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Abstract
We present an algorithm to fair a given planar curve by a log-aesthetic curve (LAC). 
We show how a general LAC segment can be uniquely characterized by seven 
parameters and present a method of parametric approximation based on this fact. 
This work aims to provide tools to be used in reverse engineering for computer-
aided geometric design. Finally, we show an example of usage by applying this algo-
rithm to the data points obtained from 3D scanning a model-car roof.

Keywords Industrial design · Fairing · Planar curves · Log-aesthetic curves

1 Introduction

In 1994, Harada et al., while investigating the mental images suggested by aes-
thetically pleasing shapes, set up an experiment to quantitatively analyze a 
curve’s character from the viewpoint of the observer [6]. Their main result may 
be described as follows: the curves that car designers regard as aesthetically 
pleasing have the common property that the frequency histogram of the radius of 
curvature follows a piecewise linear relation in a log-log scale. An analytic for-
mulation of those curves was provided in [13] defining what will later be called 
the log-aesthetic curves (LAC), which promoted theoretical and practical stud-
ies of LAC towards their use in computer-aided geometric design as indicated 
by Levien and Séquin [10]. In this regard, several works have been written con-
cerning the implementation and construction of LAC with fixed boundary condi-
tions, see for example [3, 4, 16, 18]. Furthermore, extensions to surfaces have 
also been considered with an emphasis on providing practical tools for industrial 
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design, see [12]. From a different point of view, LAC have been characterized as 
curves that are obtained via a variational principle in the framework of similarity 
geometry; moreover, they can also be seen as invariant curves under the integra-
ble flow on plane curves governed by the Burgers equation [9]. This fact was also 
shown to be useful in providing an integrable discretization of the LAC that pre-
serves the underlying geometric structure [8]. These previous contributions are 
mainly focused on providing tools for curve generation with fixed boundary con-
ditions. In this paper, with reverse engineering applications in mind, we provide a 
method to characterize a given curve by its closest LAC. Although we considered 
the input data to be discrete (as a sequence of points), the idea behind our algo-
rithm can be applied to smooth input data as well. In Sect. 2, we provide the basic 
framework, we show how a general LAC segment can be uniquely identified by 
seven parameters, and we solve the inverse problem of recovering the parameters 
that characterize a given general LAC segment. In Sect. 3, we construct a method 
of parametric approximation that finds the seven parameters of a smooth LAC that 
is the closest, in a L2-distance sense, to the input curve. Finally, a demonstration 
of the applicability of the algorithm is shown by using the data points obtained 
from 3D scanning a model-car roof, where we identify their underlying LAC. 
The works [16] and [11] are the closest to the present contribution, where similar 
tools to characterize the family of LAC are shown. However, [11] provides local 
fairing techniques to sequence of points with noise, whereas we recover globally 
all the parameters that characterize an LAC. Our method is based on the one pre-
sented in [1], to approximate a given planar curve by an Euler’s elastica, and on 
its follow-up work [5], for the discrete Euler’s elastica.

2  Log‑aesthetic curve

2.1  Basic formulation

First of all, let us review some definitions regarding planar curves. Let �(s) ∈ ℝ
2 

be a planar curve parameterized by the arc length s ∈ [0, L] , with total length L. 
The tangent and normal vectors are defined by T(s) = � �(s) and N(s) = R�∕2 T(s) , 
respectively, where R�∕2 is a �∕2 counterclockwise rotation matrix and � = d∕ds . By 
definition, ‖T(s)‖ = 1 , so the tangent vector is parameterized by the turning angle 
�(s) , such that

namely, the angle of the tangent vector measured from the horizontal axis. The cur-
vature is defined by �(s) = ��(s) , and the radius of curvature by �(s) = 1∕�(s).

