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Abstract
We investigate thermal convection in two horizontal layers of miscible fluids with 
an initial state in which the fluids are at rest and the temperature has a linear con-
tinuous vertical distribution, but the concentration takes different constant values in 
each layer. Because the initial layered state is not a stationary state, most theoreti-
cal methods available for immiscible fluids are not applicable to the miscible case. 
Here we propose a new model of the thermal convection of miscible fluids, which 
is devised in such a way that the horizontal average of the width of the transitional 
layer is kept constant. Both the stability of the stationary state in the linear stage and 
the asymptotic attractors in the nonlinear stage of the model closely describe the 
transition of the convection pattern in the original system, which is associated with 
the change of the width of the transitional layer.

Keywords Miscible fluids · Double diffusive convection · Multi-layer flow · 
Transient phenomena · Linear stability analysis · Dynamical system

Mathematics Subject Classification 76E06 · 76-10

1 Introduction

Bénard convection in a horizontal layer of a single fluid is one of the fundamental 
problems in fluid mechanics, and it has provided the basis for models and examples 
of linear and nonlinear phenomena of dynamical systems. The onset of convection 
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is described by linearly unstable modes of a stationary state, and is followed by sev-
eral types of bifurcations of solutions that have been clarified in extensive studies 
both theoretically and experimentally. However, the assumption of a single fluid 
does not necessarily hold in real convection phenomena, including the mantle of the 
Earth [14, 17], the plasma inside a nuclear fusion reactor [22], or molten materials 
in industrial applications [13], where the thermal convection is considered to take 
place not in a single fluid layer but in two or more layers of different fluids.

In multi-layer thermal convection systems, we have to distinguish two cases 
depending on whether the fluids are immiscible or miscible. For immiscible fluids, 
such as water and oil, a definite interface remains between the different fluids, and 
several traditional approaches of linear [7, 9–12, 14–17] and nonlinear [2, 8, 16] 
theories have been applied to the thermal convection. In contrast, in the case of mis-
cible fluids, such as saline and fresh water, a definite interface, even if it exists ini-
tially, becomes less clear as time goes on, due to the effect of diffusion. Temperature 
and concentration (e.g. salinity) are then both diffusive, and the convection in this 
double diffusive system has been theoretically discussed mostly for a stationary con-
tinuous (vertically linear) distribution of both the temperature and the concentration, 
in relation to, for example, salt fingers and interleaving in the ocean [21].

In this paper we are interested in thermal convection in two horizontal layers of 
miscible fluids, with an initial state in which the fluids are at rest and the temperature 
has a linear continuous vertical distribution, but the concentration takes different 
constant values in each layer and is thus not in a stationary state. This configuration 
is similar to that of the original Bénard convection problem, but the initial state is 
not a stationary solution of the system. In this configuration two kinds of convection 
states and a transition between these states were observed (e.g. [23]).1 The convec-
tion states can be classified by the directions of velocity in the cells in the upper and 
lower layers (Fig. 1). In the “viscous coupling” state, the direction of velocity in the 
upper cell is opposite to that in the cell just below it, while in the “thermal coupling” 
state, the direction of velocity is the same in the upper cell and the cell just below it.

(a) (b)

Fig. 1  Sketch of two typical patterns of convection in two-layer system: a viscous coupling and b ther-
mal coupling

1 This was reported in RIMS Kokyuroku in Japanese [23], which unfortunately has not yet been pub-
lished in English
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This interesting phenomenon has been studied so far in the framework of linear 
stability theory by assuming that the interface between the two fluids has an infini-
tesimal width, but only the viscous coupling convection pattern was obtained [9, 
22].

The theoretical method generally used for bifurcation problems in fluid mechan-
ics is not very suitable for describing this change in the convection pattern in mis-
cible fluids, because no stationary state which should be taken as a starting state for 
analysis is available, and all phenomena are transient. Especially the interface, that 
is, the transitional layer between the fluids, is not stationary but grows over time, 
even if it has infinitesimal width initially. This is a major obstacle to analysis. Thus, 
in this paper, we propose a new model system that inherits most characteristic prop-
erties of miscible convection but keeps the transitional layer and its horizontally 
averaged (nonzero) width constant over time.

