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Abstract
Ultradiscretization enables us to construct a piecewise linear equation which approxi-
mates a given subtraction-free difference equation.Recently proposed “ultradiscretiza-
tion with parity variables” (pUD) can treat an equation with subtraction. However, its
solution may have an infinite number of branches under some specific conditions. In
this paper, solutions of pUD for the hard-spring equation is investigated. The pUD
equation is reinterpreted as themappingwhichmaps a set on the phase plane to another
one, and the behaviour of the solutions are analyzed through approximative transition
diagrams.As a result, the infinite branches are translated into a few finite branches and
allowed easier understanding.

Keywords Phase plane · Oscillator · Cellular automaton · Ultradiscretization

Mathematics Subject Classification 37B15 · 39A23 · 70K05

1 Introduction

Ultradiscretization [1] is a limiting procedurewhich constructs a cellular automaton [2]
from a given difference equation. Its research arose in the field of integrable systems.
It has been reported in many papers that integrable structure in the original difference
equation inherits to the resulting CA. Even for some non-integrable systems, it is
illustrated that ultradiscretization works well in the sense that a mathematical structure
survives through this procedure [3], [4]. Hence, ultradiscretization is expected to be a
new and useful tool to analyze nonlinear systems.
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However, ultradiscretization has a serious restriction called ‘negative difficulty’.
That is, the difference equation must be subtraction-free. In addition, its solution
should be positive definite. Some methods have been attempted for overcoming this
difficulty [5, 6]. Ultradiscretization with parity variables (pUD) [7] is one of the such
methods. We explain its detail later. This procedure can treat a difference equation
with subtraction or non-definite signed solutions. Instead of this advantage, a solution
may lose uniqueness under a specific condition. Actually, the solution Xn for the
specific n is given by the inequality such as Xn ≤ A (referred to as an indeterminate
solution). This ambiguity is translated as branches to an infinite number of values,
or as an ‘infinite multi-valued mapping’. The procedure of pUD was applied to some
q-Painlevé equations and its special solutions were discussed [8–10]. For verifying
whether pUD is also useful to study other nonlinear systems, the pUD analogue of the
hard-spring equation was investigated in [11]. In this previous research, the solutions
for wide range of initial values, and the solutions were classified into some types. For
example, the exactly four-periodic solutions, the four-periodic solutions after some
time steps, the indeterminate solutions summarizable by bounded diagrams, and the
indeterminate solutions with unbounded diagrams are found. These are important
results but we need some kind of broad perspective for understanding global structure
of these solutions.

In this paper, we again investigate the same pUD equation studied in [11]. We
actively utilize the phase plane analysis [12], and reinterpret the pUD equation as the
mapping which maps a set on the phase plane to another one. This “approximative”
viewpoint enables us to draw the transition diagrams which have such sets as its nodes,
in which we see the infinite multi-valued mapping as a finite multi-valued mapping.
By these diagram, the structure of indeterminate solution is visually understood. This
paper is organized as follows.We review the construction of the pUD equation in Sect.
2. In Sect. 3 following the method developed in [13], we summarize its time evolution
to some tables and illustrate it by some figures of the phase plane. Then, we draw the
transition diagrams and analyze the structure of the solution orbits. Finally, we give
concluding remarks in Sect. 4.

2 Ultradiscrete hard-spring equation and phase plane

2.1 Ultradiscretization with parity variables

We explain the procedure of pUD. We consider an explicit difference equation which
does not include subtraction. We write its dependent variable as xn . The subtraction-
free setting implies that xn takes positive values only. After transformation upon
introduction of a parameter ε > 0,

xn = e
Xn
ε , ε > 0, (1)

we apply ε log to both sides of the equation and take the limit ε → +0. Then, multi-
plication, division and addition for the original variable xn are replaced by addition,
subtraction and the max operation among new dependent variables Xn , respectively.
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Ultradiscrete hard-spring equation and its phase plane analysis 1085

Here, the formula

lim
ε→+0

ε log
(
e

A
ε + e

B
ε

)
= max(A, B) (2)

is used. This is the procedure of ultradiscretization. However, this procedure cannot
handle an explicit difference equation with subtraction, whose solution may take neg-
ative values. For the sake of solving this issue, ultradiscretization with parity variables
(pUD) was proposed.

In the procedure of pUD, we introduce the sign variable ξn and the “amplitude”
variable Xn for the dependent variable xn by

ξn := xn
|xn| , e

Xn
ε := |xn|. (3)

Moreover, using the function s,

s(ξ) :=
{
1 (ξ = +1)

0 (ξ = −1),
(4)

we perform the following transformation:

xn = ξne
Xn
ε = (

s(ξn) − s(−ξn)
)
e

Xn
ε . (5)

After transposing the negative terms to the other side of the equation, we apply ε log
to both sides and take the limit ε → +0. Here, we use the formula

S(ξ) :=
{
0 (ξ = +1)

−∞ (ξ = −1)
(6)

lim
ε→+0

ε log
(
s(ξ)e

A
ε + e

B
ε

)
= max(S(ξ) + A, B). (7)

This is the procedure of pUD. Subtraction is handled by transposed terms. As well as
the original ultradiscretization, multiplication, division and addition are replaced by
addition, subtraction and the max operation, respectively. The sign is included in the
resulting expression as the terms S(±ξn).

In general, the obtained equation by pUD takes an implicit form, max(. . . ) =
max(. . . ). Therefore, its solution may lose uniqueness. This indefiniteness makes the
solution space richer, but may do analysis complicated.

