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Abstract
We investigate the approximation formulas that were proposed by Tanaka & Sugihara
(IMA J. Numer. Anal. 39(4):1957–1984, 2019), in weighted Hardy spaces, which
are analytic function spaces with certain asymptotic decay. Under the criterion of
minimum worst error of n-point approximation formulas, we demonstrate that the
formulas are nearly optimal. We also obtain the upper bounds of the approximation
errors that coincide with the existing heuristic bounds in asymptotic order by a duality
theorem for the minimization problem of potential energy.
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1 Introduction

By taking over the arguments of [23], Tanaka & Sugihara [24] proposed an algorithm
to design accurate approximation formulas in function spaces called weighted Hardy
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spaces defined by

H
∞(Dd , w) :=

{
f : Dd → C

∣∣∣ f is analytic on Dd , sup
z∈Dd

∣∣∣∣ f (z)w(z)

∣∣∣∣ < ∞
}

, (1)

where d > 0, Dd := {z ∈ C | | Im z| < d}, and w is a weight function characterized
later in Sect. 2.1. The spacesH∞(Dd , w) are often considered as spaces of transformed
functions for well-used sinc approximation formulas shown later in (2). The objective
of [23] and [24] was to provide formulas outperforming the sinc formulas. However,
their studies only provided heuristic analyses on the proposed formulas without any
theoretical guarantees, although their methods have shown superiority to the sinc
approximation formulas. In this study, we mathematically

(1) prove near optimality of the formulas, and
(2) provide a general upper bound of the errors of the proposed formulas and show

that the bound coincides in asymptotic order with the heuristic bound derived by
[23].

Below we describe the background of this study more precisely. The spaces
H

∞(Dd , w) appear in literature as spaces of variable-transformed functions [18, 19,
21, 25]. For example, the double exponential (DE) transform, which is well-used in
numerical analysis [22], has the form

f (x) = g
(
tanh

(π

2
sinh(x)

))

and shows a double-exponential decay. Also, TANH transform g(tanh(x/2)) is com-
monly used [2, 15]. These variable transformations are employed for the accurate
approximation of functions by yielding functions with rapid decay on Dd , which
enables us to neglect the values of the functions for large |x |. This motivates us to ana-
lyze the approximation possibility over weighted Hardy spaces with general weight
functions w. After Sugihara [21] demonstrated near optimality of sinc approximation
formulas

f (x) ≈
k=N+∑
k=N−

f (kh)sinc
( x
h

− k
)

(2)

for several weight functions w, attempts to construct an optimal formula for general
weight functions was started in the literature.

For this purpose, Tanaka et al. [23] employed potential theoretical arguments to
generate sampling points for the approximation of functions. Furthermore, Tanaka &
Sugihara [24] simplified the arguments and proposed accurate formulas Ln[a∗; f ](x)
given later by (6) with special sets a∗ of sampling points. The formulas Ln[a∗; f ](x)
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Convergence analysis via duality for potential energy minimization 107

outperform the sinc methods for functions f ∈ H
∞(Dd , w). The authors showed that

sup
‖ f ‖≤1, x∈R

| f (x) − Ln[a∗; f ](x)| ≤ exp

(
− FD

K ,Q(n)

n − 1

)
, (3)

where ‖ f ‖ is a norm of f ∈ H
∞(Dd , w) and FD

K ,Q(n) is determined later in (13)
by a “discrete” energy minimization problem. Furthermore, they considered the min-
imum worst error Emin

n (H∞(Dd , w)) in (5) of n-point approximation formulas in
H

∞(Dd , w) and evaluated it as

exp

(
− FC

K ,Q(n)

n

)
≤ Emin

n (H∞(Dd , w)), (4)

where FC
K ,Q(n) is determined later in (11) by a “continuous counterpart” of the

above energy minimization problem. The following problems about the formula
Ln[a∗; f ](x) were left unsolved in [24].

(i) Since (the RHS of (4))≤ (the LHS of (3)), the formula Ln[a∗; f ](x) is assured
of “near optimality” if FC

K ,Q(n) and FD
K ,Q(n) are close. However, their difference

was not estimated.
(ii) To estimate the convergence rate of the error in the LHS of (3), we need to know

how FD
K ,Q(n) depends on n. However, it was not known.

In this paper, we provide solutions to these problems. Our contributions (1) and (2)
mentioned in the first paragraph of this section correspond to the solutions to problems
(i) and (ii), respectively. More precisely, we show the following statements.

(1) We show an evaluation like

FD
K ,Q(n) � FC

K ,Q(n) � 2FD
K ,Q(n).

Its rigorous version is given by Theorem 23 in Sect. 2.3. The quantities FD
K ,Q(n)

and FC
K ,Q(n) were obtained from the optimal solutions of the “discrete” energy

minimization problem and its “continuous counterpart”, respectively. Therefore
we construct a feasible solution for the latter using the optimal solution of the
former to show this theorem.

(2) We show an inequality

FC
K ,Q(n)

n
≥ Q(αn)

2
,

where Q(x) = − logw(x) and αn is determined by a tractable inequality. Its
details are given by Theorem 24 in Sect. 2.3. By combining this inequality, the
above statement (1), and Inequality (3), we obtain explicit convergence rates of
the proposed formulas. To show this theorem, we consider the dual problem of the
“continuous” energy minimization problem and provide its feasible solution. For
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108 S. Hayakawa, K. Tanaka

preparation, we present a primal-dual theory of the energy minimization problem
in Sect. 4.