In the following we first describe the original problem of miscible convection 
and its governing equations, our numerical experiments and their results. We then 
introduce a model system of thermal convection in which the horizontally averaged 
width of the transitional layer between the upper and lower fluids is constant over 
time, by modifying the concentration part of the governing equations. Suppressing 
the expansion of the transitional layer in an averaged sense, allows us to analyze 
the thermal convection with the transitional layer of constant average width, while 
the concentration itself is unstationary. In other words, this model system provides 
a snapshot of the transient phenomena arising in the convection of miscible fluids. 
This snapshot opens the system to standard theoretical methods, and we investigated 
the linear instability of a stationary solution of the model to find the most unstable 
modes for several widths of the transitional layer. The results correspond well to the 
phenomena in the original miscible convection. Finally, we studied the nonlinear 
stage of this instability and its attractors, the results of which show that two differ-
ent attractors arise corresponding to the viscous coupling and the thermal coupling 
states. In the real convection problem of miscible fluids, however, both convection 
patterns are transient over time, and attractors cannot exist. However the similarities 
of phenomena between the real convection and the model convection suggest that 
the real system also has a trace of the attractors, which is similar to the attractors but 
are not invariant sets and have a saddle-like structure.

2  Original system and solutions

2.1  Governing equations and boundary and initial conditions

We consider a two dimensional double diffusive thermal convection in two horizon-
tal layers of miscible fluids which initially have the same depth, one lying on top 
of the other, under downward gravity (Fig. 2). We apply Boussinesq approximation 
to the system. The physical properties of the fluids, such as basic density, viscosity 
and thermal diffusivity, are assumed to be the same and constant. We take the x and 
z axes in the horizontal and vertical directions, respectively. Let z = 0 be the initial 
boundary between the two fluids, which are definitely separated at t = 0.
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To non-dimensionalize the equations, we take the initial depth of each fluid layer 
h as the length scale, h2∕DT as the time scale(where DT is a thermal diffusion coef-
ficient), the temperature difference between the top and bottom boundaries �T as the 
temperature scale, and the initial concentration difference between the upper and lower 
layers �S as the concentration scale. Then the non-dimensional equations are,

where u = (ux, uz) , T, S and p are non-dimensionalized velocity, temperature, con-
centration and pressure, respectively, and k is the unit vector in the z direction. The 
operator ∇ is defined as (�x, �z) . The Rayleigh number Ra, Prandtl number Pr, buoy-
ancy number B and Lewis number Le in the equations are non-dimensional quanti-
ties defined by

where � is the kinematic viscosity, g is gravitational acceleration, �T and �S are ther-
mal and compositional expansion coefficients, respectively, and DS is the composi-
tional diffusion coefficient.

The horizontal boundary condition is periodic. The boundary conditions at the top 
and bottom boundaries are non-slip with fixed temperatures and null concentration 
fluxes as follows.

(1)�tu + (u ⋅ ∇)u = −∇p + RaPr(T − BS)k + Pr∇2
u,

(2)

∇ ⋅ u = 0,

�
t
T + (u ⋅ ∇)T = ∇2

T ,

�
t
S + (u ⋅ ∇)S =

1

Le
∇2

S,

Ra =
�Tgh

3�T

DT�
, Pr =

�

DT

,

B =
�S�S

�T�T
, Le =

DT

DS

,

(3)u(x,±1, t) = 0,

Fig. 2  Initial configuration of 
a two-dimensional system of 
double diffusive thermal convec-
tion in two horizontal layers of 
miscible fluids under downward 
gravity. The fluid in the upper 
layer has lower concentra-
tion than the fluid in the lower 
layer. No concentration fluxes 
are assumed at the boundaries 
z = ±1 , where the temperatures 
are held constant in a way that 
makes the bottom hotter than 
the top
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We introduce a stream function �(x, z, t) that satisfies

because of the incompressibility condition (2). By assuming no net horizontal flow 
and choosing a proper additive constant, we can rewrite the non-slip condition (3) as 
the boundary condition of the stream function at the top and bottom boundaries

Taking the curl of (1) and rewriting non-linear terms using the Jacobian 
J(a, b) = (�za)(�xb) − (�xa)(�zb) , we can deduce the evolution equations as

2.2  Experimental setup

The vorticity-streamfunction method was used for time integration. The stream func-
tion, temperature and concentration were spatially discretized by the Fourier spectral 
method in the x direction, and by the finite difference method in the z direction. The 
horizontal system size was Lx = 4�∕2.6 ≈ 4.83 while the vertical size of each layer 
was 1. We set the equally spaced grid points as 192 × 101 in the x and z directions, 
respectively, and the truncation number 64 in the x direction, eliminating aliasing errors 
by the 1/3-rule. We used the Crank–Nicolson scheme for linear terms, and the modified 
Euler scheme for nonlinear terms.