2.2 Ultradiscretization with parity variables of the hard-spring equation

The hard-spring equation is given by

d2x

dt2
+ kx + lx3 = 0, (8)
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where x = x(t) and k, l > 0 are constants. This equation is an integrable system since
it has the conserved quantity

H(t) = 1

2

(
dx

dt

)2

+ 1

2
kx2 + 1

2
lx4 = 0. (9)

We give an integrable discretization of (8) given in [14]. We write t = nδ, x(t) = xn .
Our discrete equation is written as

xn+1 − 2xn + xn−1 + 2c1δ
2 (xn+1 + xn−1) + 4c2δ

2xn
+2c3δ

2x2n (xn+1 + xn−1) = 0. (10)

Since (10) has a conserved quantity

Hn = xn2 − 2xnxn−1 + xn−1
2

2δ2
+ c1(xn

2 + xn−1
2) + 2c2xnxn−1 + c3xn

2xn−1
2, (11)

this equation is an integrable equation. For the purpose of pUD, we introduce the sign
variable ξn , the amplitude variable Xn for xn by (3) and new parameters by

e
αi
ε := ci (i = 1, 2, 3), e

�
ε := δ. (12)

We substitute (5) into (10), we obtain

(
s(ξn+1) − s(−ξn+1)

)
e
Xn+1

ε − 2
(
s(ξn) − s(−ξn)

)
e
Xn
ε + (

s(ξn−1) − s(−ξn−1)
)
e
Xn−1

ε

+2e
α1+2�

ε

{(
s(ξn+1) − s(−ξn+1)

)
e
Xn+1

ε + (
s(ξn−1) − s(−ξn−1)

)
e
Xn−1

ε

}

+4e
α2+2�

ε 2
(
s(ξn) − s(−ξn)

)
e
Xn
ε

+2e
α3+2�+2Xn

ε

{(
s(ξn+1) − s(−ξn+1)

)
e
Xn+1

ε + (
s(ξn−1) − s(−ξn−1)

)
e
Xn−1

ε

}
= 0.

(13)

For simplicity of notation, we write Xn+1, Xn , Xn−1 as X+, X , X−, respectively.
Moreover, we put αi + 2� = α̂i . If we transfer the negative terms and take the limit
ε → +0, we have

max
[
S(ξn+1) + X+, S(ξn+1) + α̂1 + X+, S(ξn+1) + α̂3 + 2X + X+,

S(−ξn) + X , S(ξn) + α̂2 + X ,

S(ξn−1) + X−, S(ξn−1) + α̂1 + X−, S(ξn−1) + α̂3 + 2X + X−
]

= max
[
S(−ξn+1) + X+, S(−ξn+1) + α̂1 + X+, S(−ξn+1) + α̂3 + 2X + X+,

S(ξn) + X , S(−ξn) + α̂2 + X ,

S(−ξn−1) + X−, S(−ξn−1) + α̂1 + X−, S(−ξn−1) + α̂3 + 2X + X−
]
. (14)
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Ultradiscrete hard-spring equation and its phase plane analysis 1087

By considering the four types of combinations of signs ξn+1, ξn , ξn−1, (14) is written
into some equations without the function S. We use, for simplicity, the notations

a = max
[
0, α̂1, α̂3 + 2X

]
(15)

b = max
[
α̂2 + X , X−, α̂1 + X−, α̂3 + 2X + X−

]
(16)

= max
[
α̂2 + X , X− + a

]

d = X (17)

b′ = α̂2 + X (18)

d ′ = max
[
X , X−, α̂1 + X−, α̂3 + 2X + X−

]

= max
[
X , X− + a

]
. (19)

The rewritten equations are as follows. For ξn+1 = ξn = ξn−1,

max
[
X+ + a, b

] = max
[
d
]
, (20)

for −ξn+1 = ξn = ξn−1,

max
[
b
] = max

[
X+ + a, d

]
, (21)

for ξn+1 = ξn = −ξn−1,

max
[
X+ + a, b′] = max

[
d ′], (22)

and for ξn+1 = −ξn = ξn−1,

max
[
b′] = max

[
X+ + a, d ′]. (23)

If we consider magnitude relationship between b and d (or b′ and d ′), (20)–(23)
are further rewritten as explicit forms summarized in Table 1 with 5 × 5 cells (“NS”
means “no solution”). We explain Table 1. Assume that (ξn, Xn) and (ξn−1, Xn−1)

are given. We study how (ξn+1, Xn+1) is determined. We first notice the relationship
of the signs ξn and ξn−1. Here, we consider the case where ξn = ξn−1. This case is

Table 1 Evolution of X+
b(′) � d(′) X+ ≤ max[b(′), d(′)] − a

> NS X+ = b − a NS X+ = b′ − a

= X+ ≤ max[b, d] − a X+ ≤ max[b, d] − a X+ ≤ max[b′, d′] − a X+ ≤ max[b′, d′] − a

< X+ = d − a NS X+ = d′ − a NS⎛
⎜⎜⎝

ξn+1

ξn

ξn−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

+

+

+

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−
−
−

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−
+

+

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

+

−
−

⎞
⎟⎟⎠

⎛
⎜⎜⎝

+

+

−

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−
−
+

⎞
⎟⎟⎠

⎛
⎜⎜⎝

+

−
+

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−
+

−

⎞
⎟⎟⎠
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located at the second and third columns in Table 1. However, we do not know ξn+1.
Therefore, we try both cases of (I) ξn+1 = ξn = ξn−1 and (II) −ξn+1 = ξn = ξn−1,
which corresponds to (20) and (21), respectively. We further consider three cases for
amplitude, that is, (i) b > d, (ii) b = d and (iii) b < d.

Let us firstly study the case (I) and (i). The equation for the amplitude Xn+1 is (20)
and it has no solution from max

[
X+ + a, b

] = max
[
d
]
. Hence, the (2, 2) cell in

Table 1 is filled by “NS”. Next, we study the case (II) and (i). The equation is (21)
and it is rewritten as X+ = b − a from max

[
b
] = max

[
X+ + a, d

]
. Hence, the

(2, 3) cell in Table 1 is filled by X+ = b − a. Secondly, we consider another relation
between amplitudes, that is, (ii) b = d. In this case, both of (20) and (21) are satisfied
by the inequality X+ � max[b, d] − a, which means X+ becomes indeterminate. At
this time, ξn+1 is also indeterminate since two cases ξn+1 = ±1 give the same result.
These correspond to the (3, 2) and (3, 3) cells in Table 1. Finally, we consider the
case of (iii) b < d. For (I) and (iii), our Eq. (20) is rewritten as X+ = d − a from
max

[
X+ + a, b

] = max
[
d
]
. This case corresponds to the (4, 2) cell in Table 1. For

(II) and (iii), our Eq. (21) has no solution from max
[
b
] = max

[
X+ + a, d

]
. This

case corresponds to the (4, 3) cell in Table 1. By studying the cases ξn = −ξn−1 and
magnitude relation between b′ and d ′ in a similar manner, we obtain Table 1. Note
that the four expressions (20)–(23) can be represented as X+ = max[b(′), d(′)] − a or
X+ � max[b(′), d(′)] − a in any case.

