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Abstract
This paper discusses the effect of road pricing on the spatial distribution of traffic 
flow. The traffic flow density is derived for a circular city with a radial-arc network. 
The traffic flow density describes the amount of traffic as a function of position 
and allows us to identify the location of potential congestion areas. The analytical 
expression for the traffic flow density demonstrates how the size of the toll area and 
the toll level affect the spatial distribution of traffic flow. As the size of the toll area 
increases, the decrease in traffic flow inside the toll area becomes smaller. As the toll 
level increases, the increase in traffic flow at the boundary of the toll area becomes 
greater. The effect of the travel cost on the spatial distribution of traffic flow is also 
examined. These findings can be used to determine the size of the toll area and the 
toll level required to achieve a certain level of traffic congestion.

Keywords  Transportation · Traffic flow density · Area pricing · Continuous 
approximation · Circular city

Mathematics Subject Classification  90B06 · 90B85

1  Introduction

Road pricing has been implemented in several cities such as London, Singapore, 
and Stockholm. The objectives of road pricing are to reduce the traffic flow in the 
city center and financially support infrastructure management. Although marginal 
cost pricing is the first-best pricing [23], the implementation is difficult because of 
practical restrictions. The second-best pricing such as cordon and area pricing is 
then widely adopted. Cordon pricing charges a toll to vehicles passing or entering 
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a designated area, whereas area pricing charges a toll to all vehicles driving inside 
the area. Road pricing can affect both travel demand and travel routes. Examining 
how road pricing affects the spatial distribution of traffic flow is therefore useful for 
designing road pricing systems.

The optimal design of road pricing has been studied using discrete network mod-
els. The discrete models use detailed traffic data on actual road networks and aim 
to develop efficient algorithms to obtain exact solutions. May and Milne [8] com-
pared cordon-based, distance-based, time-based, and delay-based pricing systems. 
Sumalee [14] obtained the optimal cordon location and toll level under the network 
equilibrium condition. Further studies on cordon pricing have considered multi-lay-
ered and multi-centered cordon [25] and time-dependent pricing [3, 13, 27]. Maruy-
ama and Harata [6] and Maruyama and Sumalee [7] compared the performance of 
cordon and area pricing using a trip-chain equilibrium model. Zhang et al. [24] com-
pared cordon and area pricing from the perspective of travel demand management. 
Takaki et al. [16] and Takaki et al. [17] obtained the optimal shape of the toll area 
and toll level for area pricing. Further studies on area pricing have considered time-
dependent pricing [28], joint distance- and time-dependent pricing [2], heterogene-
ity of users [26], and travelers’ degree of satisfaction during their trips [1].

As a complement to the discrete models reviewed above, continuous approxima-
tion models, which use approximated travel demand on a plane or idealized net-
works such as grid and radial-arc networks, aim to find fundamental relationships 
between variables. The continuous models often yield analytical solutions that help 
reveal managerial insights, thus supplementing discrete models. Mun et  al. [10] 
obtained the optimal cordon location and toll level in a linear monocentric city. The 
model was extended by Mun et al. [11] to a non-monocentric city, Verhoef [22] to 
include land and labor markets, Li et al. [5] to consider the interaction between auto 
and bus, and Tsai and Lu [20] to multiple-cordon. Miyagawa [9] compared cordon 
and area pricing in a radial-arc network in terms of the traffic volume in the toll area 
and the toll revenue.

In this paper, we develop a model for analyzing the effect of road pricing on the 
spatial distribution of traffic flow. The model uses a continuous approximation where 
origins and destinations are uniformly distributed in a circular city with a radial-arc 
network. The radial-arc network can be found in many cities such as Tokyo, Paris, 
and Moscow. The model yields an analytical expression for the spatial distribution 
of traffic flow. The analytical expression leads to a fundamental understanding of the 
effect of road pricing, thus providing a basic framework for designing road pricing 
systems. The model focuses on area pricing rather than cordon pricing because area 
pricing is more effective than cordon pricing in reducing the traffic volume in the 
toll area. In addition, the derivation of the spatial distribution of traffic flow for area 
pricing provides a basis for that for cordon pricing. The total traffic volume inside 
the toll area in a circular city with a radial-arc network was derived by Miyagawa 
[9]. We extend the scope to traffic flow as a function of position, which allows us to 
examine the locational variation of traffic flow.