We explored a set of parameters that included the horizontal extent of the domain 
in which we can clearly observe the viscous coupling and thermal coupling patterns 
(Fig. 1) and the transition between these states. We chose the non-dimensional physical 
parameters as

The initial conditions for the temperature and concentration were

(4)T(x, 1, t) = 0, T(x,−1, t) = 1,

(5)�zS(x, 1, t) = 0, �zS(x,−1, t) = 0.

ux = �z� , uz = −�x� ,

(6)�(x,±1, t) = �z�(x,±1, t) = 0.

(7)�t∇
2� + J(� ,∇2�) = −RaPr�x(T − BS) + Pr∇2∇2� ,

(8)�tT + J(� , T) = ∇2T ,

(9)�tS + J(� , S) =
1

Le
∇2S.

(10)Ra = 3200, Pr = 10, Le = 104, B = 10.

(11)T(x, z, 0) =
1

2
(1 − z), S(x, z, 0) =

{
0 (z > 0)

1 (z < 0)
.
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We took some non-zero initial conditions of � , one of which is in the following 
form:

while the numerical results for other initial conditions did not affect our analysis 
described below.

2.3  Results of numerical experiment

Figure 3 shows the stream function � and the temperature deviation � ≡ T − T|t=0 
in their early stage ( t = 0.7 ). Here, we observe two streets of vortex array: the 
upper vortices rotate in the direction opposite to the lower vortices just below them 
(Fig. 3a), and similarly the sign of the temperature deviation � is also opposite in 
the upper and lower vortices (Fig. 3b). We call the state with this convection pattern 
viscous coupling.

During 1.0 ≲ t ≲ 2.3 , however, the viscous coupling pattern disappears and 
a different convection pattern appears as seen in Fig.  4, which shows the stream 
function � during 1.0 ≤ t ≤ 2.3 . In the lower layer, the convection decays dur-
ing 1.0 ≲ t ≲ 1.4 , and a new convection in the opposite direction grows during 
1.4 ≲ t ≲ 2.3 , while the convection in the upper layer does not decay completely, and 
regrows for 1.6 ≲ t ≲ 2.3 . Then two streets of vortex array are formed at t = 2.3 , in 
which the convection in the upper and lower layers rotates in the same direction. The 
sign of the temperature deviation � is also the same between the upper and lower 
vortices (Fig. 5). We call the state of this convection pattern thermal coupling.

The convection continues for some time, gradually decreasing in amplitude, and 
finally almost stops. Then the convection rotating in the opposite direction grows. 
This process takes place in parallel in both layers. This periodic oscillation contin-
ues but is gradually damped, and after a long time integration, the convection finally 
loses its clear pattern. The remnants of thermal coupling are observed at t = 15.0 

(12)�(x, z) =

{
sin2

[
�(z − 1)

2

]
+ sin3 [�(z − 1)]

}
exp

{
sin

(
2�x

Lx

)}
,

Fig. 3  Snapshots of a the stream function � and b the temperature deviation � at t = 0.70 . This convec-
tion pattern is identified as ‘viscous coupling’
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(Fig.  7), but the amplitude of the convection is lower than that at t = 2.3 by two 
digits.

It can be seen from Figs. 3a, 4d, 6c, 7 that, as time develops, the vertical scales 
of the convection vortices gradually decreases and the convection cells in the 
upper and lower layers become separated. This causes a decrease of the effective 
Rayleigh number for the convection and a decline of its amplitude. The horizon-
tal averages of the concentration field ⟨S⟩x at t = 0.7, 2.3, 6.0 and 15.0 are shown 
in Fig. 8, where ⟨⋅⟩x stands for the horizontal average. The figure shows that the 
horizontal average of the transitional layer of the concentration is not steady, but 
gradually expands. For this reason, it is difficult to apply the standard techniques 

Fig. 4  Snapshots of the stream function � at a t = 1.0 , b 1.4, c 1.6 and d 2.3

Fig. 5  Temperature deviation � 
at t = 2.3 . The sign is the same 
between the upper and lower 
layers
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Fig. 6  Snapshots of the stream function � at a t = 4.6 , b 5.5 and c 6.0. The convection decays during 
4.6 ≲ t ≲ 5.5 , and convection in the opposite direction grows during 5.5 ≲ t ≲ 6.0

Fig. 7  Stream function � at 
t = 15.0 . The remnants of 
thermal coupling are observed. 
The amplitude of the convec-
tion is lower than that at t = 2.3 
(Fig. 4d) by two digits

Fig. 8  Horizontally aver-
aged concentration ⟨S⟩

x
 at 

t = 0.7, 2.3, 6.0 and 15.0 and 
z = −0.5 to 0.5. The horizontal 
average of the transitional layer 
gradually increases with time
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of dynamical systems such as linear stability analysis of equilibrium points or 
periodic orbits.

