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Abstract
Integrally convex functions constitute a fundamental function class in discrete convex
analysis, including M-convex functions, L-convex functions, and many others. This
paper aims at a rather comprehensive survey of recent results on integrally convex
functions with some new technical results. Topics covered in this paper include char-
acterizations of integral convex sets and functions, operations on integral convex sets
and functions, optimality criteria forminimizationwith a proximity-scaling algorithm,
integral biconjugacy, and the discrete Fenchel duality. While the theory of M-convex
and L-convex functions has been built upon fundamental results on matroids and sub-
modular functions, developing the theory of integrally convex functions requires more
general and basic tools such as the Fourier–Motzkin elimination.

Keywords Discrete convex analysis · Integrally convex function · Box-total dual
integrality · Fenchel duality · Integral subgradient ·Minimization

Mathematics Subject Classification 52A41 · 90C27 · 90C25

1 Introduction

Discrete convex analysis [39, 40] has found applications and connections to a wide
variety of disciplines. Early applications include those to combinatorial optimization,
matrix theory, and economics, as described in the book [40] and a survey paper [43].
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More recently, there have been active interactions with operations research (inventory
theory) [4, 5, 60], economics and game theory [44, 53, 59, 63], and algebra (Lorentzian
polynomials, in particular) [3]. The reader is referred to [40] for basic concepts and
terminology in discrete convex analysis, and to [17, 22, 31–33, 35, 45, 46, 58] for
recent theoretical and algorithmic developments.

Integrally convex functions, due to Favati–Tardella [13], constitute a fundamental
function class in discrete convex analysis. A function f : Zn → R ∪ {+∞} is called
integrally convex if its local convex extension f̃ : Rn → R∪{+∞} is (globally) convex
in the ordinary sense, where f̃ is defined as the collection of convex extensions of f
in each unit hypercube {x ∈ R

n | ai ≤ xi ≤ ai + 1 (i = 1, . . . , n)} with a ∈ Z
n ; see

Sect. 3.2 for more precise statements. A subset of Z
n is called integrally convex if its

indicator function δS : Zn → {0,+∞} (δS(x) = 0 for x ∈ S and= +∞ for x /∈ S) is
an integrally convex function. The concept of integral convexity is used in formulating
discrete fixed point theorems [25, 26, 28, 68], and designing solution algorithms for
discrete systems of nonlinear equations [30, 67]. In game theory the integral concavity
of payoff functions guarantees the existence of a pure strategy equilibrium in finite
symmetric games [27].

Integrally convex functions serve as a common framework for discrete convex
functions. Indeed, separable convex, L-convex, L�-convex, M-convex, M�-convex,
L�
2-convex, and M�

2-convex functions are known to be integrally convex [40]. Multi-
modular functions [23] are also integrally convex, as pointed out in [42]. Moreover,
BS-convex and UJ-convex functions [18] are integrally convex. Discrete midpoint
convex functions [38] and directed discrete midpoint convex functions [64] are also
integrally convex. The relations among those discrete convexity concepts are investi-
gated in [34, 47]. Figure1 is an overview of the inclusion relations among the most
fundamental classes of discrete convex sets. It is noted that the class of integrally
convex sets contains the other classes of discrete convex sets.

In the last several years, significant progress has beenmade in the theoryof integrally
convex functions. A proximity theorem for integrally convex functions is established

Fig. 1 Classes of discrete convex sets
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in [37] together with a proximity-scaling algorithm for minimization. Fundamental
operations for integrally convex functions such as projection and convolution are
investigated in [33, 45, 46]. It is revealed that integer-valued integrally convex func-
tions enjoy integral biconjugacy [50], and a discrete Fenchel-type min-max formula is
established for a pair of integer-valued integrally convex and separable convex func-
tions [51]. The present paper aims at a rather comprehensive survey of those recent
results on integrally convex functions with some new technical results. While the the-
ory of M-convex and L-convex functions has been built upon fundamental results on
matroids and submodular functions, developing the theory of integrally convex func-
tions requires more general and basic tools such as the Fourier–Motzkin elimination.

This paper is organized as follows. In Sect. 2 we review integrally convex sets, with
new observations on their polyhedral properties. In Sect. 3 the concept of integrally
convex functions is reviewed with emphasis on their characterizations. Section4 deals
with properties related to minimization and minimizers, including a proximity-scaling
algorithm. Section5 is concerned with integral subgradients and biconjugacy, and
Sect. 6 with the discrete Fenchel duality.

2 Integrally convex sets

2.1 Hole-free property

Let n be a positive integer and N = {1, 2, . . . , n}. For a subset I of N , we denote by
1I the characteristic vector of I ; the i th component of 1I is equal to 1 or 0 according
to whether i ∈ I or not. We use a short-hand notation 1i for 1{i}, which is the i th
unit vector. The vector with all components equal to 1 is denoted by 1, that is, 1 =
(1, 1, . . . , 1) = 1N .

For two vectors α ∈ (R ∪ {−∞})n and β ∈ (R ∪ {+∞})n with α ≤ β, we define
notation [α, β]R = {x ∈ R

n | α ≤ x ≤ β}, which represents the set of real vectors
between α and β. An integral box will mean a set B of real vectors represented as
B = [α, β]R for integer vectors α ∈ (Z∪{−∞})n and β ∈ (Z∪{+∞})n with α ≤ β.
The set of integer vectors contained in an integral box will be called a box of integers
or an interval of integers. We use notation [α, β]Z := [α, β]R ∩ Z

n = {x ∈ Z
n | α ≤

x ≤ β} for α ∈ (Z ∪ {−∞})n and β ∈ (Z ∪ {+∞})n with α ≤ β.
For a subset S of R

n , we denote its convex hull by S, which is, by definition, the
smallest convex set containing S. As is well known, S coincides with the set of all
convex combinations of (finitely many) elements of S. We say that a set S ⊆ Z

n is
hole-free if

S = S ∩ Z
n . (2.1)

Since the inclusion S ⊆ S ∩Z
n is trivially true for any S, the content of this condition

lies in

S ⊇ S ∩ Z
n, (2.2)
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Fig. 2 Integral neighborhood
N (x) of x (•: point of N (x))

stating that the integer points contained in the convex hull of S all belong to S itself.
A finite set of integer points is hole-free if and only if it is the set of integer points in
some integral polytope.

For a set S ⊆ R
n we define its indicator function δS : Rn → {0,+∞} by

δS(x) =
{
0 (x ∈ S),

+∞ (x /∈ S).
(2.3)

Remark 2.1 In a standard textbook [24, Section A.1.3], the convex hull of a subset S of
the n-dimensional Euclidean space R

n is denoted by co S and the closed convex hull
by co S, where the closed convex hull of S is defined to be the intersection of all closed
convex set containing S. It is known that co S coincides with the (topological) closure
of co S, which is expressed as co S = cl(co S) with the use of notation cl for closure
operation. Using our notation S, we have co S = S and co S = cl(S). For a finite set S,
wehave co S = co S. To see the difference of co S and co S for an infinite set S, consider
S = {(0, 1)} ∪ {(k, 0) | k ∈ Z}. The convex hull is co S = S = {(0, 1)} ∪ {(x1, x2) |
0 ≤ x2 < 1} and the closed convex hull is co S = cl(S) = {(x1, x2) | 0 ≤ x2 ≤ 1}.
We have S∩Z

2 = S, which shows that this set S is hole-free, while cl(S)∩Z
2 
= S.�

2.2 Definition of integrally convex sets

For x ∈ R
n the integral neighborhood of x is defined by

N (x) = {z ∈ Z
n | |xi − zi | < 1 (i = 1, 2, . . . , n)}. (2.4)

It is noted that strict inequality “<” is used in this definition and N (x) admits an
alternative expression

N (x) = {z ∈ Z
n | �xi� ≤ zi ≤ xi� (i = 1, 2, . . . , n)}, (2.5)

where, for t ∈ R in general, �t� denotes the largest integer not larger than t (rounding-
down to the nearest integer) and t� is the smallest integer not smaller than t (rounding-
up to the nearest integer). That is, N (x) consists of all integer vectors z between
�x� = (�x1� , �x2� , . . . , �xn�) and x� = (x1� , x2� , . . . , xn�). See Fig. 2 for
N (x) when n = 2.

For a set S ⊆ Z
n and x ∈ R

n we call the convex hull of S ∩ N (x) the local convex
hull of S around x . A nonempty set S ⊆ Z

n is said to be integrally convex if the union
of the local convex hulls S ∩ N (x) over x ∈ R

n is convex [40]. In other words, a set
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Fig. 3 Concept of integrally convex sets

S ⊆ Z
n is called integrally convex if

S =
⋃
x∈R

n

S ∩ N (x). (2.6)

Since the inclusion S ⊇ ⋃
x S ∩ N (x) is trivially true for any S, the content of the

condition (2.6) lies in

S ⊆
⋃
x∈R

n

S ∩ N (x). (2.7)

Example 2.1 The concept of integrally convex sets is illustrated by simple examples.
The six-point set in Fig. 3(a) is integrally convex. The removal of the middle point
(Fig. 3(b)) breaks integral convexity (cf., Proposition 2.2). The four-point set S =
{A, B, C, D} in Fig. 3(c) is not integrally convex, since its convex hull S, which is the
triangle ACD, does not coincide with the union of the local convex hulls S ∩ N (x),
which is the union of the line segment AB and the triangle BCD. �

Example 2.2 Obviously, every subset of {0, 1}n is integrally convex, and every interval
of integers (⊆ Z

n) is integrally convex. �

Integral convexity can be defined by seemingly different conditions. Here we men-
tion the following two.

– Every point x in the convex hull of S is contained in the convex hull of S ∩ N (x),
i.e.,

x ∈ S �⇒ x ∈ S ∩ N (x). (2.8)

– For each x ∈ R
n , the intersection of the convex hulls of S and N (x) is equal to

the convex hull of the intersection of S and N (x), i.e.,

S ∩ N (x) = S ∩ N (x). (2.9)

Since the inclusion S ∩ N (x) ⊇ S ∩ N (x) is trivially true for any S and x , the
content of this condition lies in

S ∩ N (x) ⊆ S ∩ N (x). (2.10)
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The following proposition states the equivalence of the five conditions (2.6) to
(2.10). Thus, any one of these conditions characterizes integral convexity of a set of
integer points.

Proposition 2.1 For S ⊆ Z
n, the five conditions (2.6) to (2.10) are all equivalent.

Proof The proof is easy and straightforward, but we include it for completeness. We
alreadymentioned the equivalences [(2.6)⇔(2.7)] and [(2.9)⇔(2.10)]. [(2.7)⇒(2.8)]:
Take any x ∈ S. By (2.7) we obtain x ∈ S ∩ N (y) for some y. This means
that there exist integer points x (1), x (2), . . . , x (m) ∈ S ∩ N (y) and coefficients
λ1, λ2, . . . , λm > 0 such that x = ∑m

k=1 λk x (k) and
∑m

k=1 λk = 1. Since all the
points x , x (1), x (2), . . . , x (m) lie between �y� and y�, we must have x (k) ∈ N (x) for
all k. Therefore, x ∈ S ∩ N (x).

[(2.8)⇒(2.7)]: Take any y ∈ S. By (2.8) we obtain y ∈ S ∩ N (y), whereas
S ∩ N (y) ⊆⋃

x∈R
n S ∩ N (x). Thus (2.7) is shown.

[(2.8)⇒(2.10)]: Take any y ∈ S ∩ N (x). By y ∈ S and (2.8) we obtain y ∈
S ∩ N (y), whereas y ∈ N (x) implies N (y) ⊆ N (x). Hence y ∈ S ∩ N (x).

[(2.10)⇒(2.8)]: Take any x ∈ S. Since x ∈ N (x), we have x ∈ S ∩ N (x). Then
x ∈ S ∩ N (x) by (2.10). ��

As an application of Proposition 2.1 we give a formal proof to the statement that
an integrally convex set is hole-free.

Proposition 2.2 For an integrally convex set S, we have S = S ∩ Z
n.

Proof It suffices to show S∩Z
n ⊆ S in (2.2). Take any x ∈ S∩Z

n . Since N (x) = {x},
(2.8) shows x ∈ S ∩ {x}, which implies x ∈ S. ��

The following (new) characterization of an integrally convex set is often useful,
which is used indeed in the proof of Theorem 3.2 in Sect. 3.4. While the condition
(2.8) refers to all real vectors x , the condition (2.11) below restricts x to the midpoints
of two vectors in S.

Theorem 2.1 A nonempty set S ⊆ Z
n is integrally convex if and only if

y + y′

2
∈ S ∩ N

(
y + y′
2

)
(2.11)

for every y, y′ ∈ S with ‖y − y′‖∞ ≥ 2.

Proof The only-if-part is obvious from (2.8), since (y + y′)/2 ∈ S. To prove the
if-part, let x ∈ S. This implies the existence of y(1), y(2), . . . , y(m) ∈ S such that

x =
m∑
i=1

λi y
(i), (2.12)

where
∑m

i=1 λi = 1 and λi > 0 (i = 1, 2, . . . ,m). In the following we modify the
generating points y(1), y(2), . . . , y(m) repeatedly and eventually arrive at an expression
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of the form (2.12) with the additional condition that y(i) ∈ N (x) for all i , showing
x ∈ S ∩ N (x). Then the integral convexity of S is established by (2.8).

For each j = n, n − 1, . . . , 1, we look at the j-th component of y(1), y(2), . . . ,

y(m). Let j = n and define

αn := min
i

y(i)
n , βn := max

i
y(i)
n , Imin := {i | y(i)

n = αn}, Imax := {i | y(i)
n = βn}.

(2.13)

If βn − αn ≤ 1, we are done with j = n. Suppose that βn − αn ≥ 2. By translation
and reversal of the n-th coordinate, we may assume 0 ≤ xn ≤ 1, αn ≤ 0, and βn ≥ 2.
By renumbering the generators we may assume 1 ∈ Imin and 2 ∈ Imax, i.e., y

(1)
n = αn

and y(2)
n = βn . We have ‖y(1) − y(2)‖∞ ≥ 2.

By (2.11) for (y(1), y(2)) we have

y(1) + y(2)

2
=

l∑
k=1

μk z
(k), z(k) ∈ S ∩ N

(
y(1) + y(2)

2

)
(k = 1, 2, . . . , l)

(2.14)

with μk > 0 (k = 1, 2, . . . , l) and
∑l

k=1 μk = 1. With notation λ = min(λ1, λ2), it
follows from (2.12) and (2.14) that

x = (λ1 − λ)y(1) + (λ2 − λ)y(2) + 2λ
l∑

k=1
μk z

(k) +
m∑
i=3

λi y
(i),

which is another representation of the form (2.12).
With reference to this new representation we define α̂n , β̂n , Îmin, and Îmax, as in

(2.13). Since βn − αn ≥ 2, we have

αn + 1 ≤ (y(1)
n + y(2)

n )/2 ≤ βn − 1,

which implies αn + 1 ≤ z(k)n ≤ βn − 1 for all k. Hence, αn ≤ α̂n and β̂n ≤ βn .
Moreover, if (α̂n, β̂n) = (αn, βn), then | Îmin|+| Îmax| ≤ |Imin|+|Imax|−1. Therefore,
by repeating the above process with j = n, we eventually arrive at a representation of
the form of (2.12) with βn − αn ≤ 1.

We next apply the above procedure for the (n − 1)-st component. What is crucial
here is that the condition βn − αn ≤ 1 is maintained in the modification of the
generators via (2.14) for the (n − 1)-st component. Indeed, for each k, the inequality
αn ≤ z(k)n ≤ βn follows fromαn ≤ (y(1)

n +y(2)
n )/2 ≤ βn and z(k) ∈ N ((y(1)+y(2))/2).

Therefore, we can obtain a representation of the form of (2.12) with βn − αn ≤ 1 and
βn−1 − αn−1 ≤ 1, where αn−1 = mini y

(i)
n−1 and βn−1 = maxi y

(i)
n−1.

Then we continue the above process for j = n − 2, n − 3, . . . , 1, to finally obtain

a representation of the form of (2.12) with |y(i)
j − y(i ′)

j | ≤ 1 for all i, i ′ and j =
1, 2, . . . , n. This means, in particular, that y(i) ∈ S ∩ N (x) for all i . ��
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2.3 Polyhedral aspects

A subset of R
n is called a polyhedron if it is described by a finite number of linear

inequalities. A polyhedron is said to be rational if it is described by a finite number
of linear inequalities with rational coefficients. A polyhedron is called an integer
polyhedron if P = P ∩ Z

n , i.e., if it coincides with the convex hull of the integer
points contained in it, or equivalently, if P is rational and each face of P contains
an integer vector. See [56, 57] for terminology about polyhedra. For two vectors
a, x ∈ R

n , we use notation 〈a, x〉 = a�x =∑n
i=1 ai xi .

The convex hull of an integrally convex set is an integer polyhedron (see [50,
Sec. 4.1] for a rigorous proof). However, not much is known about the inequality
system Ax ≤ b to describe an integrally convex set. This is not surprising because
every subset of {0, 1}n is integrally convex (as noted in Example 2.2), and most of the
NP-hard combinatorial optimization problems can be formulated on {0, 1}n polytopes.

When n = 2, the following fact is easy to see.

Proposition 2.3 ([37]) A set S ⊆ Z
2 is integrally convex if and only if it can be

represented as S = {(x1, x2) ∈ Z
2 | ai x1 + bi x2 ≤ ci (i = 1, 2, . . . ,m)} for some

ai , bi ∈ {−1, 0, 1} and ci ∈ Z (i = 1, 2, . . . ,m).

Polyhedral descriptions are known for major subclasses of integrally convex sets.
The present knowledge for various kinds of discrete convex sets is summarized in
Table 1, which shows the possible forms of the vector a for an inequality a�x ≤ b to
describe the convex hull S of a discrete convex set S. It should be clear that each vector
a corresponds (essentially) to the normal vector of a face of S. Since an M2-convex
(resp., M�

2-convex) set is, by definition, the intersection of two M-convex (resp., M�-

convex) sets [40], the polyhedral description of an M2-convex (resp., M
�
2-convex) set

is obtained immediately as the union of the inequality systems for the constituent
M-convex (resp., M�-convex) sets.

In all cases listed in Table 1, we have a ∈ {−1, 0,+1}n , that is, every component
of a belongs to {−1, 0,+1}. However, this is not the case with a general integrally
convex set.

Example 2.3 Let S = {(1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 1, 0), (0, 0, 0, 1)}, which is
obviously an integrally convex set since S ⊆ {0, 1}4. Because all these points lie on
the hyperplane x1+ x2+ x3+2x4 = 2, we need a vector a = ±(1, 1, 1, 2) to describe
the convex hull S. �

The following example illustrates a use of the results in Table 1.