We go to the next step. Table 1 is written in terms of (16)–(19), which include max
operations (except for d of (17)). However, for later analysis, we prefer the expressions
without max operations. Hence, we further introduce the cases whether α̂2 is positive
or 0 or negative. Noting

max[b(′), d(′)] =
{
max

[
α̂2 + X , X− + a

]
, (α̂2 > 0)

max
[
X , X− + a

]
, (α̂2 � 0),

(24)

we find that further cases X + α̂2 � X− + a or X � X− + a are necessary for our
purpose. We use the following notations for shorter expression:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cg : X + α̂2 > X− + a

Ce : X + α̂2 = X− + a

C� : X + α̂2 < X− + a

C′
g : X > X− + a

C′
e : X = X− + a

C′
� : X < X− + a.

(25)

By introducing these cases, we refine Table 1 to Table 2 with 11×6 cells. For example,
we notice the (2, 3) cell in Table 1 filled by X+ = b−a = max[α̂2+ X , X− +a]−a.
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Ultradiscrete hard-spring equation and its phase plane analysis 1089

Table 2 Evolution of X+ with α̂2 � 0

b( ) d( ) X+ ≤ max[b( ), d( )] − a

> NS X+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α2 + X − a (Cg)

X− (Ce)

X− (C )

NS X+ = α2 + X − a (Cg)

α2 > 0 = NS NS X+ ≤ X− (Ce) X+ ≤ X− (Ce)

< NS NS X+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NS (Cg)

NS (Ce)

X− (C )

NS

> NS X+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NS (Cg)

NS (Ce)

X− (C )

NS NS

α2 = 0 = X+ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X − a (Cg)

X− (Ce)

NS (C )

X+ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X − a (Cg)

X− (Ce)

NS (C )

X+ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X − a (Cg)

X− (Ce)

NS (C )

X+ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X − a (Cg)

X− (Ce)

NS (C )

< NS NS X+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NS (Cg)

NS (Ce)

X− (C )

NS

> NS X+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NS (Cg)

NS (Ce)

X− (C )

NS NS

α2 < 0 = X+ ≤ X− (Ce) X+ ≤ X− (Ce) NS NS

< X+ = X − a (Cg) NS X+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X − a (Cg)

X− (Ce)

X− (C )

NS

⎛
⎜⎜⎝

ξn+1

ξn

ξn−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

+

+

+

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−
−
−

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−
+

+

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

+

−
−

⎞
⎟⎟⎠

⎛
⎜⎜⎝

+

+

−

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−
−
+

⎞
⎟⎟⎠

⎛
⎜⎜⎝

+

−
+

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−
+

−

⎞
⎟⎟⎠

In the case of α̂2 > 0, it becomes

X+ =

⎧
⎪⎨
⎪⎩

α̂2 + X − a (Cg)

X− (Ce)

X− (C�),

(26)

which is located at the (2, 4) cell in Table 2. In the case of α̂2 = 0, it becomes

X+ =

⎧
⎪⎨
⎪⎩

NS (C′
g)

NS (C′
e)

X− (C′
�),
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1090 S. Isojima, S. Suzuki

which is located at the (5, 4) cell in Table 2. In the case of α̂2 < 0, we have

X+ =

⎧⎪⎨
⎪⎩

NS (C′
g)

NS (C′
e)

X− (C′
�)

and this result is located at the (8, 4) cell of Table 2. By continuing similar operations,
Table 2 can be created.

Finally, we rewrite a of (15) according to the magnitude relation between the terms
with X and other terms. Namely, we obtain

a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
[
0, α̂1

] (
X <

max
[
0,α̂1

]
−α̂3

2

)

max
[
0, α̂1

] = α̂3 + 2X

(
X = max

[
0,α̂1

]
−α̂3

2

)

α̂3 + 2X

(
X >

max
[
0,α̂1

]
−α̂3

2

)
.

Therefore, it is found that if we see the boundary of the above classification in Table 2
on the phase plane (X−, X), it is not a straight line but a broken line at the point
X = (max

[
0, α̂1

] − α̂3)/2.
If we introduce the above classification and rewrite our conditions Cg , Ce, C� and

so on (see (25)), we obtain the following expressions without max operations. That is,
if α̂2 > 0,

Cg ⇔
{
X > X− + max

[
0, α̂1

] − α̂2
(
max

[
0, α̂1

]
> α̂3 + 2X

)
X < −X− − α̂3 + α̂2

(
max

[
0, α̂1

]
< α̂3 + 2X

)

Ce ⇔
{
X = X− + max

[
0, α̂1

] − α̂2
(
max

[
0, α̂1

]
> α̂3 + 2X

)
X = −X− − α̂3 + α̂2

(
max

[
0, α̂1

]
< α̂3 + 2X

)

C� ⇔
{
X < X− + max

[
0, α̂1

] − α̂2
(
max

[
0, α̂1

]
> α̂3 + 2X

)
X > −X− − α̂3 + α̂2

(
max

[
0, α̂1

]
< α̂3 + 2X

)

and if α̂2 � 0,

C′
g ⇔

{
X > X− + max

[
0, α̂1

] (
max

[
0, α̂1

]
> α̂3 + 2X

)
X < −X− − α̂3

(
max

[
0, α̂1

]
< α̂3 + 2X

)

