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Abstract
We present an inertial projected gradient method for solving large-scale topology
optimization problems. We consider the compliance minimization problem, the heat
conduction problem and the compliant mechanism problem of continua. We use the
projected gradient method to efficiently treat the linear constraints of these problems.
Also, inertial techniques are used to accelerate the convergence of the method. We
consider an adaptive step size policy to further reduce the computational cost. The
proposed method has a global convergence property. By numerical experiments, we
show that the proposed method converges fast to a point satisfying the first-order
optimality condition with high accuracy compared with the existing methods. The
proposed method has a low computational cost per iteration, and is thus effective in a
large-scale problem.

Keywords Topology optimization · First-order optimization method · Projected
gradient method · Inertial algorithm · Accelerated gradient method

Mathematics Subject Classification 65K10 · 90C26 · 90C90

1 Introduction

Topology optimization is a method to obtain an optimal structural design depend-
ing on the objective by mathematical programming. The extensive study of topology
optimization dates back to the seminal work by Bendsøe and Kikuchi [6] in 1988.
Since then, a wide range of applications have been suggested in fluid, heat, elec-
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tromagnetic, acoustic, and aerospace engineering [7, 13]. A topology optimization
problem of continua is formulated as an infinite-dimensional optimization problem.
We can discretize the problem by the finite element method and obtain a conventional
finite-dimensional optimization problem [7, 9]. The discretized problem is a large-
scale nonconvex optimization problem with some constraints. Moreover, it requires
the finite element analysis (FEA), which is a solution of a linear equation, for calcu-
lating the objective function value and the gradient of the objective function at each
iteration. This property makes the computational cost of topology optimization even
larger.

There are various types of approaches to reduce the computational cost of topology
optimization. In topology optimization, most of the computational cost is spent on
FEA. Accordingly, there are many studies on reducing the computational cost of FEA
[11, 34–36, 38, 39].

In this paper, we attempt to reduce the computational cost by reducing the num-
ber of iterations using an efficient and faster optimization algorithm. In a large-scale
topology optimization problem, common nonlinear optimization algorithms such as
the interior-point method and the sequential quadratic programming are often imprac-
tical because of the huge iteration cost (computational cost per iteration). Therefore,
algorithms designed specifically for structural (topology) optimization such as the
optimality criteria method [6] and the method of moving asymptotes [31, 32] are
commonly used. See [27] for a comparative study on the optimization algorithms for
topology optimization. Some studies on faster optimization algorithms for topology
optimization are found in [20, 28].

Recently, first-order optimizationmethodswhich only require the first-order deriva-
tives of the objective (and constraint) functions have been attracting much attention
in the machine learning community. First-order methods are suited for large-scale
problems because of their low iteration cost in time and memory storage. Second-
order methods such as the Newton method and the interior-point method require the
(approximated) second-order derivative and solution of linear equations. The iteration
cost grows drastically as the problem size increases, and thus second-order methods
are impractical for a large-scale problem. Although the convergence of first-order
methods is basically slower than that of second-order methods, there are studies on
accelerating the convergence of first-order methods. For an unconstrained convex
optimization problem where the objective function f has Lipschitz continuous gra-
dient (also called that the objective function is L-smooth), Nesterov’s accelerated
gradient method [23] achieves the convergence rate at f (xk) − f (x∗) ≤ O(1/k2),
while the steepest descent method converges with rate O(1/k) where k is the iter-
ation counter and x∗ is the optimal solution. The above convergence rate is often
equivalently described by the iteration complexity: O(1/ε1/2) iterations to acheive
f (xk) − f (x∗) ≤ ε. Beck and Teboulle [4] combined Nesterov’s acceleration tech-
nique with the proximal gradient method for convex optimization problems, which
is a generalization of the projected gradient method, to treat simple nondifferentiable
functions and constraints.

The accelerated gradientmethod has also been extended to an optimization problem
with a nonconvex objective function with Lipschitz continuous gradient. In uncon-
strained nonconvex optimization, the optimality measure f (xk) − f (x∗) used in
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Inertial projected gradient method for large-scale topology optimization 879

convex optimization is not appropriate since there may exist multiple local minima.
Therefore, the number of iterations k required to acheive ‖∇ f (xk)‖ ≤ ε (the iteration
complexity) is considered. The steepest descent method has O(1/ε2) iteration com-
plexity. The accelerated gradient methods by [15, 18] have the same order of iteration
complexity as the steepest descent method in nonconvex case, but have the acceler-
ated convergence rate in convex case same as Nesterov’s accelerated gradient method.
Although they do not have theoretically improved convergence rates in nonconvex
optimization, their empirical performance is expected to be better than that of first-
order methods without acceleration since the iteration complexity is worst-case under
all L-smooth functions f . With the additional assumption of Lipschitz continuity of
the Hessian of the objective function, Carmon et al. [10] acheived an improved iter-
ation complexity of O(ε−7/4 log(1/ε)) and Li and Lin [19] acheived O(ε−7/4). The
former method requires more complicated update scheme. The methods by [10, 19]
only treat unconstrained problems. The accelerated gradient methods for nonconvex
optimization are still developing. See [3, 12, 22] for more details in first-order methods
and their acceleration.

Although the accelerated proximal gradient method has been applied to optimiza-
tion problems in computational plasticity [17, 29, 30], there are very few applications
to topology optimization. Li and Zhang [21] applied the accelerated mirror descent
method to a robust topology optimization problem under stochastic load uncertainty.
They used stochastic optimization techniques to efficiently obtain a robust design.
However, as they applied a convex optimization algorithm to nonconvex optimization
problems, the convergence of the method is not guaranteed.