The spatial distribution of traffic flow in a circular city with a radial-arc network was 
derived by Vaughan [21]. The distribution was extended by Tanaka and Kurita [18] to 
the distribution in a sector-shaped city, Tanaka and Kurita [19] to incorporate the time 
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variation of traffic flow, and Suzuki and Miura [15] to consider the effect of routing 
systems. The spatial distribution of traffic flow in road pricing has not been derived 
previously.

The remainder of this paper is organized as follows. The next section develops a 
radial-arc network model. The following section derives the spatial distribution of traf-
fic flow when no toll is charged. The penultimate section derives the spatial distribution 
of traffic flow in road pricing. The final section presents concluding remarks.

2 � Radial‑arc network model

Consider a circular city with radius a, as shown in Fig. 1. The city has a dense radial-
arc network. Any point in the city is expressed as (r, 𝜃) (0 ≤ r ≤ a, 0 ≤ 𝜃 < 2𝜋) in 
the polar coordinate centered at the city center. A toll area is represented as a circle 
centered at the city center with radius b. All vehicles driving inside the toll area are 
charged a fixed toll t, irrespective of the travel distance within the area.

Origins and destinations of trips are assumed to be uniformly distributed in the city. 
That is, trips occur between any two points in the city. The uniform distribution serves 
as a basis for further analysis with more realistic distributions. The uniform distribution 
of origins and destinations was also used by Vaughan [21]. Although Vaughan [21] 
assumed that the travel demand between origins and destinations is independent of the 
travel cost, we assume that the travel demand decreases with the travel cost. The travel 
cost C for trips of length R is defined as

where � is the travel cost per unit distance. Every traveler is assumed to use the least 
cost route. The travel demand D is expressed as

(1)C = �R + t,

(2)D = D0e
−�C,

Fig. 1   Circular city with a 
radial-arc network

a b

(r1,θ1)

(r2,θ2)
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where D0 is the travel demand when C = 0 and 𝛽 (> 0) is a parameter for elastic-
ity. The travel demand then decreases with the trip length R and the toll level t. The 
exponential function has been widely used in spatial interaction models [12].

Let fr and fa be the densities of traffic flow passing a point (r, �) along radial and 
arc roads, respectively. The amount of traffic flow passing the arc between two points 
(r, �1) and (r, �2) along radial roads, denoted by Vr , is given by

and the amount of traffic flow passing the segment between two points (r1, �) and 
(r2, �) along arc roads, denoted by Va , is given by

as shown in Fig. 2.

3 � Traffic flow density without road pricing

In this section, we derive the traffic flow density when no toll is charged, that is, t = 0 . 
The traffic flow density for inelastic travel demand ( � = 0 in Eq. (2)) was derived by 
Vaughan [21]. We extend the analysis to incorporate elastic travel demand.

Let P1(r1, �1) and P2(r2, �2) be origin and destination of trips, respectively. The 
shortest distance between P1(r1, �1) and P2(r2, �2) is given by

where � = min{|�1 − �2|, 2� − |�1 − �2|} [4]. Both radial and arc roads are used if 
𝜑 < 2 , whereas only radial roads are used if � ≥ 2 , as shown in Fig. 1.