As a result, we explicitly obtain lower bounds of FC
K ,Q(n) and demonstrate that the

rates of lower bounds coincide with those of heuristic bounds in [23].
The rest of this paper is organized as follows. In Sect. 2, we present a mathemat-

ical overview of the existing studies and describe our main results as mathematical
statements. Section3 describes the proof of the first result, i.e., Theorem 23. Section4
contains general arguments, which introduce the concept of “positive semi-definite
in measure”. Then, we show that the problem under our interest is a special case of
that concept and derive the duality theorem. The evaluations for the second result,
described by Theorem 24, are given in Sect. 5. We compare the bounds with those in
[23] in Sect. 6. Finally, we describe the concluding remarks in Sect. 7.

2 Mathematical preliminaries andmain results

2.1 General settings

We first give some definitions and formulate the problem mathematically. Let d > 0
and define the strip region Dd := {z ∈ C | | Im z| < d}. Throughout this paper, a
weight function w : Dd → C is supposed to satisfy the following conditions:

1. w is analytic and does not vanish over the domain Dd and takes values in (0, 1]
on R;

2. w satisfies limx→±∞
∫ d
−d |w(x + iy)| dy = 0 and limy↗d

∫ ∞
−∞(|w(x + iy)| +

|w(x − iy)|) dx < ∞;
3. logw is strictly concave on R.

For a weight function with the above conditions, we define the weighted Hardy space
H

∞(Dd , w) on Dd in (1). We define

‖ f ‖ := sup
z∈Dd

∣∣∣∣ f (z)w(z)

∣∣∣∣
for f ∈ H

∞(Dd , w), and the expression ‖ f ‖ < ∞ shall also imply f ∈ H
∞(Dd , w)

in the following.
For an approximation formula over H∞(Dd , w), an evaluation criterion needs to

be defined. Based on [21] and [24], we adopt the minimum worst-case error

Emin
n (H∞(Dd , w))

:= inf

⎧⎨
⎩ sup

‖ f ‖≤1, x∈R

∣∣∣∣∣∣ f (x) −
l∑

j=1

n j−1∑
k=0

f (k)(a j )φ jk(x)

∣∣∣∣∣∣
∣∣∣ 1 ≤ l ≤ n, n1 + · · · + nl = n,

a j ∈ Dd are distinct,
φ jk : Dd → C are analytic

⎫⎬
⎭
(5)

as the optimal performance over all possible n-point interpolation formulas on R,
which is applicable to any f ∈ H

∞(Dd , w).
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Convergence analysis via duality for potential energy minimization 109

2.2 Properties of approximation formulas to be analyzed

Let us introduce some functions dependent on an n-sequence a = {a j }nj=1 ⊂ R as
follows.

Td(x) := tanh
( π

4d
x
)

,

Bn(x; a,Dd) :=
n∏
j=1

Td(x) − Td(a j )

1 − Td(a j )Td(x)
,

Bn;k(x, a,Dd) :=
∏

1≤ j≤n,
j �=k

Td(x) − Td(a j )

1 − Td(a j )Td(x)
.

Using these functions, we can give an n-point interpolation formula

Ln[a; f ](x) :=
n∑

k=1

f (ak)
Bn;k(x; a,Dd)w(x)

Bn;k(ak; a,Dd)w(ak)

T ′
d(x − ak)

T ′
d(0)

, (6)

which is known to characterize the value Emin
n (H∞(Dd , w)) as follows.

Proposition 21 [21, 24] We have an upper bound of the error of (6) as

sup
‖ f ‖≤1, x∈R

| f (x) − Ln[a; f ](x)| ≤ sup
x∈R

|Bn(x; a,Dd)w(x)|

for any fixed sequence a = {a j }nj=1 ⊂ R (of distinct points). Moreover, by taking
infimum of the above expression over all n-sequences, it holds that

Emin
n (H∞(Dd , w)) = inf

a j∈R
sup

‖ f ‖≤1, x∈R
| f (x) − Ln[a; f ](x)|

= inf
a j∈R

sup
x∈R

|Bn(x; a,Dd)w(x)|.

By this assertion, it is enough to consider interpolation formulas of the form (6).
Additionally, this motivates us to analyze the value supx∈R |Bn(x; a,Dd)w(x)|, which
is simpler than the worst-case error of (6). In [23] and [24],

− log

(
inf
a j∈R

sup
x∈R

|Bn(x; a,Dd)w(x)|
)

is treated as an optimal value of an optimization problem (justifiable by the addition
rule of tanh)

(DC)
maximize inf

x∈R

(
n∑

i=1

K (x − ai ) + Q(x)

)

subject to a1 < · · · < an,
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110 S. Hayakawa, K. Tanaka

where K and Q are defined by

K (x) := − log |Td(x)|
(
= − log

∣∣∣tanh ( π

4d
x
)∣∣∣) , (7)

Q(x) := − logw(x). (8)

They considered a continuous relaxation of (DC) as

(CT)
maximize inf

x∈R

(∫
R

K (x − y) dμ(y) + Q(x)

)
subject to μ ∈ Mc(R, n),

where, we define M(R, n) as the set of all (positive) Borel measures μ over R with
μ(R) = n and

Mc(R, n) := {μ ∈ M(R, n) | suppμ is compact}.

Because each feasible solution of (DC) can be interpreted as a combination of δ-
measures being a feasible solution of (CT),

(the optimal value of (DC)) ≤ (the optimal value of (CT)) (9)

Potential theoretical arguments [5, 14, 24] lead to the following proposition.

Proposition 22 [24, Theorem 2.4, 2.5] The energy of μ ∈ M(R, n) is defined as

ICn (μ) :=
∫
R

∫
R

K (x − y) dμ(x) dμ(y) + 2
∫
R

Q(x) dμ(x). (10)

Then, there exists a unique minimizer μ∗
n over M(R, n) of ICn (μ) with a compact

support and μ∗
n is also an optimal solution of (CT). Furthermore, if we define

FC
K ,Q(n) := ICn (μ∗

n) −
∫
R

Q(x) dμ∗
n(x)(

=
∫
R

∫
R

K (x − y) dμ∗
n(x) dμ

∗
n(y) +

∫
R

Q(x) dμ∗
n(x)

)
, (11)

the optimal value of (CT) coincides with
FC
K ,Q(n)

n
.