As it is shown in [13], by considering an analytic formulation of the work by 
Harada et al., it can be seen that log-aesthetic curves (or simply referred to as LAC) 
satisfy that

(1)T(s) =

(
cos �(s)

sin �(s)

)
,
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for some � ∈ ℝ and A > 0 , where R = log � . Equation (2) is usually presented as the 
defining equation of the LAC. In this work, while interested in characterizing geo-
metrical properties of the LAC, let us consider the following equivalent expression:

Definition 1 (Log-aesthetic curve) An arc length parameterized curve �(s) ∈ ℝ
2 

with strictly monotonic radius of curvature is called a em log-aesthetic curve (LAC) 
if its curvature satisfies

for some constant � ∈ ℝ.

Remark 1 Assuming that the functions are well-behaved, we have ds
dR

= �∕�� , then 
(2) is rewritten as

Since � = �−1 , we have from (4)

Then, the derivative of (5) gives (3).

Remark 2 Because we are considering curves with strictly monotonic radius of cur-
vature, the turning angle function is invertible and thus it can be used to parameter-
ize all the geometric objects. In particular, from (3) we obtain

and by defining u(�) = d

d�
log(�(�)) , equation (6) is equivalent to the Riccati Eq.

In the context of similarity geometry, u(�) is known as the similarity curvature and 
(7) appears when studying an integrable flow on plane curves governed by the Burg-
ers equation, see [9].

Let us see that the parameter � of a given LAC is invariant under the similarity trans-
formations and reflections. Firstly, note that because the curvature of a planar curve 
is invariant under the Euclidean transformations, we only check the invariance under 
scale transformations and the reflections over the diagonal {(x, x) ∈ ℝ

2|x ∈ ℝ} . For 
scale transformations, consider the arc length parameterized LAC �(s) satisfying (3), 
for some � ∈ ℝ , and define �̃�(s̃) ∶= S𝛾(s̃∕S), where S > 0 . Then �̃�(s̃) , the curvature 
of �̃�(s̃) , is given by �̃�(s̃) = S−1𝜅(s̃∕S) and it is easy to see that it satisfies (3). For the 

(2)log
(
ds

dR

)
= �R − logA,

(3)���� − (� + 1)
(
��
)2

= 0,

(4)���(�−1) = A.

(5)�� = −A�−(�+1).

(6)�
d2�

d�2
− �

(
d�

d�

)2

= 0,

(7)
du

d�
= (� − 1)u2.
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reflections over the diagonal, note that interchanging the x− and y−component of the 
curve is equivalent to changing the sign of the curvature, and (3) is invariant under that 
change.

The fundamental theorem of planar curves states that an arc length parameterized 
planar curve is uniquely determined by its curvature up to Euclidean transformations. 
In addition, the curvature of an LAC determined by (3) has two arbitrary parameters. In 
view of this, we introduce the basic LAC by fixing this freedom and then we show that 
one can recover a general LAC by applying similarity transformations and shifting the 
arc length parameter of a basic LAC.

Definition 2 (Basic LAC) Let ��(s) ∈ ℝ
2 be an arc length parameterized LAC 

defined over an open interval I ⊂ ℝ , such that {0} ∈ I . We call ��(s) a basic LAC if 
it satisfies that

where �(s) and �(s) are its curvature and turning angle, respectively.

Let us see a more explicit expression for the basic LAC and its related quantities. In 
what follows, we use the sub-index �� , as for example ��� , to denote those quantities 
associated to their respective basic LAC. Taking the initial condition into considera-
tion, the explicit form of the curvature is given by

Then, the turning angle is obtained from the curvature by (��� )� = ���,

Although it is not used in this work, we note that the position vector ��(s) can be 
expressed in terms of the incomplete gamma function, see for example [18]. For a 
basic LAC, we have that 𝜅 > 0 , which implies that 1 + 𝛼s > 0 . Then, the maximal 
interval I𝛼 ⊂ ℝ on which the basic LAC can be defined is

(8)

⎧
⎪⎪⎨⎪⎪⎩

𝜅�(s) = −(𝜅(s))(𝛼+1) < 0, 𝜅(s) > 0,

𝜅(0) = 1,

𝜃(0) = 0,

𝜉𝛼(0) =

�
0

0

�
,

(9)��� (s) =

{
exp(−s), � = 0,

(1 + �s)−1∕� , � ≠ 0.