(3)Vr = ∫
�2

�1

frr d�,

(4)Va = ∫
r2

r1

fa dr,

(5)R =
{

|r1 − r2| +min{r1, r2}�, 0 ≤ � < 2,
r1 + r2, 2 ≤ � ≤ �,

Fig. 2   Traffic flow on radial and 
arc roads

(r,θ1)

(r,θ2)

(r1,θ)

(r2,θ)
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First, we derive the traffic flow density on radial roads. We can assume � = 0 with-
out loss of generality because of the symmetry of the circular city. The traffic passes the 
infinitesimal arc between two points (r, 0) and (r, d�) along radial roads if

as shown in Fig. 3. Taking the round trip into account, we have the amount of traffic 
flow passing the arc

The traffic flow density on radial roads is then given by

Next, we derive the traffic flow density on arc roads. The traffic passes the infinitesi-
mal segment between two points (r, 0) and (r + dr, 0) along arc roads if

(6)P1(r1, �1) ∈ {(r1, �1) ∣ r ≤ r1 ≤ a, 0 ≤ �1 ≤ d�},

(7)
P2(r2, �2) ∈ {(r2, �2) ∣ 0 ≤ r2 ≤ r,−2 ≤ �2 ≤ 2}

∪ {(r2, �2) ∣ 0 ≤ r2 ≤ a, 2 ≤ �2 ≤ 2� − 2},

(8)

frrd� = ∫
d�

0 ∫
a

r ∫
2

0 ∫
r

0

4D0 exp[−��{r1 − r2 + r2(�2 − �1)}]r1r2 dr2d�2dr1d�1

+ ∫
d�

0 ∫
a

r ∫
�

2 ∫
a

0

4D0 exp{−��(r1 + r2)}r1r2 dr2d�2dr1d�1.

(9)

fr =
1

r ∫
a

r ∫
2

0 ∫
r

0

4D0 exp{−��(r1 − r2 + r2�2)}r1r2 dr2d�2dr1

+
1

r ∫
a

r ∫
�

2 ∫
a

0

4D0 exp{−��(r1 + r2)}r1r2 dr2d�2dr1

=
4D0

�4�4r
[(e��r − 1)2{(��r + 1)e−2��r − (��a + 1)e−��(a+r)}

+ (� − 2)(��a + 1 − e��a){(��a + 1)e−2��a − (��r + 1)e−��(a+r)}].

(10)P1(r1, �1) ∈ {(r1, �1) ∣ r ≤ r1 ≤ a,−2 ≤ �1 ≤ 0},

Fig. 3   Traffic flow on radial 
roads

2

(r,0)

(r,dθ)
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as shown in Fig. 4a, or

as shown in Fig. 4b. Note that the amounts of traffic flow for the above two cases 
are the same. Taking the round trip into account, we have the amount of traffic flow 
passing the segment

The traffic flow density on arc roads is then given by

The traffic flow densities on radial and arc roads are shown in Fig. 5, where 
a = 1,D0 = 1, � = 1 . Note that the traffic flow density on radial roads fr diverges 
to infinity at the city center and decreases with the distance from the city center, 
whereas the traffic flow density on arc roads fa has a maximum around r = a∕2 . 
The traffic flow densities for � = 0 (Fig. 5a) are identical with those derived by 
Vaughan [21]. Introducing the travel demand function (2) allows us to examine 
how the travel cost and the elasticity of demand affect the spatial distribution of 
traffic flow.

(11)P2(r2, �2) ∈ {(r2, �2) ∣ r ≤ r2 ≤ r + dr, 0 ≤ �2 ≤ �1 + 2},

(12)P1(r1, �1) ∈ {(r1, �1) ∣ r ≤ r1 ≤ r + dr,−2 ≤ �1 ≤ 0},

(13)P2(r2, �2) ∈ {(r2, �2) ∣ r ≤ r2 ≤ a, 0 ≤ �2 ≤ �1 + 2},

(14)

fadr = ∫
0

−2 ∫
a

r ∫
�1+2

0 ∫
r+dr

r

4D0 exp[−��{r1 − r2 + r2(�2 − �1)}]r1r2 dr2d�2dr1d�1.