Example 2.4 Consider S = {x ∈ Z
4 | x1 + x2 = x3 + x4}. This set is described by

two inequalities of the form of a�x ≤ 0 with a = (1, 1,−1,−1), (−1,−1, 1, 1).
This shows that S is not L�-convex, because we must have a = 1i − 1 j or ±1i for
an L�-convex set (see Table 1). M�-convexity of S is also denied because a = ±1I
for an M�-convex set. The set S is, in fact, an L2-convex set with a = 1J − 1I for
(I , J ) = ({1, 2}, {3, 4}) and (I , J ) = ({3, 4}, {1, 2}). �

Each face of the convex hull S of an integrally convex set S induces an integrally
convex set.
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Table 1 Polyhedral descriptions of discrete convex sets [35]

Vector a for a�x ≤ b Refs.

Box (interval) ±1i obvious

L-convex set 1 j − 1i [40, Sec.5.3]

L�-convex set 1 j − 1i , ±1i [40, Sec.5.5]

L2-convex set 1J − 1I (|I | = |J |) [35]

L�
2-convex set 1J − 1I (|I | − |J | ∈ {−1, 0, 1}) [35]

M-convex set 1I , −1N (= −1) [40, Sec.4.4]

M�-convex set ±1I [40, Sec.4.7]

M2-convex set 1I , −1N (= −1) by M-convex

M�
2-convex set ±1I by M�-convex

Multimodular set ±1I (I : consecutive) [34]

1I : characteristic vector of I ⊆ N ; 1i : i-th unit vector (= 1{i})

Proposition 2.4 Let S ⊆ Z
n be an integrally convex set. For any face F of S, F ∩ Z

n

is integrally convex.

Proof Consider inequality descriptions of S and F , say, S = {x ∈ R
n | 〈a(i), x〉 ≤

b(i) (i ∈ I )} and F = {x ∈ R
n | 〈a( j), x〉 = b( j) ( j ∈ J ), 〈a(i), x〉 ≤ b(i) (i ∈ I\J )}

with some index sets I ⊇ J . Since S is an integer polyhedron, we may assume
0 ∈ F , which implies b( j) = 0 for j ∈ J . Take any x ∈ F . Since x ∈ S and
S is integrally convex, there exist y(1), y(2), . . . , y(m) ∈ S ∩ N (x) and coefficients
λ1, λ2, . . . , λm > 0 such that x = ∑m

k=1 λk y(k) and
∑m

k=1 λk = 1. For each j ∈
J , we have 0 = 〈a( j), x〉 = 〈a( j),

∑m
k=1 λk y(k)〉 = ∑m

k=1 λk〈a( j), y(k)〉, where
〈a( j), y(k)〉 ≤ 0 since y(k) ∈ S. Therefore 〈a( j), y(k)〉 = 0 for all k, which implies
y(k) ∈ F , and hence y(k) ∈ (F ∩ Z

n) ∩ N (x) for all k. ��
The edges of S have a remarkable property that the direction of an edge is given by

a {−1, 0,+1}-vector. This property follows from a basic fact that every edge (line) of
S contains a pair of lattice points in a translated unit hypercube, whose difference is
a {−1, 0,+1}-vector. In this connection, the following fact is known.

Proposition 2.5 ([50, Proposition 1]) Let S ⊆ Z
n be an integrally convex set.

For any face F of S, the smallest affine subspace containing F is given as {x +∑h
k=1 ckd(k) | c1, c2, . . . , ch ∈ R} for any point x in F and some direction vectors

d(k) ∈ {−1, 0,+1}n (k = 1, 2, . . . , h).

Remark 2.2 ( [50]) The property mentioned in Proposition 2.5 does not char-
acterize integral convexity of a set. For example, let S = {(0, 0, 0), (1, 0, 1),
(1, 1,−1), (2, 1, 0)}. The convex hull S is a parallelogram with edge directions
(1, 0, 1) and (1, 1,−1), and hence is an integer polyhedron with the property that
the smallest affine subspace containing each face is spanned by {−1, 0,+1}-vectors.
However, S is not integrally convex, since (2.8) is violated by x = [(1, 0, 1) +
(1, 1,−1)]/2 = (1, 1/2, 0) ∈ S, for which N (x) = {(1, 0, 0), (1, 1, 0)} and
S ∩ N (x) = ∅. �
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The following result is concerned with a direction of infinity in the discrete setting,
to be used in the proof of Proposition 3.3 in Sect. 3.7.

Proposition 2.6 Let S ⊆ Z
n be an integrally convex set, y ∈ S, and d ∈ Z

n. If
y + kd ∈ S for all integers k ≥ 1, then for any z ∈ S, we have z + kd ∈ S for all
integers k ≥ 1.

Proof It suffices to prove that, for any x ∈ S, we have x + d ∈ S. For an integer
k ≥ 1 (to be specified later), consider u = k−1

k x + 1
k (y + kd) = x + d + 1

k (y − x),
which is a convex combination of x and y + kd. By taking k large enough, we can
assume ‖u − (x + d)‖2 = ‖y − x‖2/k < 1/

√
n, which implies that x + d ∈ N (u)

and u /∈ N (u) \ {x + d}. On the other hand, we have u ∈ S ∩ N (u), since u ∈ S and
S is integrally convex. Therefore, we must have x + d ∈ S. ��

Box-integer and box-TDI polyhedra

Apolyhedron P ⊆ R
n is calledbox-integer if P∩[l, u]R (= P∩{x ∈ R

n | l ≤ x ≤ u})
is an integer polyhedron for each choice of integer vectors l, u ∈ Z

n with l ≤ u ( [57,
Section 5.15]). This concept is closely related (or essentially equivalent) to that of
integrally convex sets, as follows.

Proposition 2.7 ([46]) If a set S ⊆ Z
n is integrally convex, then its convex hull S is a

box-integer polyhedron. Conversely, if P is a box-integer polyhedron, then S = P∩Z
n

is an integrally convex set.

It follows from Proposition 2.7 that a set S of integer points is integrally convex if
and only if it is hole-free and its convex hull S is a box-integer polyhedron.

The concept of (box-)total dual integrality has long played a major role in combi-
natorial optimization [7, 8, 11, 12, 56, 57]. A linear inequality system Ax ≤ b is said
to be totally dual integral (TDI) if the entries of A and b are rational numbers and the
minimum in the linear programming duality equation

max{w�x | Ax ≤ b} = min{y�b | y�A = w�, y ≥ 0}

has an integral optimal solution y for every integral vector w such that the minimum
is finite. A linear inequality system Ax ≤ b is said to be box-totally dual integral
(box-TDI) if the system [Ax ≤ b, d ≤ x ≤ c] is TDI for each choice of rational
(finite-valued) vectors c and d. It is known [57, Theorem 5.35] that a system Ax ≤ b
is box-TDI if the matrix A is totally unimodular.

A polyhedron is called a box-TDI polyhedron if it can be described by a box-
TDI system. It was pointed out in [8] that every TDI system describing a box-TDI
polyhedron is a box-TDI system, which fact indicates that box-TDI is a property of a
polyhedron. In this connection it is worth mentioning that every rational polyhedron
can be described by a TDI system, showing that TDI is a property of a system of
inequalities and not of a polyhedron.

An integral box-TDI polyhedron is box-integer [57, (5.82), p. 83]. Although the
converse is not true (see Example 2.5 below), it is possible to characterize a box-TDI
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polyhedron in terms of box-integrality of its dilations. For a positive integer α, the
α-dilation of a polyhedron P = {x | Ax ≤ b} means the polyhedron αP := {x |
Ax ≤ αb} = {x | 1

α
x ∈ P}.

Proposition 2.8 ( [6, Theorem 2 & Prop. 2]) An integer polyhedron P is box-TDI if
and only if the α-dilation αP is box-integer for any positive integer α.

Example 2.5 Here is an example of a {0, 1}-polyhedron that is not box-TDI. Let P
(⊆ R

4) be the convex hull of S = {(1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 1, 0), (0, 0, 0, 1)}
(considered in Example 2.3). Since P is a {0, 1}-polyhedron, it is obviously box-
integer. However, the 2-dilation 2P is not box-integer. To see this we note that

(1, 1, 1, 1/2) = 1

4

(
(2, 2, 0, 0)+ (0, 2, 2, 0)+ (2, 0, 2, 0)+ (0, 0, 0, 2)

) ∈ 2P,

whereas (1, 1, 1, 1/2) ∈ [l, u]R for l = (1, 1, 1, 0) and u = (1, 1, 1, 1), and l /∈ 2P
and u /∈ 2P .We can easily show that (2P)∩[l, u]R consists of (1, 1, 1, 1/2) only. Thus
2P is not box-integer, which implies, by Proposition 2.8, that P is not box-TDI. �

Following [15] we call the set of integral elements of an integral box-TDI poly-
hedron a discrete box-TDI set, or just a box-TDI set. A box-TDI set is an integrally
convex set, but the converse is not true (Example 2.5). That is, box-TDI sets form
a proper subclass of integrally convex sets. On the other hand, the major classes of
discrete convex sets considered in discrete convex analysis are known to be box-TDI
as follows.

Proposition 2.9 ([35]) An L�
2-convex set is a box-TDI set.

Proposition 2.10 An M�
2-convex set is a box-TDI set.

Proposition 2.9 for L�
2-convex sets is established recently in [35] and Propo-

sition 2.10 for M�
2-convex sets is a reformulation of the fundamental fact about

polymatroid intersection [57] in the language of discrete convex analysis. Theses
propositions imply, in particular, that L2-, L�-, L-, M2-, M�-, M-convex sets are all
box-TDI.

The following are examples of a box-TDI set S that is neither L�
2-convex nor M�

2-
convex. The former consists of {0, 1}-vectors and the latter arises from a cone.

Example 2.6 Consider S = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}. This set is
described by four inequalities

x1 + x2 + x3 ≤ 2, x1 − x2 − x3 ≤ 0, −x1 + x2 − x3 ≤ 0, −x1 − x2 + x3 ≤ 0.

The first inequality, of the form of a�x ≤ b with a = (1, 1, 1), denies L�
2-convexity

of S, because we must have a = 1J − 1I with |I |− |J | ∈ {−1, 0, 1} for an L�
2-convex

set (see Table 1). In the second inequality we have a = (1,−1,−1), which denies
M�

2-convexity of S, because a = ±1I for an M�
2-convex set. The set S is box-TDI,

that is, its convex hull S is a box-TDI polyhedron, which we can verify on the basis
of Proposition 2.8. �
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Example 2.7 The set S = {x ∈ Z
2 | x1 + x2 ≤ 0, x1 − x2 ≤ 0} is neither L�

2-convex

norM�
2-convex, whereas it is box-TDI since the convex hull S is a box-TDI polyhedron

by Proposition 2.8. �
We can summarize the above argument as

{L�
2-convex sets} ∪ {M�

2-convex sets} � {box-TDI sets} � {integrally convex sets},

where Examples 2.5, 2.6, and 2.7 demonstrate the strict inclusions (�). See Fig. 1.

2.4 Basic operations

In this section we show how integral convexity of a set behaves under basic operations.
Let S be a subset of Z

n , i.e., S ⊆ Z
n .

Origin shift:
For an integer vector b ∈ Z

n , the origin shift of S by b means a set T defined by
T = {x − b | x ∈ S}. The origin shift of an integrally convex set is an integrally
convex set.
Inversion of coordinates:

The independent coordinate inversion of S means a set T defined by

T = {(τ1x1, τ2x2, . . . , τnxn) | (x1, x2, . . . , xn) ∈ S}

with an arbitrary choice of τi ∈ {+1,−1} (i = 1, 2, . . . , n). The independent coor-
dinate inversion of an integrally convex set is an integrally convex set. This is a nice
property of integral convexity, not shared by L�-, L�

2-, M
�, or M�

2-convexity.
Permutation of coordinates:

For a permutation σ of (1, 2, . . . , n), the permutation of S by σ means a set T
defined by

T = {(y1, y2, . . . , yn) | (yσ(1), yσ(2), . . . , yσ(n)) ∈ S}.

The permutation of an integrally convex set is an integrally convex set.

Remark 2.3 Integral convexity is not preserved under a transformation by a (totally)
unimodular matrix. For example, S = {(0, 0), (1, 0), (1, 1)} is integrally convex and

A =
[
1 1
0 1

]
is totally unimodular. However, {Ax | x ∈ S} = {(0, 0), (1, 0), (2, 1)} is

not integrally convex. �

Scaling: For a positive integer α, the scaling of S by α means a set T defined by

T = {(y1, y2, . . . , yn) ∈ Z
n | (αy1, αy2, . . . , αyn) ∈ S}. (2.15)

Note that the same scaling factor α is used for all coordinates. If α = 2, for example,
this operation amounts to considering the set of even points contained in S. The scaling
of an integrally convex set is not necessarily integrally convex (Example 2.8 below).
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Fig. 4 An integrally convex set S and its scaled set T (Example 2.8) [37]

However, when n = 2, integral convexity admits the scaling operation. That is, if
S ⊆ Z

2 is integrally convex, then T = {y ∈ Z
2 | αy ∈ S} is integrally convex ( [37,

Proposition 3.1]).

Example 2.8 ( [37, Example 3.1]) This example shows that integral convexity is not
preserved under scaling. Let S be a subset of Z

3 defined by

S ={(x1, x2, 0) | 0 ≤ x2 ≤ 1, 0 ≤ x1 − x2 ≤ 3}
∪ {(x1, x2, 1) | 0 ≤ x2 ≤ 2, x2 ≤ x1 ≤ 4}
∪ {(x1, x2, 2) | 0 ≤ x2 ≤ 2, 1 ≤ x1 − x2 ≤ 3, x1 ≤ 4},

which is an integrally convex set (Fig. 4, left). With the scaling factor α = 2, however,
the scaled set T = {y ∈ Z

3 | 2y ∈ S} = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (2, 1, 1)} is not
integrally convex (Fig. 4, right). �

Dilation: The dilation operation for a polyhedron (described in Sect. 2.3) is another
kind of scaling operation. An adaptation of this operation to a hole-free discrete set
S ⊆ Z

n , we may call the set T ′ = (αS)∩Z
n the α-dilation of S, where α is a positive

integer. Note that the scaling in (2.15) can be expressed as T = ( 1
α
S) ∩ Z

n when S is
hole-free.

The dilation operation does not always preserve integral convexity. Indeed, Exam-
ple 2.5 shows that the 2-dilation of an integrally convex set is not necessarily integrally
convex.

Remark 2.4 Failure of dilation operation is rather exceptional for discrete convex sets.
Indeed, all kinds of discrete convexity (box, L-, L�-, L2-, L

�
2-, M-, M�-, M2-, M

�
2-

convexity, and multimodularity) listed in Table 1 are preserved under the dilation
operation. In contrast, the scaling operation in (2.15) preserves L-convexity and its
relatives (box, L-, L�-, L2-, L

�
2-convexity, and multimodularity), and not M-convexity

and its relatives (M-, M�-, M2-, M
�
2-convexity). �
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Restriction:
For a set S ⊆ Z

N and a subsetU of the index set N = {1, 2, . . . , n}, the restriction
of S to U is a subset T of Z

U defined by

T = {y ∈ Z
U | (y, 0N\U ) ∈ S},

where 0N\U denotes the zero vector in Z
N\U . The notation (y, 0N\U ) means the

vector in Z
N whose i th component is equal to yi for i ∈ U and to 0 for i ∈ N\U .

The restriction of an integrally convex set is integrally convex (if the resulting set is
nonempty).
Projection:

For a set S ⊆ Z
N and a subsetU of the index set N = {1, 2, . . . , n}, the projection

of S to U is a subset T of Z
U defined by

T = {y ∈ Z
U | (y, z) ∈ S for some z ∈ Z

N\U }, (2.16)

where the notation (y, z) means the vector in Z
N whose i th component is equal to

yi for i ∈ U and to zi for i ∈ N \ U . The projection of an integrally convex set is
integrally convex ( [33, Theorem 3.1]).
Splitting:

Suppose that we are given a family {U1,U2, . . . ,Un} of disjoint nonempty sets
indexed by N = {1, 2, . . . , n}. Let mi = |Ui | for i = 1, 2, . . . , n and define m =∑n

i=1 mi , where m ≥ n. For each i ∈ N we define an mi -dimensional vector y[i] =
(y j | j ∈ Ui ) and express y ∈ Z

m as y = (y[1], y[2], . . . , y[n]). For a set S ⊆ Z
n , the

subset of Z
m defined by

T = {(y[1], y[2], . . . , y[n]) ∈ Z
m | y[i] ∈ Z

mi , y[i](Ui ) = xi (i ∈ N ), x ∈ S}

is called the splitting of S by {U1,U2, . . . ,Un}, where y[i](Ui ) = ∑{y j | j ∈ Ui }.
For example, T = {(y1, y2, y3) ∈ Z

3 | (y1, y2 + y3) ∈ S} is a splitting of S ⊆ Z
2

for U1 = {1} and U2 = {2, 3}, where n = 2 and m = 3. The splitting of an integrally
convex set is integrally convex ( [46, Proposition 3.4]).
Aggregation:

Let P = {N1, N2, . . . , Nm} be a partition of N = {1, 2, . . . , n} into disjoint
nonempty subsets: N = N1 ∪ N2 ∪ · · · ∪ Nm and Ni ∩ N j = ∅ for i 
= j . For a
set S ⊆ Z

N the subset of Z
m , where m ≤ n, defined by

T = {(y1, y2, . . . , ym) ∈ Z
m | y j = x(N j ) ( j = 1, 2, . . . ,m), x ∈ S}

is called the aggregation of S byP. For example, T = {(y1, y2) ∈ Z
2 | y1 = x1, y2 =

x2 + x3 for some (x1, x2, x3) ∈ S} is an aggregation of S ⊆ Z
3 for N1 = {1} and

N2 = {2, 3}, where n = 3 and m = 2. The aggregation of an integrally convex set is
not necessarily integrally convex.

Example 2.9 ( [46, Example 3.4]) Set S = {(0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 0),
(1, 1, 0, 1)} is an integrally convex set. For the partition of N = {1, 2, 3, 4} into
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Fig. 5 Failure of convexity in Minkowski sum (2.18)

N1 = {1, 3} and N2 = {2, 4}, the aggregation of S by {N1, N2} is given by
T = {(1, 0), (0, 1), (2, 1), (1, 2)}, which is not integrally convex. �

Intersection:
The intersection S1 ∩ S2 of integrally convex sets S1, S2 ⊆ Z

n is not necessarily
integrally convex (Example 2.10 below). However, it is obviously true (almost from
definition) that the intersection of an integrally convex set with a box of integers is
integrally convex.