In [24], the authors applied the accelerated projected gradient method based on [15]
to the compliance minimization problem in topology optimization. Although we call
the proposed method the “accelerated” projected gradient method, the convergence
rate is not improved theoretically from the classical projected gradient method for a
nonconvex objective function. Moreover, to guarantee the convergence, the method
requires additional FEAs at each iteration.1 Therefore, in this paper, we adopt an
inertial projected gradient method based on iPiano [25] instead. The main advantage
of this algorithm is that it contains no auxiliary variables and requires a smaller number
of FEAs than [15] to guarantee global convergence. It has an inertial term in its update
formula to accelerate the convergence. Although the theoretical convergence rate is the
same as that of the projected gradient method (and that of themethod in [15]), practical
performance is expected to be better than the projected gradient method. We consider
an adaptive step size policy to further reduce the computational cost. The proposed
method is easy to implement and guaranteed to converge to a stationary point which
satisfies the first-order optimality condition. This convergence guarantee is important
to properly stop the algorithm and obtain a high-quality solution. We also extend the
results to the heat conduction problem and the compliant mechanism problem. We
show that the projection onto the feasible set can be easily calculated for each of
the equality and inequality constraints on the structural volume, and thus the inertial

1 The statements about the faster convergence rate and the guaranteed global convergence of the proposed
method in [24] are mistakes, and the authors correct it here.
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projected gradient method can be efficiently applied to the topology optimization
problems considered in this paper.

In numerical experiments, we consider the compliance minimization problem, the
heat conduction problem and the compliantmechanism problem, and compare the pro-
posedmethodwith the optimality criteriamethod [6], themethod ofmoving asymptotes
(MMA) [31–33], and the MATLAB fmincon (interior-point method and sequential
quadratic programming). We show that the proposed method has a low iteration cost
and converges fast. Moreover, the solution obtained by the proposed method satisfies
the first-order optimality condition with higher accuracy than those obtained by the
existing method.

This paper is organized as follows: In Sect. 2, we provide the fundamentals of
topology optimization and the problem formulation. In Sect. 3, we briefly discuss
the projected gradient method and the projection onto the feasible set of topology
optimization problems. Then, we explain the proposed method, the inertial projected
gradient method and its step size policy. In Sect. 4, we show the results of numerical
experiments. Finally, some concluding remarks are provided in Sect. 5.

All of the norms ‖·‖ in this paper are the Euclidean normof a vector. The inner prod-
uct is denoted by 〈·, ·〉. We use 0 and 1 to denote the vectors with all components equal
to 0 and 1, respectively. Moreover, max{0, ·} and min{1, ·} are the componentwise
operations acting on a vector.

2 Problem formulation

We consider three topology optimization problems with simple linear constraints: the
compliance minimization problem, the heat conduction problem and the compliant
mechanism problem. The problem setting in this paper is based on [1, 7].

Consider a topologyoptimization problem the design domain ofwhich is discretized
by the conventional finite element method. An example of discretization of the design
domain is shown in Fig. 1. For simplicity, we divide the design domain into n identical
square finite elements with unit volume. The design variable of the optimization prob-
lem is the density vector x ∈ R

n , the eth component xe of which denotes the density
of the eth finite element. Each density xe takes the value in [0, 1]. When xe = 0, the
element e is regarded as void and when xe = 1, the element e is regarded as material.

Fig. 1 A finite element
discretization of the design
domain of a topology
optimization problem. The eth
component xe (e = 1, . . . , n) of
the the density vector x
corresponds to the density of the
eth finite element
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Inertial projected gradient method for large-scale topology optimization 881

Thus x corresponds to a design of the structure. We use the SIMP (solid isotropic
material with penalization) method [5] to penalize the intermediate values in (0, 1).

2.1 Complianceminimization problem

Consider the complianceminimization problem shown in Fig. 2. The top figure in Fig.
2 describes an example of problem setting and the bottom figure describes the optimal
solution of the discretized problem with uniform square finite elements in the way
shown in Fig. 1. The aim is to maximize the stiffness of structure when the external
force is applied. In the SIMP method, the global stiffness matrix can be defined as

K (x) =
n∑

e=1

(Emin + (E0 − Emin)x
p
e )Ke, (1)

where p > 1 is the penalty parameter, E0 	 Emin > 0 are constants and Ke is the local
stiffness matrix which is a constant symmetric matrix. In addition, we use the density
filter [9] to prevent mesh dependency; refining the mesh leads to a different optimal
structural design, not a refined structural design. The density filter is a linear operator
acting on the density vector x. Therefore, by using a constant matrix H ∈ R

n×n , the
filtered density vector can be written as x̃ = H x.

The compliance minimization problem is defined as follows:

Minimize
x∈Rn ,x̃∈Rn ,u∈Rm

pTu

subject to K (x̃)u = p,

1T x̃ = V0,

x̃ = H x,

0 ≤ x ≤ 1.

(2)

Here, p ∈ R
m is the constant load vector, u ∈ R

m is the global nodal displacement
vector, m is the number of degrees of freedom of the nodal displacements, and V0 ∈

Fig. 2 Problem setting of the
compliance minimization
problem (top) and its optimal
design (bottom)
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(0, n) is the upper limit of the structural volume. Problem (2) can be rewritten as
the following optimization problem with a nonconvex objective function and linear
constraints:

Minimize
x∈Rn

f (x) := pTK (H x)−1 p

subject to 1TH x = V0,

0 ≤ x ≤ 1.

(3)

Note that, in practice, we do not calculate the inverse matrix of the global stiffness
matrix, rather we solve the equilibrium equation K (x̃)u = p (corresponding to FEA)
at each iteration. Subsequently we use the solution u of FEA to calculate the objective
function pTu. Also, the gradient of the objective function is calculated by substituting
u into the following formula:

∂ f

∂xe
= −

n∑

i=1

hie px̃
p−1
i (E0 − Emin)uTKiu (e = 1, . . . , n), (4)

where hi j is the (i, j)th entry of H . Each component of the gradient ∇ f (x) is non-
positive, because Ke (e = 1, . . . , n) is positive semidefinite. This is why we consider
equality volume constraint in (2).