C′
e ⇔

{
X = X− + max

[
0, α̂1

] (
max

[
0, α̂1

]
> α̂3 + 2X

)
X = −X− − α̂3

(
max

[
0, α̂1

]
< α̂3 + 2X

)

C′
� ⇔

{
X < X− + max

[
0, α̂1

] (
max

[
0, α̂1

]
> α̂3 + 2X

)
X > −X− − α̂3

(
max

[
0, α̂1

]
< α̂3 + 2X

)
.
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2.3 Time evolution of the amplitude on the phase plane

In the previous subsection, we have studied the time evolution of (ξn+1, X+) with
conditions for (ξn−1, X−) and (ξn, X). The time evolution of a discrete dynamical
system is often studied by plotting the solution (xn, xn+1), n ≥ 0 on one phase plane.
In this subsection, we apply the same method to our pUD system. For this purpose,
we define some sets on the phase plane of (X−, X) (or (X , X+)) as follows.

If α̂2 ≤ 0, we define

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = {(X−, X)|X− = −max[0, α̂1]+α̂3
2 , X = max[0, α̂1]−α̂3

2 }
L4 = {(X−, X)|X = X− + max[0, α̂1], X < max[0, α̂1]−α̂3

2 }
L1 = {(X−, X)|X = X−} \ (P1 ∪ L4)

L2 = {(X−, X)|X = −X− − α̂3, X > max[0, α̂1]−α̂3
2 }

L3 = {(X−, X)|X− < −max[0, α̂1]+α̂3
2 , X = max[0, α̂1]−α̂3

2 }
S1 = {(X−, X)|(X > −X− − α̂3, X > X−)

∪ (X < X− + max[0, α̂1], X > X−)}
S2 = {(X−, X)|X < −X− − α̂3, X > max[0, α̂1]−α̂3

2 }
S3 = {(X−, X)|X > X− + max[0, α̂1], X < max[0, α̂1]−α̂3

2 }.

(27)

These sets are shown in the left figure in Fig. 1. Note that the axes in these figure are
drawn with its origin at P1 instead of (0, 0). In a similar way, we define the sets for
α̂2 > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = {(X−, X)|X− = −max[0, α̂1]+α̂3
2 + α̂2, X = max[0, α̂1]−α̂3

2 }
L4 = {(X−, X)|X = X− + max[0, α̂1] − α̂2, X < max[0, α̂1]−α̂3

2 }
L1 = {(X−, X)|X = X−} \ (P1 ∪ L4)

L2 = {(X−, X)|X = −X− − α̂3 + α̂2, X > max[0, α̂1]−α̂3
2 }

L3 = {(X−, X)|X− < −max[0, α̂1]+α̂3
2 + α̂2, X = max[0, α̂1]−α̂3

2 }
S1 = {(X−, X)|(X > −X− − α̂3 + α̂2, X > X−)

∪ (X < X− + max[0, α̂1] − α̂2, X > X−)}
S2 = {(X−, X)|X < −X− − α̂3 + α̂2, X > max[0, α̂1]−α̂3

2 }
S3 = {(X−, X)|X > X− + max[0, α̂1] − α̂2, X < max[0, α̂1]−α̂3

2 }.

(28)

These sets are shown in the left figure in Fig. 2 (The origin is again P1). We refer
to a set P1 ∪ L2 ∪ S2 ∪ L3 ∪ S3 ∪ L4 as “cone” in this study.

Similarly, we define sets on the phase plane (X , X+). The results are shown in the
right figure in Figs. 1 and 2, respectively. Note that the axes are drawn with the origin
P2. We also note that the sets in the right figure are drawn by displace those in the left
figure symmetrically with respect to L1. We refer to the image of the cone mentioned
above as the same word “cone.”

Now, we study where a point on the phase plane of the left figure in Fig. 2 (or
Fig. 1) is mapped on the right figure. As the first example, we consider the case of
ξn = ξn−1 with α̂2 > 0 and summarize the result to Table 3. This case corresponds
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X−

X

−max[0,α̂1]+α̂3
2

max[0,α̂1]−α̂3
2

X = X−

X = X− + max[0, α̂1]

X = −X− − α̂3

P1

L1

L2

L3

L4

S1

S2

S3

X

X+

max[0,α̂1]−α̂3
2

−max[0,α̂1]+α̂3
2

X+ = X

X+ = X − max[0, α̂1] X+ = −X − α̂3

P2

L1

L5

L6

L7

S4 S5

S6

Fig. 1 Sets on phase plane with α̂2 ≤ 0

X−

X

−max[0,α̂1]+α̂3
2 + α̂2

max[0,α̂1]−α̂3
2

X = X−

X = X− + max[0, α̂1] − α̂2

X = −X− − α̂3 + α̂2

P1

L1

L2

L3

L4

S1

S2

S3

X

X+

max[0,α̂1]−α̂3
2

−max[0,α̂1]+α̂3
2 + α̂2

X+ = X

X+ = X − max[0, α̂1] + α̂2

X+ = −X − α̂3 + α̂2

P2

L1

L5

L6

L7

S4 S5

S6

Fig. 2 Sets on phase plane with α̂2 > 0

to the cells from (2, 3) to (4, 4) of Table 2. Only the (2, 4) cell has a solution and the
three conditions Cg , Ce and C� (see (25)) should be considered.

Firstly, under the condition C�, which corresponds to the fourth column of Table 3,
the time evolution is X+ = X− and therefore an original point (X−, X) is mapped
to (X , X+) = (X , X−) being symmetry with respect to the line L1. Secondly, under
the condition Ce, which corresponds to the third column of Table 3, we have the same
result as C�. Finally, under the condition Cg , which corresponds to the second column
of Table 3, the time evolution is X+ = α̂2 + X − a. Hence, we find that the image of
this mapping is this break line X+ = α̂2 + X − a. The upper row in Table 3 illustrates
each area corresponding to 3, respectively, and the lower row shows where the original
area is mapped. This is how to create Table 3.