Example 2.10 ( [47, Example 4.4]) The intersection of two integrally convex sets is
not necessarily integrally convex. Let S1 = {(0, 0, 0), (0, 1, 1), (1, 1, 0), (1, 2, 1)} and
S2 = {(0, 0, 0), (0, 1, 0), (1, 1, 1), (1, 2, 1)}, forwhich S1∩S2 = {(0, 0, 0), (1, 2, 1)}.
The sets S1 and S2 are integrally convex, whereas S1 ∩ S2 is not. �

Minkowski sum:
The Minkowski sum of two sets S1, S2 ⊆ Z

n means the subset of Z
n defined by

S1 + S2 = {x + y | x ∈ S1, y ∈ S2}. (2.17)

The Minkowski sum of integrally convex sets is not necessarily integrally convex
(Example 2.11 below). However, the Minkowski sum of an integrally convex set with
a box of integers is integrally convex ( [33, Theorem 4.1]).

Example 2.11 ( [40, Example 3.15]) The Minkowski sum of S1 = {(0, 0), (1, 1)} and
S2 = {(1, 0), (0, 1)} is equal to S1 + S2 = {(1, 0), (0, 1), (2, 1), (1, 2)}, which has a
“hole” at (1, 1), i.e., (1, 1) ∈ S1 + S2 and (1, 1) /∈ S1 + S2. �

Remark 2.5 The Minkowski sum is often a source of difficulty in a discrete setting,
because

S1 + S2 = (S1 + S2) ∩ Z
n (2.18)

is not always true (Example 2.11). In other words, the equality (2.18), if true, cap-
tures a certain essence of discrete convexity. The property (2.18) is called “convexity
in Minkowski sum” in [40, Section 3.3]. We sometimes call (2.17) the discrete (or
integral) Minkowski sum of S1 and S2 to emphasize discreteness. �

123



1460 K. Murota, A. Tamura

Remark 2.6 The Minkowski sum plays a central role in discrete convex analysis. The
Minkowski sum of two (or more) M�-convex sets is M�-convex. The Minkowski sum
of two L�-convex sets is not necessarily L�-convex, but it is integrally convex. The
Minkowski sum of three L�-convex sets is no longer integrally convex. For example
([47, Example 4.12]), S1 = {(0, 0, 0), (1, 1, 0)}, S2 = {(0, 0, 0), (0, 1, 1)}, and S3 =
{(0, 0, 0), (1, 0, 1)} are L�-convex sets, and their Minkowski sum S = S1 + S2 + S3
is given as

S = {(0, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (2, 1, 1), (1, 1, 2), (1, 2, 1), (2, 2, 2)},

which is not integrally convex, since (1, 1, 1) ∈ S and (1, 1, 1) /∈ S. �

The following theorem is a discrete analogue of a well-known decomposition of
a polyhedron into a bounded part and a conic part (recession cone or characteristic
cone) [56, Theorem 8.5]. An integrally convex set is called conic if its convex hull is
a cone.

Theorem 2.2 ([52]) Every integrally convex set S can be represented as a (discrete)
Minkowski sum of a bounded integrally convex set Q and a conic integrally convex
set C, that is, S = Q + C.

3 Integrally convex functions

3.1 Convex extension

For a function g : R
n → R ∪ {−∞,+∞} in general, dom g := {x ∈ R

n | −∞ <

g(x) < +∞} is called the effective domain of g. In this section we always assume that
f : Z

n → R ∪ {+∞} and dom f 
= ∅, that is, f is a function defined on Z
n taking

values in R ∪ {+∞} and dom f = {x ∈ Z
n | f (x) < +∞} is nonempty.

We say that f is convex-extensible if there exists a convex function g : R
n →

R ∪ {+∞} satisfying g(x) = f (x) for all x ∈ Z
n . When n = 1, f : Z → R ∪ {+∞}

is convex-extensible if and only if dom f is an interval of integers and f (k − 1) +
f (k + 1) ≥ 2 f (k) for all k ∈ Z. In this case, a convex extension of f is given by the
piecewise-linear function whose graph consists of line segments connecting (k, f (k))
and (k + 1, f (k + 1)) for all k ∈ Z.

We say that a function g : R
n → R ∪ {+∞} minorizes f if g(x) ≤ f (x) for all

x ∈ Z
n . In this section we always assume that f is minorized by some affine function

g(x) = 〈p, x〉 + α, where p ∈ R
n , α ∈ R, and 〈p, x〉 := ∑n

i=1 pi xi denotes the
inner product (or duality pairing, to be more precise) of p = (p1, p2, . . . , pn) and
x = (x1, x2, . . . , xn). Note that every convex-extensible function is minorized by an
affine function.

The convexification of f , to be denoted by f̌ , is defined as

f̌ (x) := inf
λ
{
∑
y

λy f (y) |
∑
y

λy y = x, (λy) ∈ 	} (x ∈ R
n), (3.1)
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where 	 denotes the set of coefficients for convex combinations indexed by y ∈ Z
n :

	 = {(λy | y ∈ Z
n) |

∑
y

λy = 1, λy ≥ 0 for all y, λy > 0 for finitely many y}.

It is known [24, Section B.2.5] that f̌ is a convex function and that f̌ coincides with
the pointwise supremum of all convex functions minorizing f , that is,

f̌ (x) = sup{g(x) | g is convex, g(y) ≤ f (y) for all y ∈ Z
n} (x ∈ R

n).

Therefore, f is convex-extensible if and only if f̌ (x) = f (x) for all x ∈ Z
n .

The convex envelope of f , to be denoted by f , is defined as the pointwise supremum
of all affine functions minorizing f , that is,

f (x) := sup
p,α
{〈p, x〉 + α | 〈p, y〉 + α ≤ f (y) (∀y ∈ Z

n)} (x ∈ R
n). (3.2)

This function f is a closed convex function and coincideswith the pointwise supremum
of all closed convex functions minorizing f , that is,

f (x) = sup{g(x) | g is closed convex, g(y) ≤ f (y) for all y ∈ Z
n} (x ∈ R

n).

In this paper we often refer to the condition

f (x) = f (x) (x ∈ Z
n) (i.e., f = f |Zn ) (3.3)

as the convex-extensibility of f , although this condition is slightly stronger than the
condition f = f̌ |Zn mentioned above. Accordingly, we often refer to f as the convex
extension of f if (3.3) is the case.

Example 3.1 The quadratic function f (x) = x2 defined for x ∈ Z is convex-
extensible, where g(x) = x2 (x ∈ R) is an obvious convex extension of f . The
convex envelope f in (3.2) is a piecewise-linear function given by

f (x) = (2k + 1)|x | − k(k + 1) with k = �|x |� (x ∈ R).

It is noted that f (x) = x2 for integers x and f (x) > x2 for non-integral x ; for
example, f (1/2) = 1/2 > 1/4. The convexification f̌ in (3.1) coincides with f . �

Remark 3.1 In a standard textbook [24, Section B.2.5], (3.1) is called the convex hull
of f and denoted by co f , whereas (3.2) is called the closed convex hull of f and
denoted by co f or cl(co f ). Using our notation we have co f = f̌ and co f = f . �

Remark 3.2 We have f (x) ≤ f̌ (x) for all x ∈ R
n , and the equality may fail in general

(Example 3.2 below). However, when dom f is bounded, we have f (x) = f̌ (x) for
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all x ∈ R
n . The proofs are as follows. In (3.2) we have 〈p, y〉 + α ≤ f (y) for each y.

By using λ ∈ 	 satisfying
∑

y λy y = x , we obtain

〈p, x〉 + α =
∑
y

λy(〈p, y〉 + α) ≤
∑
y

λy f (y),

from which f (x) = sup(p,α){〈p, x〉 + α} ≤ infλ{∑y λy f (y)} = f̌ (x). When dom f
is bounded, dom f is a finite set. For each x ∈ R

n , consider a pair of (mutually dual)
linear programs:

(P) Maximize 〈p, x〉 + α

subject to 〈p, y〉 + α ≤ f (y) (y ∈ dom f ),

(D) Minimize
∑

y∈dom f

λy f (y)

subject to
∑

y∈dom f

λy y = x,
∑

y∈dom f

λy = 1, λy ≥ 0 (y ∈ dom f ),

where (p, α) ∈ R
n × R and (λy | y ∈ dom f ) are the variables of (P) and (D),

respectively. Theoptimal values of (P) and (D) are equal to f (x) and f̌ (x), respectively.
Problem (P) is feasible (e.g., take p = 0 and a sufficiently small α). By LP duality,
(P) and (D) have the same (finite or infinite) optimal values, that is, f (x) = f̌ (x).
Note that (D) is feasible if and only if x ∈ dom f , in which case the optimal values
are finite. �

Example 3.2 Let f : Z
2 → R ∪ {+∞} be the indicator function δS of the set S

considered in Remark 2.1. For x = (x1, 1) with x1 
= 0, we have x ∈ cl(S)\ S. Hence
0 = f (x) < f̌ (x) = +∞. �

Remark 3.3 For a set S ⊆ Z
n , the convexification of the indicator function δS coincides

with the indicator function of its convex hull S, that is, δ̌S = δS . A set S ⊆ Z
n is hole-

free if and only if the indicator function δS is convex-extensible. �

3.2 Definition of integrally convex functions

Recall the notation N (x) for the integral neighborhood of x ∈ R
n (cf., (2.4), Fig. 2).

For a function f : Zn → R∪{+∞}, the local convex extension f̃ : Rn → R∪{+∞}
of f is defined as the union of all convex extensions (convexifications) of f on N (x).
That is,

f̃ (x) = min{
∑

y∈N (x)

λy f (y) |
∑

y∈N (x)

λy y = x, (λy) ∈ 	(x)} (x ∈ R
n), (3.4)

where	(x) denotes the set of coefficients for convex combinations indexed by N (x):

	(x) = {(λy | y ∈ N (x)) |
∑

y∈N (x)

λy = 1, λy ≥ 0 (y ∈ N (x))}. (3.5)
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It follows from this definition that, for each x ∈ R
n , the function f̃ restricted to N (x)

is a convex function. In general, we have f̃ (x) ≥ f̌ (x) ≥ f (x) for all x ∈ R
n , where

f̌ and f are defined by (3.1) and (3.2), respectively.
We say that a function f is integrally convex if its local convex extension f̃ is

(globally) convex on the entire spaceR
n . In this case, f̃ is a convex function satisfying

f̃ (x) = f (x) for all x ∈ Z
n , which means that f is convex-extensible. Moreover, f̃

coincides with f̌ and f , that is,

f̃ (x) = f̌ (x) = f (x) (x ∈ R
n). (3.6)

In particular, we have dom f̃ = dom f . Since f̃ (x) = f (x) for x ∈ Z
n , (3.6) implies

f̃ (x) = f̌ (x) = f (x) = f (x) (x ∈ Z
n). (3.7)

Proposition 3.1 (1) The effective domain of an integrally convex function is integrally
convex.

(2) A set S ⊆ Z
n is integrally convex if and only if its indicator function δS is integrally

convex.

The following is an example of a convex-extensible function that is not integrally
convex.

Example 3.3 Let f : Z2 → R be defined by f (x1, x2) = |2x1 − x2| for all (x1, x2) ∈
Z
2. Obviously, this function is convex-extensible and the convex envelope is given

by f (x1, x2) = |2x1 − x2| for all (x1, x2) ∈ R
2. For y = (1/2, 1) we have N (y) =

{(0, 1), (1, 1)} and the local convex extension f̃ of f around y is given by

f̃ (1/2, 1) = ( f (0, 1)+ f (1, 1))/2 = (1+ 1)/2 = 1.

On the other hand, y = (1/2, 1) is the midpoint of u = (0, 0) and v = (1, 2) with
f̃ (u) = f (0, 0) = 0 and f̃ (v) = f (1, 2) = 0. This shows that the function f̃ is not
convex, and f is not integrally convex.Also note that 0 = f (1/2, 1) 
= f̃ (1/2, 1) = 1.

�

Integrally convex functions in two variables (n = 2) can be defined by simple
inequality conditions without referring to the local convex extension f̃ (see Theo-
rem 3.3 in Sect. 3.4).

Remark 3.4 The concept of integrally convex functions is introduced in [13] for func-
tions defined on a box of integers. The extension to functions with general integrally
convex effective domains is straightforward, which is found in [40]. �

3.3 Examples

Three classes of integrally convex functions are given below.
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1464 K. Murota, A. Tamura

Example 3.4 A function 
 : Zn → R∪ {+∞} in x = (x1, x2, . . . , xn) ∈ Z
n is called

separable convex if it can be represented as


(x) = ϕ1(x1)+ ϕ2(x2)+ · · · + ϕn(xn) (3.8)

with univariate discrete convex functions ϕi : Z → R ∪ {+∞}, which means, by
definition, that dom ϕi is an interval of integers and

ϕi (k − 1)+ ϕi (k + 1) ≥ 2ϕi (k) (k ∈ Z). (3.9)

A separable convex function is integrally convex (actually, both L�- and M�-convex).
�

Example 3.5 A symmetric matrix Q = (qi j ) that satisfies the condition

qii ≥
∑
j 
=i
|qi j | (i = 1, 2, . . . , n) (3.10)

is called a diagonally dominant matrix (with nonnegative diagonals). If Q is diago-
nally dominant in the sense of (3.10), then f (x) = x�Qx is integrally convex [13,
Proposition 4.5]. The converse is also true if n ≤ 2 [13, Remark 4.3]. Recently it has
been shown in [64, Theorem 9] that the diagonally dominance (3.10) of Q is equivalent
to the directed discrete midpoint convexity of f (x) = x�Qx ; see [64] for details. �

Example 3.6 A function f : Z
n → R ∪ {+∞} is called 2-separable convex if it can

be expressed as the sum of univariate convex, diff-convex, and sum-convex functions,
i.e., if

f (x1, x2, . . . , xn) =
n∑

i=1
ϕi (xi )+

∑
i 
= j

ϕi j (xi − x j )+
∑
i 
= j

ψi j (xi + x j ),

where ϕi , ϕi j , ψi j : Z → R ∪ {+∞} (i, j = 1, 2, . . . , n; i 
= j) are univariate
convex functions. A 2-separable convex function is known to be integrally convex
[64, Theorem 4], whereas it is L�-convex if ψi j ≡ 0 for all (i, j) with i 
= j . A
quadratic function f (x) = x�Qx with Q satisfying (3.10) is an example of a 2-
separable convex function. �

In addition to the above, almost all kinds of discrete convex functions treated in
discrete convex analysis are integrally convex. It is known that separable convex, L-
convex, L�-convex, M-convex, M�-convex, L�

2-convex, and M�
2-convex functions are

integrally convex [40]. Multimodular functions [23] are also integrally convex [42].
Moreover, BS-convex and UJ-convex functions [18] are integrally convex.
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3.4 Characterizations

In this section we give two characterizations of integrally convex functions in terms
of an inequality of the form

f̃

(
x + y

2

)
≤ 1

2
( f (x)+ f (y)), (3.11)

where f̃ denotes the local convex extension of f defined by (3.4). By the definition of
f̃ , the inequality (3.11) above is true for (x, y) with ‖x − y‖∞ ≤ 1 for any function
f : Z

n → R ∪ {+∞}. If f is integrally convex, the inequality (3.11) holds for any
(x, y), as follows.

Proposition 3.2 If f is integrally convex, then (3.11) holds for every x, y ∈ dom f .

Proof The function f̃ is convex by integral convexity of f , and hence

f̃

(
x + y

2

)
≤ 1

2
( f̃ (x)+ f̃ (y)) = 1

2
( f (x)+ f (y)),

where the equalities f̃ (x) = f (x) and f̃ (y) = f (y) by (3.7) are used. ��
Integral convexity of a function can be characterized by a local condition under the

assumption that the effective domain is an integrally convex set.

Theorem 3.1 ([13, 37]) Let f : Z
n → R ∪ {+∞} be a function with an integrally

convex effective domain. Then the following properties are equivalent.

(a) f is integrally convex.
(b) Inequality (3.11) holds for every x, y ∈ dom f with ‖x − y‖∞ = 2.

Proof [(a)⇒ (b)]: This is shown in Proposition 3.2.
[(b)⇒ (a)]: (The proof given in [37, Appendix A] is sketched here.) For an integer

vector a ∈ Z
n , define a box B ⊆ R

n of size two by

B = [a, a + 21]R = {x ∈ R
n | ai ≤ xi ≤ ai + 2 (i = 1, 2, . . . , n)}. (3.12)

It can be shown ( [37, LemmaA.1]) that, if dom f is integrally convex and the condition
(b) is satisfied, then f̃ is convex on B ∩ dom f .

Fix arbitrary x, y ∈ dom f , and denote by L the (closed) line segment connecting x
and y. We show that f̃ is convex on L . Consider the boxes B of the form of (3.12) that
intersect L . There exists a finite number of such boxes, say, B1, B2, . . . , Bm , and L is
covered by the line segments L j = L ∩ Bj ( j = 1, 2, . . . ,m). That is, L =⋃m

j=1 L j .
For each point z ∈ L\{x, y}, there exists some L j that contains z in its interior, and
f̃ is convex on L j by the above-mentioned fact. Hence f̃ is convex on L (cf. [66,
Lemma 2]). This implies the convexity of f̃ , that is, the integral convexity of f . ��
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The second characterization of integral convexity of a function is free from the
assumption on the effective domain, but is not a local condition as it refers to all pairs
(x, y) with ‖x − y‖∞ ≥ 2.

Theorem 3.2 ([38, Theorem A.1]) Let f : Z
n → R ∪ {+∞} be a function with

dom f 
= ∅. Then the following properties are equivalent.

(a) f is integrally convex.
(b) Inequality (3.11) holds for every x, y ∈ dom f with ‖x − y‖∞ ≥ 2.

Proof [(a)⇒ (b)]: This is shown in Proposition 3.2.
[(b)⇒ (a)]: By Theorem 3.1, it suffices to show that dom f is an integrally convex

set, which follows from Theorem 2.1 applied to S = dom f . Note that the condition
(2.11) in Theorem 2.1 holds by the assumption (b). ��
Remark 3.5 Theorem 3.1 originates in [13, Proposition 3.3], which shows the equiv-
alence of (a) and (b) when the effective domain is a box of integers, while their
equivalence for a general integrally convex effective domain is proved in [37,Appendix
A]. Theorem 3.2 is given in [38, Theorem A.1] with a direct proof without using The-
orem 3.1, while here we have given an alternative proof that relies on Theorem 3.1
via Theorem 2.1. �

Integrally convex functions in two variables (n = 2) can be characterized by simple
inequality conditions as follows. We use notation fz(x) := f (z + x).

Theorem 3.3 A function f : Z
2 → R ∪ {+∞} is integrally convex if and only if its

effective domain is an integrally convex set and the following five inequalities

g(0, 0)+ g(2, 1) ≥ g(1, 1)+ g(1, 0),

g(0, 0)+ g(2,−1) ≥ g(1,−1)+ g(1, 0),

g(0, 0)+ g(2, 0) ≥ 2g(1, 0),

g(0, 0)+ g(2, 2) ≥ 2g(1, 1),

g(0, 0)+ g(2,−2) ≥ 2g(1,−1)

are satisfied by both g(x1, x2) = fz(x1, x2) and g(x1, x2) = fz(x2, x1) for any
z ∈ dom f .