Following this proposition, Tanaka & Sugihara [24] considered a discrete coun-
terpart of ICn (μ) and FC

K ,Q , which are defined for a = {ai }ni=1 (a1 < · · · < an)
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as

IDK ,Q(a) :=
∑
i �= j

K (ai − a j ) + 2(n − 1)

n

n∑
i=1

Q(ai ), (12)

FD
K ,Q(n) := IDK ,Q(a∗) − n − 1

n

n∑
i=1

Q(a∗
i ), (13)

where a∗ = {a∗
i }ni=1 is the uniqueminimizer of IDK ,Q(a), which certainly exists accord-

ing to Theorem 3.3 in [24]. We can easily obtain a∗ numerically as it is a solution of
the convex programming and it is known to satisfy [24, Theorem 4.1]

sup
‖ f ‖≤1, x∈R

| f (x) − Ln[a∗; f ](x)| ≤ exp

(
− FD

K ,Q(n)

n − 1

)
. (14)

Then Emin
n (H∞(Dd , w)) is evaluated as [24, Remark 4.2]

exp

(
− FC

K ,Q(n)

n

)
≤ Emin

n (H∞(Dd , w)) ≤ exp

(
− FD

K ,Q(n)

n − 1

)
.

Indeed, the left inequality holds true by (9) and Proposition 22 and the right inequality
follows from (14).By this evaluation,we can consider Ln[a∗; f ](x) as a nearly optimal
approximation formula if FC

K ,Q(n)/n and FD
K ,Q(n)/(n − 1) are sufficiently close.

2.3 Main results

In this paper, we demonstrate the following two theorems. The first and second theo-
rems, respectively, correspond to (1) and (2) in Sect. 1.

Theorem 23 For n ≥ 2, the following holds true:

FD
K ,Q(n)

n − 1
≤ FC

K ,Q(n)

n
≤ n

n − 1

(
2FD

K ,Q(n)

n − 1
+ (3 + log 2)

)
.

Theorem 24 Suppose w is even on R. For αn > 0 that satisfies

2αn

π tanh(d)

Q(αn)
2 + Q′(αn)

2

Q(αn)
≤ n,

we have

FC
K ,Q(n)

n
≥ Q(αn)

2
.
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112 S. Hayakawa, K. Tanaka

Theorem 23 shows the near optimality of the approximation formula Ln[a∗; f ](x).
In addition, Theorem 24 (combined with Theorem 23) gives an explicit upper bound
of Emin

n (H∞(Dd , w)). We describe these results by the following theorem.

Theorem 25 Let w be a weight function and let K and Q be given by (7) and (8),
respectively. In addition, let a∗ = {a∗

i }ni=1 be the unique minimizer of I
D
K ,Q(a) and let

Ln[a∗; f ](x) be the formula given by (6) with a = a∗. Then, for arbitrary ε > 0, we
have

sup
‖ f ‖≤1, x∈R

| f (x) − Ln[a∗; f ](x)| ≤
√
2e3Emin

n (H∞(Dd , w))
1

2+ε

for each sufficiently large n. In addition, we have

Emin
n (H∞(Dd , w)) ≤

√
2e3 exp

(
−n − 1

4n
Q(αn)

)
.

2.4 Basic ideas to show themain results

The left inequality of Theorem 23 is from Theorems 3.4 and 3.5 in [24]. To prove the
right inequality of Theorem 23, we consider the optimization problem

(P)
minimize

∫
R

∫
R

K (x − y) dμ(x) dμ(y) + 2
∫
R

Q(x) dμ(x)

subject to μ ∈ M(R, n),

whose solution provides FC
K ,Q(n) as shown in Proposition 22. The quantity FD

K ,Q(n) is
obtained from the optimal solution of a discrete counterpart of (P) given by (12). Then,
we construct a feasible solution of (P) given later by (16) from the optimal solution
of the discrete counterpart. By using the feasible solution, we bound FC

K ,Q(n) from

above by using FD
K ,Q(n).

To prove Theorem 24, we need a lower bound of the optimal value of (P). However,
because (P) is a minimization problem, any concrete feasible solution does not help
us. Therefore, we prove that (P) can be regarded as an infinite-dimensional convex
quadratic programming, as K is positive semi-definite in measure (Definition 41), and
take the dual problem [1, 6]. We also show that the dual problem

(D)

maximize −
∫
R

∫
R

K (x − y) dν(x) dν(y) + 2ns

subject to
ν is a signed Borel measure

s −
∫
R

K (· − y) dν(y) ≤ Q

(15)

satisfies the weak and strong duality (Theorem 43), i.e., the optimal value of (D)
coincides with that of (P). By this, we can obtain a lower bound for the optimal value
of (P), taking concrete ν and s. The practical advantage of taking (D) is that ν can be
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Convergence analysis via duality for potential energy minimization 113

a signed measure (though we indeed deal with a little wider class in Sect. 4), which
means that we can define ν as some Fourier transform of the symmetric function,
without confirming the non-negativity. This solves one of the improper points of the
evaluation in [23].

Remark 1 Problem (D) in (15) needs to be more rigorously stated to realize a primal-
dual theory for (P) and (D). In Sect. 4, we provide a rigorous form of (D) by introducing
a set SK for ν.

3 Proof of Theorem 23

To prove Theorem 23, we prepare the following lemmas.

Lemma 31 For arbitrary t > 0, the following holds true.