(10)��� (s) =

⎧⎪⎨⎪⎩

1 − exp(−s), � = 0,

log(s + 1), � = 1,

(1+�s)
�−1
� −1

�−1
, � ≠ 0, 1.

(11)I𝛼 =

⎧⎪⎨⎪⎩

(−∞,−1∕𝛼), 𝛼 < 0,

(−∞,∞), 𝛼 = 0,

(−1∕𝛼,∞), 𝛼 > 0,
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and we assume that all basic LAC are defined over I� . Finally, note that the image of 
��� is ��� [I�] = (0,∞).

Proposition 1 Any LAC with � ≠ 1 and positive decreasing curvature can be 
expressed as a basic LAC after applying similarity transformations and shifting the 
arc length parameter. In particular, if �(s) , s ∈ [0, L] , is an LAC of length L, there 
exists a unique �0 ∈ ℝ

2 , � ∈ [0, 2�) , S ∈ ℝ�{0} , and s0 ∈ ℝ , such that

where ��(s) is a basic LAC of length L/S.

Proof For a given LAC �(s) , s ∈ [0, L] with � ≠ 1 and positive decreasing curvature, 
we know that its curvature satisfies (3), which can be integrated once to obtain

for some A > 0 . Next, consider the curve �̄�(s̄) ∶= S−1𝛾(s̄S) , s̄ ∈ [0,L∕S] , and set 
S = A1∕(�−1) . Note that the curvature of �̄� satisfies

which can be integrated to obtain

By comparing �̄� with ��� in (9), there exists a unique s0 ∈ ℝ such that 
�̄�(s̄) = 𝜅𝜉𝛼 (s̄ + s0) . From the fundamental theorem of planar curves, it follows that 
the curves �̄� and �� are congruent up to rigid transformations, i.e.

for some �̄�0 ∈ ℝ
2 and � ∈ [0, 2�) . Finally, we use that 𝛾(s) = S�̄�(s∕S) to obtain (12) 

with 𝛾0 ∶= S�̄�0 .   ◻

Remark 3 In the proof of Proposition 1, the scale transformation is used to change 
the value of A, in (13), without changing the value of � . However, in the case of 
� = 1 this technique cannot be exploited because it corresponds to the logarithmic 
spiral, which is a self-similar curve. Namely, the value of A for a given logarithmic 
spiral is invariant under scale transformations, thus the technique used in Proposi-
tion 1 cannot be used to recover the entire family of LAC with � = 1.

Remark 4 Let X be the reflection of ℝ2 defined by the map (x, y) ↦ (y, x) . If �(s) , 
s ∈ [0, L] , is an LAC, then also are

(12)�(s) = �0 + SR� �
�(s∕S + s0), s ∈ [0, L],

(13)��(s) = −A(�(s))(�+1),

(14)
{

�̄��(s̄) = −(�̄�(s̄))(𝛼+1),

�̄�(0) = A1∕(𝛼−1)𝜅(0),

(15)�̄�(s̄) =

{
exp(−(s̄ − log �̄�(0))), 𝛼 = 0,[
1 + 𝛼

(
s̄ +

(�̄�(0))−𝛼−1

𝛼

)]−1∕𝛼
, 𝛼 ≠ 0.

(16)�̄�(s̄) = �̄�0 + R𝜙 𝜉
𝛼(s̄ + s0), s̄ ∈ [0, L∕S],
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Moreover, their respective curvatures satisfy

which allow us to use Proposition 1 in those cases in which the curvature is not posi-
tive and decreasing, by applying one of the transformations (17) (Fig. 1).