3  Model analysis of the convection of the miscible fluids

3.1  Model with a fixed transitional layer

Because the transitional layer of miscible fluids continues to expand, the phenomena 
are transient through the time development. To apply standard procedures based on 
stationary states, we introduce an artificial model whose transitional layer has a con-
stant width in the horizontal average through modification of the evolution equation 
of the concentration.

We decompose S into two parts:

where

where S� corresponds to the time development of S when � = 0.
Here we devise a model system of equations to understand the transient behav-

ior of the thermal convection of miscible fluids. A theoretical difficulty comes from 
the unstationary nature of the transient behavior where the width of the transient 
layer becomes larger over the course of time development. Therefore we propose a 
model system in which the width of the horizontally averaged transient layer is kept 
constant.

For this purpose, a simple way may be to assume S = S(z) independent of t. How-
ever this does not work because the effect of S(z) is then absorbed in the pressure 
as seen in (1). Therefore, we need to retain the concentration disturbance field � 
and instead choose to eliminate the eddy transport of concentration J(� ,�) after 
substituting (13) into (9). This elimination would be justified if J(� ,�) were a 
much smaller quantity than the other terms. But this does not necessarily hold in our 
numerical experiment in Sect. 2.3. Although no asymptotic justification is yet avail-
able, the numerical results of this model (given below) show qualitative similarity to 
those of the original system, and we adopt

instead of (9), for the purpose of qualitatively understanding the structure of the 
change in the convection patterns observed in the original system. ⟨�⟩x = 0 always 
holds if it is satisfied at the initial time, and so we obtain ⟨S⟩x = S� for any t. In the 
following, we treat � as a time-independent fixed parameter, and consider a model 
system of (7), (8), (13) and (14) under the boundary conditions (4), (5) and (6). In 
this model, the width of the horizontally averaged transitional layer is constant for 

(13)S(x, z, t) = S�(z) + �(x, z, t),

S�(z) ≡ 1

2
erfc

�
z

�

�
, � ≡ 2

√
Le−1t,

(14)�t� + J(� , S�) =
1

Le
∇2�
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several values of � , and we have a stationary state � = 0 , T = T0(z) = (1∕2)(1 − z) , 
� = 0 ( S = S�(z)) . Hereafter, we employ the parameter values in (10) and also the 
initial conditions (11) and (12) for the model study, unless otherwise specified.

3.2  Linear stability problem of the stationary state

Because the coefficients appearing in the linearized equations (7), (8) and (14) do 
not depend on x and t, we can seek solutions in the following form:

where � = r − i� is a complex constant, in which r and � are the growth rate and 
the frequency, respectively. The linearized equations become

where D =
d

dz
 . The boundary conditions of �̃� , �̃� and �̃� derived from (4), (5), and (6) 

are written as

Let �̃�′ ≡ i�̃� and �̃�′ ≡ i�̃� , then by substituting them into (15), (16), and (17) we 
obtain

The boundary conditions (18) become

For the given Ra, Le, Pr, B, k and � , (19) and (20) setup a generalized eigenvalue 
problem of a linear operator with respect to an eigenvalue � and an eigenstate 
[�̃� , �̃��, �̃��]T . Note that the eigenvalues of (19) and (20) are real, or pairs of complex 
conjugates with complex conjugate eigen functions, because the coefficients of the 
equations are all real.

𝜓(x, z, t) = 0 +�̃� (z)eikx+𝜎t,

T(x, z, t) = T0(z) +�̃�(z)eikx+𝜎t,

𝛴(x, z, t) = 0 +�̃�(z)eikx+𝜎t,

(15)𝜎(D2 − k2)�̃� = −RaPrik(�̃� − B�̃�) + Pr(D2 − k2)2�̃� ,

(16)𝜎�̃� = ik(DT0)�̃� + (D2 − k2)�̃�,

(17)𝜎�̃� = ik(DS𝛿)�̃� +
1

Le
(D2 − k2)�̃�,

(18)�̃� (±1) = D�̃� (±1) = �̃�(±1) = D�̃�(±1) = 0.