∫ 1

0
K (t x) dx ≤ K (t) + 1.

Proof Consider the function g(x) := K (x) + log
(

π
4d x

)
defined for x > 0. We first

prove that g(x) is strictly increasing and satisfies limx↘0 g(x) = 0. Let h(x) :=
exp

(
g
( 2d

π
x
))
. Then, we have

h(x) = x

2 tanh x
2

= x(ex + 1)

2(ex − 1)

and

h′(x) = (xex + ex + 1)(ex − 1) − x(ex + 1)ex

2(ex − 1)2
= e2x − 2xex − 1

2(ex − 1)2
.

Because (e2x − 2xex − 1)′ = 2(e2x − ex − xex ) = 2ex (ex − 1− x) is valid, we have
h′(x) > 0 for x > 0. Evidently, we also have limx↘0 h(x) = 1. Thus, g satisfies the
above properties.

Because g is positive and increasing,
∫ 1
0 g(t x) dx ≤ g(t) is valid. Therefore, we

have ∫ 1

0
K (t x) dx =

∫ 1

0
g(t x) dx −

∫ 1

0
log

( π

4d
tx
)
dx

≤ g(t) − log
( π

4d
t
)

+ 1 = K (t) + 1

as desired. ��
Lemma 32 For arbitrary x > 0, the following holds true.

K
( x
2

)
≤ K (x) + log 2.
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Proof By the definition of K , the assertion follows from the fact that tanh x ≤ 2 tanh x
2 .��

We can now prove the first theorem.

Proof of Theorem 23 The left inequality is from Theorem 3.4 and 3.5 in [24].
Let us prove the right inequality. Let a = (a1, . . . , an) (with a1 < · · · < an) be the

minimizer of the discrete energy, satisfying

FD
K ,Q(n) =

∑
i �= j

K (ai − a j ) + n − 1

n

n∑
i=1

Q(ai ).

Let μ be a measure with the density function p defined by

p(x) =
{

n
(n−1)(ai+1−ai )

(x ∈ [ai , ai+1), i = 1, . . . , n − 1),

0 (otherwise).
(16)

Then, we have

FC
K ,Q(n) ≤ ICn (μ∗

n) ≤ ICn (μ). (17)

In the following, we obtain an upper bound of ICn (μ). First, we evaluate
∫
R

∫
R
K (x −

y) dμ(x) dμ(y). For 1 ≤ k ≤ n − 1 and y ∈ [ak, ak+1), we have∫
R

K (x − y) dμ(x) =
∫
R

K (x − y)p(x) dx

=
n−1∑
i=1

n

(n − 1)(ai+1 − ai )

∫ ai+1

ai
K (x − y) dx

= n

n − 1

n−1∑
i=1

∫ 1

0
K (ai + (ai+1 − ai )z − y) dz.

Here, because y ∈ [ak, ak+1), for i /∈ {k−1, k, k+1}, the convexity andmonotonicity
of K over (−∞, 0) or (0,∞) shows that

∫ 1

0
K (ai + (ai+1 − ai )z − y) dz ≤

{
1
2 (K (ai − ak) + K (ai+1 − ak)) (i ≤ k − 2),
1
2 (K (ai − ak+1) + K (ai+1 − ak+1)) (i ≥ k + 2).

Therefore, by considering that K is non-negative, we have

∑
i �=k−1,k,k+1

∫ 1

0
K (ai + (ai+1 − ai )z − y) dz ≤

∑
j≤k−2

K (a j − ak) +
∑
j≥k+3

K (a j − ak+1)

+ 1

2
(K (ak−1 − ak) + K (ak+2 − ak+1)) .

(18)
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Here, the terms that include an index of a outside the domain {1, . . . , n} are void.
Next, we consider the cases i = k ± 1. If k − 1 ≥ 1 is valid, we have

∫ 1

0
K (ak−1 + (ak − ak−1)z − y) dz ≤

∫ 1

0
K (ak−1 + (ak − ak−1)z − ak) dz

=
∫ 1

0
K ((ak − ak−1)w) dw

≤ K (ak − ak−1) + 1 = K (ak−1 − ak) + 1.
(19)

Similarly, if k + 2 ≤ n is valid, we have, by Lemma 31,

∫ 1

0
K (ak+1 + (ak+2 − ak+1)z − y) dz ≤ K (ak+2 − ak+1) + 1. (20)

Finally, we deal with the case i = k. We show that the integral

Lk(y) :=
∫ 1

0
K (ak + (ak+1 − ak)z − y) dz

is maximized at y = ak+ak+1
2 (over y ∈ [ak, ak+1)). If we define t := y−ak

ak+1−ak
(t ∈ [0, 1)), the following holds true.

Lk(y) =
∫ t

0
K ((ak+1 − ak)w) dw +

∫ 1−t

0
K ((ak+1 − ak)w) dw.

For t < 1
2 , we have

Lk

(
ak + ak+1

2

)
− Lk(y)

=
∫ 1

2

t
K ((ak+1 − ak)w) dw −

∫ 1−t

1
2

K ((ak+1 − ak)w) dw

=
∫ 1

2−t

0

(
K ((ak+1 − ak)(t + w)) − K

(
(ak+1 − ak)

(
1

2
+ w

)))
dw > 0.
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By symmetry, Lk(y) < Lk

(
ak+ak+1

2

)
is valid for t > 1

2 . Therefore, by Lemma 31 and

32,

∫ 1

0
K (ak + (ak+1 − ak)z − y) dz

≤ Lk

(
1

2

)
= 2

∫ 1
2

0
K ((ak+1 − ak)w) dw =

∫ 1

0
K

(
ak+1 − ak

2
v

)
dv

≤ K

(
ak+1 − ak

2

)
+ 1 ≤ K (ak+1 − ak) + 1 + log 2 (21)

