ∩N, |r| ≤ � ⇒ r ∈ 𝔽

(20)a, b ∈ 𝔽 , a ≠ 0 ⇒ fl(a + b) ∈ u ⋅ ufp(a)ℤ

(21)r̃ ∶= fl(r) ∈ � ⇒ |r̃ − r| ≤ u ⋅ ufp(r) ≤ u ⋅ ufp(r̃).

(22)
|||||
T + t −

n∑

i=1

x2
i

|||||
≤

31

32
u

n∑

i=1

x2
i
.

(23)(1 − 𝛽)‖x‖ ≤ x̂ ≤ (1 + 𝛽)‖x‖.
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where � ∶= 4∕(2 − (n + 8)u)∕
√
u . Lines 5 and 6 of Algorithm normExtract 

are similar to Algorithm FastTwoSum in Fig.  1. More precisely, the code for 
FastTwoSum(M,x) is identical to

where q in line 5 of Algorithm normExtract is equal to -qs, and b in line 6 
is the same. By (24), Lemma 2 for Algorithm FastTwoSum is applicable, so that 
there is no rounding error when subtracting M in line 5, i.e., qi = fl(M + xi) −M . 
Using ufp(M + x) ≤ 2ufp(M) by (24) that implies

and qi ≤ xi + u ⋅ ufp(M + xi) for all i ∈ {1,… , n} . We distinguish three cases to 
show

First, if 2u ⋅ ufp(M) ≤ xi , then ufp(M + xi) ≤ 2ufp(M) proves (26). Second, if 
u ⋅ ufp(M) ≤ xi < 2u ⋅ ufp(M) , then ufp(M + x) = ufp(M) and proves (26) as well. 
Third and finally, if xi < u ⋅ ufp(M) , then fl(M + xi) = M and qi = 0 . Thus (26), (24) 
and (15) yield

Now (20) and (16) yield qi ∈ u ⋅ ufp(M + x)ℤ ⊆ 2u ⋅ ufp(M)ℤ . Hence 
q2
i
∈ u ⋅ 4u ⋅ ufp(M)2ℤ and (19) show that the floating-point sum of all q2

i
 is error-

free, i.e., S =
∑n

i=1
q2
i
 . For ci ∶= float((qi + xi)bi) we see by (1) that

and, if n ≥ 3,

Moreover, using (23) and (1 + u

1+u
)3 ≤ 1 + 3u,

(24)
M = float(𝜑x̂) ≥

4x̂

(1+u)3(2−(n+8)u)
√
u

≥
4x̂

(2−(n+2)u)
√
u

=
2x̂

(1−𝛽)
√
u

≥ 2‖x‖∕
√
u

≥ 32‖x‖ ≥ xi,

� =� + �;

�� =� − �;

� =�� + �;

(25)xi = qi + bi and |bi| ≤ 2u ⋅ ufp(M)

(26)qi ≤ 2xi.

∑n

i=1
q2
i
≤ 4‖x‖2 ≤ uM2 < 4u ⋅ ufp(M)2.

|ci − (qi + xi)bi| ≤
((

1 +
u

1 + u

)2

− 1

)
|qi + xi||bi| ≤ 2u|qi + xi||bi|

(27)

||||||
float

(
n∑

i=1

ci

)
−

n∑

i=1

ci

||||||
≤

(n − 1)u

1 + (n − 1)u

n∑

i=1

|ci| ≤ (n − 1)u

n∑

i=1

|qi + xi||bi|.
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Thus s = float(
∑n

i=1
ci) , xi = qi + bi , (26) and (25) yield

In order to show (22) we note that 6(n − 1)u2
√
n� ≤

31

32
u is equivalent to

which in turn is equivalent to 𝛷 ∶=
∑3

i=1
𝛼iu

i∕2 + 𝛼5u
5∕2 < 62 where

Now � is monotonically increasing in n, and a direct computation using the maxi-
mal value n ∶= ⌊ 11

59
u
−1∕3⌋ shows

and verifies (22) for u ≤ 2−8 and n ≥ 3 . The case n = 2 follows by an extra factor 
1+2u

1+u
 in (27). Hence (14) is true and Corollary 1 finishes the proof.   ◻

(28)M = float(𝜑x̂) ≤
4(1 + 3u)

(2 − (n + 8)u)
√
u

�
1 + (

n

2
+ 1)u

�
‖x‖ =∶ 𝛾‖x‖.