(15)
fa = r ∫

0

−2 ∫
a

r ∫
�1+2

0

4D0 exp[−��{r1 − r + r(�2 − �1)}]r1 d�2dr1d�1

=
4D0

�4�4r
(2��r + 1 − e2��r){(��a + 1)e��r − (��r + 1)e��a}e−��(a+2r).

2 (r,0) (r+dr,0)

(a)

2 (r,0) (r+dr,0)

(b)

Fig. 4   Traffic flow on arc roads
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4 � Traffic flow density in road pricing

In this section, we derive the traffic flow density in road pricing and examine how the 
size of the toll area and the toll level affect the spatial distribution of traffic flow.

Road pricing affects not only travel demand but also travel routes. If both origin and 
destination are outside the toll area ( r1, r2 ≥ b ) and 2 ≤ � ≤ t∕(�b) + 2 , the traveler 
makes a detour around the toll area, as shown in Fig. 6. This is because the travel cost 
of making a detour is smaller than that of passing the toll area, that is,

It follows that road pricing can increase travel distances, which is an adverse 
effect of road pricing. The travel distance between two points P1(r1, �1) and 
P2(r2, �2) is then rewritten as

(16)�b� ≤ 2�b + t.

(17)

R =

⎧

⎪

⎨

⎪

⎩

|r1 − r2| +min{r1, r2}�, 0 ≤ � < 2,
r1 + r2 − 2b + b�, r1, r2 ≥ b, 2 ≤ � ≤ min{t∕(�b) + 2,�},
r1 + r2, otherwise.

0

f
fr

fa

r

3

4

1

0.2 0.4 0.6 0.8

2

1.0

(a)
0

f
fr

fa

r

3

4

1

0.2 0.4 0.6 0.8

2

1.0

(b)

Fig. 5   Traffic flow density: a � = 0 ; b � = 1

Fig. 6   Detour around the toll 
area

2
t
αb

b
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Note that if t∕(�b) + 2 ≥ � ⇔ t ≥ (� − 2)�b , travelers whose origin and destina-
tion are outside the toll area do not pass the city center.

The traffic flow density on radial roads is obtained by considering the traffic passing 
the infinitesimal arc between two points (r, 0) and (r, d�) along radial roads, as shown 
in Fig. 7. If 0 ≤ r < b, 0 ≤ t < (𝜋 − 2)𝛼b (Fig. 7a, b),

Note that no traffic passes the arc if

because the traveler makes a detour around the toll area. If 0 ≤ r < b, t ≥ (𝜋 − 2)𝛼b,

(18)

fr =
1

r ∫
a

r ∫
2

0 ∫
r

0

4D0 exp[−�{�(r1 − r2 + r2�2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
b

r ∫
�

2 ∫
a

0

4D0 exp[−�{�(r1 + r2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
a

b ∫
t∕(�b)+2

2 ∫
b

0

4D0 exp[−�{�(r1 + r2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
a

b ∫
�

t∕(�b)+2 ∫
a

0

4D0 exp[−�{�(r1 + r2) + t}]r1r2 dr2d�2dr1.

(19)P1(r1, �1) ∈ {(r1, �1) ∣ b ≤ r1 ≤ a, 0 ≤ �1 ≤ d�},

(20)P2(r2, �2) ∈ {(r2, �2) ∣ b ≤ r2 ≤ a, 2 ≤ �2 ≤ t∕(�b) + 2},

(21)

fr =
1

r ∫
a

r ∫
2

0 ∫
r

0

4D0 exp[−�{�(r1 − r2 + r2�2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
b

r ∫
�

2 ∫
a

0

4D0 exp[−�{�(r1 + r2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
a

b ∫
�

2 ∫
b

0

4D0 exp[−�{�(r1 + r2) + t}]r1r2 dr2d�2dr1.

2

(a)

2
t
αb

(b)

2
t
αb

(c)

Fig. 7   Traffic flow on radial roads in road pricing
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Note that no traffic passes the arc if both origin and destination are outside the toll 
area. If b ≤ r ≤ a, 0 ≤ t < (𝜋 − 2)𝛼b (Fig. 7c),

Note that no traffic passes the toll area if

If b ≤ r ≤ a, t ≥ (� − 2)�b,

Note that no traffic passes the toll area if both origin and destination are outside the 
toll area.