By (18–21), we have the bound

(
n − 1

n

)2 ∫ ak+1

ak

∫
R

K (x − y) dμ(x) dμ(y) ≤ n − 1

n
sup

y∈[ak ,ak+1)

∫
R

K (x − y) dμ(x)

≤
∑
j≤k−2

K (a j − ak) +
∑
j≥k+3

K (a j − ak+1) + 3 + log 2

+ 3

2
K (ak−1 − ak) + 1

2
K (ak − ak+1) + 1

2
K (ak+1 − ak) + 3

2
K (ak+2 − ak+1).

Considering the sum of the right-hand side with respect to k = 1, . . . , n − 1, the
coefficient of each K (ai − a j ) with |i − j | ≥ 2 is at most 1, and that of K (ai − a j )

with |i − j | = 1 is at most 2 (= 1
2 + 3

2 ), where we have distinguished K (ai − a j )

from K (a j − ai ). Therefore, we have

(
n − 1

n

)2 ∫
R

∫
R

K (x − y) dμ(x) dμ(y) ≤ 2
∑
i �= j

K (ai − a j ) + (n − 1)(3 + log 2).

(22)

Let us nowevaluate the second termof ICn (μ), i.e.,
∫
R
Q(x) dμ(x). By the convexity

of Q, we have

∫
R

Q(x) dμ(x) = n

n − 1

n−1∑
i=1

∫ 1

0
Q(ai + (ai+1 − ai )z) dz

≤ n

n − 1

n−1∑
i=1

max{Q(ai ), Q(ai+1)}.

To estimate the sum, we consider the following two cases:

1. Q is not monotone in [a1, an],
2. Q is monotone in [a1, an].
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In the former case, the unique minimizer q∗ of Q on R exists in [a1, an] because of
the strict convexity. Then, by the strict convexity of Q, we have

max{Q(ai ), Q(ai+1)} =

⎧⎪⎨
⎪⎩
Q(ai ) (ai , ai+1 < q∗),
Q(ai+1) (q∗ < ai , ai+1),

Q(a j∗) (q∗ ∈ [ai , ai+1]),

where

j∗ ∈ argmax
j∈{i,i+1}

Q(a j ).

Therefore

n−1∑
i=1

max{Q(ai ), Q(ai+1)} =
∑

i∈{1,...,n}\{k}
Q(ai ) (23)

holds for some k ∈ {1, . . . , n}. In the latter case (case 2 above), we have equality (23)
for k = 1 or k = n. Therefore, in both cases, the following holds true:

∫
R

Q(x) dμ(x) ≤ n

n − 1

n∑
i=1

Q(ai ). (24)

Combining (22) and (24), we obtain

ICn (μ) =
∫
R

∫
R

K (x − y) dμ(x) dμ(y) + 2
∫
R

Q(x) dμ(x)

≤ 2

(
n

n − 1

)2 ∑
i �= j

K (ai − a j ) + 2n

n − 1

n∑
i=1

Q(ai ) + n2

n − 1
(3 + log 2)

= 2

(
n

n − 1

)2
⎛
⎝∑

i �= j

K (ai − a j ) + n − 1

n

n∑
i=1

Q(ai )

⎞
⎠ + n2

n − 1
(3 + log 2)

= 2

(
n

n − 1

)2

FD
K ,Q(n) + n2

n − 1
(3 + log 2).

Now, using (17), we reach the conclusion. ��

4 Duality theorem for convex programming of measures

The following definition is a variant of the existing definitions of positive definite
kernel [4, 17, 20].
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Definition 41 Let X be a topological space. A non-negative measurable function k :
X × X → R≥0 ∪ {∞} is called positive semi-definite in measure if it satisfies

∫
X

∫
X
k(x, y) dμ(x) dμ(y) +

∫
X

∫
X
k(x, y) dν(x) dν(y)

≥
∫
X

∫
X
k(x, y) dμ(x) dν(y)

+
∫
X

∫
X
k(x, y) dν(x) dμ(y) (25)

for arbitrary (positive) σ -finite Borel measures μ, ν on X .

Remark 2 Let k be positive semi-definite in measure. Considering the Hahn-Jordan
decomposition of a signed measure, we have

∫
X

∫
X
k(x, y) d|μ|(x) d|μ|(y) < ∞ �⇒

∫
X

∫
X
k(x, y) dμ(x) dμ(y) ≥ 0

for an arbitrary signed Borel measure μ on X with |μ| being σ -finite, where |μ|
denotes the total variation of μ. This is the generalization of the ordinary positive
semi-definiteness. Notice that this non-negativity holds for a wider class of “measure".
Indeed, if we define

Sk :=
{
(μ+, μ−)

∣∣∣ μ+ and μ− are σ -finte Borel measures∫
X

∫
X k(x, y) dμ+(x) dμ+(y),

∫
X

∫
X k(x, y) dμ−(x) dμ−(y) < ∞

}

and for each ν = (ν+, ν−) ∈ Sk define

∫
X

∫
X
k(x, y) dν(x) dν(y) :=

∫
X

∫
X
k(x, y) dν+(x) dν+(y) +

∫
X

∫
X
k(x, y) dν−(x) dν−(y)

−
∫
X

∫
X
k(x, y) dν+(x) dν−(y) −

∫
X

∫
X
k(x, y) dν−(x) dν+(y),

then this integral is well-defined and the generalization of quadratic forms for ordinary
signed measures. We formally write ν = ν+ − ν− in such a situation, and call it also
the Hahn-Jordan decomposition of ν.

Lemma 42 Let K : R → R≥0 ∪ {+∞} be an even function. If K ∈ L1(R) and K
is convex on [0,∞), and satisfies limx↘0 K (x) = K (0), then K (x − y) is positive
semi-definite in measure.