2.2 Heat conduction problem

The heat conduction problem aims to maximize the heat conduction from the entire
design domain under uniformly distributed heating to the designated region where the
temperature is constant T (lower than that of the entire design domain) as shown in
Fig. 3. It can be formulated in the same way as the compliance minimization problem
(2). The vector u, the stationary solution of the discretized heat equation, consists
of the temperature of each node. Note that the steady state heat equation and the
equilibrium equation of linear elasticity are both described by the Poisson equation.
We put p = cT1 using a scaling parameter cT. Then the problem (2) corresponds to the
minimization problem of the average temperature of the design domain (the problem

Fig. 3 Problem setting of the heat conduction problem (left) and its optimal design (right)
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to find the optimal shape of the heat conductor to minimize the average temperature
of the design domain). See [7] for details.

2.3 Compliant mechanism problem

A compliant mechanism transmits the force and motion through elastic body defor-
mation. In Fig. 4, we aim to design a compliant mechanism which maximizes the
displacement in the direction of vector uout when the force is applied in the direction
of vector p. The spring with stiffness kin and kout are added to the points at which p
is applied and uout is measured, respectively. The compliant mechanism problem is
defined as follows [7]:

Minimize
x∈Rn ,x̃∈Rn ,u∈Rm

qTu

subject to K (x̃)u = p,

1T x̃ ≤ V0,

x̃ = H x,

0 ≤ x ≤ 1.

(5)

The main difference from the compliance minimization problem is the objective func-
tion. The coefficient in the objective function q is different from the right hand side
of the equilibrium equation p. The gradient of the objective function is calculated by

∂ f

∂xe
= −

n∑

i=1

hie px̃
p−1
i (E0 − Emin)uTKi ū (e = 1, . . . , n), (6)

where ū is the solution of so-called adjoint equation K (x̃)ū = q. This equation can be
efficiently solved using the Cholesky decomposition, because the coefficient matrix
is the same as the equilibrium equation. Note that a component of the gradient is not
necessarily non-positive in this case, and thus the volume constraint is imposed as an
inequality constraint.

Fig. 4 Problem setting of the compliant mechanism problem (left) and its optimal design (right)
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Problems (2) and (5) can be written as follows:

Minimize
x∈S f (x), (7)

where S is the feasible set defined by

S = {x ∈ R
n | vTx = V0, 0 ≤ x ≤ 1} (8)

or

S = {x ∈ R
n | vTx ≤ V0, 0 ≤ x ≤ 1}. (9)

Although we have v = HT1 in this paper, the coefficient of the volume constraint is
in general not necessarily equal to 1 (as the volume of each element can differ from
each other). In the next section, we present algorithms to solve problem (7).

3 Inertial projected gradient method for topology optimization

3.1 Projected gradient method

The projected gradient method [16] is a classical optimization algorithm for an opti-
mization problem in the form of (7) with a smooth objective function f : Rn → R

and a closed convex feasible set S ⊂ R
n . It is a special case of the proximal gradi-

ent method which has been attracting much attention in recent years [3, 4, 22]. The
projected gradient method finds a solution by repeating the following formula starting
from the initial point x0 ∈ S:

xk+1 = �S(xk − αk∇ f (xk)). (10)

Here, αk > 0 is the step sizes, and �S(w) ∈ S is the projection of a given vector
w ∈ R

n onto S defined as follows:

�S(w) := argmin
x∈S

‖x − w‖. (11)

That is, �S(w) is the closest point in S from w. The projected gradient method
coincides with the steepest descent method when S = R

n .

3.2 Projection onto the feasible set

To use the projected gradient method effectively, the projection onto the feasible set
must be easily calculated. We present an easy way to calculate the projection in our
problems, for each of the equality volume constraint cases in (8) and the inequality
volume constraint case in (9). The algorithm of the projection in our problems is
similar to that of the projection onto the probability simplex (see e.g. [26]).
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3.2.1 Case of equality volume constraint

Consider S in (8). The projection �S(w) is equal to the unique optimal solution of
the following problem:

Minimize
x∈S

1

2
‖x − w‖2. (12)

This is a convexoptimizationproblem, and the followingKKT(Karush–Kuhn–Tucker)
condition is the necessary and sufficient condition for optimality:

x − w − λ + ν + μv = 0,

vTx = V0, 0 ≤ x ≤ 1,

λ ≥ 0, ν ≥ 0,

λTx = 0, νT(x − 1) = 0,

(13)

where λ, ν ∈ R
n and μ ∈ R are the Lagrange multipliers.

We find the unique point x which satisfies (13) for given w, and it is the projection
�S(w). By the first equality in (13), we obtain x = w + λ − ν − μv. To satisfy
0 ≤ x ≤ 1,λ ≥ 0, ν ≥ 0,λTx = 0 and νT(x−1) = 0,we setλ = max{0,−(w−μv)}
and ν = max{0,w − μv − 1}. Then, for given w, x is a function depending only on
μ:

x(μ;w) := max{0,min{1,w − μv}}. (14)

Therefore, we need to find μ∗ such that x(μ∗;w) satisfies the rest of the condition
(13): the volume constraint vTx(μ∗;w) = V0. As vTx(μ;w) is a monotoni-
cally decreasing piecewise linear function of μ and 0 < V0 < n, μ∗ exists in
[min{w1/v1, . . . , wn/vn} − 1,max{w1/v1, . . . , wn/vn}].