The traffic flow density on arc roads is obtained by considering the traffic passing 
the infinitesimal segment between two points (r, 0) and (r + dr, 0) along arc roads, as 
shown in Fig. 8. If 0 ≤ r < b (Fig. 8a),

If r = b, 0 ≤ t < (𝜋 − 2)𝛼b (Fig. 8b),

(22)

fr =
1

r ∫
a

r ∫
2

0 ∫
b

0

4D0 exp[−�{�(r1 − r2 + r2�2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
a

r ∫
2

0 ∫
r

b

4D0 exp{−��(r1 − r2 + r2�2)}r1r2 dr2d�2dr1

+
1

r ∫
a

r ∫
t∕(�b)+2

2 ∫
b

0

4D0 exp[−�{�(r1 + r2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
a

r ∫
t∕(�b)+2

2 ∫
a

b

4D0 exp{−��(r1 + r2 − 2b + b�2)}r1r2 dr2d�2dr1

+
1

r ∫
a

r ∫
�

t∕(�b)+2 ∫
a

0

4D0 exp[−�{�(r1 + r2) + t}]r1r2 dr2d�2dr1.

(23)P1(r1, �1) ∈ {(r1, �1) ∣ r ≤ r1 ≤ a, 0 ≤ �1 ≤ d�},

(24)P2(r2, �2) ∈ {(r2, �2) ∣ b ≤ r2 ≤ a, 2 ≤ �2 ≤ t∕(�b) + 2}.

(25)

fr =
1

r ∫
a

r ∫
2

0 ∫
b

0

4D0 exp[−�{�(r1 − r2 + r2�2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
a

r ∫
2

0 ∫
r

b

4D0 exp{−��(r1 − r2 + r2�2)}r1r2 dr2d�2dr1

+
1

r ∫
a

r ∫
�

2 ∫
b

0

4D0 exp[−�{�(r1 + r2) + t}]r1r2 dr2d�2dr1

+
1

r ∫
a

r ∫
�

2 ∫
a

b

4D0 exp{−��(r1 + r2 − 2b + b�2)}r1r2 dr2d�2dr1.

(26)

fa = r ∫
0

−2 ∫
a

r ∫
�1+2

0

4D0 exp
[
−�[�{r1 − r + r(�2 − �1)} + t]

]
r1 d�2dr1d�1.
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If r = b, t ≥ (� − 2)�b,

Note that in the above two cases, the traffic making the detour around the toll area 
also passes the segment. If b < r ≤ a (Fig. 8c),

The traffic flow densities on radial and arc roads are shown in Fig.  9, where 
a = 1,D0 = 1, � = 1, � = 1 . By comparing with Fig. 5a, we can see how road pric-
ing affects the spatial distribution of traffic flow. The traffic flow density on radial 
roads decreases both inside and outside the toll area. The traffic flow density on arc 
roads, in contrast, decreases inside the toll area, increases at the boundary of the toll 
area, and is constant outside the toll area. The reason why the traffic flow density 
jumps at the boundary of the toll area is that some traffic makes a detour around the 
toll area, as shown in Fig. 6. As the toll level increases, the increase in traffic flow at 
the boundary of the toll area becomes greater. As the size of the toll area increases, 
the decrease in traffic flow inside the toll area becomes smaller. These findings help 
planners determine the size of the toll area and the toll level. For example, to reduce 

(27)

fa = b∫
0

−2 ∫
a

b ∫
�1+2

0

4D0 exp[−��{r1 − b + b(�2 − �1)}]r1 d�2dr1d�1

+ ∫
0

−t∕(�b)−2 ∫
a

b ∫
�1+t∕(�b)+2

�1+2
∫

a

b

2D0 exp[−��{r1 + r2 − 2b + b(�2 − �1)}]r1r2 dr2d�2dr1d�1.