Proof This follows immediately fromTheorem3.1, sincewhen n = 2 and ‖x−y‖∞ =
2, (3.11) is equivalent to

f (x)+ f (y) ≥ f

(⌈
x + y

2

⌉)
+ f

(⌊
x + y

2

⌋)
. (3.13)

For example, if x = z and y = z + (2, 1), then (x + y)/2� = z + (1, 1) and
�(x + y)/2� = z + (1, 0), and (3.13) gives the first inequality for g(x1, x2) =
fz(x1, x2). ��
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Fig. 6 Characterizations of integrally convex functions

Remark 3.6 For a function g : Z
2 → R ∪ {+∞} (in general), an inequality of the

form

g(0, 0)+ g(a + b, a) ≥ g(a, a)+ g(b, 0) (a, b ≥ 0; a, b ∈ Z) (3.14)

is called the (basic)parallelogram inequality in [37]. It is shown in [37, Proposition3.3]
that for any integrally convex function f in two variables and a point z ∈ dom f , the
function g(x) = fz(x) satisfies the inequality (3.14). Note that (3.14) with (a, b) =
(1, 1) coincides with the first inequality in Theorem 3.3. Furthermore, the inequality
(3.14) holds also for g(x1, x2) = fz(x2, x1), fz(x1,−x2), and fz(−x2, x1), as integral
convexity is preserved under such coordinate inversions (cf., (3.17), (3.18)). �

In this section we have given three theorems (Theorems 3.1, 3.2, and 3.3) to char-
acterize integrally convex functions. In Sect. 4.2 we give two additional theorems
(Theorems 4.3 and 4.4). Their logical dependence (in our presentation) is illustrated
in Fig. 6.

3.5 Simplicial divisions

As is well known ( [17, Section 16.3], [40, Section 7.7]), the convex extension of
an L�-convex function can be constructed in a systematic manner using a regular
simplicial division (the Freudenthal simplicial division) of unit hypercubes. This is a
generalization of the Lovász extension for a submodular set function. In addition, the
concepts of BS-convex and UJ-convex functions are introduced on the basis of other
regular simplicial divisions in [18].

By definition, an integrally convex function f is convex-extensible, and its convex
envelope f can be constructed locally within each unit hypercube, since f coincides
with the local convex extension f̃ . However, general integrally convex functions are
not associated with a regular simplicial division. Indeed, the following construction
shows that, when n = 2, an arbitrary triangulation can arise from an integrally convex
function.

Consider the rectangular domain [0, a]R, where a = (a1, a2)with positive integers
a1 and a2, and assume that we are given an arbitrary triangulation of each unit square in
the domain [0, a]R such as the one in Fig. 7(a). We can construct an integrally convex
function f such that the convex envelope f corresponds to the given triangulation.
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Fig. 7 A given triangulation and the corresponding function g

According to the given triangulation, we classify the unit squares into two types,
type M and type L. We say that a unit square is of type M (resp., type L) if it has a
diagonal line segment on x1 + x2 = c (resp., x1 − x2 = c) for some c; see Fig. 7(b).
For each x = (x1, x2) ∈ [0, a]Z, we denote the number of unit squares of type
M (resp., type L) contained in the domain [0, x]R by g(x;M) (resp., g(x;L)), and
define g(x) := g(x;M)− g(x;L). For x = (2, 2) in Fig. 7(b), for example, we have
g(x;M) = 3and g(x;L) = 1, and therefore g(2, 2) = g(x;M)−g(x;L) = 3−1 = 2.
Finally, we define a function f on [0, a]Z by

f (x1, x2) = A(x1
2 + x2

2)+ g(x1, x2) (x ∈ [0, a]Z) (3.15)

with a positive constant A. If A ≥ a1+a2, this function f is integrally convex and the
associated triangulation of each unit square coincides with the given one (proved in
Remark 3.7). It is noted that, while f is integrally convex, g itself may not be integrally
convex. For example, in Fig. 7(b), we have

[ f (0, 0)+ f (2, 1)] − [ f (1, 0)+ f (1, 1)] = 2A − 1 > 0,

[g(0, 0)+ g(2, 1)] − [g(1, 0)+ g(1, 1)] = −1 < 0

(cf., Theorem 3.3).

Remark 3.7 First, we prove the integral convexity of f in (3.15) by showing that

f (x)+ f (y)− f

(⌈
x + y

2

⌉)
− f

(⌊
x + y

2

⌋)
≥ 0 (3.16)

holds for every x, y ∈ [0, a]Z with ‖x − y‖∞ = 2. By symmetry between x and y
and that between coordinate axes, we have five cases to consider (cf., Theorem 3.3):
(i) y = x + (2, 1), (ii) y = x + (2,−1), (iii) y = x + (2, 0), (iv) y = x + (2, 2), and
(v) y = x + (2,−2). Let h(x) := x12 + x22, for which we have

h(x)+ h(y)− h

(⌈
x + y

2

⌉)
− h

(⌊
x + y

2

⌋)
=

{
2 (case (i), (ii), (iii)),

4 (case (iv), (v)).
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Fig. 8 Simplicial division
associated with an integrally
convex function

On the other hand, we have

∣∣∣∣g(x)+ g(y)− g

(⌈
x + y

2

⌉)
− g

(⌊
x + y

2

⌋)∣∣∣∣ ≤ 2(a1 + a2)

in either case. Therefore, if A ≥ a1 + a2, the inequality in (3.16) holds.
Next, we observe that the function f = Ah + g induces a triangulation of the

specified type within each unit square. Consider a square [x, y]R with y = x + 1 and
x, y ∈ [0, a]Z. Let u := (x1 + 1, x2) and v := (x1, x2 + 1). Then h(x) + h(y) −
h(u)− h(v) = 0, while g(x)+ g(y)− g(u)− g(v) is equal to +1 and −1 according
to whether the square [x, y]R is of type M or L. This shows that the triangulation of
[x, y]R induced by f coincides with the given one. �

Next we give an example of a simplicial division associated with an integrally
convex function in three variables.

Example 3.7 Consider S = [(0, 0, 0), (2, 1, 1)]Z = {x ∈ Z
3 | 0 ≤ x1 ≤ 2, 0 ≤ xi ≤

1 (i = 2, 3)} (see Fig. 8), and define f : Z3 → R ∪ {+∞} with dom f = S by

( f (x1, 0, 0))x1=0,1,2 = (0, 1, 1), ( f (x1, 1, 0))x1=0,1,2 = (3, 0, 3),

and f (x1, 0, 0) = f (x1, 1, 1), f (x1, 1, 0) = f (x1, 0, 1) for x1 = 0, 1, 2. By Theo-
rem 3.1 we can verify that f is integrally convex. For example, for x = (0, 0, 0) and
y = (2, 1, 1), we have

f̃
( x + y

2

) = f̃ (1,
1

2
,
1

2
) = 1

2
( f (1, 1, 0)+ f (1, 0, 1)) = 0 ≤ 1

2
( f (x)+ f (y)) = 1

2

in (3.11). The simplicial division of S = [(0, 0, 0), (2, 1, 1)]R for the convex extension
of f is symmetric with respect to the plane x1 = 1. The left cube [(0, 0, 0), (1, 1, 1)]R
is decomposed into five simplices; one of them has vertices at (0, 0, 0), (1, 1, 0),
(1, 0, 1), (0, 1, 1) and has volume 1/3 (drawn in bold line), whereas the other four
simplicies are congruent to the standard simplex, having volume 1/6. The right cube
[(1, 0, 0), (2, 1, 1)]R is decomposed similarly into five simplices; one of them has
vertices at (2, 0, 0), (1, 1, 0), (1, 0, 1), (2, 1, 1), and has volume 1/3, whereas the
other four simplicies are congruent to the standard simplex, having volume 1/6. Thus
the simplices are not uniform in volume, whereas they have the same volume (= 1/6)
for an L�-convex function. It is added that this function f is neither L�

2-convex nor
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M�
2-convex, since argmin f = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} is neither

L�
2-convex nor M�

2-convex (as discussed in Example 2.6). �

3.6 Basic operations

In this section we show how integral convexity of a function behaves under basic
operations. Let f be a function on Z

n , i.e., f : Zn → R ∪ {+∞}.
Origin shift:

For an integer vector b ∈ Z
n , the origin shift of f by b means a function g on Z

n

defined by g(y) = f (y − b). The origin shift of an integrally convex function is an
integrally convex function.
Inversion of coordinates:

The independent coordinate inversion of f means a function g on Z
n defined by

g(y1, y2, . . . , yn) = f (τ1y1, τ2y2, . . . , τn yn) (3.17)

with an arbitrary choice of τi ∈ {+1,−1} (i = 1, 2, . . . , n). The independent coordi-
nate inversion of an integrally convex function is an integrally convex function. This
is a nice property of integral convexity, not shared by L�-, L�

2-, M
�-, or M�

2-convexity.
Permutation of coordinates:

For a permutation σ of (1, 2, . . . , n), the permutation of f by σ means a function
g on Z

n defined by

g(y1, y2, . . . , yn) = f (yσ(1), yσ(2), . . . , yσ(n)). (3.18)

The permutation of an integrally convex function is integrally convex.
Variable-scaling:

For a positive integer α, the variable-scaling (or scaling for short) of f by α means
a function g on Z

n defined by

g(y1, y2, . . . , yn) = f (αy1, αy2, . . . , αyn). (3.19)

Note that the same scaling factor α is used for all coordinates. If α = 2, for example,
this operation amounts to considering the function values at even points. The scaling
operation is used effectively inminimization algorithms (see Sect. 4). The scaling of an
integrally convex function is not necessarily integrally convex. The indicator function
f = δS of the integrally convex set S ⊆ Z

3 inExample 2.8 is such an example.Another
example of a function on the integer box [(0, 0, 0), (4, 2, 2)]Z can be found in [37,
Example 3.1]. In the case of n = 2, integral convexity admits the scaling operation.
That is, if f : Z

2 → R ∪ {+∞} is integrally convex, then g : Z
2 → R ∪ {+∞} is

integrally convex ( [37, Theorem 3.2]).
As another kind of scaling, the dilation operation can be defined for a function

f : Z
n → R ∪ {+∞} if it is convex-extensible. For any positive integer α, the
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α-dilation of f is defined as a function g on Z
n given by

g(y1, y2, . . . , yn) = f (y1/α, y2/α, . . . , yn/α), (3.20)

where f denotes the convex envelope of f . The dilation of an integrally convex
function is not necessarily integrally convex. For example, the indicator function f =
δS of the integrally convex set S ⊆ Z

4 in Example 2.5 is an integrally convex function
for which the 2-dilation is not integrally convex.

Remark 3.8 Although integral convexity is not compatible with the dilation operation,
other kinds of discrete convexity such as L-, L�-, L2-, L

�
2-,M-,M�-,M2-,M

�
2-convexity,

and multimodularity are preserved under dilation. In contrast, the scaling operation
in (3.19) preserves L-convexity and its relatives (box, L-, L�-, L2-, L

�
2-convexity, and

multimodularity), and notM-convexity and its relatives (M-,M�-,M2-,M
�
2-convexity).

�

Value-scaling:
For a function f : Z

n → R ∪ {+∞} and a nonnegative factor a ≥ 0, the value-
scaling of f by a means a function g : Z

n → R ∪ {+∞} defined by g(y) = a f (y)
for y ∈ Z

n . We may also introduce an additive constant b ∈ R and a linear function
〈c, y〉 =∑n

i=1 ci yi , where c ∈ R
n , to obtain

g(y) = a f (y)+ b + 〈c, y〉 (y ∈ Z
n). (3.21)

The operation (3.21) preserves integral convexity of a function.
Restriction:

For a function f : Z
N → R ∪ {+∞} and a subset U of the index set N =

{1, 2, . . . , n}, the restriction of f toU is a function g : ZU → R∪ {+∞} defined by

g(y) = f (y, 0N\U ) (y ∈ Z
U ),

where 0N\U denotes the zero vector inZ
N\U . The notation (y, 0N\U )means the vector

whose i th component is equal to yi for i ∈ U and to 0 for i ∈ N \U . The restriction
of an integrally convex function is integrally convex (if the effective domain of the
resulting function is nonempty).
Projection:

For a function f : Z
N → R ∪ {+∞} and a subset U of the index set N =

{1, 2, . . . , n}, the projection of f to U is a function g : Z
U → R ∪ {−∞,+∞}

defined by

g(y) = inf{ f (y, z) | z ∈ Z
N\U } (y ∈ Z

U ), (3.22)

where the notation (y, z) means the vector whose i th component is equal to yi for
i ∈ U and to zi for i ∈ N\U . The projection is also called partial minimization. The
resulting function g is referred to as themarginal function of f in [24]. The projection
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of an integrally convex function is integrally convex ( [33, Theorem 3.1]) if g > −∞,
or else we have g ≡ −∞ (see Proposition 3.4 in Sect. 3.7).
Splitting:

Suppose that we are given a family {U1,U2, . . . ,Un} of disjoint nonempty sets
indexed by N = {1, 2, . . . , n}. Let mi = |Ui | for i = 1, 2, . . . , n and define m =∑n

i=1 mi , where m ≥ n. For each i ∈ N we define an mi -dimensional vector y[i] =
(y j | j ∈ Ui ) and express y ∈ Z

m as y = (y[1], y[2], . . . , y[n]). For a function
f : Zn → R ∪ {+∞}, the splitting of f by {U1,U2, . . . ,Un} is defined as a function
g : Zm → R ∪ {+∞} given by

g(y[1], y[2], . . . , y[n]) = f (y[1](U1), y[2](U2), . . . , y[n](Un)),

where y[i](Ui ) = ∑{y j | j ∈ Ui }. For example, g(y1, y2, y3) = f (y1, y2 + y3) is
a splitting of f : Z

2 → R ∪ {+∞} for U1 = {1} and U2 = {2, 3}, where n = 2
and m = 3. The splitting of an integrally convex function is integrally convex ( [46,
Proposition 4.4]).
Aggregation:

Let P = {N1, N2, . . . , Nm} be a partition of N = {1, 2, . . . , n} into disjoint
nonempty subsets: N = N1 ∪ N2 ∪ · · · ∪ Nm and Ni ∩ N j = ∅ for i 
= j . We
have m ≤ n. For a function f : ZN → R ∪ {+∞}, the aggregation of f with respect
to P is defined as a function g : Zm → R ∪ {+∞,−∞} given by

g(y1, y2, . . . , ym) = inf{ f (x) | x(N j ) = y j ( j = 1, 2, . . . ,m)}.

For example, g(y1, y2) = inf{ f (x1, x2, x3) | x1 = y1, x2+x3 = y2} is an aggregation
of f : Z

3 → R ∪ {+∞} for N1 = {1} and N2 = {2, 3}, where n = 3 and m = 2.
The aggregation of an integrally convex function is not necessarily integrally convex
(Example 2.9).
Direct sum:

The direct sum of two functions f1 : Zn1 → R∪{+∞} and f2 : Zn2 → R∪{+∞}
is a function f1 ⊕ f2 : Zn1+n2 → R ∪ {+∞} defined as

( f1 ⊕ f2)(x, y) = f1(x)+ f2(y) (x ∈ Z
n1 , y ∈ Z

n2).

The direct sum of two integrally convex functions is integrally convex.
Addition:

The sum of two functions f1, f2 : Zn → R ∪ {+∞} is defined by

( f1 + f2)(x) = f1(x)+ f2(x) (x ∈ Z
n). (3.23)

For two sets S1, S2 ⊆ Z
n , the sum of their indicator functions δS1 and δS2 coincides

with the indicator function of their intersection S1∩S2, that is, δS1+δS2 = δS1∩S2 . The
sumof integrally convex functions is not necessarily integrally convex (Example 2.10).
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However, the sum of an integrally convex function with a separable convex function

g(x) = f (x)+
n∑

i=1
ϕi (xi ) (x ∈ Z

n) (3.24)

is integrally convex.
Convolution:

The (infimal) convolution of two functions f1, f2 : Zn → R∪{+∞} is defined by

( f1� f2)(x) = inf{ f1(y)+ f2(z) | x = y + z, y, z ∈ Z
n} (x ∈ Z

n), (3.25)

where it is assumed that the infimum is bounded from below (i.e., ( f1� f2)(x) > −∞
for every x ∈ Z

n). For two sets S1, S2 ⊆ Z
n , the convolution of their indicator

functions δS1 and δS2 coincides with the indicator function of their Minkowski sum
S1 + S2 = {y + z | y ∈ S1, z ∈ S2}, that is, δS1� δS2 = δS1+S2 . The convolution
of integrally convex functions is not necessarily integrally convex (Example 2.11).
The convolution of an integrally convex function and a separable convex function is
integrally convex [33, Theorem 4.2] (also [45, Proposition 4.17]).

Remark 3.9 The convolution operation plays a central role in discrete convex analysis.
The convolution of two (or more)M�-convex functions isM�-convex. The convolution
of twoL�-convex functions is not necessarily L�-convex, but it is integrally convex. The
convolution of three L�-convex functions is no longer integrally convex (Remark 2.6).

�

3.7 Technical supplement

This section is a technical supplement concerning the projection operation defined in
(3.22). We first consider a direction d in which the function value diverges to −∞.

Proposition 3.3 Let f : Z
n → R ∪ {+∞} be an integrally convex function, y ∈

dom f , and d ∈ Z
n. If lim

k→∞ f (y + kd) = −∞, then for any z ∈ dom f , we have

lim
k→∞ f (z + kd) = −∞.

Proof Let S = dom f . For each x ∈ S, gx (k) = f (x + kd) is a convex function
in k ∈ Z, which follows from the convex-extensibility of f . Let T denote the set of
x ∈ S for which lim

k→∞ gx (k) = −∞. We want to show that T = ∅ or T = S. To prove

this by contradiction, assume that both T and S\T are nonempty. Consider y ∈ T
and z ∈ S\T that minimize C‖y − z‖∞ + ‖y − z‖1, where C " 1. From integral
convexity of S, we can easily show that ‖y − z‖∞ = 1 and S ∩ N

( y+z
2

) = {y, z}.
Moreover, for y(k) = y + kd and z(k) = z + kd, we have

S ∩ N

(
y(k) + z(k)

2

)
= {y(k), z(k)} (k = 0, 1, 2, . . .). (3.26)
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(Proof of (3.26): Since gy is convex, y ∈ S, and lim
k→∞ gy(k) = −∞, we have y(k) =

y + kd ∈ S for all k. This implies, by Proposition 2.6, that z(k) = z + kd ∈ S for all
k. We also have C‖y(k)− z(k)‖∞ +‖y(k)− z(k)‖1 = C‖y− z‖∞ +‖y− z‖1.) Since
f is integrally convex, we have

f̃

(
y(k+1) + z(k−1)

2

)
≤ 1

2
( f (y(k+1))+ f (z(k−1)))

by Proposition 3.2, where the left-hand side can be expressed as

f̃

(
y(k+1) + z(k−1)

2

)
= f̃

(
y(k) + z(k)

2

)
= 1

2
( f (y(k))+ f (z(k)))

by y(k+1) + z(k−1) = y(k) + z(k) and (3.26). Therefore, we have

f (y(k))+ f (z(k)) ≤ f (y(k+1))+ f (z(k−1)).