2.2  Recovering the parameters of an LAC segment

We focus our attention on the problem of finding the parameters that uniquely 
identify a given LAC segment. We proceed in three steps, in which we solve 

(17)

⎧
⎪⎨⎪⎩

� (1)(s) ∶= �(L − s),

� (2)(s) ∶= X�(s),

� (3)(s) ∶= X�(L − s).

(18)

⎧
⎪⎨⎪⎩

�(1)(s) = −�(L − s),

�(2)(s) = −�(s),

�(3)(s) = �(L − s),

(α = −2) (α = 1)
Logarithmic spiral

(α = −1)
Cornu spiral

(α = 2)
Circle involute

(α = 0)
Nielsen’s spiral (α = 4)

Fig. 1  Typical examples of log-aesthetic curves



1209

1 3

Fairing of planar curves to log-aesthetic curves

several linear equations in the least-squares sense, with the objective of con-
structing an algorithm that can be applied to general curves. Before describing 
the method, let us consider the following remarks: In view of Remark 3 we omit 
the case � = 1 , and for simplicity in the formulation of this method we further 
omit the case � = 0 . Note that, removing these values does not hinder the qual-
ity of the algorithm, because they are only single points on the real line. At last, 
given an LAC segment �(s) , s ∈ [0, L] , by possibly applying one of the transfor-
mations (17), we assume that its curvature is positive and decreasing.

From Proposition 1, it follows that for a given LAC segment �(s) , s ∈ [0, L] , 
there exists a set of parameters {�, S, s0, l,�, x0, y0} such that

which implies, by definition of the curvature function, that

Let R = − log � and R�� = − log ��� , then

Finally, from the differential Eq. (8) we have that log(R�
��
) + �R�� = 0 ; hence, from 

(21), we obtain

Step 1: Let c1 ∶= � and c0 ∶= (� − 1) log S . Then, from (22), in the least squares 
sense we have

which leads to

and

Then, � = c1 and S = exp(c0∕(c1 − 1)) . 

Step 2: From (9) and (20), we have that �(s) = S−1(1 + �(s∕S + s0))
−1∕� , which 

allows us to isolate the parameter s0 as

(19)�(s) =

(
x0
y0

)
+ SR� �

�(s∕S + s0), s ∈ [0, lS],

(20)�(s) = S−1��� (s∕S + s0).

(21)R(s) = log S + R�� (s∕S + s0).

(22)log(R�) + �R = (� − 1) log S.

(23)(c0, c1) = argmin
(c̄0,c̄1)

{
1

2 ∫
L

0

(log(R�) + c̄1R − c̄0)
2ds

}
,

(24)c1 =
L ∫ L

0
R log(R�)ds − ∫ L

0
Rds ∫ L

0
log(R�)ds

(∫ L

0
Rds)2 − L ∫ L

0
R2ds

,

(25)c0 =
1

L ∫
L

0

(log(R�) + c1R)ds.
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Then,

gives

Similarly, we compute send ∶= L∕S + s0 from �(3)(s) = �(L − s) = S
−1

(1 + �(s
end

− s∕S))−1∕� . In the least squares sense, we obtain

Hence,

Step 3: At this point, it rests to find the rotation and translation parameters. For the 
former, note that the angle function of � and �� differ only by a constant � , as

Thus, in the least squares sense we obtain

Finally, for the translation (x0, y0) we solve (12) in the least squares sense,

3  Approximation of planar curves

3.1  Methodology

Now we consider the case where a general curve segment is given and we want 
to find an LAC segment that is the closest in a L2-distance sense. For the applica-
tions that we have in mind, the input is regarded as a discrete curve and thus we 
must consider a discretization of the LAC. From Proposition 1, we know that any 

(26)s0 =
(S�(s))−�

�
−

1

�
−

s

S
.