In practice, all we need to do is to find the solution μ∗ of

vTx(μ;w) = V0 (15)

by e.g. the bisection method (in the numerical experiments, we use MATLAB fzero
function). The projection is then calculated by

�S(w) = x(μ∗;w). (16)

3.2.2 Case of inequality volume constraint

In the case that the volume constraint is an inequality constraint, the projection can be
calculated in a manner similar to Sect. 3.2.1. The KKT condition is as follows:
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x − w − λ + ν + μv = 0,

vTx ≤ V0, 0 ≤ x ≤ 1,

λ ≥ 0, ν ≥ 0, μ ≥ 0,

λTx = 0, νT(x − 1) = 0, μ(vTx − V0) = 0.

(17)

If x(0;w) satisfies the volume constraint vTx(0;w) ≤ V0, then x(0;w) satisfies the
KKT condition (17), and hence

�S(w) = x(0;w). (18)

If vTx(0;w) > V0, then there exists μ∗ ∈ [0,max{w1/v1, . . . , wn/vn}] such that
vTx(μ∗;w) = V0. Then the projection is written as

�S(w) = x(μ∗;w). (19)

The constraints of the topology optimization problems in this paper are expressed
as the intersection of box constraints (a ≤ x ≤ b) and a single linear constraint. There-
fore, we only need to find the scalar Lagrange multiplier μ which can be efficiently
calculated by e.g. the bisection method. Note that, in a problem with general linear
constraints, the calculation of projection becomes convex quadratic programming and
computationally expensive in a large-scale problem.

3.3 Inertial projected gradient method

The projected gradient method has a low iteration cost and is suited for a large-scale
optimization problem such as a topology optimization problem. However, the con-
vergence of the projected gradient method is not very fast. Recently, the acceleration
techniques of the projected gradientmethod and,more generally, the proximal gradient
method have been attracting much attention.

There are several different kinds of acceleration techniques for the projected gradi-
ent method for nonconvex optimization. We adopt iPiano (inertial proximal algorithm
for nonconvex optimization) [25] to solve topology optimization problems. Its simple
update scheme is suited for topology optimization. It does not require additional eval-
uations of the objective value. Most accelerated projected gradient methods [15, 18]
require evaluations of the objective value more than once at each iteration to update
the design variable or to guarantee the convergence. Moreover, some methods [37]
require FEA at an infeasible point where the global stiffness matrix may become
singular. Although iPiano does not have a faster convergence rate than the projected
gradient method, in the numerical examples we show that it is practically faster than
the projected gradient method for topology optimization problems.

In iPiano, the design variable is updated as follows:

xk+1 = �S(xk − αk∇ f (xk) + βk(xk − xk−1)), (20)
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where αk > 0 and βk ≥ 0 are step size parameters discussed in Sect. 3.4. The term
βk(xk − xk−1) in (20) is a so-called inertial (or momentum) term which accelerates
the convergence. When βk ≡ 0, (20) coincides with the classical projected gradient
method (10).

3.4 Step size policy

To achieve faster and guaranteed convergence to a stationary point, the choice of the
step size parameters is crucial. One choice is to use constant step size parameters. To
choose constant step size parameters of a first-order method, the Lipschitz constant of
the gradient of the objective function is often used as a guideline. For a differentiable
function � : Rn → R, we call L ≥ 0 the Lipschitz constant of ∇� over D ⊂ R

n if
it satisfies

‖∇�(x) − ∇�( y)‖ ≤ L‖x − y‖ (∀x, y ∈ D). (21)

If such an L exists, we say that f : Rn → R is L-smooth over D. Many first-order
methods including the proposed method assume the L-smoothness of the objective
function. In the topology optimization problems in Sect. 2, the objective functions are
L-smooth over S, since they are rational functions and twice continuously differen-
tiable on [0, 1]n . See [3] for more details on the L-smoothness. In [25], the condition
for constant step size parameters of iPiano (20) to guarantee the convergence is intro-
duced as follows:

αk ≡ α <
2(1 − β)

L
, βk ≡ β ∈ [0, 1). (22)

Although this constant step size policy is simple, there are two drawbacks. One is
that it requires a good estimation of L , the Lipschitz constant of the gradient of the
objective function. This estimation is difficult in topology optimization. The other is
that a constant step size cannot benefit from a smaller local value of L . The Lipschitz
constant over D′ ⊂ D can possibly be much less than the Lipschitz constant over D,
and the points generated by an algorithm can be restricted to a smaller subset of D as
iterations progress. In this case, the acceptable step size for the convergence guarantee
becomes greater than (22) as iterations progress. For faster convergence, it is better to
adjust the step size parameters at each iteration.

In case that the step size parameters change at each iteration, they must satisfy the
following conditions to guarantee the convergence [25]:

αk = 2(1 − βk)/(2a2 + Lk), βk = (b − 1)
/ (

b − 1

2

)
, (23)
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888 A. Nishioka, Y. Kanno

where b =
(
a1 + Lk

2

)
/
(
a2 + Lk

2

)
and a1 ≥ a2 > 0 are constant parameters, and Lk

is a parameter satisfying the following descent condition:

f (xk+1) ≤ f (xk) + 〈∇ f (xk), xk+1 − xk〉 + Lk

2
‖xk+1 − xk‖2. (24)

Note that if Lk ≥ L , (24) is always satisfied (see e.g. [3] for the proof). However, too
large Lk leads to a small step size and hence slow convergence. Also, too small Lk

leads to a large step size and numerical instability or even divergence. Thus, we need
to choose Lk appropriately for fast and stable convergence.