Proof Because K is integrable and convex, K is continuous over (0,∞) and
limx→∞ K (x) = 0 holds true. If K (0) < ∞, K becomes continuous and this type
of function is called Pólya-type. Pólya-type functions are known to be a characteristic
function of a positive bounded Borel measure, i.e., there exists a positive bounded
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measure α on R such that

K (x) =
∫
R

e−iωx dα(ω) (26)

is valid [4, 12]. Let μ be a signed Borel measure with
∫
R

∫
R
K (x − y) dμ(x) dμ(y)

being finite and |μ| being σ -finite. Then, we can take a sequence of increasing Borel
sets A1 ⊂ A2 ⊂ · · · → R satisfying |μ|(Ak) < ∞ for all k. Let μ = μ+ −μ− be the
Hahn-Jordan decomposition and μk+ := μ+(Ak ∩ ·), μk− := μ−(Ak ∩ ·). For each k,
by Fubini’s theorem and (26), we have

∫
R

∫
R

K (x − y) d(μk+ − μk−)(x) d(μk+ − μk−)(y) =
∫
R

∣∣∣∣
∫
R

e−ikx d(μk+ − μk−)

∣∣∣∣
2

dα(ω) ≥ 0.

This can be rewritten as∫
R

∫
R

K (x − y) dμk+(x) dμk+(y) +
∫
R

∫
R

K (x − y) dμk−(x) dμk−(y)

≥ 2
∫
R

∫
R

K (x − y) dμk+(x) dμk−(y). (27)

The integrals in (27) are given by integrands that are monotone increasing with respect
to k. Indeed, the first term of the left-hand side is written in the form

∫
R

∫
R

K (x − y) dμk+(x) dμk+(y) =
∫
R

∫
R

1Ak×Ak (x, y)K (x − y) dμ+(x) dμ+(y)

and its integrand 1Ak×Ak (x, y)K (x − y) is monotone increasing with respect to k
because A1 ⊂ A2 ⊂ · · · . Similar arguments can be applied to the other terms.
Therefore we get the desired inequality by letting k → ∞ and using the monotone
convergence theorem in (27).

Let us consider the case K (0) = ∞. In this case, K is continuous on (0,∞) and
has a limit limx↘0 K (x) For any ε > 0, define

Kε(x) := 1

ε

∫ ε

0
K (|x | + z) dz, x ∈ R.

Then, by K ∈ L1(R), K is bounded everywhere by ε−1‖K‖L1 . Moreover, Kε is still
convex, such that Kε(x − y) is positive semi-definite in measure. Now, the continuity
of K leads to

Kε(x) =
∫ 1

0
K (|x | + εz) dz ↗ K (|x |) = K (x) (ε ↘ 0)

by the monotone convergence theorem. Applying the monotone convergence theorem
to both sides of (25) with K = Kε, we obtain the conclusion. ��
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The function K = − log
∣∣tanh ( π

4d ·)∣∣ satisfies the condition of Lemma 42. Thus,
we can observe the optimization problem

(P)
minimize

∫
R

∫
R

K (x − y) dμ(x) dμ(y) + 2
∫
R

Q(x) dμ(x)

subject to μ ∈ M(R, n)

as convex quadratic programming. We can analogously make the dual problem to the
finite-dimensional case in [1], as

(D)

maximize −
∫
R

∫
R

K (x − y) dν(x) dν(y) + 2ns

subject to ν ∈ SK , s −
∫
R

K (· − y) dν(y) ≤ Q.

Note that this is a rigorous version of problem (D) in (15). It should be noted here
that we have not justified (D) as a formal (topologically) dual problem. There are
arguments limited to the optimization of Radon measure over compact space [10,
11, 27]. While they are on quadratic programming problems, there exist more general
theories on duality, such as [3], von Neumann’s minimax theorem [8, 16] and Fenchel-
Rockafellar duality theorem [13, 26]. However, as it is essential that our duality can
treat infinite measure ν with unbounded support (we indeed later use such a measure
as a dual feasible solution), it is difficult to just apply existing studies and check all
the conditions for (D) to be a topologically dual problem. Therefore, we here do not
go deeper in this aspect, but just prove the assertion of Theorem 43. This assertion is
sufficient to derive a lower bound of the optimal value of (P), which is our objective.

In the following, we demonstrate that the weak duality and strong duality are still
valid in this infinite-dimensional primal-dual pair. It should be noted that s = 0, ν ≡ 0
is a trivial feasible solution of (D) such that there exists an optimal value of (D).

Theorem 43 The optimal value of (D) is equal to the optimal value of (P).

Proof First, we present the weak duality. Let μ and (ν, s) be feasible solutions of (P)
and (D), respectively, and ν = ν+ − ν− be the Hahn-Jordan decomposition. If we
write 〈α, β〉K := ∫

R

∫
R
K (x − y) dα(x) dβ(y) for measures α and β,

〈ν, ν〉K = 〈ν+, ν+〉K + 〈ν−, ν−〉K − 2〈ν+, ν−〉K
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holds true.Because 〈μ,μ〉K , 〈ν+, ν+〉K , 〈ν−, ν−〉K < ∞,wehave 〈μ, ν+〉K , 〈μ, ν−〉K ,

〈ν+, ν−〉K < ∞ by K ’s positive semi-definiteness in measure. Therefore, we have

(∫
R

∫
R

K (x − y) dμ(x) dμ(y) + 2
∫
R

Q(x) dμ(x)

)

−
(

−
∫
R

∫
R

K (x − y) dν(x) dν(y) + 2ns

)

= 〈μ,μ〉K + 〈ν, ν〉K + 2
∫
R

(Q(x) − s) dμ(x)

≥ 〈μ,μ〉K + (〈ν+, ν+〉K + 〈ν−, ν−〉K − 2〈ν+, ν−〉K )

+ 2
∫
R

(
−

∫
R

K (x − y) dν(y)

)
dμ(x)

= 〈μ,μ〉K + 〈ν+, ν+〉K + 〈ν−, ν−〉K − 2〈ν+, ν−〉K − 2〈μ, ν+〉K + 2〈μ, ν−〉K
= 〈μ + ν−, μ + ν−〉K + 〈ν+, ν+〉K − 2〈μ + ν−, ν+〉K ≥ 0

by the positive semi-definiteness in measure. This indicates the weak duality. Note
that we have the last inequality above by replacing μ and ν in (25) in Definition 41
with μ + ν+ and ν+, respectively.