(27)s0 ∶= argmin
s̄0

{
1

2 ∫
L

0

(
1

𝛼S𝛼𝜅(s)𝛼
−

1

𝛼
−

s

S
− s̄0

)2

ds

}

(28)s0 =
1

�LS� ∫
L

0

(�(s))−�ds −
1

�
−

1

LS ∫
L

0

sds.

(29)send =
1

�LS� ∫
L

0

(�(L − s))−�ds −
1

�
+

1

LS ∫
L

0

sds,

(30)l = send − s0 = L∕S.

(31)�(s) = � + ��� (s∕S + s0).

(32)� =
1

L ∫
L

0

(�(s) − ��� (s∕S + s0))ds.

(33)
(
x0
y0

)
=

1

L ∫
L

0

(
�(s) − SR� �

�(s∕S + s0)
)
ds.
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LAC segment with � ≠ 1 , after a possible change of parameterization or reflection 
(Remark 4), can be expressed as

where �� is a basic LAC with total length l ∶= L∕S . Furthermore, � (s) is also rewrit-
ten as

where ��� is given by (10). From now on, let us consider a discretization of (35). Let 
N ∈ ℕ , and define

and the discrete curve ��
n
∈ ℝ

2 , n = 0,… ,N − 1 , such that

where we introduced the notation ��
n

 for the discrete curve that depends on the 
parameters

Note that the recursive expression (37) gives an approximation of � (s) of second 
order, in the sense that it satisfies

The input data for the fairing process is assumed to be a list of N two-dimensional 
points, which we expresses as the discrete curve

Given �n , we look for ��
n

 that is the closest in a L2-distance sense. Namely, we seek 
to find a set of parameters �∗ such that

with the admissible set U given by

(34)�(s) =

(
x0
y0

)
+ SR� �

�(s∕S + s0), s ∈ [0, L],

(35)�p(s) =

(
x0
y0

)
+ S∫

s

0

(
cos(��� (t∕S + s0) + �)

sin(��� (t∕S + s0) + �)

)
dt, s ∈ [0, L],

(36)

{
h ∶=

L

N−1
,

z ∶=
L

S(N−1)
=

l

N−1
,

(37)

⎧⎪⎨⎪⎩

��
n
= ��

n−1
+ h

�
cos(��� (zn + s0) + �)

sin(��� (zn + s0) + �)

�
, n = 1,… ,N − 1,

��
0
=

�
x0
y0

�
,

(38)� ∶=
(
�, h, s0, z,�, x0, y0

)
.

(39)�(hn) = ��
n
+O(h2), n = 0,… ,N − 1.

(40)�n =

(
xn
yn

)
, n = 0,… ,N − 1.

(41)�∗ = argmin
�∈U

{
1

2

N−1∑
n=0

‖‖‖�
�
n
− �n

‖‖‖
2

}
,
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The optimization problem is solved using the Interior Point Optimizer package 
(IPOPT), which for our purpose can be seen as a gradient descent-like method for 
nonlinear optimizations (see [15]), so we need the gradient of the objective function,

and an initial guess to start the optimization. For the gradient of (43), we have

which is computed recursively from Eq. (37), using that

with

where we denoted Tn as

Then, using that (��� )� = ��� , we obtain the gradient of Tn by

where

(42)U =

{
(𝛼, h, s0, z,𝜙, x0, y0) ∈ ℝ

7
||||
𝛼 ∈ ℝ�{0, 1}, h > 0, s0 ∈ I𝛼 , z > 0,

𝜙 ∈ [0, 2𝜋) and (x0, y0) ∈ ℝ
2

}
.

(43)L(�) ∶=
1

2

N−1∑
n=0

‖‖‖�
�
n
− �n

‖‖‖
2

,

(44)�

��
i

L(�) =

N−1∑
n=0

⟨
��
n
− �n,

�

��
i

��
n

⟩
, �i = �, h, s0, z,�, x0, y0,

(45)
�

��
i

��
n
=

�

��
i

��
n−1

+

⎧⎪⎨⎪⎩

0 �i = x0, y0,

Tn �i = h,

h
�

��
i

Tn otherwise,

(46)
�

��
i

��
0
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
1

0

�
�i = x0,�

0

1

�
�i = y0,�

0

0

�
otherwise,

(47)Tn ∶=

(
cos(��� (zn + s0) + �)

sin(��� (zn + s0) + �)

)
.