Backtracking is a popular way to choose the step size parameter Lk in a first-order
method (see e.g. [3]). In the backtracking procedure, we start with a sufficiently small
initial value s for Lk and repeat multiplying η > 1 until the descent condition (24) is
satisfied, i.e. we set Lk = sηl where l is the smallest nonnegative integer such that
Lk = sηl satisfies (24). However, the backtracking procedure requires evaluations of
the objective value many times to check if the descent condition (24) is satisfied (Note
that if we change the value of Lk , the objective value f (xk+1) of the left-hand side
of (24) changes). This means we need to perform FEA many times to decide the step
size parameters, which is computationally expensive.

Therefore, we estimate the initial value for the backtracking procedure by

Lk = max

{
Lmin,

‖∇ f (xk) − ∇ f (xk−1)‖
‖xk − xk−1‖

}
, (25)

where Lmin is a small positive constant to avoid the numerical instability, and we
choose sufficiently large L0 for the first iteration of the inertial projected gradient
method. If Lk in (25) does not satisfy (24), then we update Lk ← ηLk in the same
way as the conventional backtracking procedure. The estimate (25) is motivated by
the definition of L in (21). By definition, we see that Lk in (25) is no smaller than Lmin
and no greater than L . Although Lk ≥ L is a sufficient condition to satisfy (24), in
numerical examples, Lk in (25) satisfies the descent condition (24) in most cases, and
no additional FEAs are needed. By this step size policy, we can automatically adjust
the step size regardless of the problem setting (e.g. the design domain, the boundary
conditions and the number of finite elements).

Remark The step size (25) has a relationship with the Barzilai–Borwein step sizes
[2]. For the simplicity of notation, we set sk−1 = xk − xk−1 and yk−1 = ∇ f (xk) −
∇ f (xk−1). The relationship

|〈sk−1, yk−1〉|
‖sk−1‖2 ≤ ‖ yk−1‖

‖sk−1‖ ≤ ‖ yk−1‖2
|〈sk−1, yk−1〉| (26)

immediately follows from the Cauchy–Schwarz inequality. The right-hand side and
the left-hand side of (26) are inverses of the Barzilai–Borwein step sizes. The Barzilai–
Borwein step sizes are derived fromanapproximation to the secant equationunderlying
the quasi-Newton method, and converge fast for convex quadratic programming. We
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can use the inverse of the Barzilai–Borwein step sizes instead of ‖ yk−1‖/‖sk−1‖ in
(25). However, a large step size leads to many FEAs, and a small step size leads to
slow convergence, thus we use (25).

Based on all of the above discussions, the algorithmof the inertial projected gradient
method for topology optimization is described in Algorithm 1. The stopping criteria
are discussed in the next section. Each iteration of Algorithm 1 consists of vector
additions, scalar multiplications and projections other than FEA, thus computationally
cheap even if the problem size is very large.

4 Numerical examples

We conduct the numerical experiments in three examples: the compliance minimiza-
tion problem, the heat conduction problem and the compliant mechanism problem.We
compare the proposedmethodwith popular optimization algorithms for topology opti-
mization: the optimality criteriamethod (OC) [1, 6] and the globally convergent version
of the method of moving asymptotes (GCMMA) [32, 33]. As GCMMA is designed
for an inequality-constrained optimization problem, for the numerical experiments
on GCMMAwe change the volume constraints in the compliance minimization prob-
lems and the heat conduction problems to the inequality-volume constraint vTx ≤ V0.2

We also make comparisons with the general nonlinear optimization algorithms: the
interior-point method (IPM) and the sequential quadratic programming (SQP) of
MATLAB fmincon. We use the limited-memory-BFGS (L-BFGS) formula for the
Hessian approximation in IPM and SQP. The L-BFGS formula has a low iteration
cost and is more suited for a large-scale problem than the BFGS formula or the exact
Hessian.

2 This does not cause any issues as the volume constraint is always active at the optimal solution. Note that
using vTx ≤ V0 and vTx ≥ V0 to treat the equality constraint may lead to numerical instabilities (a matrix
used in a subproblem in GCMMA may become close to singular).
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The experiments have been run on iMac (Intel(R) Core i9, 3.6GHz CPU, 128GB
RAM) and MATLAB R2020b. The MATLAB code of topology optimization is based
on [1, 7, 14]. The following values are common in all the experiments: E0 = 1, Emin =
10−3 and p = 3. The Poisson ratio in the local stiffness matrix Ke (e = 1, . . . , n) is
0.3. The filter radius used for the density filter is 0.05 times the number of elements
in the horizontal direction. The initial point of each algorithm is x0 = (V0/n)1. The
parameters of the proposed method are follows: L0 = 10, Lmin = 10−3, η = 1.5,
a1 = 0.1 and a2 = 10−6.

4.1 Optimality measure and stopping criterion

The proposed method aims to find a stationary point of problem (7), i.e. the point
satisfying the first-order optimality condition (see e.g. [8]):

〈∇ f (x∗), x − x∗〉 ≥ 0 (∀x ∈ S). (27)

For a given differentiable function f : Rn → R, a convex set S ⊂ R
n and α > 0,

define the gradient mapping Gα : Rn → R
n by

Gα(x) := 1

α
(x − �S(x − α∇ f (x))). (28)

As afirst-order optimalitymeasure,we use theEuclidean normof the gradientmapping
‖Gα(x)‖. We can easily see Gα(x) coincides with the gradient ∇ f (x) when S = R

n .
Thus, the gradient mapping is a generalization of the gradient. Moreover, ‖Gα(x)‖ is
a continuous function of x, and ‖Gα(x)‖ = 0 if and only if x is a stationary point of
the problem in the form of (7) (see [3] for the proof). Thus, we can use the gradient
mapping ‖Gα(x)‖ as a first-order optimalitymeasure of x.We setα = 1 for simplicity.
Note thatG1(xk) corresponds to the proximal residual defined in [25]. This optimality
measure can be used for any algorithms. We calculate ‖G1(xk)‖ at each iteration of
each algorithm independent of the update of the design variables xk so that we can
equally measure the first-order optimality of each point generated by each algorithm.
We use ‖G1(xk)‖ < ε as a stopping criterion for sufficiently small ε > 0.