�T + t − ‖x‖2� = �S + s − ‖x‖2� = �∑n

i=1
q2
i
+ s − ‖x‖2�

= ��s −
∑n

i=1
(qi + xi)bi

��
≤ (n − 1)u

∑n

i=1
�qi + xi��bi�

≤ (n − 1)u ⋅ 3‖x‖1 ⋅ 2uM
≤ 6(n − 1)u2

√
n�‖x‖2.

384(n − 1)
√
nu(1 + 3u)(2 + (n + 2)u) < 31(2 − (n + 8)u),

�1 = 768(n − 1)
√
n

�2 = 31n + 248

�3 = (384n2 + 2688n − 3072)
√
n

�5 = (1152n2 + 1152n − 2304)
√
n.

𝛷 < 61.9 + 12u4 + 465u6 + 18u10 + 93u12

1 function res = normExtract2(x)
2 x = abs(x);
3 u = pow2(-53); % u relative rounding error unit
4 M = 4/(2-(n+8)*u) * norm(x)/sqrt(u);
5 q = ( M + x ) - M;
6 b = x - q; % x = q + b
7 N = 8/(2-(n+8)*u) * norm(b)/sqrt(u);
8 r = ( N + b ) - N;
9 c = b - r; % b = r + c

10 [P,p1] = FastTwoSum( sum(2*(q+r).*c), sum(c.*c) );
11 [P,p2] = FastTwoSum( sum(r.*r) , P );
12 [P,p3] = FastTwoSum( 2*sum(q.*r) , P );
13 [P,p4] = FastTwoSum( sum(q.*q) , P );
14 [S,s] = FastTwoSum(P,p1+(p2+(p3+p4)));
15 res = AccSqrt(S,s);

Fig. 11  Algorithm normExtract2
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The reason for the severe restriction of the vector length n to guarantee a 
faithfully rounded result is the estimate (27). As before, a rough estimate under 
the practical assumption 𝜑k ≲

√
ku in Lemma 8 suggests a faithfully rounded 

result for n ≲
1

12
u
−1∕2 for Algorithm normExtract.

The limit on the dimension for guaranteed faithful rounding is improved by 
the following Algorithm normExtract2 by introducing a second splitting 
(Fig. 11).

We show this algorithm as yet another example to compute the Euclid-
ean norm faithfully, however, we refrain from giving a complete analysis. We 
just mention that the main errors occur in line 10, namely, the summation of 
2(qi + ri)ci and c2

i
 . The following sums of the r2

i
 , the qiri and q2

i
 are error-free.

5  Computation of the nearest rounding of ‖x‖

The algorithms in the previous section adapt Algorithm AccSum in [28] to the 
computation of the Euclidean norm of a vector. In [29] we explored that principle 
by designing Algorithm NearSum to compute the rounded to nearest value of the 
sum of floating-point numbers, and Algorithm AccSign to compute the sign of the 
sum. Several other algorithms such as storing the result in an unevaluated vector, 
the rounded downward and upward result, treatment of vectors of huge lengths and 
more.

Next we derive Algorithm normNearest to compute the nearest value of the 
Euclidean norm of a vector. To that end we first present an adapted version of the 
Algorithm Transform derived in [28] (Fig. 12).

In our adaptation we rewrote the “repeat”- into a “while”-loop and omitted the 
output parameter � . Then Lemma 4.3 in [28] shows the following.

1 function [tau1,tau2,p] = Transform(p)
2 M = ceil(log2(length(p)+2));
3 Phi = pow2(2*M);
4 u = 2^(-53); % u rel. rounding error unit, to be adapted
5 sigma = pow2(ceil(log2(max(abs(p)))))/u;
6 t = 0;
7 while ( abs(t) < Phi*sigma )
8 sigma = u*pow2(M)*sigma;
9 q = ( sigma + p ) - sigma;

10 p = p - q;
11 tau = sum(q);
12 told = t;
13 t = t + tau;
14 end
15 [tau1,tau2] = FastTwoSum(told,tau);

Fig. 12  Algorithm transform



1408 S. M. Rump

1 3

Lemma 10 Let tau1, tau2 and r be the result of Algorithm Transform applied 
to p ∈ �

k , and suppose k ≤ 1

2
u
−1∕2 − 2 . Then

and the MATLAB statement

implies that res is a faithful rounding of 
∑k

i=1
pi . Moreover,

When replacing the constant � in line 3 by � = 2M , then �1 and 
∑k

i=1
pi have the 

same sign under the weaker assumption k ≤ 1

2
u
−1 − 2.