(48)
�

��
i

Tn = R�∕2 Tn ×

⎧⎪⎨⎪⎩

1, �i = �,

��� (zn + s0), �i = s0,

n��� (zn + s0), �i = z,
�

��
��� (zn + s0), �i = �,
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which is obtained by direct computation from (10).
For the initial guess, denoted as

we use a discrete analogue of the three steps described in Sect. 2.2. Finally, after 
solving (41), the parameters of the smooth LAC that approximates the input curve 
are obtained as follows:

3.1.1  Initial guess pseudo‑algorithm

For a given a discrete curve �n , n = 0,… ,N − 1 , with constant step size

we compute the following quantities: A discrete analogue of the tangent vector,

a discrete analogue of the turning angle,

and a discrete analogue of the curvature,

As we are interested in approximating �n by a single LAC segment, we assume that 
the curve has no inflection point, implying that �n has constant sign. Furthermore, by 

(49)

�

��
��� (s)

=
(1 + s�)−

1

�

(
(� − 1)(1 + s�) log(1 + s�) − �

(
� + 2s� − s

))

�2(� − 1)2
+

1

(� − 1)2
,

(50)�̄� =
(
�̄�, h̄, s̄0, z̄, �̄�, x̄0, ȳ0

)
,

(51)
smooth

LAC

parameters

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

� = �∗,

S = h∗∕z∗,

s0 = s∗
0
,

l = z∗(N − 1),

� = �∗,

x0 = x∗
0
,

y0 = y∗
0
.

(52)‖‖�n+1 − �n
‖‖ = h, n = 0,… ,N − 2,

(53)Tn =
�n+1 − �n

h
, n = 0,… ,N − 2,

(54)

�
�
n
= �

n−1 + arctan
�
det

�
T
n−1, Tn

�
∕⟨T

n−1, Tn⟩
�
, n = 1,… ,N − 2,

�0 = arctan
�
det

�
t(1, 0), T0

�
∕
�
t(1, 0), T0

��
,

(55)�n =
2

h

det(Tn−1, Tn)

1 + ⟨Tn−1, Tn⟩ , n = 1,… ,N − 2.
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applying a reflection or by inverting the parameterization (in analogy with Remark 
4), we assume that �n is positive. After this considerations, we define

and its discrete derivative by

Remark 5 In practice, noise on the input curve �n might cause �n to change signs. In 
this situation, we replace (56) by

▶ Parameter � Following Step 1, we solve

Then, using that �̄� = c0 and S̄ = exp(c0∕(c1 − 1)) , we obtain

and

▶ Parameter s0, z : From Step 2, and using that z̄ = l̄∕(N − 1) , we obtain

and

▶ Parameter �, x0, y0, h : Let 𝜉�̌�
n

 , n = 0,… ,N − 1 , be the discrete curve computed 
as in (37) with �̌� = (0, 0, h, 0, z̄, s̄0, �̄�) . Then, its turning angle is 𝜃𝜉�̄� (z̄n + s̄0) ; hence, 
following Step 3, we obtain

(56)Rn = − log �n, n = 1,… ,N − 2,

(57)�Rn = −
�n+1 − �n

�n
, n = 1,… ,N − 3.

(58)R
n
= − log ||�n||, n = 1,… ,N − 2.

(59)(c̄0, c̄1) = argmin
(c0,c1)

{
1

2

N−3∑
n=1

(log(𝛥Rn∕h) + c1Rn − c0)
2h

}
.