The reason whywe adopt the gradient mapping for comparison is that other choices
are inaccurate or unable to equally compare the optimality of points generated by
different algorithms. As the projected gradient method and OC do not calculate the
Lagrange multipliers at each iteration, it is difficult to adopt the KKT residual norm,
which is used in GCMMAandMATLAB fmincon. Also, the change of the objective
function value f (xk+1) − f (xk) or the design variable ‖xk+1 − xk‖ can be strongly
influenced by a step size, i.e. if we choose an arbitrary small step size, these values
become arbitrarily small, and the algorithm terminates with a very small number of
iterations even though the current point is not optimal.
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Fig. 5 Objective function value

4.2 Complianceminimization problem

We consider the compliance minimization problem of theMBB beam shown in Fig. 2.
Note that, by utilizing the symmetry, we consider only the right half of the entire design
domain. The upper limit of the volume is V0 = 0.5n. The magnitude of the external
force is 1.

4.2.1 Effectiveness of acceleration and step size policy

We compare the proposed method with the original (non-inertial) projected gradient
method (PG) to show the effectiveness of the acceleration by the inertial term. Also,
to show the effectiveness of the proposed step size policy, we compare it with the
constant step size policy (22).

The objective function value and the norm of the gradient mapping at each iteration
of 500 iterations for n = 2700 are shown in Figs. 5 and 6, respectively. Note that we
omit after 100 iterations in Fig. 5 because of small changes. Also, we omit the figures
of the obtained solutions, as not much difference is seen.

Although the proposed method does not have an improved convergence rate the-
oretically, both the objective function value and the norm of the gradient mapping
decrease faster than PG as shown in Figs. 5 and 6. Moreover, when we use a constant
step size parameter Lk = 10 (∀k) or Lk = 0.5 (∀k), the convergence gets slow. In
particular, the result of Lk = 0.5 shows that too large step size leads to numerical
instability (large objective values at the first few iterations). In contrast, the step size
parameter Lk of the proposed method changes drastically at the first few iterations as
shown in Fig. 7. This shows that the proposed step size policy effectively adjusts the
step size for faster convergence.
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Fig. 6 Optimality measure

Fig. 7 Lk by the proposed step size policy

4.2.2 Comparison with existing methods

We compare the proposedmethod with OC, GCMMA, IPM and SQP.We use the same
stopping criterion ‖G1(xk)‖ < 10−3 for all the algorithms. The maximum number
of iterations is 2000. The total computational time and the computational time per
iteration in seconds versus the number of finite elements n are shown in Figs. 8 and 9,
respectively. Note that the graphs of Proposed and OC are overlapped in Fig. 9. The
computational time of SQP is shown only for small values of n because it increases
rapidly as n becomes large. To see how the objective value and the optimality measure
decrease, we show these values of the proposed method, OC, MMA and IPM with
2000 iterations when n = 10,800 in Figs. 10 and 11. Note that the proposed method
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Fig. 8 Total computational time (compliance minimization problem)

Fig. 9 Computational time per iteration (compliance minimization problem)

satisfies the stopping criterion before 2000 iterations. The obtained designs are shown
in Fig. 12. Table 1 lists the detailed results: the number of iterations “iter.”, the number
of FEA, the total computational time t , the computational time per iteration tit , and
the objective value f (x) and the Euclidean norm of the gradient mapping ‖G1(x)‖
at the last iteration. Note that IPM automatically stops before 2000 iterations for n =
10,800, 19,200 and 30,000, although the obtained solution does not satisfy the stopping
criterion. This is because the MATLAB fmincon stops automatically if the step size
becomes too small.

From Figs. 8 and 9, we see that the computational cost per iteration of IPM and
SQP increases drastically as the number of finite elements n increases. SQP has a
particularly high iteration cost as it solves a quadratic programming problem at each
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Fig. 10 Objective function value (compliance minimization problem, n = 10,800)

Fig. 11 Optimality measure (compliance minimization problem, n = 10,800)

(a) Proposed (b) OC (c) GCMMA (d) IPM

Fig. 12 Solutions by each algorithm (compliance minimization problem, n = 10,800)
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Table 1 Numerical results of the compliance minimization problem

n = 4800 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 609 609 11.84 1.94 × 10−2 247.46 9.98 × 10−4

OC 2000 2000 38.16 1.91 × 10−2 248.87 4.38 × 10−2

GCMMA 2000 2004 96.70 4.83 × 10−2 247.44 3.23 × 10−3

IPM 1066 1066 60.32 5.66 × 10−2 247.42 6.26 × 10−4

n = 10,800 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 937 937 38.16 4.07 × 10−2 248.84 9.91 × 10−4

OC 2000 2000 80.40 4.02 × 10−2 250.51 2.18 × 10−2

GCMMA 2000 2005 191.54 9.58 × 10−2 248.77 2.48 × 10−3

IPM 1349 1349 178.68 1.32 × 10−1 248.75 4.72 × 10−3

n = 19,200 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 1808 1808 140.85 7.79 × 10−2 249.84 9.96 × 10−4

OC 2000 2000 156.12 7.81 × 10−2 251.55 1.88 × 10−2

GCMMA 2000 2003 320.33 1.60 × 10−1 249.84 4.24 × 10−3

IPM 1523 1523 428.39 2.81 × 10−1 249.79 2.55 × 10−3

n = 30,000 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 1707 1707 209.32 1.23 × 10−1 250.68 9.75 × 10−4