Proof The definition of M in line 2 implies 2M ≥ k + 2 ≥ 2M−1 and therefore

Hence the the assumptions of Lemma 4.3 in [28] are satisfied, and the assertions 
until (30) follow. The last statement is implied by Theorem 4.2 in [29].   ◻

The smaller the constant � is, the less “while”-loops are necessary in Algo-
rithm Transform. As shown in [28] and [29] the chosen constants � = 22M for 
a faithful result and � = 2M for the sign are optimal.

Our Algorithm NearSum needs the predecessor and successor of a floating-
point number. The next Algorithm PredSucc combines Algorithm  1 in [30] 
(Fig. 13).

In Theorem 2.2 in [30] it is shown that Algorithms Pred and Succ computes 
the predecessor and successor of a floating-point number c provided that u ≤

1

16
 and 

except for a tiny range near the smallest positive normalized floating-point number. 
To avoid that, we scaled the input in line 2 so that, provided no overflow occurs, 
Algorithm PredSucc computes the predecessor and successor of c. Of course, 
proper scaling avoids overflow.

Now we can present our Algorithm normNearest in Fig. 14 to compute the 
nearest value of the Euclidean norm of a vector. It borrows from Algorithm Near-
Sum in [29] and is adapted to our task.

(29)
k∑

i=1

pi = �1 + �2 +

k∑

i=1

ri,

��� = ���� + (���� + ���(�))

(30)max
1≤i≤n

|ri| ≤ 2−2Mu|�1| and |�2| ≤ u|�1|.

22Mu ≤ 4(k + 2)2u ≤ 1.

Fig. 13  Predecessor and succes-
sor of c

1 function [pred,succ] = PredSucc(c)
2 C = pow2(53)*c;
3 u = pow2(-53);
4 e = ( u*(1+2*u) ) * abs(C);
5 pred = (C-e)*u;
6 succ = (C+e)*u;



1409

1 3

Fast and accurate computation of the Euclidean norm of a vector

Remark 1 There are obvious ways to improve Algorithm normNearest by utiliz-
ing information obtained in the first transformation in line 3 in the following trans-
formations in lines 5 and possibly 19, or by integrating the call in line 5 into that of 
line 3. Moreover, the transformation in Algorithm 3.3 in [29] with an extra param-
eter � computing a faithful rounding of � +

∑n

i=1
pi could be used. We refrain from 

doing that keep the code simple.

Remark 2 Algorithm Transform in line 3 transforms the input vector [S; s] into 
p. The number of “while”-loops is proportional to the condition number of the sum, 
i.e., how close the true is sum to the midpoint of adjacent floating-point numbers.

Algorithm Transforms in lines 5 and possibly 19 is applied to the already 
transformed vector p, so that in all our examples we did not encounter more than 2 
loops.

Theorem 4 Let x ∈ �
n be given and apply Algorithm normNearest to x, where 

Algorithm Transforms in lines 5 and 19 is identical to Transform in Fig. 12 
with replacing the constant � in line 3 by � = 2M . Suppose n ≤

1

4
u
−1∕2 − 4 . Then 

the computed result res is equal to the Euclidean norm of x rounded to the nearest 
floating-point number, i.e., ��� = fl(‖x‖).

1 function res = normNearest(x)
2 [S,s] = TwoSquare(x(:));
3 [tau1,tau2,p] = Transform([S;s]);
4 f = tau1 + ( tau2 + sum(p) ); % f is faithful rounding of ||x||^2
5 delta = Transforms([ tau1 ; tau2 ; p ; -f ]);
6 [f2,succ] = predsucc(f);
7 if delta>0 % hull(f,f2) bracket |x||^2
8 f2 = succ;
9 elseif delta=0 % fl(|x||^2) = f

10 f2 = f;
11 end
12 g1 = sqrt(f); % fl(|x||^2) in {f,f2}
13 g2 = sqrt(f2); % fl_near(|x||) in {g1,g2}
14 if g1==g2 % fl_near(||x||) = g1 = g2
15 res = g1;
16 else
17 [R,r] = TwoSquare(g1); % g1^2 = R + r
18 d = (g2-g1)/2; % power of 2, d maybe negative
19 Delta = Transforms([ tau1 ; tau2 ; p ; -R ; -r ; -2*g1*d ; -d^2 ]);
20 if Delta<0 % |x|| < mid(g1,g2)
21 res = min(g1,g2);
22 elseif Delta>0 % ||x|| > mid(g1,g2)
23 res = max(g1,g2);