By adding these inequalities for k = 1, 2, . . . , k̂, we obtain

f (z(k̂)) ≤ f (y(k̂+1))+ f (z)− f (y(1)).

By letting k̂ →∞ we obtain a contradiction, since the right-hand side tends to −∞
while the left-hand side does not. ��

Using the above proposition we can show that the projection g(y) = inf{ f (y, z) |
z ∈ Z

N\U }, defined in (3.22), is away from the value of −∞ unless it is identically
equal to −∞.

Proposition 3.4 Let f : Zn → R ∪ {+∞} be an integrally convex function, and g be
the projection of f to U. If g(y0) = −∞ for some y0 ∈ Z

U , then g(y) = −∞ for all
y ∈ Z

U .

Proof First suppose |N\U | = 1 with N\U = {v}, and assume g(y0) = −∞ for some
y0 ∈ Z

U . Then x0 := (y0, z0) ∈ dom f for some z0 ∈ Z, and lim
k→∞ f (x0+kd) = −∞

for d = 1v or d = −1v . This implies, by Proposition 3.3, that lim
k→∞ f (x + kd) =

−∞ for all x ∈ dom f , which shows g ≡ −∞. Next we consider the case where
|N\U | ≥ 2. Let N\U = {v1, v2, . . . , vr } with 2 ≤ r < n, and g(k) denote the
projection of f to U ∪ {vk+1, vk+2, . . . , vr } for k = 0, 1, . . . , r . Then g(0) = f ,
g(r) = g, and g(k) is the projection of g(k−1) for k = 1, 2, . . . , r . By the argument for
the case with |N\U | = 1, we have g(1) > −∞ or g(1) ≡ −∞. In the latter case we
obtain g(k) ≡ −∞ for k = 1, 2, . . . , r . In the former case, g(1) is an integrally convex
function by [33, Theorem 3.1], as already mentioned in Sect. 3.6. This allows us to
apply the same argument to g(1) to obtain that g(2) > −∞ or g(2) ≡ −∞. Continuing
this way we arrive at the conclusion that g > −∞ or g ≡ −∞. ��
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Fig. 9 Box barrier property

4 Minimization andminimizers

4.1 Optimality conditions

The global minimum of an integrally convex function can be characterized by a local
condition.

Theorem 4.1 ( [13, Proposition 3.1]; see also [40, Theorem 3.21]) Let f : Z
n →

R ∪ {+∞} be an integrally convex function and x∗ ∈ dom f . Then x∗ is a minimizer
of f if and only if f (x∗) ≤ f (x∗ + d) for all d ∈ {−1, 0,+1}n.

A more general form of this local optimality criterion is known as “box-barrier
property” in Theorem 4.2 below (see Fig. 9). A special case of Theorem 4.2 with
x̂ = x∗, p = x∗ − 1, and q = x∗ + 1 coincides with Theorem 4.1 above.

Theorem 4.2 (Box-barrier property [37, Theorem 2.6]) Let f : Zn → R∪ {+∞} be
an integrally convex function, and p ∈ (Z ∪ {−∞})n and q ∈ (Z ∪ {+∞})n, where
p ≤ q. Define

S = {x ∈ Z
n | pi < xi < qi (i = 1, 2, . . . , n)},

W+
i = {x ∈ Z

n | xi = qi , p j ≤ x j ≤ q j ( j 
= i)} (i = 1, 2, . . . , n),

W−
i = {x ∈ Z

n | xi = pi , p j ≤ x j ≤ q j ( j 
= i)} (i = 1, 2, . . . , n),

and W =⋃n
i=1(W

+
i ∪W−

i ). Let x̂ ∈ S ∩ dom f . If f (x̂) ≤ f (y) for all y ∈ W, then
f (x̂) ≤ f (z) for all z ∈ Z

n\S.
Proof (The proof of [37] is described here.) Let U+i and U−i denote the convex hulls
of W+

i ans W−
i , respectively, and define U =⋃n

i=1(U
+
i ∪U−i ). Then W = U ∩ Z

n .
For a point z ∈ Z

n \ S, the line segment connecting x̂ and z intersects U at a point,
say, u ∈ R

n . Then its integral neighborhood N (u) is contained in W . Since the local
convex extension f̃ (u) is a convex combination of the f (y)’s with y ∈ N (u), and
f (y) ≥ f (x̂) for every y ∈ W , we have f̃ (u) ≥ f (x̂). On the other hand, it follows
from the convexity of f̃ that f̃ (u) ≤ (1−λ) f (x̂)+λ f (z) for some λwith 0 < λ ≤ 1.
Hence f (x̂) ≤ f̃ (u) ≤ (1− λ) f (x̂)+ λ f (z), and therefore, f (x̂) ≤ f (z). ��

Remark 4.1 The optimality criterion in Theorem 4.1 is certainly local, but not sat-
isfactory from the computational complexity viewpoint. We need O(3n) function
evaluations to verify the local optimality condition. �
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4.2 Minimizer sets

It is (almost) always the case that if a function is equipped with some kind of discrete
convexity, then the set of its minimizers is equipped with the discrete convexity of the
same kind. This is indeed the case with an integrally convex function.

Proposition 4.1 Let f : Zn → R∪{+∞} be an integrally convex function. If it attains
a (finite) minimum, the set of its minimizers is integrally convex.

Proof Let α denote the minimum value of f , and S := argmin f . Take any x ∈ S. We
have α = f (x) = f̃ (x). By the definition of f̃ in (3.4), this implies x ∈ S ∩ N (x).
Thus (2.8) holds, showing the integral convexity of S. ��

In the followingwediscuss how integral convexity of a function canbe characterized
in terms of the integral convexity of the minimizer sets. For a function f : Z

n →
R ∪ {+∞} and a vector p ∈ R

n , f [−p] will denote the function defined by

f [−p](x) = f (x)− 〈p, x〉 = f (x)−
n∑

i=1
pi xi (x ∈ Z

n). (4.1)

We use notation

argmin f [−p] = {x ∈ Z
n | f [−p](x) ≤ f [−p](y) for all y ∈ Z

n} (4.2)

for the set of the minimizers of f [−p].
Theorem 4.3 Let f : Z

n → R ∪ {+∞} and assume that the convex envelope f is a
polyhedral convex function and

f (x) = f (x) (x ∈ Z
n). (4.3)

Then f is integrally convex if and only if argmin f [−p] is an integrally convex set for
each p ∈ R

n for which f [−p] attains a (finite) minimum.

Proof The only-if-part is immediate from Proposition 4.1, since if f is integrally
convex, so is f [−p] for any p. We prove the if-part by using Theorem 3.2. Take any
x, y ∈ dom f with ‖x − y‖∞ ≥ 2, and let u := (x + y)/2. Our goal is to show

f̃ (u) ≤ 1

2
( f (x)+ f (y)) (4.4)

in (3.11), where f̃ is the local convex extension of f . The midpoint u belongs
to the convex hull dom f of dom f , which implies that f (u) is finite and u ∈
argmin f [−p] for some p. Let Sp := argmin f [−p] for this p, where Sp ⊆ Z

n .
Since argmin f [−p] = argmin f [−p] = Sp, we have u ∈ Sp. By the assumed
integral convexity of Sp, this implies u ∈ Sp ∩ N (u) (see (2.8)). Therefore, there
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exist z(1), z(2), . . . , z(m) ∈ Sp∩N (u) as well as positive numbers λ1, λ2, . . . , λm with∑m
i=1 λi = 1 such that

u =
m∑
i=1

λi z
(i), f̃ (u) =

m∑
i=1

λi f (z
(i)). (4.5)

Since each z(i) (∈ Sp) is a minimizer of f [−p], we have
m∑
i=1

λi f [−p](z(i)) ≤ 1

2
( f [−p](x)+ f [−p](y)),

that is,

m∑
i=1

λi f (z
(i))−

m∑
i=1

λi 〈p, z(i)〉 ≤ 1

2
( f (x)+ f (y))− 1

2
(〈p, x〉 + 〈p, y〉). (4.6)

For the linear parts in this expression we have

m∑
i=1

λi 〈p, z(i)〉 = 〈p,
m∑
i=1

λi z
(i)〉 = 〈p, u〉,

1

2
(〈p, x〉 + 〈p, y〉) = 〈p, 1

2
(x + y)〉 = 〈p, u〉,

and therefore, (4.6) is equivalent to

m∑
i=1

λi f (z
(i)) ≤ 1

2
( f (x)+ f (y)).

Combining this with the expression of f̃ (u) in (4.5), we obtain (4.4). This completes
the proof of Theorem 4.3. ��

The next theorem gives a similar characterization of integrally convex functions
under a different assumption.

Theorem 4.4 ([40, Theorem 3.29]) Let f : Z
n → R ∪ {+∞} be a function with

a bounded nonempty effective domain. Then f is integrally convex if and only if
argmin f [−p] is an integrally convex set for each p ∈ R

n.

Proof The only-if-part is immediate from Proposition 4.1, since if f is integrally
convex, so is f [−p] for any p. To prove the if-part by Theorem 4.3, define Sp :=
argmin f [−p], which is integrally convex by assumption. Note that Sp is nonempty
for every p by the assumed boundedness of dom f . The boundedness of dom f also
implies that the convex envelope f is a polyhedral convex function. The integral
convexity of Sp implies that Sp is hole-free (Sp = Sp ∩ Z

n), from which we obtain
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f (x) = f (x) (x ∈ Z
n) in (4.3). Then the integral convexity of f follows from

Theorem 4.3. ��
Remark 4.2 The characterization of integral convexity of f by argmin f [−p] origi-
nates in [40, Theorem 3.29], which is stated as Theorem 4.4 above. In this paper, we
have given an alternative proof to this theorem by first establishing Theorem 4.3 that
employs the assumption of convex-extensibility. See also Fig. 6 in Sect. 3.4. �

Remark 4.3 Theorems 4.3 and 4.4 impose the assumption of convex-extensibility of f
or boundedness of dom f . Such an assumption seems inevitable. Consider a function

f : Z → R defined by f (x) =
{
0 (x = 0),
1 (x 
= 0).

Then argmin f [−p] is equal to {0} or
the empty set for each p ∈ R. However, this function is not integrally convex. Note
that f is not convex-extensible nor dom f is bounded. �

4.3 Proximity theorems

The proximity-scaling approach is a fundamental technique in designing efficient
algorithms for discrete or combinatorial optimization. For a function f : Z

n →
R ∪ {+∞} in integer variables and a positive integer α ∈ Z++, called a scaling unit,
the α-scaling of f means the function f α defined by f α(x) = f (αx) (x ∈ Z

n) (cf.,
(3.19)). A proximity theorem is a result guaranteeing that a (local) minimum of the
scaled function f α is (geometrically) close to a minimizer of the original function
f . More precisely, we say that xα ∈ dom f is an α-local minimizer of f (or α-local
minimal for f ) if f (xα) ≤ f (xα + αd) for all d ∈ {−1, 0,+1}n , and a proximity
theorem gives a bound B(n, α) such that for any α-local minimizer xα of f , there
exists a minimizer x∗ of f satisfying ‖xα − x∗‖∞ ≤ B(n, α). The scaled function
f α is expected to be simpler and hence easier to minimize, whereas the quality of the
obtained minimizer of f α as an approximation to the minimizer of f is guaranteed by
a proximity theorem. The proximity-scaling approach consists in applying this idea
for a decreasing sequence of α, often by halving the scale unit α.

In discrete convex analysis the following proximity theorems are known for L�-
convex and M�-convex functions.

Theorem 4.5 ([29]; [40, Theorem 7.18]) Suppose that f is an L�-convex function,
α ∈ Z++, and xα ∈ dom f . If f (xα) ≤ f (xα + αd) for all d ∈ {0, 1}n ∪ {0,−1}n,
then there exists a minimizer x∗ of f satisfying ‖xα − x∗‖∞ ≤ n(α − 1).

Theorem 4.6 ([36]; [40, Theorem 6.37]) Suppose that f is an M�-convex function,
α ∈ Z++, and xα ∈ dom f . If f (xα) ≤ f (xα + αd) for all d ∈ {1i ,−1i (1 ≤ i ≤
n)}∪{1i −1 j (i 
= j)}, then there exists a minimizer x∗ of f satisfying ‖xα− x∗‖∞ ≤
n(α − 1).

The proximity bounds in Theorems 4.5 and 4.6 are known to be tight [37, Examples
4.2 and 4.3]. It is noteworthy that we have the same proximity bound B(n, α) =
n(α − 1) for L�-convex and M�-convex functions, and that B(n, α) is linear in n. For
integrally convex functions with n ≥ 3, this bound n(α− 1) is no longer valid, which
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is demonstrated by Examples 4.4 and 4.5 in [37]. More specifically, the latter example
shows a quadratic lower bound B(n, α) ≥ (n− 2)2(α− 1)/4 for an integrally convex
function arising from bipartite graphs.

The following is a proximity theorem for integrally convex functions.

Theorem 4.7 ([37, Theorem 5.1]) Let f : Zn → R ∪ {+∞} be an integrally convex
function,α ∈ Z++, and xα ∈ dom f . If f (xα) ≤ f (xα+αd) for all d ∈ {−1, 0,+1}n,
then argmin f 
= ∅ and there exists x∗ ∈ argmin f with

‖xα − x∗‖∞ ≤ βn(α − 1), (4.7)

where βn is defined by

β1 = 1, β2 = 2; βn = n + 1

2
βn−1 + 1 (n = 3, 4, . . .). (4.8)

The proximity bound βn satisfies

βn ≤ (n + 1)!
2n−1

(n = 3, 4, . . .). (4.9)

The bound βn(α − 1) in (4.7) is superexponential in n, as seen from (4.9). The
numerical values of βn are as follows:

Dimension n 2 3 4 5 6 7
Value (4.8) of βn 2 5 13.5 41.5 146.25 586
Bound (4.9) on βn − 6 15 45 157.5 630

(4.10)

While the proof of Theorem 4.7 for general n is quite long [37], its special case for
n = 2 admits an alternative method based on the box-barrier property (Theorem 4.2)
and the parallelogram inequality (Remark 3.6). See the proof of [37, Theorem 4.1] for
the detail.

Finally we mention that proximity theorems are also available for L�
2-convex and

M�
2-convex functions [49]. The proximity bound for L�

2-convex functions is linear in n

[49, Theorem 6] and that for M�
2-convex functions is quadratic in n [49, Theorem 10].

4.4 Scaling algorithm

In spite of the fact that integral convexity is not preserved under variable-scaling, it is
possible to design a scaling algorithm for minimizing an integrally convex function
with a bounded effective domain.

In the following we briefly describe the algorithm of [37]. The algorithm is justified
by the proximity bound in Theorem 4.7 and the optimality criterion in Theorem 4.1.
Let K∞ denote the ∞-size of the effective domain of f , i.e.,

K∞ := max{‖x − y‖∞ | x, y ∈ dom f }.
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Initially, the scaling unit α is set to 2log2 K∞� ≈ K∞. In Step S1 of the algorithm, the
function f̂ (y) is the restriction of f (x + αy) to the set

Y := {y ∈ Z
n | ‖αy‖∞ ≤ βn(2α − 1)},

which is a box of integers. Then a local minimizer y∗ of f̂ (y) is found to update x to
x + αy∗. A local minimizer of f̂ (y) can be found, e.g., by any descent method (the
steepest descent method, in particular), although f̂ (y) is not necessarily integrally
convex.

Scaling algorithm for integrally convex functions
S0: Find an initial vector x with f (x) < +∞, and set α := 2log2 K∞�.
S1: Find an integer vector y∗ that locally minimizes

f̂ (y) =
{
f (x + αy) (‖αy‖∞ ≤ βn(2α − 1)),
+∞ (otherwise),

in the sense of f̂ (y∗) ≤ f̂ (y∗ + d) (∀d ∈ {−1, 0,+1}n)
(e.g., by the steepest descent method), and set x := x + αy∗.

S2: If α = 1, then stop (x is a minimizer of f ).
S3: Set α := α/2, and go to S1.

The steepest descent method to locally minimize f̂ (y)
D0: Set z := 0.
D1: Find d ∈ {−1, 0,+1}n that minimizes f̂ (z + d).
D2: If f̂ (z) ≤ f̂ (z + d), then set y∗ := z and stop

(y∗ is a local minimizer of f̂ ).
D3: Set z := z + d, and go to D1.

In the final phase with α = 1, f̂ is an integrally convex function, and hence, by
Theorem 4.1, the local minimizer in Step S1 is a global minimizer of f̂ . Furthermore,
it can be shown, with the use of Theorem 4.7, that this point is a global minimizer of
f .
The complexity of the algorithm is as follows. The number of iterations in the

descent method is bounded by |Y | ≤ (4βn)
n . For each z, the 3n neighboring points are

examined to find a descent direction or verify its local minimality. Thus Step S1
can be done with at most (12βn)

n function evaluations. The number of scaling
phases is log2 K∞. Therefore, the total number of function evaluations in the algo-
rithm is bounded by (12βn)

n log2 K∞. For a fixed n, this gives a polynomial bound
O(log2 K∞) in the problem size. It is emphasized in [37, Remark 6.2] that the linear
dependence of B(n, α) = βn(α − 1) on α is critical for the complexity O(log2 K∞).

Finally,wemention that no algorithmcanminimize every integrally convex function
in time polynomial in n, since any function on the unit cube {0, 1}n is integrally convex.