(19)

𝜎

⎛⎜⎜⎝

D2 − k2 0 0

0 1 0

0 0 1

⎞⎟⎟⎠

⎡⎢⎢⎣

�̃�

�̃��

�̃��

⎤⎥⎥⎦
=

⎛
⎜⎜⎜⎝

Pr(D2 − k2)2 − RaPrk RaPrBk

−k(DT0) D2 − k2 0

−k(DS𝛿) 0
1

Le
(D2 − k2)

⎞
⎟⎟⎟⎠

⎡⎢⎢⎣

�̃�

�̃��

�̃��

⎤⎥⎥⎦
.

(20)�̃� (±1) = D�̃� (±1) = �̃��(±1) = D�̃��(±1) = 0.
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The variables �̃� (z) , �̃��(z) and �̃��(z) are discretized by the finite difference method, 
using 1001 equally spaced grid points. The generalized eigenvalue problem of (19) 
and (20) is solved by LAPACK (http:// www. netlib. org/ lapack/). We adopt the same 
parameter values for Pr, Le, and B as in (10) in most of this section, except in a part 
of Sect. 3.4, where B is varied over the range 1 ≤ B ≤ 10 . We seek neutral curves by 
solving the equation r = 0 using the binary search method, changing the wave num-
ber k from 1 to 4 in steps of 0.05.

3.3  Neutral modes

Neutral curves at � = 0.01 , 0.02, 0.03, and 0.06 are shown in the left panel of Fig. 9. 
The curves move upward and the critical wave number decreases as the width of 
the transient layer � increases. All the neutral modes obtained here are oscillatory 
( � ≠ 0 ) as shown in the right panel of Fig. 9. Staircase variations observed in the 
frequency graphs for � = 0.01 and 0.02 are due to replacement of the viscous and 
thermal coupling modes. The larger frequency is for the viscous coupling mode. 
The line of the Rayleigh number ( Ra = 3200 ) adopted in Sect.  2.3 is also drawn 
in the left panel of Fig. 9. The critical Rayleigh numbers are lower than 3200 when 
𝛿 ≲ 0.06 . This implies that the stationary state is unstable with respect to infinitesi-
mal disturbances when Ra = 3200 and 𝛿 ≲ 0.06.

Figure 10 shows the critical mode at � = 0.02 with negative � . Vortices at the 
same horizontal position are observed to rotate in the direction opposite to each 
other in Fig.  10a. The disturbance of the temperature shown in Fig.  10b has dif-
ferent signs in the upper and lower layers, indicating that the convection pattern is 
viscous coupling. The critical frequency �c is −3.736 , and the propagation velocity 
is �c∕kc = −1.44 . There exists another critical mode with �c = 3.736 arising from 
the reflection symmetry ( x ↔ −x ). Note that the horizontal propagation is an artifact 
not observed in the original system.

We can see from Fig. 10 that the critical mode has the symmetry of

5000

R
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Fig. 9  Neutral curves and frequency at � = 0.01 (red solid curve), 0.02 (green solid curve), 0.03 (blue 
solid curve), and 0.06 (magenta solid curve). The critical wave number and Rayleigh number (k

c
, Ra

c
) are 

(2.65, 2290.47) at � = 0.01 , (2.60, 2578.97) at � = 0.02 , (2.55, 2675.78) at � = 0.03 , and (2.50, 3102.34) 
at � = 0.06 . The critical points are under the line of Ra = 3200 (cyan dashed line), as adopted in 
Sect. 2.3, when 𝛿 ≲ 0.06 (color figure online)

http://www.netlib.org/lapack/
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This symmetry property is consistent with the linearized equations (15), (16), and 
(17) and the boundary conditions (18). In this paper, we call (21) the “symmetry of 
viscous coupling”, and the mode accompanying it the “viscous coupling mode”.

Figure 11 shows the critical mode at � = 0.03 with negative � . Vortices at the 
same horizontal position are observed to rotate in the same direction in Fig. 11a. 
The disturbance of the temperature displayed in Fig. 11b has the same signs in 
the upper and lower layers. This convection pattern is thermal coupling. The 
critical frequency of this mode �c is −0.529 , and the propagation velocity is 
�c∕kc = −0.21 , which is much slower than that of the critical mode at � = 0.02 . 
In this case another critical mode arising from the reflection symmetry ( x ↔ −x ) 
exists with �c = 0.529.

We can see from Fig. 11 that the critical mode has the symmetry of

(21)
⎡⎢⎢⎣

�̃� (−z)

�̃�(−z)

�̃�(−z)

⎤⎥⎥⎦
= −

⎡⎢⎢⎣

�̃� (z)

�̃�(z)

�̃�(z)

⎤⎥⎥⎦
.