To prove the strong duality, we construct the optimal solution of (D) using that of
(P). By Theorem 2.4 in [24], μ∗, the optimal solution of (P), satisfies

∫
R

K (x − y) dμ∗(y) + Q(x) ≥ FC
K ,Q(n)

n
(28)

for all x ∈ R. Now, μ∗ and n−1FC
K ,Q(n) is a feasible solution for (D). Moreover, the

equation that we obtain by replacing the inequality of (28) with an equality is valid on
the support of μ∗. Therefore we have

−
∫
R

∫
R

K (x − y) dμ∗(x) dμ∗(y) + 2n
FC
K ,Q(n)

n

= −
∫
R

∫
R

K (x − y) dμ∗(x) dμ∗(y) + 2
∫
R

(
Q(x) +

∫
R

K (x − y) dμ∗(y)
)

dμ∗(x)

=
∫
R

∫
R

K (x − y) dμ∗(x) dμ∗(y) + 2
∫
R

Q(x) dμ∗(x).

This shows the strong duality. ��
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5 Proof of Theorem 24

We can now give a lower bound of FC
K ,Q(n) by using the dual problem (D) and prove

Theorem 24. Let α > 0 be a constant and f be the inverse Fourier transform of

(F[ f ](ω) =)
ω

π tanh(dω)

∫ α

−α

(Q(α) − Q(x)) e−iωx dx

Alongwith this, f is L2-integrable byTheorem4.4 in [23]. Here, the Fourier transform
of a function g ∈ L1(R) ∩ L2(R) is defined by

F[g](ω) :=
∫
R

g(x)e−iωx dx

and for the whole space L2(R), F[·] is defined as the continuous extension of
F[·]|L1∩L2 . Because Q(x) is even by the assumption, f is an inverse Fourier transform
of an even real function, so that f itself is an even real function. Then, the formula [9,
p.43, 7.112]

F
[
log

∣∣∣tanh ( π

4d
·
)∣∣∣] (ω) = −π

ω
tanh(dω)

leads to the (almost everywhere) equation

F
[∫

R

K (x − y) f (y) dy

]
(ω) = F[K ](ω) · F[ f ](ω) =

∫ α

−α

(Q(α) − Q(x)) e−iωx dx,

(29)

where K ∈ L1(R) ∩ L2(R) and f ∈ L2(R) are used for the justification of the first
equality. The former statement K ∈ L1(R) ∩ L2(R) follows from

∫ ∞

−∞

(
− log tanh

( π

4d
x
))

dx < ∞ and∫ ∞

−∞

(
− log tanh

( π

4d
x
))2

dx < ∞.

The integrability of K (x − ·) f (·) comes from K , f ∈ L2(R). Indeed, we have

∣∣∣∣
∫
R

K (x − y) f (y) dy

∣∣∣∣
2

≤
(∫

R

|K (x − y)|1/2|K (x − y)|1/2| f (y)| dy
)2

≤
∫
R

|K (x − y)| dy
∫
R

|K (x − y)|| f (y)|2 dy

= ‖K‖L1

∫
R

|K (x − y)|| f (y)|2 dy,
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where the Cauchy-Schwarz inequality is used on the second inequality. Therefore the
integrability is shown as follows:

∥∥∥∥
∫
R

K (· − y) f (y) dy

∥∥∥∥
2

L2
≤ ‖K‖L1

∫
R

∫
R

|K (x − y)|| f (y)|2 dy dx

= ‖K‖L1

∫
R

(∫
R

|K (x − y)| dx
)

| f (y)|2 dy
= ‖K‖2L1‖ f ‖2L2 < ∞,

where the Fubini theorem is used on the first equality. Considering the inverse Fourier
transform of (29), we also have∫

R

K (x − y) f (y) dy = 1[−α,α](x)(Q(α) − Q(x)).

It should be noted that f (x) dx ∈ SK follows from the inequality∫
R

∫
R

K (x − y)| f (x) f (y)| dx dy ≤ ‖K ∗ f ‖L2‖ f ‖L2 ≤ ‖K‖L1‖ f ‖2L2 < ∞.

These two relations imply that ( f (x) dx, Q(α)) is a feasible solution of (D). We can
now evaluate the value of the objective function of (D). Let us define

F(α) := −
∫
R

∫
R

K (x − y) f (x) f (y) dx dy + 2nQ(α). (30)

Because the first term can be considered as the inner product of K ∗ f and f in L2(R),
it can be computed through the Fourier transform as

∫
R

∫
R

K (x − y) f (x) f (y) dx dy

= 1

2π

∫
R

(
ω

π tanh(dω)

∫ α

−α
(Q(α) − Q(x)) e−iωx dx

∫ α

−α
(Q(α) − Q(x)) e−iωx dx

)
dω

= 1

2π2

∫
R

ω

tanh(dω)

∣∣∣∣
∫ α

−α
(Q(α) − Q(x)) e−iωx dx

∣∣∣∣2 dω. (31)

Let G(α) be the value of the right-hand side. G(α) can be decomposed into two parts,
which are defined as