Similarly, Table 4, 5, 6, 7 and 8 are obtained. As an important example, we also
explain the case of ξn 	= ξn−1 and Ce with α̂2 > 0 corresponding to the third column
of Table 4. In this case, the time evolution is the indeterminate type, X+ ≤ X−. We
can choose an infinite number of points (X+, X) as the image of the original point
(X−, X). This situation is illustrated in the lower row, the third column by the “filled”

123



Ultradiscrete hard-spring equation and its phase plane analysis 1093

Table 3 Mapping of amplitude for α̂2 > 0, ξn = ξn−1

X > X− + a − α̂2 X = X− + a − α̂2 X < X− + a − α̂2

(X−, X)
X−

X

−max
[
0,α̂1

]
+α̂3

2 + α̂2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

] − α̂2

X = −X− − α̂3 + α̂2

X−

X

−max
[
0,α̂1

]
+α̂3

2 + α̂2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

] − α̂2

X = −X− − α̂3 + α̂2

X−

X

−max
[
0,α̂1

]
+α̂3

2 + α̂2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

] − α̂2

X = −X− − α̂3 + α̂2

⇓ ⇓ ⇓ ⇓

(X, X+)
X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2 + α̂2

X+ = X − max
[
0, α̂1

]
+ α̂2

X+ = −X − α̂3 + α̂2

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2 + α̂2

X+ = X − max
[
0, α̂1

]
+ α̂2

X+ = −X − α̂3 + α̂2

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2 + α̂2

X+ = X − max
[
0, α̂1

]
+ α̂2

X+ = −X − α̂3 + α̂2

Table 4 Mapping of amplitude for α̂2 > 0, ξn 	= ξn−1

X > X− + a − α̂2 X = X− + a − α̂2 X < X− + a − α̂2

(X−, X)
X−

X

−max
[
0,α̂1

]
+α̂3

2 + α̂2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

] − α̂2

X = −X− − α̂3 + α̂2

X−

X

−max
[
0,α̂1

]
+α̂3

2 + α̂2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

] − α̂2

X = −X− − α̂3 + α̂2

X−

X

−max
[
0,α̂1

]
+α̂3

2 + α̂2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

] − α̂2

X = −X− − α̂3 + α̂2

⇓ ⇓ ⇓ ⇓

(X, X+)
X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2 + α̂2

X+ = X − max
[
0, α̂1

]
+ α̂2

X+ = −X − α̂3 + α̂2

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2 + α̂2

X+ = X − max
[
0, α̂1

]
+ α̂2

X+ = −X − α̂3 + α̂2

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2 + α̂2

X+ = X − max
[
0, α̂1

]
+ α̂2

X+ = −X − α̂3 + α̂2
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Table 5 Mapping of amplitude for α̂2 = 0, ξn = ξn−1

X > X− + a X = X− + a X < X− + a

(X−, X)
X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

⇓ ⇓ ⇓ ⇓

(X, X+)
X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

cone, (X , X+) = (X ,Y ) where

Y ≤ X + α̂2 − a =
{
X − max[0, α̂1] + α̂2 ((X−, X) ∈ L2)

−X − α̂3 + α̂2 ((X−, X) ∈ L4).

Next, in order to trace the time evolution in one phase plane, we draw our areas
for (X−, X) plane and (X , X+) plane into one coordinate plane. Then, we should
consider “positional relationship” between two cones, one has the edge L2∪ L4∪ P1
and the other has L5 ∪ L7 ∪ P2. We have three types of relationship: “overlapping,”
“sticking,” and “separating.” Fig. 3, 4, 5, 6 and 7 show all positions of two cones. Note
that the “overlapping” type appears only for α̂2 > 0. The other types appear for any
α̂2.

We note that these three types of “separating,” “sticking,” and “overlapping” are
inevitably determined by the magnitude relationship between α̂1 and α̂2, which is
summarized in Table 9. For example, “overlapping” happens under the condition of
α̂2 > 0 and α̂2 > α̂1 and this is given on the second column of Table 9. The other
cases, “sticking” and “separating” appear on the third and fourth column of Table 9,
respectively.

3 Transition diagrams

We have to remember that we should include information of the sign variables. For
this purpose, we prepare four copies of the phase plane for (X−, X) corresponding
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Table 6 Mapping of amplitude for α̂2 = 0, ξn 	= ξn−1

X > X− + a X = X− + a X < X− + a

(X−, X)
X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

⇓ ⇓ ⇓ ⇓

(X, X+)
X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

Table 7 Mapping of amplitude for α̂2 < 0, ξn = ξn−1

X > X− + a X = X− + a X < X− + a

(X−, X)
X−

X

−max 0,α1 +α3

2

max 0,α1 −α3

2

X = X− +max 0, α1

X = −X− − α3

X−

X

−max 0,α1 +α3

2

max 0,α1 −α3

2

X = X− +max 0, α1

X = −X− − α3

X−

X

−max 0,α1 +α3

2

max 0,α1 −α3

2

X = X− +max 0, α1

X = −X− − α3

⇓ ⇓ ⇓ ⇓

(X, X+)
X

X+

max 0,α1 −α3

2

−max 0,α1 +α3

2

X+ = X − max 0, α1

X+ = −X − α3

X

X+

max 0,α1 −α3

2

−max 0,α1 +α3

2

X+ = X − max 0, α1

X+ = −X − α3

X

X+

max 0,α1 −α3

2

−max 0,α1 +α3

2

X+ = X − max 0, α1

X+ = −X − α3
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Table 8 Mapping of amplitude for α̂2 < 0, ξn 	= ξn−1

X > X− + a X = X− + a X < X− + a

(X−, X)
X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

X−

X

−max
[
0,α̂1

]
+α̂3

2

max
[
0,α̂1

]
−α̂3

2

X = X− +max
[
0, α̂1

]