)2g,1g(dim=||x|,0=atleD%esle42
25 res = g1+d;
26 end
27 end

Fig. 14  Algorithm for round to nearest Euclidean norm
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Proof Line 2 in Algorithm normNearest and Lemma 3 imply ∑n

i=1
x2
i
=
∑n

i=1
Pi +

∑n

i=1
pi , so that Lemma 10 shows that

and that f computed in line 4 is a faithful rounding of ‖x‖2 . Thus 
pred(f ) < ‖x‖2 < succ(f ) . The vector argument of Transforms in line 5 is equal 
to

Lemma 10 shows that the signs of Q and the computed � coincide, It follows that 
‖x‖2 ∈ (pred(f ), f ) if 𝛿 < 0 , ‖x‖2 ∈ (f , succ(f )) if 𝛿 > 0 , and ‖x‖2 = f  if � = 0 . Thus 
lines 6 − −11 imply that ‖x‖2 is in the convex union of f and f2 . Denote the pair 
(f , f2) by (s1, s2) ∈ �

2 with s1 ≤ s2 , such that

and s2 ≤ succ(s1) ≤ (1 + 2u)s1 . Set gi ∶= fl(
√
si) for i ∈ {1, 2} . Then 

(1), 
√
1 + 2u < 1 + u , the monotonicity of the rounding fl(⋅) and 

fl((1 + u)x) ≤ fl((1 + u)2fl(x)) ≤ succ(fl(x)) for x ∈ ℝ imply

Hence g1 and g2 are equal or adjacent floating-point numbers, and (32) yields

In other words, the nearest rounding of ‖x‖ is in {g1, g2} . Thus, if g1 = g2 , the nearest 
rounding is equal to g1 = g2 which is handled in line 15.

Otherwise, line 17 implies g2
1
= R + r . Then d, which is a power of 2 because it is 

half the distance between g1 and g2 , is computed in line 18 without rounding error. 
Thus the product 2g1d is computed without error as well, and the sum of the vector 
argument of Transforms in line 19 is equal to

Note that the length of the vector argument is 2n + 6 and the assumption on n veri-
fies that Lemma 10 is applicable and implies that sign(�����) = sign(S) . Now 
g1 + d is the midpoint between the adjacent floating-point numbers g1 and g2 , and 
the result follows by ‖x‖ ∈ {g1, g2} .   ◻

We mention that the assumption n ≤
1

4
u
−1∕2 − 4 can be lifted to n ≤

1

32
u
−1 − 64 

using the ideas in Algorithm AccSumHugeN in [29], but we refrain from exploring this.

(31)
n∑

i=1

x2
i
= �1 + �2 +

n∑

i=1

pi

Q ∶= �1 + �2 +

n∑

i=1

pi − f =

n∑

i=1

x2
i
− f .

(32)s1 < ‖x‖2 < s2 or s1 = ‖x‖2 = s2

g2 = fl(
√
s2) ≤ fl(

√
(1 + 2u)s1) ≤ fl((1 + u)

√
s1) ≤ succ(fl(

√
s1)) = succ(g1).

g1 = fl(
√
s1) ≤ fl(‖x‖) ≤ fl(

√
s2) = g2.

S ∶= �1 + �2 +

n∑

i=1

pi − R − r − 2g1d − d2 =

n∑

i=1

x2
i
− (g1 + d)2.
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We showed that the f computed in line 4 is a faithful rounding of ‖x‖2 . As has 
been noted in [6] that does not imply that fl(

√
f ) is a faithful rounding of ‖x‖ , but 

likely AccSqrt(f,delta) is.

6  Generation of ill‑conditioned examples

A vector p is ill-conditioned with respect to the nearest rounding of ‖p‖ if a very 
small change of the input data changes the result. The closer ‖p‖ is to a switching 
point, the more difficult and ill-conditioned is the computation of the nearest round-
ing. For positive f ∈ �  its successor is succ(f ) = f + 2u ⋅ ufp(f ) , so that the switch-
ing point is � = f + u ⋅ ufp(f ) =∶ f + � . Then � =

��−�

�
 is the relative distance of 

‖p‖ = f + �� to the switching point f + �.
For given � it is, in principle, not too difficult to generate a vector p with ‖p‖ 

having a relative distance � to a switching point. To that end a multiple precision 
package may be helpful. However, when doing this we observed a severe influ-
ence on the timing. The mere presence of a call to the multiple precision pack-
age, of course, outside the loop to be measured, changed the measured computing 
time by a factor of 2 and more. Therefore, we wrote Algorithm GenVec, see 
Fig. 15. Using it ensured reliable computing times.