123



Recent progress on integrally convex functions 1481

5 Subgradient and biconjugacy

5.1 Subgradient

In convex analysis [2, 24, 55], the subdifferential of a convex function g : R
n →

R ∪ {+∞} at x ∈ dom g is defined by

∂g(x) = {p ∈ R
n | g(y)− g(x) ≥ 〈p, y − x〉 for all y ∈ R

n}, (5.1)

and an element p of ∂g(x) is called a subgradient of g at x . Analogously, for a function
f : Zn → R ∪ {+∞}, the subdifferential of f at x ∈ dom f is defined as

∂ f (x) = {p ∈ R
n | f (y)− f (x) ≥ 〈p, y − x〉 for all y ∈ Z

n}, (5.2)

and an element p of ∂ f (x) is called a subgradient of f at x . An alternative expression

∂ f (x) = {p ∈ R
n | x ∈ argmin f [−p]} (5.3)

is often convenient, where f [−p](x) = f (x)−〈p, x〉 defined in (4.1). If f is convex-
extensible in the sense of f = f |Zn in (3.3), where f is the convex envelope of f
defined in (3.2), then ∂ f (x) = ∂ f (x) for each x ∈ Z

n .
When f : Z

n → R ∪ {+∞} is integrally convex, ∂ f (x) is nonempty for x ∈
dom f , since f = f |Zn by (3.7). Furthermore, we can rewrite (5.2) by making
use of Theorem 4.1 for the minimality of an integrally convex function. Namely, by
Theorem 4.1 applied to f [−p], we may restrict y in (5.2) to the form of y = x + d
with d ∈ {−1, 0,+1}n , to obtain

∂ f (x) = {p ∈ R
n |

n∑
j=1

d j p j ≤ f (x + d)− f (x) for all d ∈ {−1, 0,+1}n}.

(5.4)

This expression shows, in particular, that ∂ f (x) is a polyhedron described by inequal-
ities with coefficients taken from {−1, 0,+1}.

To discuss an integrality property of ∂ f (x) in Sect. 5.2, it is useful to investi-
gate the projections of ∂ f (x) along coordinate axes. Let P := ∂ f (x) for notational
simplicity, and for each l = 1, 2, . . . , n, let [P]l denote the projection of P to the
space of (pl , pl+1, . . . , pn). Inequality systems to describe the projections [P]l for
l = 1, 2, . . . , n can be obtained by applying the Fourier–Motzkin elimination proce-
dure [48, 56] to the system of inequalities in (5.4), where the variable p1 is eliminated
first, and then p2, p3, . . ., to finally obtain an inequality in pn only. By virtue of the
integral convexity of f , a drastic simplification occurs in this elimination process. The
inequalities that are generated in the elimination process are actually redundant and
need not be added to the current system of inequalities, which is a crucial observation
made in [50]. Thus we obtain the following theorem.
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Theorem 5.1 ([50]) Let f : Z
n → R ∪ {+∞} be an integrally convex function and

x ∈ dom f . Then ∂ f (x) is a nonempty polyhedron, and for each l = 1, 2, . . . , n, the
projection [∂ f (x)]l of ∂ f (x) to the space of (pl , pl+1, . . . , pn) is given by

[∂ f (x)]l = {(pl , pl+1, . . . , pn) |
n∑
j=l

d j p j ≤ f (x + d)− f (x)

for all d ∈ {−1, 0,+1}n with d j = 0 (1 ≤ j ≤ l − 1)}. (5.5)

While the Fourier–Motzkin elimination for the proof of Theorem5.1 depends on the
linear ordering of N = {1, 2, . . . , n}, it is possible to formulate the obtained identity
(5.5) without referring to the ordering of N . This is stated below as a corollary.

Corollary 5.1 Let J be any nonempty subset of N = {1, 2, . . . , n}. Under the same
assumption as in Theorem 5.1, the projection of ∂ f (x) to the space of (p j | j ∈ J )

is given by {(p j | j ∈ J ) | ∑
j∈J d j p j ≤ f (x + d) − f (x) for all d ∈

{−1, 0,+1}n with d j = 0 ( j ∈ N\J )}.

5.2 Integral subgradient

For an integer-valued function f : Z
n → Z ∪ {+∞}, we are naturally interested in

integral vectors in ∂ f (x). An integer vector p belonging to ∂ f (x) is called an integral
subgradient and the condition

∂ f (x) ∩ Z
n 
= ∅ (5.6)

is sometimes referred to as the integral subdifferentiability of f at x .
Integral subdifferentiability of integer-valued integrally convex functions is estab-

lished recently by the present authors [50].

Theorem 5.2 ([50, Theorem 3]) Let f : Z
n → Z ∪ {+∞} be an integer-valued

integrally convex function. For every x ∈ dom f , we have ∂ f (x) ∩ Z
n 
= ∅.

Proof The proof is based on Theorem 5.1 concerning projections of ∂ f (x). While the
reader is referred to [50] for the formal proof, we indicate the basic idea here. By (5.5)
for l = n, we have

{pn | p ∈ ∂ f (x)} = {pn | pn ≤ f (x + 1n)− f (x), −pn ≤ f (x − 1n)− f (x)},

which is an interval [αn, βn]R withαn = f (x)− f (x−1n) andβn = f (x+1n)− f (x).
We have αn ≤ βn since ∂ f (x) 
= ∅, while αn, βn ∈ Z since f is integer-valued.
Therefore, the interval [αn, βn]R contains an integer, say, p∗n . Next, by (5.5) for l =
n − 1, the set {pn−1 | p ∈ ∂ f (x), pn = p∗n} is described by six inequalities

σ pn−1 + τ p∗n ≤ f (x + σ1n−1 + τ1n)− f (x) (σ ∈ {+1,−1}, τ ∈ {+1,−1, 0}).
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This implies that {pn−1 | p ∈ ∂ f (x), pn = p∗n} is a nonempty interval, say,
[αn−1, βn−1]R with αn−1, βn−1 ∈ Z, which contains an integer, say, p∗n−1. This means
that there exists p ∈ ∂ f (x) such that pn = p∗n ∈ Z and pn−1 = p∗n−1 ∈ Z. Continuing
in this way (with l = n − 2, n − 3, . . . , 2, 1), we can construct p∗ ∈ ∂ f (x) ∩ Z

n . ��
Some supplementary facts concerning Theorem 5.2 are shown below.

– Theorem 5.2 states that ∂ f (x) ∩ Z
n 
= ∅, but it does not claim a stronger

statement that ∂ f (x) is an integer polyhedron. Indeed, ∂ f (x) is not neces-
sarily an integer polyhedron. For example, let f : Z

3 → Z ∪ {+∞} be
defined by f (0, 0, 0) = 0 and f (1, 1, 0) = f (0, 1, 1) = f (1, 0, 1) = 1 with
dom f = {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)}. This f is integrally convex and
∂ f (0) = {p ∈ R

3 | p1+ p2 ≤ 1, p2+ p3 ≤ 1, p1+ p3 ≤ 1} is not an integer poly-
hedron, having a non-integral vertex at p = (1/2, 1/2, 1/2). See [50, Remark 4]
for details. In the special cases where f is L�-convex, M�-convex, L�

2-convex, or

M�
2-convex, the subdifferential ∂ f (x) is known [40] to be an integer polyhedron.

– If ∂ f (x) is bounded, ∂ f (x) has an integral vertex, although not every vertex of
∂ f (x) is integral. For example, let D = {x ∈ {−1, 0,+1}3 | |x1|+|x2|+|x3| ≤ 2}
and define f with dom f = D by f (0) = 0 and f (x) = 1 (x ∈ D\{0}). This
f is an integer-valued integrally convex function and ∂ f (0) is a bounded poly-
hedron that has eight non-integral vertices (±1/2,±1/2,±1/2) (with arbitrary
combinations of double-signs) and six integral vertices (±1, 0, 0), (0,±1, 0), and
(0, 0,±1). See [50, Remark 7] for details.

– Integral subdifferentiability is not guaranteed without the assumption of integral
convexity. Consider D = {(0, 0, 0),±(1, 1, 0),±(0, 1, 1),±(1, 0, 1)} and define
f : Z3 → Z∪{+∞}with dom f = D by f (x1, x2, x3) = (x1+ x2+ x3)/2. This
function is not integrally convex, ∂ f (0) = {(1/2, 1/2, 1/2)}, and ∂ f (0)∩Z

3 = ∅.
See [39, Example 1.1] or [50, Example 1] for details.

The integral subdifferentiability formulated in Theorem 5.2 can be strengthened
with an additional box condition. This stronger form plays the key role in the proof of
the Fenchel-type min-max duality theorem (Theorem 6.1) discussed in Sect. 6.

Recall that an integral box means a set B of real vectors represented as B = {p ∈
R
n | α ≤ p ≤ β} for integer vectors α ∈ (Z ∪ {−∞})n and β ∈ (Z ∪ {+∞})n

satisfying α ≤ β. The following theorem states that

∂ f (x) ∩ B 
= ∅ �⇒ ∂ f (x) ∩ B ∩ Z
n 
= ∅, (5.7)

which may be referred to as box-integral subdifferentiability.

Theorem 5.3 ([51, Theorem 1.2]) Let f : Z
n → Z ∪ {+∞} be an integer-valued

integrally convex function, x ∈ dom f , and B be an integral box. If ∂ f (x) ∩ B is
nonempty, then ∂ f (x)∩B is a polyhedron containing an integer vector. If, in addition,
∂ f (x) ∩ B is bounded, then ∂ f (x) ∩ B has an integral vertex.

We briefly describe how Theorem 5.3 has been proved in [51]. Recall that Theo-
rem 5.2 for integral subdifferentiability (without a box) is proved from a hierarchical
system of inequalities (Theorem 5.1) to describe the projection [∂ f (x)]l of ∂ f (x)
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to the space of (pl , pl+1, . . . , pn) for l = 1, 2, . . . , n, where Theorem 5.1 itself is
proved by means of the Fourier–Motzkin elimination. This approach is extended in
[51] to prove Theorem 5.3. Namely, Theorem 4.3 of [51] gives a hierarchical system
of inequalities to describe the projection [∂ f (x) ∩ B]l of ∂ f (x) ∩ B to the space
of (pl , pl+1, . . . , pn) for l = 1, 2, . . . , n. The proof of this theorem is based on the
Fourier–Motzkin elimination. Once inequalities for the projections [∂ f (x) ∩ B]l are
obtained, the derivation of box-integral subdifferentiability (Theorem 5.3) is almost
the same as that of integral subdifferentiability (Theorem 5.2) from Theorem 5.1.
Finally we mention that alternative proofs of Theorems 5.2 and 5.3 can be found in
[19] and [20], respectively.

5.3 Biconjugacy

For an integer-valued function f : Z
n → Z ∪ {+∞} with dom f 
= ∅, we define

f • : Zn → Z ∪ {+∞} by

f •(p) = sup{〈p, x〉 − f (x) | x ∈ Z
n} (p ∈ Z

n), (5.8)

called the integral conjugate of f . For any x, p ∈ Z
n we have

f (x)+ f •(p) ≥ 〈p, x〉, (5.9)

which is a discrete analogue of Fenchel’s inequality [24, (1.1.3), p. 211] or the Fenchel–
Young inequality [2, Proposition 3.3.4]. When x ∈ dom f , we have

f (x)+ f •(p) = 〈p, x〉 ⇐⇒ p ∈ ∂ f (x) ∩ Z
n . (5.10)

Note the asymmetric roles of f and f • in (5.10).
The integral conjugate f • of an integer-valued function f is also an integer-valued

function defined on Z
n . So we can apply the transformation (5.8) to f • to obtain

f •• = ( f •)•, which is called the integral biconjugate of f . It follows from (5.9) and
(5.10) that, for each x ∈ dom f we have

f ••(x) = f (x) ⇐⇒ ∂ f (x) ∩ Z
n 
= ∅. (5.11)

See [39, Lemma 4.1] or [50, Lemma 1] for the proof. We say that f enjoys integral
biconjugacy if

f ••(x) = f (x) for all x ∈ Z
n . (5.12)

Example 5.1 Let D = {(0, 0, 0),±(1, 1, 0),±(0, 1, 1),±(1, 0, 1)} and consider the
function f (x1, x2, x3) = (x1 + x2 + x3)/2 on dom f = D. (This is the function used
in Sect. 5.2 as an example of an integer-valued function lacking in integral subdif-
ferentiability.) According to the definition (5.8), the integral conjugate f • is given

123



Recent progress on integrally convex functions 1485

by

f •(p) = max{|p1 + p2 − 1|, |p2 + p3 − 1|, |p1 + p3 − 1|} (p ∈ Z
3).(5.13)

For x = 0 we have f (x) = 0, while (5.13) shows f •(p) ≥ 1 for every integer vector
p ∈ Z

3. Thereforewehave strict inequality f (x)+ f •(p) > 〈p, x〉 for x = 0 and every
p ∈ Z

3. This is consistent with (5.10) since ∂ f (0) = {(1/2, 1/2, 1/2)} and hence
∂ f (0)∩Z

3 = ∅. For the integral biconjugate f ••(x) = sup{〈p, x〉− f •(p) | p ∈ Z
3}

we have

f ••(0) = − inf
p∈Z

3
max{|p1 + p2 − 1|, |p2 + p3 − 1|, |p3 + p1 − 1|} = −1.

Thereforewehave f ••(0) 
= f (0). This is consistentwith (5.11) since ∂ f (0)∩Z
3 = ∅.

�

We now assume that f : Z
n → Z ∪ {+∞} is an integer-valued integrally convex

function. The integral conjugate f • is not necessarily integrally convex ( [47, Example
4.15], [50, Remark 2.3]). Nevertheless, the integral biconjugate f •• coincides with
f itself, that is, integral biconjugacy holds for an integer-valued integrally convex
function. This theorem is established by the present authors [50] based on the integral
subdifferentiability ∂ f (x)∩Z

n 
= ∅ given in Theorem 5.2; see Remark 5.1 below for
some technical aspects.

Theorem 5.4 ([50, Theorem 4]) For any integer-valued integrally convex function
f : Zn → Z ∪ {+∞} with dom f 
= ∅, we have f ••(x) = f (x) for all x ∈ Z

n.

As special cases of Theorem 5.4 we obtain integral biconjugacy for L-convex, L�-
convex, M-convex, M�-convex, L�

2-convex, and M�
2-convex functions given in [40,

Theorems 8.12, 8.36, 8.46], and that for BS-convex and UJ-convex functions given in
[50, Corollary 2].

Remark 5.1 There is a subtle gap between integral subdifferentiability in (5.11) and
integral biconjugacy in (5.12) for a general integer-valued function f : Z

n →
Z ∪ {+∞} (which is not necessarily integrally convex). While the latter imposes
the condition f ••(x) = f (x) on all x ∈ Z

n , the former refers to x in dom f only. This
means that integral subdifferentiability may possibly be weaker than integral biconju-
gacy, and this is indeed the case in general (see [39, Remark 4.1] or [50, Remark 6]).
However, it is known [39, Lemma 4.2] that integral subdifferentiability does imply
integral biconjugacy under the technical conditions that dom f = cl(dom f ) ∩ Z

n

and cl(dom f ) is rationally-polyhedral, where cl(dom f ) denotes the closure of the
convex hull (or closed convex hull) of dom f ; see Remark 2.1 for this notation. �

Remark 5.2 In convex analysis [2, 24, 55], the conjugate function of g : R
n → R ∪

{+∞} with dom g 
= ∅ is defined to be a function g•R : Rn → R ∪ {+∞} given by

g•R(p) := sup{〈p, x〉 − g(x) | x ∈ R
n} (p ∈ R

n), (5.14)
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where a (non-standard) notation g•R is introduced for discussion here. The biconju-
gate of g is defined as (g•R)•R by using the transformation (5.14) twice. We have
biconjugacy (g•R)•R = g for closed convex functions g. For a real-valued function
f : Zn → R ∪ {+∞} in discrete variables, we may also define

f •R(p) := sup{〈p, x〉 − f (x) | x ∈ Z
n} (p ∈ R

n). (5.15)

Then the convex envelope f coincides with ( f •R)•R, which denotes the function
obtained by applying (5.15) to f and then (5.14) to g = f •R. Therefore, if f is
convex-extensible in the sense of f = f |Zn in (3.3), we have ( f •R)•R |Zn = f ,
which is a kind of biconjugacy. If f is integer-valued, we can naturally consider ( f •)•
using (5.8) twice as well as ( f •R)•R using (5.15) and then (5.14). It is most important
to recognize that for any f we have ( f •)•(x) ≤ ( f •R)•R(x) for x ∈ Z

n and that
the equality may fail even when f = f |Zn . As an example, consider the function
f (x1, x2, x3) = (x1+ x2+ x3)/2 in Example 5.1. The convex envelope f is given by
f (x1, x2, x3) = (x1 + x2 + x3)/2 on the convex hull of D, and therefore f = f |Zn

holds. Similarly to (5.13) we have

f •R(p) = max{|p1 + p2 − 1|, |p2 + p3 − 1|, |p1 + p3 − 1|} (p ∈ R
3)

and hence

( f •R)•R(0) = − inf
p∈R

3
max{|p1 + p2 − 1|, |p2 + p3 − 1|, |p3 + p1 − 1|} = 0,

where the infimum over p ∈ R
3 is attained by p = (1/2, 1/2, 1/2). Therefore

( f •R)•R(0) = f (0), whereas ( f •)•(0) < f (0) as we have seen in Example 5.1.
Thus, integral biconjugacy f = ( f •)• in (5.12) is much more intricate than the equal-
ity f = ( f •R)•R |Zn . �

5.4 Discrete DC programming

Adiscrete analogue of the theory ofDC functions (difference of two convex functions),
or discrete DC programming, has been proposed in [31] using L�-convex and M�-
convex functions. As already noted in [31, Remark 4.7], such theory of discrete DC
functions can be developed for functions that satisfy integral biconjugacy and integral
subdifferentiability. It is pointed out in [50] that Theorems 5.2 and 5.4 for integrally
convex functions enable us to extend the theory of discrete DC functions to integrally
convex functions. In particular, an analogue of the Toland–Singer duality [61, 65] can
be established for integrally convex functions as follows.

Theorem 5.5 ( [50, Theorem 5]) Let g, h : Z
n → Z ∪ {+∞} be integer-valued

integrally convex functions. Then

inf{g(x)− h(x) | x ∈ Z
n} = inf{h•(p)− g•(p) | p ∈ Z

n}. (5.16)

123



Recent progress on integrally convex functions 1487

As mentioned already in [50], the assumption of integral convexity of g is not
needed for (5.16) to be true. That is, (5.16) holds for any g : Zn → Z∪{+∞} as long
as h : Zn → Z ∪ {+∞} is integrally convex.

6 Discrete Fenchel duality

6.1 General framework of Fenchel duality

The Fenchel duality is one of the expressions of the duality principle in the form
of a min-max relation between a pair of convex and concave functions ( f , g) and
their conjugate functions. As is well known, the existence of such min-max formula
guarantees the existence of a certificate of optimality for the problem of minimizing
f − g over R

n or Z
n .