X = −X− − α̂3

⇓ ⇓ ⇓ ⇓

(X, X+)
X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

X

X+

max
[
0,α̂1

]
−α̂3

2

−max
[
0,α̂1

]
+α̂3

2

X+ = X − max
[
0, α̂1

]
X+ = −X − α̂3

Fig. 3 “separating” cones with
α̂2 ≤ 0

X−

X

−max[0,α̂1]+α̂3
2

max[0,α̂1]−α̂3
2

X = X−

X = X− + max[0, α̂1]

X = X− − max[0, α̂1]

X = −X− − α̂3

X = −X− − α̂3

max[0,α̂1]−α̂3
2

−max[0,α̂1]+α̂3
2

P1

L1
L2

L3

L4

S1

S2

S3
P2

L5

L6

L7

S4 S5

S6

Fig. 4 “sticking” cones with
α̂2 ≤ 0

X−

X

−max[0,α̂1]+α̂3
2

X = X−X = −X− − α̂3

max[0,α̂1]−α̂3
2

P1

L1

L2

L3

L4

S1

S2

S3

L6

L7

S4 S5

S6
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Fig. 5 “separating” cones with
α̂2 > 0

X−

X

−max[0,α̂1]+α̂3
2 + α̂2

max[0,α̂1]−α̂3
2

X = X−

X = X− + max[0, α̂1] − α̂2

X = X− − max[0, α̂1] + α̂2

X = −X− − α̂3 + α̂2

X = −X− − α̂3 + α̂2
max[0,α̂1]−α̂3

2

−max[0,α̂1]+α̂3
2 + α̂2

P1

L1
L2

L3

L4

S1

S2

S3
P2

L5

L6

L7

S4 S5

S6

Fig. 6 “sticking” cones with
α̂2 > 0

X−

X

−max[0,α̂1]+α̂3
2 + α̂2

X = X−

X = −X− − α̂3 + α̂2
max[0,α̂1]−α̂3

2

P1

L1

L2

L3

L4

S1

S2

S3

L6

L7

S4 S5

S6

X−

X

max[0,α̂1]−α̂3
2

−max[0,α̂1]+α̂3
2 + α̂2

X = X−

X = X− − max[0, α̂1] + α̂2

X = X− + max[0, α̂1] − α̂2

X = −X− − α̂3 + α̂2

−max[0,α̂1]+α̂3
2 + α̂2

max[0,α̂1]−α̂3
2

Fig. 7 “overlapping” cones with α̂2 > 0

to the sign (ξn−1, ξn) = (+,+), (+,−), (−,+) and (−,−), respectively. Here, for
simplicity, we write +1 and −1 as + and −, respectively. We use the (ξn−1eX−) v.s.
(ξneX ) coordinates and four copies are placed on each quadrant as shown in Fig. 8.
Our cones are also drawn in each quadrant. Note that we here draw only the case of
“sticking” for simplicity.
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Table 9 Relationship between parameters and cone-position

“overlapping” “sticking” “separating”

α̂1

α̂2 α̂1 = α̂2

0 α̂1

α̂2 α̂1 = α̂2

0 α̂1

α̂2 α̂1 = α̂2

0

Fig. 8 Phase plane which four
copies are patched

eX−

eX L1

L1

L1

L1

L2

L2

L2

L2

L3

L3

L3

L3

L4

L4

L4

L4

L6

L6

L6

L6

L7

L7

L7

L7

S1

S1

S1

S1

S2

S2

S2

S2

S3

S3

S3

S3

S4

S4

S4

S4

S5

S5

S5

S5

S6

S6

S6

S6

P1

P1

P1

P1

For distinguishing the pair of the sign, we represent our sets defined by (27) or (28)
with black-and-white shape. That is, in Fig. 8, a pair of signs (+,+) is represented
by a white circle, (+,−) by a black circle, (−,−) by a black-painted diamond, and
(−,+) by a white-painted diamond.

Now, we generally put Z = (ξn−1, ξn, Xn−1, Xn) and investigate the time evo-
lution for a set of assigned initial values. For example, we start from a set of initial
values Z0 = (+, +, X−, X), (X−, X) ∈ S1. We point out in advance that the result
is summarized by one diagram in Fig. 9. The evolution of the amplitude and the sign
can be traced by referring to Tables 3, 4, 5, 6, 7, 8 and 2, respectively. From this initial
values, we find the following time evolution for any α̂2:

Z0 = (+, +, X−, X), (X−, X) ∈ S1

�→ Z1 = (+, −, X , X−), (X , X−) ∈ S6
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�→ Z2 = (−, −, X−, X), (X−, X) ∈ S1

�→ Z3 = (−, +, X , X−), (X , X−) ∈ S6

�→ Z4 = Z0.

The sign-inverted solution

Z∗
0 = (−, −, X−, X), (X−, X) ∈ S1

�→ Z∗
1 = (−, +, X , X−), (X , X−) ∈ S6

�→ Z∗
2 = (+, +, X−, X), (X−, X) ∈ S1

�→ Z∗
3 = (+, −, X , X−), (X , X−) ∈ S6

�→ Z∗
4 = Z∗

0

is also obtained easily. These solutions are trivially four-periodic. Here, we reinterpret
this situation as follows. This system maps a set S1 with the sign (+,+) to another
set S6 with (+,−) (namely, S1 with (+,+) �→ S6 with (+,−), not S1 with (+,+)

→ S6 with (+,−)), and then S1 with (−,−) and finally S6 with (−,+). We call this
reinterpretation “approximative”, which is useful for complicated indeterminate solu-
tions as we see later. We illustrate the above solutions as the approximative transition
diagram shown in Fig. 9. We see a simple cycle among four nodes. It is noted that this
solution are uniquely determined in any step, in other words, we do not encounter an
indeterminate solution. This situation is expressed in Fig. 9 by which two nodes are
connected with a single arrow only. This transition is common to any value of α̂2 and
positioning cases. Looking at Fig. 8, we can see that this transition rotates S1 or S6
or L1 with a pair of sign by 90 degrees clockwise at one time.