OC 2000 2000 242.28 1.21 × 10−1 252.31 1.31 × 10−2

GCMMA 2000 2005 521.19 2.61 × 10−1 250.63 6.46 × 10−3

IPM 1800 1800 1002.26 5.57 × 10−1 250.59 4.10 × 10−3

iteration. Therefore, these nonlinear programming solvers are impractical in a large-
scale optimization problem.Weomit IPMandSQP in numerical experiments hereafter,
as they are particularly slow. GCMMA also has a high iteration cost compared to the
proposed method and OC as it solves a convex subproblem at each iteration. The
proposed method and OC consist of the vector addition, the scalar multiplication and
the bisection method (solution of a single variable equation), and hence have low
iteration costs. The number of FEA of the proposed method in Table 1 shows that
the proposed step size policy effectively estimates an appropriate step size for stable
convergence because almost no additional FEA is needed.As shown inTable 1,OCand
GCMMA do not stop until the 2000 iteration. In fact, Fig. 11 shows that the optimality
measures of OC and GCMMA do not decrease sufficiently. Note that OC is a heuristic
algorithm and the convergence to a stationary point is not guaranteed. In contrast, the
proposed method stops at fewer iterations than the other algorithms, and hence the
proposed method has a shorter computational time as observed in Fig. 8. Figure 10
shows that the objective function value of the proposed method also decreases faster
than those of the other algorithms. Moreover, the solution of the proposed method
satisfies the optimality condition with higher accuracy as shown in Fig. 11, which
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Fig. 13 Number of iterations (small-scale problem)

means that the solution is a more reliable optimal solution. In Fig. 12, the obtained
solutions are slightly different (compare the angles of the right inclined bars). There is
no guarantee that the solution obtained by OC is a local optimum since OC is heuristic
(the objective function value is larger as shown in Table 1). In contrast, the solution
obtained by the proposed method can be considered at least a stationary point.

4.2.3 Large-scale problems

To show the effectiveness of the proposed method in large-scale problems, we make a
comparison with OC and GCMMA. To see the practical performance, we use different
stopping criteria, which are commonly used for the three algorithms. The stopping
criterion of the proposed method and OC is ‖G1(xk)‖ < 10−3 [14, 27] and ‖xk+1 −
xk‖ < 10−3 [25], respectively. GCMMA stops when the Euclidean norm of the KKT
residual [32, 33] is less than 10−3. The maximum number of iterations is 3000.

We show the number of iterations until the stopping criteria are satisfied for small-
scale problems in Fig. 13. OC satisfies the stopping criteria for only small values of n
as shown in Fig. 13. As OC does not satisfy the stopping criteria until the maximum
number of iterations, the computational time of OC becomes huge when n gets large.
Therefore,we omitOC for large-scale problems.A convergence guarantee is important
to properly stop the algorithm and obtain a high-quality solution.

The total computational time and the optimality measure ‖G1(xk)‖ of the solutions
in large-scale problems are shown in Figs. 14 and 15, respectively. We also add the
results of the proposed method with the stopping criterion ‖G1(xk)‖ < 10−2.

Figure 14 shows that the proposed method and GCMMA converge at a moderate
amount of time for large-scale problems. However, the solutions of GCMMA satisfy
the optimality condition only with low accuracy compared with the proposed method
with ‖G1(xk)‖ < 10−3, as shown in Fig. 15. The proposed method with the stopping
criterion ‖G1(xk)‖ < 10−2 can obtain the solutions satisfying the optimality condition
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Fig. 14 Total computational time (large-scale problem)

Fig. 15 Optimality measure when each algorithm stops (large-scale problem)

with similar or higher accuracy than those ofGCMMAformuch shorter computational
time. This shows the effectiveness of the proposed method for obtaining an optimal
solution with moderate accuracy in a large-scale problem.

4.3 Heat conduction problem

In this section, we consider the heat conduction problem shown in Fig. 3. We use the
following parameters: V0 = 0.4n and p = (10/n)1.

We compare the proposed method with OC and GCMMA. The stopping criterion
of the algorithms is ‖G1(xk)‖ < 10−3 and the maximum number of iterations is
2000. The total computational time versus the number of finite elements n is shown
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Fig. 16 Total computational time (heat conduction problem)

Fig. 17 Objective function value (heat conduction problem, n = 10,000)

in Fig. 16. Note that OC and GCMMA reach the maximum number of iterations. The
objective value and the optimality measure until 2000 iterations for n = 10,000 are
shown in Figs. 17 and 18, respectively. Note that the proposed method satisfies the
stopping criterion before 2000 iterations. The designs obtained by the three algorithms
are shown in Fig. 19. Table 2 lists the detailed results in the same manner as Table 1
for the compliance minimization problem.

Figure 16 andTable 2 show a trend similar to the complianceminimization problem;
the proposed method has a low iteration cost, achieves faster convergence and satisfies
the optimality condition with higher accuracy than the other methods. Figure 19 shows
that the designs obtained by the three algorithms are different from each other. This
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Fig. 18 Optimality measure (heat conduction problem, n = 10,000)

(a) Proposed (b) OC (c) GCMMA

Fig. 19 Solutions obtained by the three algorithms (heat conduction problem, n = 10,000)

suggests that the heat conduction problem has more local optimal solutions than the
compliance minimization problem.

4.4 Compliant mechanism problem

In this section, we consider the compliant mechanism problem shown in Fig. 4. Note
that, by utilizing the symmetry, we consider only the lower half of the entire design
domain. We use the following parameters: V0 = 0.3n and kin = kout = 0.01. The
magnitude of the external force is 1.