Fig. 10  Critical mode at � = 0.02 : a the stream function and b the temperature deviation. This convec-
tion pattern is identified as viscous coupling. The critical frequency �

c
 is −3.736 , and the propagation 

velocity is �
c
∕k

c
= −1.44

Fig. 11  The critical mode at � = 0.03 : a the stream function and b the temperature deviation. This con-
vection pattern is identified as thermal coupling. The critical frequency �

c
 is −0.529 , and the propagation 

velocity is �
c
∕k

c
= −0.21 , which is much slower than that of the critical mode at � = 0.02



461

1 3

Model of convection in two miscible fluid layers

This symmetry property is also consistent with the linearized equations (15), (16), 
(17), and the boundary conditions (18). We call (22) the “symmetry of thermal cou-
pling”, and the mode accompanying it the “thermal coupling mode”.

At other values of � ≤ 0.1 , the critical modes have the symmetry of viscous 
coupling when 𝛿 ≲ 0.02 , while the critical modes have the symmetry of thermal 
coupling when 𝛿 ≳ 0.02 . Therefore the symmetry of the critical mode changes at 
� ≈ 0.02.

Rasenat et al. [14] and Le Bars and Davaille [9] performed linear stability analy-
sis of the infinitesimal transition layer, and found only the viscous coupling mode 
at criticality when the vertical lengths of the layers and the physical properties of 
the fluids in the two layers were the same, except for the densities. Our analysis 
found that the viscous coupling mode remains as a critical mode when the transi-
tional layer has a finite width less than about 0.02. This implies that the width of the 
transitional layer is crucial for determining the structure of convection in two layer 
miscible fluids.

3.4  Unstable modes at Ra = 3200

Here, we investigate unstable modes at Ra = 3200 , which is the value used in 
Sect. 2.3, and discuss the behavior found in Sect. 2.3 using linear instability.

The growth rate and frequency of unstable modes at several values of � are shown 
in Fig. 12, where the wave number k varies in steps of 0.05. When � = 0.015 , the 
most unstable viscous coupling mode, whose wave number is k = 2.85 and is non-
oscillatory, has a higher growth rate than that of the most unstable thermal coupling 
mode, whose wave number is k = 2.9 and is oscillatory (top row of Fig.  12). At 
� = 0.02 , unstable oscillatory viscous coupling modes and non-oscillatory thermal 
coupling modes exist, but the growth rate of the most unstable viscous coupling 
mode at k = 2.75 is less than that of the most unstable thermal coupling mode at 
k = 2.85 (middle row of Fig. 12). Thus the most unstable mode changes from vis-
cous coupling to thermal coupling at 0.015 < 𝛿 < 0.02 . At � = 0.03 , all viscous cou-
pling modes are stable, while unstable thermal coupling modes exist (bottom row of 
Fig. 12). All viscous coupling modes and thermal coupling modes are found to be 
stable when � = 0.07 (not shown).

Next, we consider the dependence of the growth rate and the frequency on the 
width of the transition layer, � , taking fixed values of k = 2.60 , Ra = 3200 , and 
Lx =

4�

2.60
 , which were adopted in Sect. 2.3. The growth rate and frequency of unsta-

ble modes are shown in Fig.  13. Unstable thermal coupling modes exist for 
𝛿 < 0.064 , and unstable viscous coupling modes exist for 𝛿 < 0.03 . Thermal cou-
pling modes have two growth rates for 𝛿 < 0.044 , while only a single growth rate is 
found for 𝛿 > 0.044 . The thermal coupling modes for 𝛿 < 0.044 are stationary 
modes, that is, � = 0 , while those for 𝛿 > 0.044 are oscillatory modes, that is, 

(22)
⎡
⎢⎢⎣

�̃� (−z)

�̃�(−z)

�̃�(−z)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

�̃� (z)

�̃�(z)

�̃�(z)

⎤
⎥⎥⎦
.
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Fig. 12  Growth rate and frequency of unstable thermal coupling modes (red solid curve) and of viscous 
coupling modes (blue dashed curve) for three values of � at Ra = 3200 . The step width of the wave num-
ber k is 0.05 (color figure online)
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� ≠ 0 . A similar behavior of viscous coupling modes is found at � = 0.016 . The vis-
cous coupling modes for 𝛿 < 0.016 are stationary modes, while those for 𝛿 > 0.016 
are oscillatory modes. The most unstable mode changes at � = 0.017 : the most 
unstable mode is the viscous coupling mode for 𝛿 < 0.017 while the most unstable 
mode is the thermal coupling mode for 𝛿 > 0.017 . The frequency values of the oscil-
lations before and after t = 2.0 in the numerical experiment shown in Sect. 2.3 are 
4.6 and 2.5, respectively. These are comparable to the frequencies of the oscillatory 
viscous and thermal coupling mode at 𝛿 > 0.02 and 𝛿 > 0.044 , respectively.