Figure 10 shows a transition that is common to all positional cases of α̂2 < 0.
For example, let us start from a point Z Z0 = (+, +, X−, X), (X−, X) ∈ L2. In
Table 2, we can choose the (9, 3) or (9, 4) cell. This means that the indeterminate
solution has appeared here. If we choose the (9, 4) cell and the equal case X+ = X−,
the sign is determined by the (11, 4) cell as ξn+1 = − and we have the next point
Z Z1 = (+, −, X , X−), (X , X−) ∈ L7. Moreover, since Z Z1 corresponds to the
C� case of the (10, 5) cell, we find the after the next point is uniquely determined
as Z Z2 = (−, −, X−, X), (X−, X) ∈ L2. However, since the next point Z Z3

Fig. 9 Transition diagram
appearing for all types and α̂2

(ξn−1, ξn)

(+,+)

(+,−)

(−,+)

(−,−)

S1 S6

S6 S1

S6 S1

S1 S6

L1 L1

L1 L1
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Fig. 10 Transition diagram
appearing for all types with
α̂2 < 0

(ξn−1, ξn)

(+,+)

(+,−)

(−,+)

(−,−)

S5

S5

S2

S2

L2

L7L2

L7

L7

L2L7

L2

S2

S2

S5

S5

becomes indeterminate again, we need a similar case consideration. From the above
(and further calculation), we, for example, obtain the development such as

Z Z0 = (+, +, X−, X), (X−, X) ∈ L2

�→ Z Z1 = (+, −, X , X−), (X , X−) ∈ L7

�→ Z Z2 = (−, −, X−, X), (X−, X) ∈ L2

�→ Z Z3 = (−, +, X , X−), (X , X−) ∈ L7

�→ Z Z4 = Z Z0.

This solution orbit is understood approximatively as L2 with (+,+) �→ L7 with
(+,−) �→ L2 with (−,−) �→ L7 with (−,+) �→ L2 with (+,+).

If, for the same initial point Z Z0, we choose another cell (9, 3) and the equal case
X+ = X−, we have a different point Z Z ′

1 = (+, +, X , X−), (X , X−) ∈ L7. After
the next point becomes Z Z ′

2 = (+, −, X−, X), (X−, X) ∈ L2 from the case Ce
of the (8, 4) cell. Further the next point uniquely becomes Z Z ′

3 = (−, −, X , X−),
(X , X−) ∈ L7. From these and further calculation, we find the solution such as

Z Z0 = (+, +, X−, X), (X−, X) ∈ L2

�→ Z Z ′
1 = (+, +, X , X−), (X , X−) ∈ L7

�→ Z Z ′
2 = (+, −, X−, X), (X−, X) ∈ L2

�→ Z Z ′
3 = (−, −, X , X−), (X , X−) ∈ L7

�→ Z Z ′
4 = (−, +, X−, X), (X−, X) ∈ L2

�→ Z Z ′
5 = Z Z ′

1.

This solution orbit is understood approximatively as L2 with (+,+) �→ L7 with
(+,+) �→ L2 with (+,−) �→ L7 with (−,−) �→ L2 with (−,+) �→ L7 with (+,+).

Furthermore, for the same initial point Z Z0, we can choose the next point Z Z ′′
1 =

(+, +, X , <X−), (X , <X−) ∈ S5. Then, after the next point uniquely becomes
Z Z ′′

2 = (+, −, <X−, X), (<X−, X) ∈ S2 from the cell (8, 4)with C�, where <X−
means any value Y satisfying Y < X−. Further the next point is uniquely determined
as Z Z ′

3 = (−, −, X , X−), (X , X−) ∈ L7 from the cell (10, 5) with Cg , which has
already appeared above. This solution behaves as
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Z Z0 = (+, +, X−, X), (X−, X) ∈ L2

�→ Z Z ′′
1 = (+, +, X , <X−), (X , <X−) ∈ S5

�→ Z Z ′′
2 = (+, −, <X−, X), (<X−, X) ∈ S2

�→ Z Z ′′
3 = Z Z ′

3 = (−, −, X , X−), (X , X−) ∈ L7

�→ Z Z ′′
4 = Z Z ′

4 = (−, +, X−, X), (X−, X) ∈ L2

�→ Z Z ′′
5 = Z Z ′

1 = (+, +, X , X−), (X , X−) ∈ L7

�→ Z Z ′′
6 = Z Z ′

2 = (+, −, X−, X), (X−, X) ∈ L2

�→ Z Z ′′
7 = Z Z ′

3,

which is unique except for Z Z ′′
1 . This solution orbit is understood approximatively as

L2 with (+,+) �→ S5 with (+,+) �→ S2 with (+,−) �→ L7 with (−,−) �→ L2 with
(−,+) �→ L7 with (+,+) �→ L2 with (+,−) �→ L7 with (−,−). Although we omit
details, we also can choose Z Z ′′′

1 = (+, −, X , <X−), (X , <X−) ∈ S5.
Investigating all (but finite number of) cases, we obtain the “approximative” tran-

sition diagram shown in Fig. 10. In usual meaning, we have encountered infinitely
multi-valued mapping when we determine the next point from the initial point. How-
ever, by our approximative point of view, we understand it as only four-valued
mapping. This situation is expressed in Fig. 10 by which four arrows are left from
L2 of white circle and of black diamond, respectively.

Let us study features of the orbits in the diagram of Fig. 10. We see two cyclic
transition in this diagram. One is L2 with (+,+) �→ L7 with (+,−) �→ L2 with
(−,−) �→ L7 with (−,+) �→ L2 with (+,+), which have already mentioned. The
other is L7 with (+,+) �→ L2 with (+,−) �→ L7 with (−,−) �→ L2 with (−,+) �→
L7 with (+,+). If we once leave the former cycle at a branching point, we cannot go
back to it and the orbit eventually stays the later cycle. Hence, the former one looks
“unstable” and the later does “stable”. Because of this, it is claimed that the effect of
the indeteminate solution is not serious in this case.