1 function [p,f] = GenVec(n,e)
2 K = ceil(2-log2(abs(e))/53); % number of segments

tnemgeshcaefoezis%;)K/n(roolf=m3
4 p = 2^26*rand(1,n-m*K)/sqrt(n); % initial vector
5 [p1,p2] = TwoSquare(p); % ||p||^2 = p1 + p2
6 f = pow2(52)*(1.1+0.8*rand); % ufp(f) = 2^52
7 [F1,F2] = TwoSquare(f); % f^2 = F1 + F2
8 [ef1,ef2] = TwoProduct(e,f); % e*f = ef1 + ef2
9 S = [F1 F2 f 1/4 ef1 ef2 -p1 -p2]; % sum(S) = (f+0.5)^2 + e*f - ||p||^2

10 [tau1,tau2,q] = Transform(S);
11 sumS = tau1 + ( tau2 + sum(q) ); % faithful rounding of sum(S)
12 phi = sqrt( 1 - (abs(e)/f^2)^(1/K) ); % decay factor
13 for k=1:K
14 ps = randn(1,m);
15 ps = phi*sqrt(sumS)*ps/norm(ps); % next segment
16 p = [ p ps ];
17 [ps1,ps2] = TwoSquare(ps); % ps^2 = ps1 + ps2
18 S = [ S -ps1 -ps2 ]; % sum(S) = (f+0.5)^2 + e*f - ||p||^2
19 [tau1,tau2,q] = Transform(S);
20 sumS = tau1 + ( tau2 + sum(q) ); % faithful rounding of sum(S)
21 end
22 p = p(randperm(length(p))); % random perturbation
23 if e>0

||p||fognidnuortseraensif%;1+f=f42
25 end

Fig. 15  Vector p ∈ �
n with relative distance � of ‖p‖ to a switching point
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The challenge is to approximate the anticipated final result ‖p‖ near a switch-
ing point s “from below”: During a loop the vector norm must always stay below 
s. That is the principle of Algorithm GenVec, a nice example of our algorithms 
with absolute splitting used for faithful and nearest rounding.

The rationale is as follows. The output vector p is computed in K segments 
each of length m. The initialization in line 4 ensures that the final vector length 
is n. The floating-point number f in line 6 or its successor f + 1 is the antici-
pated result of the nearest rounding of the final vector p to be generated with 
relative distance e to the switching point f + 0.5 . The initial vector p as in line 
4 satisfies ‖p‖2 = p1 + p2 and f − ‖p‖ > 0 . Lines 7 − −8 yield f 2 = F1 + F2 and 
e ⋅ f = ef1 + ef2 , so that

for the S in line 9. Here 
∑

Si denotes the mathematical sum of all elements of S. 
Furthermore, lines 10 − 11 and Lemma 10 imply that sumS is a faithful rounding of ∑

Si . The � in line 15 satisfies � ≤ 1 − 4u reasonable values of n and e, so that ps in 
line 14 satisfies

In the for-loop the element ps is appended to the vector p and −ps2 = −ps1 − ps2 to 
the vector S, so that the sum T =

∑
Si changes into T − ps2 . Since sumS is a faithful 

rounding of 
∑

Si , (33) implies that T − ps2 > 0.
At the end of every loop, sumS is always a faithful rounding of the sum 

∑
Si by 

lines 19 − 20 , and the construction implies that sumS decreases into (1 − �2)���� 
in each step. The starting value of sumS is about f 2 , and � and K are chosen such 
that ���� ≤ |e| after finishing the loop.

After finishing the for-loop, sumS is a faithful rounding of (f + 1

2
)2 + e ⋅ f −

∑
p2
i
 . 

Since f ≥ 252 we conclude that ‖p‖2 is very close to (f + 1

2
)2 + e ⋅ f  , hence

In the above setting � =
1

2
 and �� = 1+e

2
 , so that the relative distance of ‖p‖ is 

��−�

�
= e . The “approximations” in (34) are very accurate.

�
Si = f 2 + f +

1

4
+ e ⋅ f − ‖p‖2 =

�
f +

1

2

�2

+ e ⋅ f − ‖p‖2 =∶ T

(33)

ps = float
�
𝜑
√
����

�
≤

�
1 +

u

1 + u

�2

(1 − 4u)
√
���� < (1 − 2u)

√
����.