(60)�̄� =
(N − 3)

∑N−3

n=1
Rn log𝛥Rn −

∑N−3

n=1
Rn

∑N−3

n=1
log𝛥Rn�∑N−3

n=1
Rn

�2

− (N − 3)
∑N−3

n=1
R2
n

,

(61)S̄ = h
1

1−�̄� exp

(
1

(�̄� − 1)(N − 3)

N−3∑
n=1

(
log𝛥Rn + �̄�Rn

))
.

(62)s̄0 =
1

�̄�(N − 2)S̄�̄�

N−2∑
n=1

(𝜅n)
−�̄� −

1

�̄�
−

(N − 1)h

2S̄
,

(63)z̄ =
(N − 1)h

S̄
.

(64)�̄� =
1

N − 1

N−2∑
n=0

(𝜃n − 𝜃𝜉�̄� (z̄n + s̄0)),
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and

Finally, we set h̄ = h.
As a first test for this algorithm, we used synthetic data: discrete curves with 

constant step size based on Bézier curves. These curves were split in segments 
with sign preserving monotonic curvature. Then, we faired each segment to an 
LAC, using the previous algorithm to compute the initial guess. Some examples 
are shown in Fig. 2. In the next section we apply this method to real data.

3.2  Application

In order to test the fairing algorithm shown in the previous section, we character-
ize some simple profile lines of a model-car roof (Toyota Prius). A 3D model was 
obtained by measuring a model-car with a 3D laser scanner (Hexagon 8330-7, 
measurement accuracy of 0.078 mm). The 3D model was stored in STL (Standard 
Triangle/Tessellation Language) format, which encodes the geometry of the object 
in a triangular mesh. Using Rhinoceros 6, a computer-aided design software, we 
intercepted the 3D model with vertical planes, see Fig. 3. Finally, we projected the 

(65)
(
x̄0
ȳ0

)
=

1

N

N−1∑
n=0

(
𝛾n − 𝜉�̌�

n

)
.

Fig. 2  Examples of discrete curves approximated by LAC. Black curves are the input curves, blue curves 
are the first guesses obtained from our algorithm and the red curves are the final outputs of the IPOPT 
program
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space curves into the plane and processed the discrete point to obtain a planar dis-
crete curve with constant step size. We observed that the curvature of the keylines is 
highly irregular, as a product of the measuring technique employed. To reduce the 
noise, we proceeded as follows: Let the curve �n ∈ ℝ

2 , n = 0,… ,N − 1 with a con-
stant step size h > 0 , be the raw data; then:

0. Let Ň = 3.
1. For Ň < N , apply the Ramer–Douglas–Peucker algorithm to �n , to obtain a 

new curve �̌�n , n = 0,… , Ň − 1 , such that �̌�0 = 𝛾0 and �̌�Ň−1 = 𝛾N−1.
2. Construct a cubic spline curve �cs(t) , t ∈ [0, L] , using �̌�n , n = 0,… , Ň − 1 , as 

the control points; hence, �cs(0) = �0 and �cs(L) = �N−1.
3. Construct a discrete curve �̄�n , n = 0,… ,N − 1 with step size h, by sam-

pling the cubic spline �cs(tn) in a appropriate manner: Choose tn such that ‖‖�cs(tn+1) − �cs(tn)
‖‖ = h and �̄�n = 𝛾cs(tn) , n = 0,… , Ň − 1.

4. If the residual R is greater than a prescribed error �,

repeat from step 1, with a greater value of Ň . Otherwise, the process ends.
In our case, we used � = 10−3 , and we observed that this produces a smoother 

plot for the curvature, see Fig. 4. Hence, we use �̄�n , instead of �n , as the input curve 
for the approximation algorithm. The admissible set U for the parameters � , as 
defined in (42), was too broad and unexpected jumps in the value of the parameters 
produced unrealistic outputs. To keep the optimization relatively close to the initial 
guess, we decided to constrain the admissible set to Ū0.1 , defined by