Figure 11 shows the diagram for “sticking” positional type with α̂2 < 0.We find the
self-loop at P1 and L4. We again can be summarized infinitely multi-valued mapping
as four-valued one. However, we must encounter the indeterminate solutions with an
infinite number of times. Hence, this diagram is rather complex than Fig. 10.

Figure 12 shows the diagram for the “separating” positional type with α̂2 < 0.
In a similar way to Fig. 10, we see a “stable” cycle and an “unstable” one. We have

Fig. 11 Transition diagrams for
“sticking” type with α̂2 < 0

(ξn−1, ξn)

(+,+)

(+,−)

(−,+)

(−,−)

L6

L6

L3

L3

P1

P1

P1

P1

L3

L3

L6

L6

S4

S4

S3

S3

L4

L4

L4

L4

S3

S3

S4

S4
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(ξn−1, ξn)

(+,+)

(+,−)

(−,+)

(−,−)

L6

L6

L3

L3

P1

P2P1

P2

P2

P1P2

P1

L3

L3

L6

L6

S4

S4

S3

S3

L4

L5L4

L5

L5

L4L5

L4

S3

S3

S4

S4

Fig. 12 Transition diagrams for “separating” type with α̂2 < 0

Fig. 13 Transition diagram
appearing for all types and
α̂2 > 0

(ξn−1, ξn)

(+,+)

(+,−)

(−,+)

(−,−)

S5

S5

S2

S2

L2

L7L2

L7

L7

L2L7

L2

S2

S2

S5

S5

(ξn−1, ξn)

(+,+)

(+,−)

(−,+)

(−,−)

P1

L3

L3 L6

L6

P1 P1

L6

L6 L3

L3

P1

L4

S3

S3 S4

S4

L4 L4

S4

S4 S3

S3

L4

Fig. 14 Transition diagrams for “sticking” type with α̂2 > 0

obtained all diagrams for α̂2 < 0 by Figs. 9, 10, 11 and 12. Note that we see all sets
(P1, L1, S1, and so on, with four signs respectively) only once. Hence, we find that
we have traced all orbits on the phase plane for α̂2 < 0.

We give some results for α̂2 > 0.
Figure 13 shows the approximative transition diagram which is common to all of

the positional types with α̂2 > 0. We see a “stable” cycle and an “unstable” one.
Figure 14 shows the diagram which corresponds to the “sticking” positional type

with α̂2 > 0.
Figure 15 shows the diagram which corresponds to the “separating” positional

type with α̂2 > 0. We see a “stable” cycle and an “unstable” one. We remain the
“overlapping” positional type. Although we have studied it, its explanation is rather
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(ξn−1, ξn)

(+,+)

(+,−)

(−,+)

(−,−)

L6

L6

L3

L3

P1

P2P1

P2

P2

P1P2

P1

L3

L3

L6

L6

S4

S4

S3

S3

L4

L5L4

L5

L5

L4L5

L4

S3

S3

S4

S4

Fig. 15 Transition diagrams for “separating” type with α̂2 > 0

Table 10 Summary of α̂2, positional relationship, transition diagrams

α̂2 ≷ 0 α̂2 < 0 α̂2 > 0

“Overlapping” Fig. 9 N/A Fig. 13 (and more)

“Sticking” Fig. 9 Figs. 10, 11 Figs. 13, 14

“Separating” Fig. 9 Figs. 10, 12 Figs. 13, 15

complicated (We shall report it in forthcoming paper). If we consider Figure 9, 13, 14
and 15 and the “overlapping” type, we see all sets only once and therefore we find that
we have traced all orbits on the phase plane for α̂2 > 0.

In closing this section, we give Table 10 which summarizes the relationship among
the sign of α̂2, type of the positional relationship, and the transition diagrams.

4 Concluding remarks

In [11], the ultradiscrete analogue of the hard-spring equation with parity variables
was presented, and its solutions for various (but, not all) initial values were classified
into some types. It was quite helpful to regard an infinite number of values as one
point on the solution orbit for studying the indeterminate solution.

In this study, we focused on the same equation as [11] and we have applied further
approximative method depeloped in [13], that is, reinterpreting the pUD system as the
mapping which maps a set on the phase plane to the other. Moreover, the positional
relationship of “cones” on the phase plane closely effects the solution behaviour. This
relation is determined only by the magnitude relationship of the system parameters
α̂1 and α̂2, which was not pointed out in [11]. From these viewpoints, certain new
perceptions have beenobtained for the solutions of the pUDsystemas follows.Because
all domains on the phase plane appeared, all initial values have been examined, which
completely cover those of [11]. As a result, the condition under which an indeteminate
solution does not appear has been clarified, that is, to start from a point on the phase
plane included in Fig. 9. When the positional relationship of cones is “separating” or
“sticking”, we have captured an infinite number of branches in usual sense as a finite
number of ones. This result implies that the pUD equation is still a kind of cellular
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automaton, because it has a finite number of “states”, but its dynamics is not always
“auto” because of non-uniqueness.

Furthermore, the approximative way enables us to understand the earlier work
from a broader point of view. For example, in [11], the existence of exactly four-
periodic solution was pointed out. However, by our analysis, such solutions appear
in several transition diagrams. Namely, all orbits of Fig. 9 and the “stable” orbit of
Figs. 10, 12, 13, and 15 . Note that they were not distinguished in [11]. This study
has clarified that they belong to different transition diagrams each other. We have also
found that almost solution orbits (as sets) show cyclic behaviour on the phase plane
with help of the transition diagrams.

Our method reported in this paper enables us to easily compare some pUD equa-
tions each other. For example, it is possible to compare the pUD analogues of several
difference equations for the same differential equation, which may give a new contri-
bution to studying nonlinear systems. It is also an interesting problem to investigate
differences between integrable and non-integrable pUD systems by this approximative
method.

We comment one issue in [11], that is, how to analyze the solution with “diagram
of unbounded type,” which seems to need an infinite number of cases for tracing the
orbit. We have found that we encounter this type of solution if and only if the the
positional relationship is “overlapping” and understood why such many cases appear.
We shall report its details in the forthcoming paper.
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