(34)‖p‖ ≈

��
f +

1

2

�2

+ e ⋅ f ≈ f +
1

2
+

e

2
.

Fig. 16  Alternative splitting 1 function [P,p] = Split1(Aa)
2 [f,e] = log2(Aa);
3 P = pow2(fix(2^27*f),e-27);
4 p = Aa - P;
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Finally, if e < 0 , then ‖p‖ is left of the switching point f + 1

2
 and f is the nearest 

rounding, otherwise, as computed in line 24, the nearest rounding is f + 1 . The ran-
dom perturbation in line 22 may be useful for testing the generality of algorithms.

It is clear from the code that the elements of one segment are close together, and 
the segments decay with the factor � . If the number of segments K is increased, then 
a better distrubution of the vector elements of p is obtained, however, at the cost of 
increasing computing time.

7  Computational results

The following computational results are all performed using MATLAB Version 
2020b on some core i7 Laptop. In all of the following examples the number of test 
cases is generally 1 million, but for large dimensions chosen such that the computing 
time stays below 1 hour.

We start with some timing comparisons of variants of MATLAB implementa-
tions. For example, an alternative to Algorithm Split in Fig.  2 is the following 
(Fig. 16).

The following Table 1 shows the computing time of Algorithm Split1 divided 
by that for Algorithm Split1. We also compare sqr(a) vs. a.*a, TwoProd-
uct vs. TwoSquare as in Fig. 3 and VecSum vs. FastVecSum as in Fig. 7.

The original Algorithm Split is significantly faster than the simulation by 
log2 and round, so we use Algorithm Split. Similarly, Algorithm TwoSquare 
in Fig. 3 is some 50% faster than Algorithm TwoProduct, and the loop-free vari-
ant Algorithm FastVecSum in Fig. 7 is much faster than Algorithm VecSum in 
[25]. We use a.*a because the time seems the same as for sqr(a).

Before we come to timing comparisons, we give information about the accuracy 
of our algorithms and competitors. We start with possibilities to approximate ‖x‖ 

Table 1  Time comparisons for different vector lengths

Comparison 10 100 1000 10
4

10
5

10
6

Split1 / Split 1.24 1.25 2.38 1.79 1.67 1.65
sqr(a) / a.*a 0.97 0.94 0.98 0.99 1.01 0.95
TwoProduct / TwoSquare 1.46 1.50 1.52 1.52 1.66 1.69
VecSum / FastVecSum 0.37 2.41 9.19 9.91 8.89 2.91

Table 2  Percentage of rounding is nearest/faithful/none

10
3

10
4

10
5

10
6

for-loop 14.6/26.7/58.7 4.0/7.6/88.5 1.7/3.6/94.7 0.4/0.8/98.8
sqrt(sum(x.*x)) 44.4/46.1/9.5 15.5/27.7/56.8 74.2/25.8/0.0 60.2/38.9/0.9
norm(x) 100/0/0 76.6/15.8/7.6 88.2/10.3/1.5 88.1/9.4/2.4
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by the built-in MATLAB routines, where the obvious candidate is norm(x). We 
generate random testcases and display triples of numbers: The first and second is the 
percentage of nearest and faithful roundings, respectively, and the third the percent-
age where the result is not faithful.

As can be seen in the third row of Table 2, the built-in function norm(x) is sur-
prisingly accurate, more accurate than theory predicts [7–9].

We therefore perform tests on the same data using sqrt(sum(x.*x)) and an 
ordinary for-loop. Still sqrt(sum(x.*x)) is more accurate than expected, only 
the for-loop shows the anticipated behavior.

Details on the actual implementation of norm and sum are confidential, but the 
data in Table 2 suggests that some higher precision or compensating algorithms are 
used.