Figure 14 shows the symmetry (viscous/thermal coupling) and the time depend-
ence (stationary/oscillatory) of the most unstable mode of the buoyancy number, B 
( 1 ≤ B ≤ 10 ), which expresses the density contrast, and the transitional layer width 
� ( 0.01 ≤ � ≤ 0.1 ) with k = 2.60 and Ra = 3200 . As � increases from 0.01 to 0.10 
for B > 2 , the most unstable mode changes from stationary viscous coupling mode 
to oscillatory viscous coupling mode, stationary thermal coupling mode, oscillatory 
thermal coupling mode, and stable mode in that order.

In the nonlinear simulation described in Sect.  2.3, the convection starts in the 
form of the viscous coupling pattern as long as the width of the transitional layer 
� is small. However, as time proceeds, the width of transitional layer � gradually 
increases while the mixing effect of convection is not strong enough to apprecia-
bly change the density contrast between the upper and lower layers. According to 
Fig. 14, the increase of � corresponds to the transition of the convection pattern from 
viscous coupling to thermal coupling. Actually, this pattern transition is observed in 
the numerical experiment described in Sect. 2.3, consistent with Fig. 14.

3.5  Asymptotic behavior of nonlinear states after a long time integration

In all cases in our numerical study, the numerical solutions up to t = 100 are 
observed to approach time periodic solutions asymptotically.

Fig. 14  Types of the most unstable modes for 0.01 ≤ � ≤ 0.1 and 1 ≤ B ≤ 10 : stable modes (black 
crosses), thermal coupling modes (red solid and open squares) and viscous coupling modes (blue solid 
and open circles). Filled symbols represent oscillatory modes, and hollow ones represent stationary con-
vections (color figure online)
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Figure 15 shows the stream function � , the temperature deviation � and the 
concentration deviation � , numerically obtained in the nonlinear simulation of 
the model at t = 100 for � = 0.015 . Two streets of vortex array are observed, 
where the vortices in the upper street rotate in the direction opposite to that of the 
lower vortices just below them. Similar to the numerical simulations discussed 
in Sect. 2.3, the signs of the temperature deviation are opposite in the upper and 
lower vortices. The convection is therefore viscous coupling. This convection pat-
tern moves in the negative x direction, with the two arrays of the convection pat-
tern remaining unchanged. This solution is thus a traveling wave with a velocity 
of about −1.51 . The model system as well as the original system has a reflection 
symmetry with respect to the vertical axis at x = 0 , and therefore the traveling 
wave solution in the positive x direction also exists. The initial condition deter-
mines which traveling wave is actually observed. Over the course of time devel-
opment from the initial condition, the convection maintains itself for some time, 
and decreases gradually to an almost quiescent state, and again starts rotation in 
the direction opposite to the initial convection pattern. This process continues in 
parallel in both layers. After the repeated reversal of the convection direction, the 
convection finally converges to the traveling wave moving in the negative x direc-
tion with a velocity of about −1.51.

From Fig. 15, we observe that the system is invariant to the transformation Fvis 
defined by

Fig. 15  Snapshots of a time periodic asymptotic state at t = 100 for � = 0.015 ; a the stream function 
� , b the temperature deviation � and c, d the concentration deviation, where d is made by enlarging 
−0.1 ≤ z ≤ 0.1 of c. The convection is identified as viscous coupling
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which we call the “viscous coupling transformation”. Actually, this may give a for-
mal definition of the “viscous coupling” solution.

In contrast, Fig.  16 shows the asymptotic state for a slightly larger transitional 
layer width � = 0.02 where the upper and lower vortices are observed to rotate in 
the same direction, and the signs of the temperature deviation and the concentra-
tion deviation are observed to be the same in the upper and lower vortices. Thus the 
convection is thermal coupling. As time proceeds, this thermal coupling convection 
experiences a process similar to that of viscous coupling convection, and finally con-
verges to a traveling wave moving in the positive x direction with a velocity of about 
0.59.