(28)

fa = b∫
0

−2 ∫
a

b ∫
�1+2

0

4D0 exp[−��{r1 − b + b(�2 − �1)}]r1 d�2dr1d�1

+ ∫
0

−� ∫
a

b ∫
�1+�

�1+2
∫

a

b

2D0 exp[−��{r1 + r2 − 2b + b(�2 − �1)}]r1r2 dr2d�2dr1d�1.

(29)fa = r ∫
0

−2 ∫
a

r ∫
�1+2

0

4D0 exp[−��{r1 − r + r(�2 − �1)}]r1 d�2dr1d�1.

2

(a)

2

t
αb

(b)

2

(c)

Fig. 8   Traffic flow on arc roads in road pricing
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the amount of traffic flow near the city center, the toll area should be small and the 
toll level should be high. On the other hand, to ease the congestion caused by the 
increase in traffic flow at the boundary of the toll area, the toll should not be too 
high.

The effect of the travel cost on the traffic flow density is shown in Fig. 10, where 
a = 1,D0 = 1, b = 0.4, t = 0.4 . Comparing with Fig. 9a shows that reducing the traf-
fic flow density inside the toll area is much easier when both the unit travel cost � 

0
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fa

r

1.0

1.5

0.5

0.2 0.4 0.6 0.8

2.0

1.0
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r

1.0

1.5

0.5

0.2 0.4 0.6 0.8

2.0

1.0
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0

f
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r

1.0
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1.0
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0

f

fr

fa
r

1.0

1.5

0.5
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Fig. 9   Traffic flow density in road pricing: a b = 0.4, t = 0.4 ; b b = 0.4, t = 0.8 ; c b = 0.6, t = 0.4 ; d 
b = 0.6, t = 0.8
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1.0
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2.0

1.0

(a)
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f
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r

1.0
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2.0

1.0

(b)

Fig. 10   Traffic flow density in road pricing: a � = 0.5, � = 1 ; b � = 1, � = 0.5
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and the elasticity of demand � are high. Note that if the unit travel cost is low, the 
increase in traffic flow density at the boundary of the toll area can be large. These 
findings also help planners assess the effectiveness of road pricing and identify the 
location of potential congestion areas.

5 � Conclusions

This paper has developed a continuous approximation model for analyzing the effect 
of road pricing on the spatial distribution of traffic flow. The traffic flow density 
has been derived for a circular city with a radial-arc network. The model provides a 
fundamental understanding of the effect of road pricing, thus supplementing discrete 
network models for empirical analysis.

The model gives an insight into the design of road pricing systems as follows. 
First, the analytical expression for the traffic flow density demonstrates how the size 
of the toll area and the toll level affect the spatial distribution of traffic flow. As 
the size of the toll area increases, the decrease in traffic flow inside the toll area 
becomes smaller. As the toll level increases, the increase in traffic flow at the bound-
ary of the toll area becomes greater. Note that finding these relationships by using 
discrete models requires the computation of traffic flow for various combinations of 
the parameters. These relationships help planners determine the size of the toll area 
and the toll level required to achieve a certain level of traffic congestion. Second, the 
model shows how the travel cost affects the spatial distribution of traffic flow. The 
amount of traffic flow inside the toll area can be easily reduced when the unit travel 
cost and the elasticity of demand are high. This result is useful for assessing the 
effectiveness of road pricing. Finally, the traffic flow density can be used to identify 
the location of potential congestion areas. Road pricing increases the amount of traf-
fic flow at the boundary of the toll area. This should be considered when introducing 
road pricing and estimating sufficient road capacity to accommodate traffic flow.

Promising directions for future research are as follows. First, not only a radial-arc 
network but also a grid network has been frequently used in continuous approxima-
tion models. Second, cordon pricing in which vehicles passing or entering the toll 
area are charged a toll has also been implemented. Finally, the effect of road pricing 
on the total travel distance in the city should be examined.
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