First we recall the framework for functions in continuous variables. For f : Rn →
R ∪ {+∞} with dom f 
= ∅, the function f • : Rn → R ∪ {+∞} defined by

f •(p) := sup{〈p, x〉 − f (x) | x ∈ R
n} (p ∈ R

n) (6.1)

is called the conjugate (or convex conjugate) of f . For g : R
n → R ∪ {−∞} with

dom g 
= ∅, the function g◦ : Rn → R ∪ {−∞} defined by

g◦(p) := inf{〈p, x〉 − g(x) | x ∈ R
n} (p ∈ R

n) (6.2)

is called the concave conjugate of g. We have g◦(p) = − f •(−p) if g(x) = − f (x).
It follows from the definitions that

f (x)− g(x) ≥ g◦(p)− f •(p) (6.3)

for any x ∈ R
n and p ∈ R

n . The relation (6.3) is called weak duality.
The Fenchel duality theorem says that a min-max formula

inf{ f (x)− g(x) | x ∈ R
n} = sup{g◦(p)− f •(p) | p ∈ R

n} (6.4)

holds for convex and concave functions f : Rn → R∪{+∞} and g : Rn → R∪{−∞}
satisfying certain regularity conditions. The relation (6.4) is called strong duality in
contrast to weak duality. See Bauschke–Combettes [1, Section 15.2], Borwein–Lewis
[2, Theorem 3.3.5], Hiriart-Urruty–Lemaréchal [24, (2.3.2), p. 228], Rockafellar [55,
Theorem 31.1], Stoer–Witzgall [62, Corollary 5.1.4] for precise statements.

We now turn to functions in discrete variables. For any functions f : Z
n →

R ∪ {+∞} and g : Zn → R ∪ {−∞} we define

f •(p) = sup{〈p, x〉 − f (x) | x ∈ Z
n} (p ∈ R

n), (6.5)

g◦(p) = inf{〈p, x〉 − g(x) | x ∈ Z
n} (p ∈ R

n), (6.6)
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where dom f 
= ∅ and dom g 
= ∅ are assumed. In this case, the generic form of the
Fenchel duality reads:

inf{ f (x)− g(x) | x ∈ Z
n} = sup{g◦(p)− f •(p) | p ∈ R

n}, (6.7)

which is expected to be true when f and g are equipped with certain discrete convexity
and concavity, respectively. Moreover, when f and g are integer-valued ( f : Z

n →
Z∪{+∞} and g : Zn → Z∪{−∞}), we are particularly interested in the dual problem
with an integer vector, that is,

inf{ f (x)− g(x) | x ∈ Z
n} = sup{g◦(p)− f •(p) | p ∈ Z

n}. (6.8)

To relate the discrete case to the continuous case, it is convenient to consider the
convex envelope f of f and the concave envelope g of g, where g := −(−g), that
is, g is defined to be the negative of the convex envelope of −g. By the definitions of
convex and concave envelopes and conjugate functions we have

f (x) ≤ f (x), g(x) ≥ g(x) (x ∈ Z
n),

f
•
(p) = f •(p), g◦(p) = g◦(p) (p ∈ R

n)

as well as weak dualities

f (x)− g(x) ≥ g◦(p)− f •(p) (x ∈ Z
n, p ∈ R

n), (6.9)

f (x)− g(x) ≥ g◦(p)− f
•
(p) (x ∈ R

n, p ∈ R
n). (6.10)

Thus we have the following chain of inequalities:

P(Z) ≥ P(R) ≥ D(R) = D(R) ≥ D(Z) (6.11)

with notations

P(Z) := inf{ f (x)− g(x) | x ∈ Z
n},

P(R) := inf{ f (x)− g(x) | x ∈ R
n},

D(R) := sup{g◦(p)− f
•
(p) | p ∈ R

n},
D(R) := sup{g◦(p)− f •(p) | p ∈ R

n},
D(Z) := sup{g◦(p)− f •(p) | p ∈ Z

n}

for the optimal values of the problems, where P(·) stands for “Primal problem” and
D(·) for “Dual problem”.

The desired min-max relations (6.7) and (6.8) can be written as P(Z) = D(R) and
P(Z) = D(Z), respectively. The inequality between P(R) and D(R) in the middle
of (6.11) becomes an equality if the Fenchel duality (6.4) holds for ( f , g). The first
and the last inequality in (6.11) express possible discrepancy between discrete and
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continuous cases, and we are naturally concerned with when these inequalities turn
into equalities. The concept of subdifferential plays the essential role here.

For the subdifferential ∂ f (x) defined in (5.2) we observe that

p ∈ ∂ f (x) ⇐⇒ f (x)+ f •(p) = 〈p, x〉 (6.12)

holds for any p ∈ R
n and x ∈ dom f . Similarly, we have

p ∈ ∂ ′g(x) ⇐⇒ g(x)+ g◦(p) = 〈p, x〉 (6.13)

for any p ∈ R
n and x ∈ dom g, where ∂ ′g(x) means the concave version of the

subdifferential defined by

∂ ′g(x) = −(∂(−g))(x) = {p ∈ R
n | g(y)− g(x) ≤ 〈p, y − x〉 for all y ∈ Z

n}.
(6.14)

Suppose that the infimum P(Z) is attained by some x∗ ∈ Z
n . It follows from (6.9),

(6.12), and (6.13) that P(Z) = D(R) and the supremum D(R) is attained by p∗ ∈ R
n

if and only if p∗ ∈ ∂ f (x∗) ∩ ∂ ′g(x∗). Therefore, P(Z) = D(R) if

∂ f (x∗) ∩ ∂ ′g(x∗) 
= ∅. (6.15)

Furthermore, if

∂ f (x∗) ∩ ∂ ′g(x∗) ∩ Z
n 
= ∅, (6.16)

then we have P(Z) = D(Z). Thus (6.15) and (6.16), respectively, imply the Fenchel-
type min-max formulas (6.7) for real-valued functions and (6.8) for integer-valued
functions. It is noted that this implication does not presuppose the Fenchel duality
P(R) = D(R) for ( f , g).

When P(R) = D(R) is known to hold, the min-max relation P(Z) = D(R) for real-
valued functions follows, by (6.11), from P(Z) = P(R), where the latter condition
P(Z) = P(R) holds if

f − g = f − g. (6.17)

It is emphasized that (6.17) does not follow from the individual convex or concave-
extensibility of f and g. See Example 6.1 in Sect. 6.2.

6.2 Fenchel duality for integrally convex functions

The following two examples show that the min-max formula (6.7) or (6.8) is not
necessarily true when f and g are integrally convex and concave functions. (Naturally,
function g is called integrally concave if −g is integrally convex.)

123



1490 K. Murota, A. Tamura

Example 6.1 ( [43, Example 5.6]) Let f , g : Z2 → Z be defined as

f (x1, x2) = |x1 + x2 − 1|, g(x1, x2) = 1− |x1 − x2|.

The function f is integrally convex (actually M�-convex) and g is integrally concave
(actually L�-concave). We have

min
Z

{ f − g}> min
R

{ f − g}= max
R

{g◦ − f
•}= max

R

{g◦ − f •}= max
Z

{g◦ − f •}.
(0) (−1) (−1) (−1) (−1)

Thus the min-max identity (6.8) as well as (6.7) fails because of the primal integrality
gap P(Z) > P(R). Indeed, the condition f − g = f − g in (6.17) fails as follows. Let
h := f −g. Since h(0, 0) = h(1, 0) = h(0, 1) = h(1, 1) = 0, we have h(1/2, 1/2) =
0, whereas f (1/2, 1/2)− g(1/2, 1/2) = 0− 1 = −1. Thus f − g 
= f − g. �
Example 6.2 ( [43, Example 5.7]) Let f , g : Z2 → Z be defined as

f (x1, x2) = max(0, x1 + x2), g(x1, x2) = min(x1, x2).

The function f is integrally convex (actually M�-convex) and g is integrally concave
(actually L�-concave). We have

min
Z

{ f − g}= min
R

{ f − g}= max
R

{g◦ − f
•}= max

R

{g◦ − f •}> max
Z

{g◦ − f •}.
(0) (0) (0) (0) (−∞)

Although the min-max identity (6.7) with real-valued p holds, the formula (6.8) with
integer-valued p fails because of the dual integrality gap D(R) > D(Z). The optimal
value minZ{ f − g} = 0 is attained by x∗ = 0, at which the subdifferentials are given
by ∂ f (0) = {(p1, p2) | 0 ≤ p1 = p2 ≤ 1} and ∂ ′g(0) = {(p1, p2) | p1 + p2 =
1, 0 ≤ p1 ≤ 1}.We have ∂ f (0)∩∂ ′g(0) = {(1/2, 1/2)} and ∂ f (0)∩∂ ′g(0)∩Z

2 = ∅,
which shows the failure of (6.16). �

As the min-max formula (6.7) is not true (in general) when f and−g are integrally
convex, we are motivated to restrict g to a subclass of integrally concave functions,
while allowing f to be a general integrally convex function. However, the possibility
of g being M�-concave or L�-concave is denied by the above examples. That is, we
cannot hope for the combination of (integrally convex, M�-convex) nor (integrally
convex, L�-convex) for ( f ,−g). Furthermore, since a function in two variables is
M�-convex if and only if it is multimodular [32, Remark 2.2], the possibility of the
combination of (integrally convex, multimodular) for ( f ,−g) is also denied. Thus we
are motivated to consider the combination of (integrally convex, separable convex).

In the following we address the Fenchel-type min-max formula for a pair of an
integrally convex function and a separable concave function. A function � : Z

n →
R ∪ {−∞} in x = (x1, x2, . . . , xn) ∈ Z

n is called separable concave if it can be
represented as

�(x) = ψ1(x1)+ ψ2(x2)+ · · · + ψn(xn) (6.18)
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with univariate discrete concave functions ψi : Z → R ∪ {−∞}, which means, by
definition, that domψi is an interval of integers and

ψi (k − 1)+ ψi (k + 1) ≤ 2ψi (k) (k ∈ Z). (6.19)

The concave conjugate of � is denoted by �◦, that is,

�◦(p) = inf{〈p, x〉 −�(x) | x ∈ Z
n} (p ∈ R

n). (6.20)

This is a separable concave function represented as

�◦(p) = ψ◦1 (p1)+ ψ◦2 (p2)+ · · · + ψ◦n (pn), (6.21)

where

ψ◦i (l) = inf{kl − ψi (k) | k ∈ Z} (l ∈ R). (6.22)

It is often possible to obtain an explicit form of the (integral) conjugate function of an
(integer-valued) separable convex (or concave) function; see [14, 15].

The following is theFenchel-typemin-max formula for a pair of an integrally convex
function and a separable concave function. The case of integer-valued functions, which
is more interesting, is given in [51, Theorem 1.1], while we include here the case of
real-valued functions for completeness.

Theorem 6.1 Let f : Z
n → R ∪ {+∞} be an integrally convex function and � :

Z
n → R ∪ {−∞} a separable concave function. Assume that dom f ∩ dom� 
= ∅

and inf{ f (x)−�(x) | x ∈ Z
n} is attained by some x∗. Then

inf{ f (x)−�(x) | x ∈ Z
n} = sup{�◦(p)− f •(p) | p ∈ R

n} (6.23)

and the supremum in (6.23) is attained by some p∗ ∈ R
n. If, in addition, f and � are

integer-valued, then

inf{ f (x)−�(x) | x ∈ Z
n} = sup{�◦(p)− f •(p) | p ∈ Z

n} (6.24)

and the supremum in (6.24) is attained by some p∗ ∈ Z
n.

Proof The proof of the real-valued case (6.23) consists in showing (6.15) for ( f , g) =
( f , �), which is proved in Sect. 6.3. The integral case (6.24) has been proved in [51,
Theorem 1.1] by showing (6.16) for ( f , g) = ( f , �) as a consequence of box-integral
subdifferentiability described in Theorem 5.3. ��
Remark 6.1 In the integer-valued case, the existence of x∗ attaining the infimum in
(6.24) is guaranteed if (and only if) the set { f (x)−�(x) | x ∈ Z

n} of function values
is bounded from below. It is known [51, Lemma 3.2] that if the supremum on the
right-hand side of (6.24) is finite, then the infimum on the left-hand side is also finite.

�
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Theorem 6.1 implies a min-max theorem for separable convex minimization on a
box-integer polyhedron. The case of integer-valued functions, which is more interest-
ing, is stated in [51, Theorem 3.1]. We define notation μP (p) = inf{〈p, x〉 | x ∈ P}
for a polyhedron P .

Theorem 6.2 Let P (⊆ R
n) be a nonempty box-integer polyhedron, and 
 : Z

n →
R∪{+∞} a separable convex function. Assume that inf{
(x) | x ∈ P ∩Z

n} is (finite
and) attained by some x∗. Then

inf{
(x) | x ∈ P ∩ Z
n} = sup{μP (p)−
•(p) | p ∈ R

n} (6.25)

and the supremum is attained by some p∗ ∈ R
n. If, in addition, 
 is integer-valued,

then

inf{
(x) | x ∈ P ∩ Z
n} = sup{μP (p)−
•(p) | p ∈ Z

n} (6.26)

and the supremum is attained by some p∗ ∈ Z
n.

Proof Denote the indicator function of P ∩ Z
n by δ, which is an integer-valued inte-

grally convex function because P is a box-integer polyhedron. Then the statements
follow from Theorem 6.1 for f = δ and � = −
. ��

This theorem generalizes a recent result of Frank–Murota [15, Theorem 3.4], which
asserts themin-max formula (6.26) for integer-valued
when P is an integral box-TDI
polyhedron.

6.3 Proof of (6.23) for real-valued functions (Theorem 6.1)

In this section we prove the min-max formula (6.23) for real-valued functions in
Theorem 6.1. Let x∗ denote an element of dom f ∩ dom� (⊆ Z

n) that attains the
infimumin (6.23).According to the general frameworkdescribed inSect. 6.1, it suffices
to show ∂ f (x∗) ∩ ∂ ′�(x∗) 
= ∅.

Since f −� = f −� by Proposition 2.1 of [51], we have

inf
x∈Z

n
{ f (x)−�(x)} = inf

x∈R
n
{( f −�)(x)} = inf

x∈R
n
{ f (x)−�(x)},

which implies that x∗ is also a minimizer of f −� over R
n . Define α := inf{ f (x)−

�(x) | x ∈ Z
n} = f (x∗) − �(x∗) and f1(x) := f (x) − α for x ∈ Z

n . Then f1 is
an integrally convex function satisfying f1 ≥ � and f1(x∗) = �(x∗). The desired
nonemptiness ∂ f (x∗) ∩ ∂ ′�(x∗) 
= ∅ follows from Proposition 6.1 below applied to
( f , g) = ( f1, �).

Proposition 6.1 Let f : Z
n → R ∪ {+∞} and g : Z

n → R ∪ {−∞} be integrally
convex and concave functions, respectively, and x∗ ∈ dom f ∩ dom g. If f ≥ g on
R
n and f (x∗) = g(x∗), then ∂ f (x∗) ∩ ∂ ′g(x∗) 
= ∅.
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Proof We may assume that x∗ = 0 and f (0) = g(0) = 0. By (5.4) we have

∂ f (0) = {p ∈ R
n | 〈d(i), p〉 ≤ f (d(i)) for all i ∈ I }, (6.27)

∂ ′g(0) = {p ∈ R
n | 〈−d̂( j), p〉 ≤ −g(d̂( j)) for all j ∈ J } (6.28)

where {−1, 0,+1}n∩dom f is represented as {d(i) | i ∈ I } and {−1, 0,+1}n∩dom g
as {d̂( j) | j ∈ J }. By the Farkas lemma (or linear programming duality) [56], there
exists p ∈ ∂ f (0) ∩ ∂ ′g(0) if and only if

∑
i∈I

ui f (d
(i))−

∑
j∈J

v j g(d̂
( j)) ≥ 0 (6.29)

for any ui ≥ 0 and v j ≥ 0 satisfying
∑

i∈I ui d(i) − ∑
j∈J v j d̂( j) = 0. Let x̂ :=∑

i∈I ui d(i) = ∑
j∈J v j d̂( j), U := ∑

i∈I ui , and V := ∑
j∈J v j . By homogeneity

we may assumeU + V ≤ 1. Then x̂ ∈ dom f ∩ dom g. IfU > 0, it follows from the
convexity of f as well as f (0) = 0 and U ≤ 1 that

∑
i∈I

ui f (d
(i)) = U

∑
i∈I

ui
U

f (d(i)) ≥ U f (
∑
i∈I

ui
U
d(i)) = U f (

1

U
x̂) ≥ f (x̂).

The resulting inequality
∑

i∈I ui f (d(i)) ≥ f (x̂) is also true when U = 0. Similarly,
we obtain

∑
j∈J v j g(d̂( j)) ≤ g(x̂), whereas f (x̂) − g(x̂) ≥ 0 by the assumption

f ≥ g. Therefore, (6.29) holds. ��

6.4 Connection tomin-max theorems on bisubmodular functions

Let N = {1, 2, . . . , n} and denote by 3N the set of all pairs (X ,Y ) of disjoint subsets
X ,Y of N , that is, 3N = {(X ,Y ) | X ,Y ⊆ N , X ∩ Y = ∅}. A function f : 3N → R

is called bisubmodular if

f (X1,Y1)+ f (X2,Y2)

≥ f (X1 ∩ X2,Y1 ∩ Y2)+ f ((X1 ∪ X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪ X2))

holds for all (X1,Y1), (X2,Y2) ∈ 3N . In the following we assume f (∅,∅) = 0. The
associated bisubmodular polyhedron is defined by

P( f ) = {z ∈ R
n | z(X)− z(Y ) ≤ f (X ,Y ) for all (X ,Y ) ∈ 3N },

which, in turn, determines f by

f (X ,Y ) = max{z(X)− z(Y ) | z ∈ P( f )} ((X ,Y ) ∈ 3N ). (6.30)

If f is integer-valued, P( f ) is an integral polyhedron. The reader is referred to [17,
Section 3.5(b)] and [18] for bisubmodular functions and polyhedra.
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In a study of b-matching degree-sequence polyhedra, Cunningham–Green-Krótki
[9] obtained a min-max formula for the maximum component sum z(N ) = ∑

i∈N zi
of z ∈ P( f ) upper-bounded by a given vector w.

Theorem 6.3 ( [9, Theorem 4.6]) Let f : 3N → R be a bisubmodular function with
f (∅,∅) = 0, and w ∈ R

n. If there exists z ∈ P( f ) with z ≤ w, then

max{z(N ) | z ∈ P( f ), z ≤ w}
= min{ f (X ,Y )+ w(N \ X)+ w(Y ) | (X ,Y ) ∈ 3N }. (6.31)

Moreover, if f and w are integer-valued, then there exists an integral vector z that
attains the maximum on the left-hand side of (6.31).

The min-max formula (6.31) can be extended to a box constraint (with both upper
and lower bounds on z). This extension is given in (6.32) below. Although this formula
is not explicit in Fujishige–Patkar [21], it can be derived without difficulty from the
results of [21]; see Remark 6.2.