(66)R =
1

L2

N−1∑
n=0

‖‖�̄�n − 𝛾n
‖‖h > 𝜂,

(67)Ū0.1 ∶= U ∩
{
𝛩 ∈ ℝ

7 ∶ ||𝛩i − �̄�i
|| < 0.1�̄�i

}
,

Fig. 3  Top: 3D model (STL 
data). Bottom: Position of 
sampled curves, obtained from 
the interception of the 3D model 
and vertical planes (Software: 
Rhino 6). The black lines repre-
sent the intercepting planes, and 
the red lines, in the highlighted 
area, represent the resulting 
curves. From the center to the 
bottom, curves are labelled as 
ps_1, ps_2, ps_3, ps_4 and 
ps_5 
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where �̄� is the initial guess for the IPOPT method. In this way, Ū0.1 constrain the 
final result to be in a 10% range of the initial guess. Final results are presented in 
Fig. 5. We note that the parameters that we obtained provide a good fit of the input 
curve. We can observe that, despite the curves being similar in shape to each other, 
the values of the parameter � have big variations. However, the final result is still 

ps_1

(raw and smoothen data) (close-up: smoothen data)

ps_2

ps_3

ps_4

ps_5

arc length arc length

Fig. 4  Input curves without smoothing. Left column: Each curve represent a different section of the car’s 
roof. Black lines are raw data and red lines are the smoothen data (the input curves after noise reduction). 
Left column: raw and smoothen curves in the plane, practically overlapping with each other. Middle col-
umn: Curvature plot vs arc length for their corresponding input curves, where the blue line is a reference 
for the constant � = 0 . Right column: same as the middle column, with a close-up on the smoothen data

Fig. 5  Discrete curves approximated by LAC. Each curve represents a different section of half of the car 
roof, taken at 100 mm apart. Black lines: input curves. Red lines: LAC output
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a good fit, after finding the remaining parameters. Let us note that, this algorithm 
allows us to input the parameter � by hand (or by replacing (60) by an alternative 
expression or algorithm) and then we can continue with the next steps without any 
further change. The fact that we still obtained a good fit is attributed to the input 
curve having a soft varying curvature. We conclude that the method proposed has a 
good performance; however, further analysis on the recovery of the parameter � is 
required.

4  Concluding remarks

In the present work we briefly reviewed the notion of log-aesthetic curve, and showed 
how the family of LAC with a given parameter � can be described as segments of a 
basic LAC after applying the similarity transformations and shift of the arc length 
parameter (Proposition 1). This characterization constitutes a key ingredient that 
allowed us to provide an algorithmic way to recover the parameters � , S, s0 , � , and 
(x0, y0) , that uniquely identify a given LAC segment. This method was later used to 
obtain the initial input for the gradient descent-like method used to approximate a gen-
eral planar curve segment by an LAC, where the input was regarded as a sequence of 
points and the output expressed in terms of a smooth LAC, as shown in (51). Although 
the fairing process involves one single LAC segment, which has a strictly monotonic 
radius of curvature, it is possible to approximate non-monotonic varying curvature 
curves if they resemble a spiral segment (by having no inflection points, for exam-
ple). As noted in [17], there are some cases in which an LAC cannot be drawn. In this 
regard, we expect good performance of our algorithm if the input curve fits a drawable 
region as studied in [17]. Regarding the applications, we expect that this algorithm will 
be used as a tool to characterize existing objects, which is particularly useful in reverse 
engineering. Moreover, because the LAC is regarded as having aesthetically pleasing 
shape, there exists an increasing interest from the industry to have algorithms like the 
ones presented in this work that can be used in computer-aided design softwares.

We note that, our algorithm could extend the one proposed in [11], where only 
the estimation of � is considered. In this way, the ideas presented in this work can 
be used with the data points resulting from the log-aesthetic filter. In future works, 
further studies in the method employed to find the parameter � will be considered, in 
order to characterize a given design by a concrete value of �.
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