We compare the proposed method with OC and GCMMA. The stopping criteria
of the algorithms are ‖G1(xk)‖ < 10−3 and f (xk) < −0.1. The latter criterion
is added to obtain a meaningful solution. The direction of the vector uout in Fig. 4
is the negative direction of the nodal displacement in the global coordinate system.
Therefore, we seek to find a solution with a negative objective value. The maximum
number of iterations is 2000. The total computational time versus the number of finite
elements n is shown in Fig. 20. The objective value and the optimality measure until
2000 iterations for n = 9800 are shown in Figs. 21 and 22, respectively. The designs
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Table 2 Numerical results of the heat conduction problem

n = 3600 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 287 300 2.14 7.44 × 10−3 189.65 8.54 × 10−4

OC 2000 2000 13.25 6.62 × 10−3 188.62 1.54 × 10−2

GCMMA 2000 2193 69.32 3.47 × 10−2 189.21 1.23 × 10−3

n = 10,000 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 987 994 16.50 1.67 × 10−2 184.09 9.89 × 10−4

OC 2000 2000 32.90 1.65 × 10−2 184.26 1.49 × 10−2

GCMMA 2000 2028 148.70 7.44 × 10−2 183.81 3.87 × 10−3

n = 19,600 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 1735 1740 51.34 2.96 × 10−2 180.69 9.54 × 10−4

OC 2000 2000 58.73 2.94 × 10−2 181.85 6.70 × 10−3

GCMMA 2000 2023 230.27 1.15 × 10−1 181.56 7.54 × 10−3

n = 32,400 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 2000 2004 99.78 4.99 × 10−2 179.41 1.86 × 10−3

OC 2000 2000 101.65 5.08 × 10−2 180.56 5.93 × 10−3

GCMMA 2000 2019 364.67 1.82 × 10−1 180.29 1.24 × 10−2

Fig. 20 Total computational time (compliant mechanism problem)

obtained by the three algorithms are shown in Fig. 23. Table 3 lists the detailed results
in the same manner as Table 1 for the compliance minimization problem.

Figure 20 andTable 3 show a trend similar to the complianceminimization problem;
the proposed method has a low iteration cost, achieves faster convergence and satisfies
the optimality condition with higher accuracy than the other methods. However, as
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Fig. 21 Objective function value (compliant mechanism problem, n = 9800)

Fig. 22 Optimality measure (compliant mechanism problem, n = 9800)

(a) Proposed (b) OC (c) GCMMA

Fig. 23 Solutions by each algorithm (compliant mechanism problem, n = 9800)
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Table 3 Numerical results of the compliant mechanism problem

n = 5000 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 142 142 5.19 3.65 × 10−2 −24.28 9.70 × 10−4

OC 2000 2000 67.58 3.38 × 10−2 −24.27 3.69 × 10−3

GCMMA 2000 2032 341.75 1.71 × 10−1 −24.29 7.45 × 10−3

n = 9800 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 181 182 11.70 6.46 × 10−2 −24.09 9.63 × 10−4

OC 2000 2000 133.31 6.67 × 10−2 −24.08 2.21 × 10−3

GCMMA 2000 2031 446.59 2.20 × 10−1 −24.10 1.46 × 10−2

n = 20000 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 244 245 30.67 1.26 × 10−1 −23.77 9.89 × 10−4

OC 2000 2000 256.77 1.28 × 10−1 −23.75 2.32 × 10−3

GCMMA 2000 2035 1000.40 5.00 × 10−1 −23.80 2.10 × 10−2

n = 28800 Iter. FEA t (s) tit (s) f (x) ‖G1(x)‖

Proposed 276 278 54.79 1.99 × 10−1 −23.58 9.97 × 10−4

OC 2000 2000 416.88 2.08 × 10−1 −23.54 2.08 × 10−3

GCMMA 2000 2028 1632.02 8.216 × 10−1 −23.62 2.26 × 10−2

Fig. 24 Design at the 20th
iteration of the proposed method
(‖∇ f (xk )‖ = 3.10 × 10−3)

shown in Fig. 21, the decrease of the objective value of the proposed method slows
down in the region where the sign of the objective value changes (the direction of the
displacement of the output node changes). A typical design of that region is shown
in Fig. 24. In that region, the norm of the gradient of the objective function is small.
GCMMA is also slowed down in that region because it required 25 evaluations of the
objective values at the first 5 iterations. Figure 23 shows that the design obtained by
the three algorithms are similar to each other.

5 Conclusion

In this paper, we have presented an inertial projected gradientmethod for solving large-
scale topology optimization problems. For a topology optimization problem under a
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single linear equality or inequality constraint with a box constraint, we have shown
that the projection onto the feasible set can be efficiently computed, and hence the
projected gradient method can be applied effectively. We have proposed to use an
inertial version of the projected gradient method by Ochs et al. [25] to accelerate the
convergence. We have also considered an adaptive step size policy to further reduce
the computational cost. The proposed method is easy to implement. Moreover, the
proposed method has the global convergence property.

In numerical examples, we have shown that the iteration cost of the proposed
method is as low as that of the optimality criteria method. It has been demonstrated
that the conventional algorithms used for topology optimization (the optimality crite-
ria method and the method of moving asymptotes) achieve the first-order optimality
condition with low accuracy. In contrast, the proposed method converges fast to a
point satisfying the first-order optimality condition with higher accuracy. The pro-
posed method is also effective for large-scale problems. We have shown that, for a
topology optimization problem with simple linear constraints such as the compliance
minimization problem, it is more efficient to use the proposed method than to use a
general-purpose nonlinear programming solver such as the interior-point method and
the method of moving asymptotes, because the proposed method takes advantage of
a simple problem structure.

We have dealt with topology optimization problems with only linear constraints.
To deal with large-scale optimization problems with nonlinear constraints, other first-
order algorithms are to be considered. Large-scale optimization is rapidly growing
especially in machine learning and data science communities. There may be some
efficient large-scale optimization techniques that can be useful for developing new
topology optimization algorithms.
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