Table 3  Percentage of nearest 
rounding of normG vs. 
normGacc 

Algorithm 10 100 1000 10
4

10
5

10
6 10

7

normG 86.3 91.6 87.1 83.8 90.1 89.0 98.1
normGacc 100 100 100 100 100 100 83.2

Table 4  Percentage of nearest rounding for relative distance � of ‖x‖ to switching point

n � DD Cpair G Gacc L Sum2 Sum3 Extract Extract2 Nearest

100 10
−2 100 100 51.6 100 100 100 100 100 100 100

10
−6 100 100 50.4 100 100 100 100 100 100 100

10
−10 100 100 49.4 100 100 100 100 49.9 100 100

10
−14 100 100 50.4 100 100 100 100 50.9 100 100

10
−16 74.2 75.9 50.2 74.1 73.8 74.1 74.4 50.0 77.0 100

10
−18 41.2 42.2 50.1 43.0 41.3 40.6 44.0 50.5 54.2 100

10
−20 40.8 41.6 49.9 42.6 41.0 40.4 43.4 50.0 53.9 100

10
4

10
−2 100 100 51.9 100 100 100 100 100 100 100

10
−6 100 100 49.2 100 100 100 100 99.7 100 100

10
−10 100 100 49.2 100 100 100 100 55.8 100 100

10
−14 100 100 47.1 100 100 100 100 53.7 100 100

10
−16 98.7 97.9 51.2 98.7 98.5 98.1 100 53.8 64.6 100

10
−18 42.0 43.5 49.4 44.4 43.0 42.4 42.8 53.6 48.5 100

10
−20 40.3 41.9 49.6 41.9 41.4 40.8 44.5 49.3 51.7 100

10
6 10

−2 100 100 56.0 100 100 100 100 100 100 100

10
−6 100 100 49.0 100 100 100 100 100 100 100

10
−10 100 100 43.0 100 100 100 100 75.0 100 100

10
−14 100 100 54.0 100 100 100 100 77.0 100 100

10
−16 98.2 98.4 53.4 98.4 99.2 99.2 100 26.3 78.8 100

10
−18 40.4 38.2 48.6 42.5 41.3 40.7 42.2 27.1 49.7 100

10
−20 41.5 44.7 56.1 43.9 40.7 38.2 43.1 27.6 59.3 100
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The essential difference between Algorithms normG [6] and normL [20] is the 
use of AccSqrt of [17] for the square root approximation in the last line of normL. 
To see the advantage, we use Algorithm normGacc which is identical to Algorithm 
normG except that

The following Table 3 shows the percentage of nearest rounding random test cases 
with different dimensions.

There was no case with not faithful rounding, as proved in [6], and for the 
improved Algorithm normGacc we found only for n = 107 cases where the round-
ing was not to nearest, in fact, some 17%.

Up to now we used random vectors produced by randn(n,1) for which it is 
not too difficult to calculate a nearest rounding of ‖x‖ . That changes when the true 
result is close to the midpoint between two adjacent floating-point numbers, i.e., 
close to a “switching point”.2

To that end we use Algorithm GenVec to generate vectors x of different dimen-
sions with relative distance � of ‖x‖ to a switching point. For each pair of dimension 
n and relative distance � , we display the percentage of nearest roundings in Table 4.

In all test cases and for all algorithms we did not encounter an example with not 
faithful rounding. As already seen in Table 3, generally Algorithm normGacc out-
performs the original normG in terms of accuracy. Algorithm normG is targeted 
to a faithfully rounded result S, not minimizing the error of S + s versus ‖x‖2 . Thus 
about half the results of Algorithm normG are nearest, the other half faithful but not 
nearest.

Algorithm normDD uses a general purpose double-double arithmetic, and Algo-
rithm normCpair our pair arithmetic with computable error bounds. As Algo-
rithms normGacc and normL are tailored methods but use the same principle, 
we expect similarly accurate results. Indeed, that can be seen in Table 4 for all test 
examples including very small distance to a switching point. For a relative distance 
� downto about 10−14 the rounding is nearest. Similarly, as Algorithms normSum2 

the last line ��� = ����(�); is changed into ��� = �������(�, �);

Table 5  Timing relative to normExtract for random vectors of length n 

n normG normL normSum2 normSum3 normEx-
tract2

normNearest

10
2 14.7 7.2 3.2 5.7 2.0 6.8

10
3 46.7 20.3 2.6 5.1 2.0 6.0

10
4 27.2 12.2 1.3 2.9 2.1 4.6

10
5 63.4 26.4 2.0 16.7 2.1 17.4

10
6 14.0 6.5 2.3 5.5 2.0 6.1

10
7 14.0 6.5 2.4 5.5 2.0 6.8

2 called rounding boundary in [4]
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and normSum3 are based on similar principles, they show the same accuracy, with 
normSum3 being a little bit better.