Theorem 6.4 ([21]) Let f : 3N → R be a bisubmodular function with f (∅,∅) = 0,
and α and β be real vectors with α ≤ β. If there exists z ∈ P( f ) with α ≤ z ≤ β,
then, for each (A, B) ∈ 3N , we have

max{z(A)− z(B) | z ∈ P( f ), α ≤ z ≤ β}
=min{ f (X ,Y )+β(A \ X)+β(Y \ B)−α(B \ Y )−α(X \ A) | (X ,Y ) ∈ 3N }.

(6.32)

Moreover, if f , α, and β are integer-valued, then there exists an integral vector z that
attains the maximum on the left-hand side of (6.32).

Theorem 6.4 can be derived from Theorem 6.1 as follows. Let f̂ denote the convex
extension of the given bisubmodular function f : 3N → R, as defined by Qi [54, Eqn
(5)] as a generalization of theLovász extension of a submodular function. This function
f̂ : R

n → R is a positively homogeneous convex function and it is an extension of
f in the sense that f̂ (1X − 1Y ) = f (X ,Y ) for all (X ,Y ) ∈ 3N . It follows from the
positive homogeneity of f̂ and Lemma 11 of [54] that

1

2

(
f̂ (x)+ f̂ (y)

)
≥ f̂

(
x + y

2

)
(x, y ∈ Z

n).

This implies, by Theorem 3.1, that the function f̂ restricted to Z
n is an integrally

convex function. In the following we denote the restriction of f̂ to Z
n also by f̂ .

Fix (A, B) ∈ 3N and let C = N \ (A∪ B). We define a separable concave function
�(x) =∑

i∈N ψi (xi ) with ψi : Z → R given as follows: For i ∈ A,

ψi (k) =
{

αi (k − 1) (k ≥ 1),

βi (k − 1) (k ≤ 1); (6.33)
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For i ∈ B,

ψi (k) =
{

αi (k + 1) (k ≥ −1),
βi (k + 1) (k ≤ −1); (6.34)

For i ∈ C ,

ψi (k) =
{

αi k (k ≥ 0),

βi k (k ≤ 0).
(6.35)

We applyTheorem6.1 to the integrally convex function f̂ and the separable concave
function �. For these functions the min-max formula (6.23) reads

min{ f̂ (x)−�(x) | x ∈ Z
n} = max{�◦(p)− f̂ •(p) | p ∈ R

n}, (6.36)

where (6.24) gives integrality of p in the integer-valued case. In the followingwe show

min in (6.36) = min in (6.32), (6.37)

max in (6.36) = max in (6.32) (6.38)

to obtain “max = min” in (6.32).
The proof of (6.37) consists of showing two equations

min{ f̂ (x)−�(x) | x ∈ Z
n} = min{ f̂ (x)−�(x) | x ∈ {−1, 0,+1}n}, (6.39)

min{ f̂ (x)−�(x) | x ∈ {−1, 0,+1}n} = min in (6.32). (6.40)

We first show (6.40) while postponing the proof of (6.39). On identifying a vector
x ∈ {−1, 0,+1}n with (X ,Y ) ∈ 3N by x = 1X −1Y , we have f̂ (x) = f̂ (1X −1Y ) =
f (X ,Y ) and

−�(x) = β(A \ X)+ β(Y \ B)− α(B \ Y )− α(X \ A),

which is easily verified from (6.33)–(6.35). Hence follows (6.40).
Next we turn to (6.38) for the maximum in (6.36). The conjugate function f̂ • is

equal to the indicator function of P( f ). That is, f̂ •(p) is equal to 0 if p ∈ P( f ), and
+∞ otherwise. The concave conjugate �◦ is given by

�◦(p) =
{
p(A)− p(B) (α ≤ p ≤ β),

−∞ (otherwise)
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for p ∈ R
n . Indeed, domψ◦i = [αi , βi ]R for all i ∈ N and, for l ∈ [αi , βi ]R, we have

ψ◦i (l) =

⎧⎪⎨
⎪⎩
l (i ∈ A),

−l (i ∈ B),

0 (i ∈ C)

from (6.33), (6.34), and (6.35). Therefore, we have

max{�◦(p)− f̂ •(p) | p ∈ R
n}

= max{p(A)− p(B) | p ∈ P( f ), α ≤ p ≤ β} = max in (6.32), (6.41)

where the variable p corresponds to z in (6.32).
It remains to show (6.39). The function f̂ − � is a polyhedral convex function

and is bounded from below since the value of (6.41) is finite. Therefore, f̂ − �

has a minimizer. Let x̂ ∈ Z
n be a minimizer of f̂ − � with ‖x̂‖∞ minimum. To

prove by contradiction, assume ‖x̂‖∞ ≥ 2. Define U = {i ∈ N | x̂i = ‖x̂‖∞} and
V = {i ∈ N | x̂i = −‖x̂‖∞}, and let d = 1U − 1V . By (6.33)–(6.35), each ψi is a
linear (affine) function on each of the intervals (−∞,−1] and [+1,+∞). Combining
this with the fundamental property of the extension f̂ , we see that there exists a vector
q ∈ R

n for which

( f̂ −�)(x̂ ± d) = ( f̂ −�)(x̂)± ( f (U , V )− 〈q, d〉)

holds, where the double-sign corresponds. Since x̂ is a minimizer of f̂ −�, we must
have f (U , V )− 〈q, d〉 = 0. This implies, however, that x̂ − d is also a minimizer of
f̂ −�, whereas we have ‖x̂−d‖∞ < ‖x̂‖∞, a contradiction.We have thus completed
the derivation of Theorem 6.4 from Theorem 6.1.

Remark 6.2 The min-max formula (6.32) can be derived from the results of [21] as
follows. Given α, β ∈ R

n with α ≤ β, we can consider a bisubmodular function wαβ

defined by wαβ(X ,Y ) = β(X)− α(Y ) for disjoint subsets X and Y . The convolution
of f with w = wαβ is defined (and denoted) as

( f ◦ w)(A, B)

=min{ f (X ,Y )+ w(A \ X , B \ Y )+ w(Y \ B, X \ A) | (X ,Y ) ∈ 3N }
=min{ f (X ,Y )+β(A \ X)+β(Y \ B)−α(B \ Y )−α(X \ A) | (X ,Y ) ∈ 3N }.

(6.42)

This function is bisubmodular [21, Theorem 3.2]. By (6.30) applied to f ◦ w, we
obtain

( f ◦ w)(A, B) = max{z(A)− z(B) | z ∈ P( f ◦ w)} ((A, B) ∈ 3N ). (6.43)
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On the other hand, Theorem 3.3 of [21] shows

P( f ◦ w) = P( f ) ∩ P(w) = {z | z ∈ P( f ), α ≤ z ≤ β}. (6.44)

By substituting this expression into P( f ◦ w) on the right-hand side of (6.43) we
obtain

( f ◦ w)(A, B) = max{z(A)− z(B) | z ∈ P( f ◦ w)}
= max{z(A)− z(B) | z ∈ P( f ), α ≤ z ≤ β}. (6.45)

The combination of (6.42) and (6.45) gives the desired equality (6.32).
Finally we mention that the paper [21] considers a more general setting where

α ∈ (R ∪ {−∞})n , β ∈ (R ∪ {+∞})n , and f is a bisubmodular function defined on
a subset F of 3N such that

(X1,Y1), (X2,Y2) ∈ F �⇒ (X1 ∩ X2,Y1 ∩ Y2) ∈ F,

(X1,Y1), (X2,Y2) ∈ F �⇒ ((X1 ∪ X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪ X2)) ∈ F.

The min-max formula (6.32) remains true in this general case. �

Acknowledgements The authors are thankful to Satoko Moriguchi and Fabio Tardella for recent joint
work on integrally convex functions, and to Satoru Fujishige for a suggestive comment that led to Sect. 6.4.
Detailed comments from the referees were helpful to improve the paper. This work was supported by
JSPS/MEXT KAKENHI JP20K11697, JP20H00609, and JP21H04979.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces.
Springer, New York (2011)

2. Borwein, J.M., Lewis, A.S.: Convex analysis and nonlinear optimization: theory and examples, 2nd
edn. Springer, New York (2006)

3. Brändén, P., Huh, J.: Lorentzian polynomials. Ann. Math. 192, 821–891 (2020)
4. Chen, X., Li, M.: M�-convexity and its applications in operations. Oper. Res. 69, 1396–1408 (2021)
5. Chen, X., Li, M.: Discrete convex analysis and its applications in operations: A survey. Manage. Sci.

30, 1904–1926 (2021)
6. Chervet, P., Grappe, R., Robert, L.-H.: Box-total dual integrality, box-integrality, and equimodular

matrices. Math Program Ser. A 188, 319–349 (2021)
7. Cook, W.: Operations that preserve total dual integrality. Oper. Res. Lett. 2, 31–35 (1983)
8. Cook, W.: On box totally dual integral polyhedra. Math. Program. 34, 48–61 (1986)
9. Cunningham,W.H.,Green-Krótki, J.: b-matching degree-sequence polyhedra. Combinatorica 11, 219–

230 (1991)

123

http://creativecommons.org/licenses/by/4.0/


1498 K. Murota, A. Tamura

10. Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N.,
Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach,
New York (1970); Also in: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization—
Eureka, You Shrink! Lecture Notes in Computer Science, vol. 2570, pp. 11–26. Springer, Berlin (2003)

11. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Ann. Discrete Math.
1, 185–204 (1977)

12. Edmonds, J., Giles, R.: Total dual integrality of linear inequality systems. In: Pulleyblank, W.R. (ed.)
Progress in combinatorial optimization, pp. 117–129. Academic Press, New York (1984)

13. Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ricerca operativa 53, 3–44 (1990)
14. Frank, F., Murota, K.: Discrete decreasing minimization, Part II: Views from discrete convex analysis,

arXiv: http://arxiv.org/abs/1808.08477 (2018). Ver 4. Accessed June 30, 2020
15. Frank, F., Murota, K.: A discrete convex min-max formula for box-TDI polyhedra. Math. Oper. Res.

47, 1026–1047 (2022)
16. Fujishige, S.: Theory of submodular programs: A Fenchel-type min-max theorem and subgradients of

submodular functions. Math. Program. 29, 142–155 (1984)
17. Fujishige, S.: Submodular functions and optimization, 2nd edn. Annals of discrete mathematics, vol.

58. Elsevier, Amsterdam (2005)
18. Fujishige, S.: Bisubmodular polyhedra, simplicial divisions, and discrete convexity. Discret. Optim.

12, 115–120 (2014)
19. Fujishige, S.: Greedy systems of linear inequalities and lexicographically optimal solutions. RAIRO

Oper Res 53, 1929–1935 (2019)
20. Fujishige, S.: A note on integrality of convex polyhedra represented by linear inequalities with {0,±1}-

coefficients. RIMS preprint 1953 (revised version), Research Institute for Mathematical Sciences,
Kyoto University, Kyoto. (2021)

21. Fujishige, S., Patkar, S.B.: The box convolution and theDilworth truncation of bisubmodular functions.
Report No. 94823-OR, Forschungsinstitut für Diskrete Mathematik, Universität Bonn (June 1994)

22. Fujishige, S., Tardella, F.: Discrete 2-convex functions. Math. Program. 195, 831–854 (2022)
23. Hajek, B.: Extremal splittings of point processes. Math. Oper. Res. 10, 543–556 (1985)
24. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)
25. Iimura, T.: Discrete modeling of economic equilibrium problems. Pacific J Optim 6, 57–64 (2010)
26. Iimura, T., Murota, K., Tamura, A.: Discrete fixed point theorem reconsidered. J. Math. Econ. 41,

1030–1036 (2005)
27. Iimura, T., Watanabe, T.: Existence of a pure strategy equilibrium in finite symmetric games where

payoff functions are integrally concave. Discret. Appl. Math. 166, 26–33 (2014)
28. Iimura, T., Yang, Z.: A study on the demand and response correspondences in the presence of indivis-

ibilities. J. Fixed Point Theory Appl. 6, 333–349 (2009)
29. Iwata, S., Shigeno, M.: Conjugate scaling algorithm for Fenchel-type duality in discrete convex opti-

mization. SIAM J. Optim. 13, 204–211 (2002)
30. van der Laan, G., Talman, D., Yang, Z.: Solving discrete systems of nonlinear equations. Eur. J. Oper.

Res. 214, 493–500 (2011)
31. Maehara, T., Murota, K.: A framework of discrete DC programming by discrete convex analysis. Math

Program, Ser A 152, 435–466 (2015)
32. Moriguchi, S., Murota, K.: On fundamental operations for multimodular functions. J Oper Res Soc

Jpn 62, 53–63 (2019)
33. Moriguchi, S., Murota, K.: Projection and convolution operations for integrally convex functions.

Discret. Appl. Math. 255, 283–298 (2019)
34. Moriguchi, S.,Murota, K.: Inclusion and intersection relations between fundamental classes of discrete

convex functions. J. Oper. Res. Soc. Jpn. 66 (2023) (to appear)
35. Moriguchi, S., Murota, K.: Note on the polyhedral description of the Minkowski sum of two L-convex

sets. Jpn. J. Ind. Appl. Math. 40, 223–263 (2023)
36. Moriguchi, S.,Murota,K., Shioura,A.: Scaling algorithms forM-convex functionminimization. IEICE

Trans Fund Electron Commun Comput Sci. E85–A, 922–929 (2002)
37. Moriguchi, S., Murota, K., Tamura, A., Tardella, F.: Scaling, proximity, and optimization of integrally

convex functions. Math. Program. 175, 119–154 (2019)
38. Moriguchi, S., Murota, K., Tamura, A., Tardella, F.: Discrete midpoint convexity. Math. Oper. Res. 45,

99–128 (2020)
39. Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

123

http://arxiv.org/1808.08477


Recent progress on integrally convex functions 1499

40. Murota, K.: Discrete convex analysis. Society for Industrial and Applied Mathematics, Philadelphia
(2003)

41. Murota, K.: Note on multimodularity and L-convexity. Math. Oper. Res. 30, 658–661 (2005)
42. Murota, K.: Primer of discrete convex analysis-discrete versus continuous optimization. Kyoritsu

Publishing, Tokyo (2007). (In Japanese)
43. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász, L., Vygen, J.

(eds.) Research trends in combinatorial optimization, chapter 11, pp. 219–260. Springer, Berlin (2009)
44. Murota, K.: Discrete convex analysis: a tool for economics and game theory. J Mech Inst Des 1,

151–273 (2016)
45. Murota, K.: A survey of fundamental operations on discrete convex functions of various kinds. Optim

Methods Softw 36, 472–518 (2021)
46. Murota, K.: On basic operations related to network induction of discrete convex functions. Optim

Methods Softw 36, 519–559 (2021)
47. Murota, K., Shioura, A.: Relationship of M-/L-convex functions with discrete convex functions by

Miller and by Favati-Tardella. Discret. Appl. Math. 115, 151–176 (2001)
48. Murota, K., Sugihara, M.: Linear algebra II: advanced topics for applications. World Scientific and

Maruzen Publishing, Singapore, Tokyo (2022)
49. Murota, K., Tamura, A.: Proximity theorems of discrete convex functions.Math. Program. 99, 539–562

(2004)
50. Murota, K., Tamura, A.: Integrality of subgradients and biconjugates of integrally convex functions.

Optim Lett 14, 195–208 (2020)
51. Murota, K., Tamura, A.: Discrete Fenchel duality for a pair of integrally convex and separable convex

functions. Jpn. J. Ind. Appl. Math. 39, 599–630 (2022)
52. Murota, K., Tamura, A.: Decomposition of an integrally convex set into a Minkowski sum of bounded

and conic integrally convex sets. In preparation
53. Paes Leme, R.: Gross substitutability: an algorithmic survey. Games Econom. Behav. 106, 294–316

(2017)
54. Qi, L.: Directed submodularity, ditroids and directed submodular flows. Math. Program. 42, 579–599

(1988)
55. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)
56. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
57. Schrijver, A.: Combinatorial optimization-polyhedra and efficiency. Springer, Heidelberg (2003)
58. Shioura, A.: Algorithms for L-convex function minimization: connection between discrete convex

analysis and other research areas. J Oper Res Soc Jpn 60, 216–243 (2017)
59. Shioura, A., Tamura, A.: Gross substitutes condition and discrete concavity for multi-unit valuations:

a survey. J Oper Res Soc Jpn 58, 61–103 (2015)
60. Simchi-Levi, D., Chen, X., Bramel, J.: The Logic of Logistics: Theory, Algorithms, and Applications

for Logistics Management, 3rd edn. Springer, New York (2014)
61. Singer, I.: A Fenchel-Rockafellar type duality theorem for maximization. Bull. Aust. Math. Soc. 20,

193–198 (1979)
62. Stoer, J., Witzgall, C.: Convexity and optimization in finite dimensions I. Springer, Berlin (1970)
63. Tamura, A.: Discrete convex analysis and game theory. Asakura, Tokyo (2009). (In Japanese)
64. Tamura, A., Tsurumi, K.: Directed discrete midpoint convexity. Jpn. J. Ind. Appl. Math. 38, 1–37

(2021)
65. Toland, J.F.: A duality principle for non-convex optimisation and the calculus of variations. Arch.

Ration. Mech. Anal. 71, 41–61 (1979)
66. Tuy, H.: D.C. optimization: theory, methods and algorithms. In: Horst, R., Pardalos, P.M. (eds.) Hand-

book of global optimization, pp. 149–216. Kluwer Academic Publishers, Dordrecht (1995)
67. Yang, Z.: On the solutions of discrete nonlinear complementarity and related problems. Math. Oper.

Res. 33, 976–990 (2008)
68. Yang, Z.: Discrete fixed point analysis and its applications. J. Fixed Point Theory Appl. 6, 351–371

(2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Recent progress on integrally convex functions
	Abstract
	1 Introduction
	2 Integrally convex sets
	2.1 Hole-free property
	2.2 Definition of integrally convex sets
	2.3 Polyhedral aspects
	Box-integer and box-TDI polyhedra

	2.4 Basic operations

	3 Integrally convex functions
	3.1 Convex extension
	3.2 Definition of integrally convex functions
	3.3 Examples
	3.4 Characterizations
	3.5 Simplicial divisions
	3.6 Basic operations
	3.7 Technical supplement

	4 Minimization and minimizers
	4.1 Optimality conditions
	4.2 Minimizer sets
	4.3 Proximity theorems
	4.4 Scaling algorithm

	5 Subgradient and biconjugacy
	5.1 Subgradient
	5.2 Integral subgradient
	5.3 Biconjugacy
	5.4 Discrete DC programming

	6 Discrete Fenchel duality
	6.1 General framework of Fenchel duality
	6.2 Fenchel duality for integrally convex functions
	6.3 Proof of (6.23) for real-valued functions (Theorem 6.1)
	6.4 Connection to min-max theorems on bisubmodular functions

	Acknowledgements
	References