G1(α) := 1

2π2

∫ 1

−1

ω

tanh(dω)

∣∣∣∣
∫ α

−α

(Q(α) − Q(x)) e−iωx dx

∣∣∣∣
2

dω

and

G2(α) := 1

2π2

∫
[−1,1]c

ω

tanh(dω)

∣∣∣∣
∫ α

−α

(Q(α) − Q(x)) e−iωx dx

∣∣∣∣
2

dω.
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We first evaluate G1. Because the function ω/ tanh(dω) is monotonically increasing
in [0,∞) (see the proof of Lemma 31), we have

G1(α) ≤ 1

π tanh(d)
· 1

2π

∫
R

∣∣∣∣
∫ α

−α

(Q(α) − Q(x)) e−iωx dx

∣∣∣∣
2

dω

= 1

π tanh(d)
‖1[−α,α](x)(Q(α) − Q(x))‖2L2

≤ 2

π tanh(d)
αQ(α)2. (32)

Next, we similarly evaluate G2. By integration by parts, we get

ω

∫ α

−α

(Q(α) − Q(x))e−iωx dx = −1

i

∫ α

−α

Q′(x)e−iωx dx .

Thus, we have

G2(α) = 1

2π2

∫
[−1,1]c

1

ω tanh(dω)

∣∣∣∣
∫ α

−α

Q′(x)e−iωx dx

∣∣∣∣
2

dω

≤ 1

π tanh(d)
‖1[−α,α](x)Q′(x)‖2L2

≤ 2

π tanh(d)
αQ′(α)2. (33)

Finally, we reach the evaluation

G(α) ≤ 2α

π tanh(d)

(
Q(α)2 + Q′(α)2

)
,

F(α) ≥ 2nQ(α) − 2α

π tanh(d)

(
Q(α)2 + Q′(α)2

)
.

By letting αn satisfy

2αn

π tanh(d)

Q(αn)
2 + Q′(αn)

2

Q(αn)
≤ n,

we get nQ(αn) as a lower bound for the optimal value of (P). For such αn , we finally
have

nQ(αn) ≤ ICK ,Q(μ∗) ≤ 2FC
K ,Q(n)

and this is equivalent to the assertion of Theorem 24.
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6 Examples of convergence rates for severalQ(x)’s

Although the asymptotic rates given in [23, Section 4.3] are derived through mathe-
matically informal arguments, we here demonstrate that those rates roughly coincide
with the bound in Theorem 24.

Example 61 (The case w is a single exponential) Consider the case

w(x) = exp
(−(β|x |)ρ) , Q(x) = (β|x |)ρ,

for β > 0 and ρ ≥ 1. In this case, for a sufficiently large α (satisfying α ≥ ρ), we
have

2α

π tanh(d)

Q(α)2 + Q′(α)2

Q(α)
= 2α

π tanh(d)

(βα)2ρ + (βρ)2(βα)2(ρ−1)

(βα)ρ
≤ 4βραρ+1

π tanh(d)

and αn can be taken as

αn =
(

π tanh(d)

4βρ
n

) 1
ρ+1

,

Q(αn)

2
= 1

2
βρ

(
π tanh(d)

4βρ
n

) ρ
ρ+1 (

= �
(
β

ρ
ρ+1 n

ρ
ρ+1

))
, (34)

for sufficiently large n. This rate roughly coincides with (4.37) in [23].

Example 62 (The case w is a double exponential) Consider the case

w(x) = exp (−β exp(γ |x |)) , Q(x) = β exp(γ |x |),
for β, γ > 0. In this case,

2α

π tanh(d)

Q(α)2 + Q′(α)2

Q(α)
= 2αβ(1 + γ 2) exp(γ α)

π tanh(d)

is valid. Let αn > 0 satisfy that the right-hand side is equal to n. Then, we have

γαn = W

(
π tanh(d)γ

2β(1 + γ 2)
n

) (
∼ log

(
γ

β(1 + γ 2)
n

))
,

where W is Lambert’s W function, i.e., the inverse of x �→ xex . Using this, we get

Q(αn)

2
= β

2γαn
· γαn exp(γ αn) = β

2γαn

π tanh(d)γ

2β(1 + γ 2)
n = π tanh(d)

4(1 + γ 2)

n

αn

= π tanh(d)γ

4(1 + γ 2)

n

W
(

π tanh(d)γ

2β(1+γ 2)
n
)

⎛
⎝∼ π tanh(d)γ

4(1 + γ 2)

n

log
(

γ

β(1+γ 2)
n
)
⎞
⎠ .

(35)
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This rate roughly coincides with the asymptotic order (4.44) in [23] for each fixed
constant γ .

Remark 3 We choose the weight functions in Examples 61 and 62 for simplicity
although they are not (necessarily) analytic in the strip region Dd for any d > 0.
This is because we just need their asymptotic properties for finding αn .

7 Conclusion

In this study, we analyzed the approximation method proposed by [24] over weighted
Hardy spaces H

∞(Dd , w). We provided (1) proof of the fact that the approxima-
tion formulas are nearly optimal from the viewpoint of minimum worst-case error
Emin
n (H∞(Dd , w)); and (2) upper bounds of Emin

n (H∞(Dd)) to evaluate the conver-
gence rates of approximation errors with n → ∞. To obtain (2), we introduced the
concept “positive semi-definite in measure” and by using this, provided a lower bound
for FC

K ,Q(n). We also compared the given bounds with those mentioned in the study
by [23], and demonstrated that they have the same convergence rate with n → ∞.

The newbounds do not indicate that the approximation formulas in [24] are optimal.
Another method to bound the error is recently considered by [7], although their bound
donot show theoptimality, either.Weneed tighter bounds to show theoptimality,which
may require more sophisticated analysis. We leave such analysis to future work.
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