Algorithms normExtract and normExtract2 are based on a different prin-
ciple, namely on an absolute splitting. As mentioned this avoids the costly applica-
tion of Algorithm AccSquare. For moderate distance � the rounding is nearest, 
including large vector lengths, for distance 10−10 and below the accuracy is similar 
to normG with roughly a 50-50 chance of nearest result. As we will see next, the lit-
tle less number of nearest roundings is compensated by a much better performance.

The number of nearest cases improves a little bit with normExtract2, and the 
result of Algorithm normNearest is, of course, always rounded to nearest.

Next we present timing results for our algorithms and competitors for random 
vectors and for dimension up to n = 107 . It is appropriate to use random vectors 
because the computing time of all algorithms except normNearest do not depend 
on the difficulty of the problem, only on the length of the input vector; times for 
normNearest for different � are displayed separately.

It turns out that our new Algorithm normExtract is always the fastest. There-
fore the following Table 5 shows the time ratio against normExtract. The tim-
ing for Algorithms normDD and normCpair is dominated by MATLAB’s inter-
pretation overhead and in particular by the use of operator overloading. Therefore 

Fig. 17  Timing for 5000 calls 
for random vectors of dimension 
up to 1 million

Table 6  Timing of normNearest/normExtract, relative distance � of ‖x‖ to switching point

n ∖ � 10
−2

10
−10

10
−14

10
−16 10

−18
10

−30
10

−50 10
−100

10
2 7.9 8.1 8.2 8.4 8.4 8.8 9.3 10.5

10
4 5.8 6.1 6.2 5.9 6.0 6.4 6.7 8.5

10
6 7.3 7.7 7.9 7.5 7.7 8.5 9.2 10.5
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comparing the computing times hardly gives information on the performance of the 
algorithms and is omitted.

From the operation count it may surprise that normExtract is so much 
faster than normG and normL. Now normExtract is based on AccSum in 
[28], and it was analyzed by Langlois [19] that it enjoys a better instruction-level 
parallelism than other algorithms. The same applies to normSum2 and may 
explain its relatively good performance, and also to normSum3 where we see 
twice the computing time of normSum2, as expected. That is still faster than 
normG and normL. There is an exception to all algorithms, namely n = 105 . We 
think this is due to unfortunate cache management, similarly for normNearest.

Algorithm Nearest is about as fast as normL, for medium size dimension 
much faster, although it guarantees a nearest rounding of ‖x‖.

The time in seconds for 5000 calls in dimension up to 1 million of all algo-
rithms is shown in Fig.  17. The legend on the left is ordered by performance, 
from the slowest normG downto the fastest normExtract. All algorithms 
except Algorithm normNearest execute the same code independent of the dif-
ficulty of the problem, hence the computing time depends almost linearly on the 
dimension. For normNearest we see small zig-zags depending on the number 
of transformations.

Finally we investigate whether the guarantee of nearest rounding causes a time 
penalty for Algorithm normNearest if ‖x‖ is very close to a switching point. As 
before we generate examples with relative distance � to a switching point. The ratio 
of computing time of Algorithm normNearest to normExtract are displayed 
in Table 6; the time for the other algorithms does not change because they are inde-
pendent of the condition of the problem.

There is not much performance impact on the computing time of Algorithm 
normNearest in our examples despite the guarantee of nearest rounding of ‖x‖ , 
even for a tiny relative distance � = 10−100 to a switching point.

8  Summary

We may use a general purpose pair arithmetic such as double-double [2] or [17] 
to calculate an accurate approximation of the Euclidean norm ‖x‖ of a vector. To 
that end we presented Algorithms normDD and normCpair in Fig. 6. Specialized 
algorithms based on a pair arithmetic have been presented in [6, 20] and are dis-
played as Algorithms normG and normL in Fig. 5.

In this note we developed Algorithms Sum2 and Sum3 in Sect. 3 based on rel-
ative splitting as algorithm in [25]. The performance is significantly improved by 
a vectorized version FastVecSum of VecSum in [25]. In addition, Algorithms 
Extract and Extract2 based absolute splittings as in [28, 29] are presented in 
Sect. 4.
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All algorithms mentioned so far compute a faithfully rounded result of ‖x‖ , in 
many cases the nearest result. A first algorithm to provably compute the rounded to 
nearest result is presented as Algorithm normNearest.

The computing times of our new algorithms compare favorably to the competi-
tors, where Algorithm normExtract is significantly faster than all others. Algo-
rithm normNearest is also fast despite the guaranteed nearest rounding. That 
includes difficult cases where the true Euclidean norm ‖x‖ has a relative distance as 
small as � = 10−100 to a switching point.
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