Similar to Fig. 15, the solution of the thermal coupling state shown in Fig. 16 is 
observed to be invariant to the transformation Ftherm defined by

Fvis

⎡⎢⎢⎣

�(x, z)

�(x, z)

�(x, z)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

−�(x,−z)

−�(x,−z)

−�(x,−z)

⎤⎥⎥⎦
,

Fig. 16  Snapshots of a time periodic asymptotic state at t = 100 for � = 0.02 : a the stream function 
� , b the temperature deviation � and c, d the concentration deviation, where d is made by enlarging 
−0.1 ≤ z ≤ 0.1 of c. The convection is identified as thermal coupling
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which we call the “thermal coupling transformation”. Note that, we use the horizon-
tal translation of 

Lx

4
 because, in our simulation, four convection cells were observed 

in the computation domain, and that these symmetries with respect to Fvis and 
Ftherm are conserved respectively in the time development of (7), (8), and (14) and 
the boundary conditions (4), (5), and (6). This transformation may provide a formal 
definition of the “thermal coupling” solution, similar to the viscous coupling case.

In each case of � = 0.03, 0.04, 0.05 , and 0.06, the asymptotic state is observed to be 
a traveling wave with thermal coupling symmetry, while the flow decays to the quies-
cent state for � = 0.07.

In summary, the time periodic asymptotic state of viscous coupling is observed for 
𝛿 ≲ 0.015 , and that of thermal coupling is observed for 𝛿 ≳ 0.02.

3.6  Projections to viscous coupling and thermal coupling function spaces

We now define projection operators for viscous coupling and thermal coupling func-
tion spaces. We introduce an inner product of [�1(x, z),�1(x, z),�1(x, z)]

T and 
[�2(x, z),�2(x, z),�2(x, z)]

T as

where we assume a real Hilbert space as � , � , and � are real variables. For a ther-
mal convection [�(x, z),�(x, z),�(x, z)]T , the orthogonal projection operator to the 
viscous coupling space is defined as

which clearly leaves the viscous coupling convection invariant. Also, the projection 
operator orthogonal to the thermal coupling space is given by

Ftherm

⎡
⎢⎢⎣

�(x, z)

�(x, z)

�(x, z)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−�

�
x −

Lx

4
,−z

�

−�

�
x −

Lx

4
,−z

�

−�

�
x −

Lx

4
,−z

�

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎛⎜⎜⎝

⎡⎢⎢⎣

�1

�1

�1

⎤⎥⎥⎦
,

⎡⎢⎢⎣

�2

�2

�2

⎤⎥⎥⎦

⎞⎟⎟⎠
= ∫

Lx

0 ∫
1

−1

(�1�2 + �1�2 + �1�2)dzdx,

Pvis
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=
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1

2
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1

2
(�(x, z) − �(x,−z))
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which also keeps the thermal coupling convection invariant. We call the ranges of 
these operators, Pvis and Ptherm , the viscous coupling space and the thermal cou-
pling space, respectively. Note that these spaces are positively invariant under non-
linear time development. The viscous coupling and the thermal coupling spaces are 
not orthogonal to each other, because their intersection includes a nontrivial linear 
space. However, if we take the orthogonal complements of the linear space respec-
tively in the viscous coupling space and the thermal coupling space, these orthogo-
nal complements are mutually orthogonal. This observation enables us to classify 
the solution attractors into viscous coupling and thermal coupling attractors in the 
next section.

3.7  Time integration of viscous coupling and thermal coupling convections

When the convection field is in the viscous coupling or thermal coupling spaces, it 
remains so as time passes. We found that these two types of convections are realized 
in the numerical simulations shown in Sect. 2.3, and they are considered to be typi-
cal convection states that may exhibit attractor-like behavior in the solution space. 
Therefore, we now search for the solutions in these spaces in some detail.

We stress that we should then suppress the instability that makes the solution 
escape from these spaces. To do so, we project the solution to the relevant space at 
each time step of the numerical integration.

The kinetic energy � per unit volume for the case of the viscous coupling for 
� = 0.015, 0.02 and 0.03 is shown in Fig. 17, where � is defined by

Ptherm

⎡
⎢⎢⎣

�(x, z)

�(x, z)

�(x, z)

⎤
⎥⎥⎦
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Fig. 17  Time series of the 
kinetic energy � per unit volume 
for the case of viscous coupling 
for � = 0.015, 0.02 , and 0.03
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In all cases, the kinetic energy converges fairly well to a constant value.
The convection pattern is found to approach the traveling wave for � = 0.015 and 

0.02, and it decays to the quiescent state for � = 0.03.
In the case of thermal coupling symmetry, the kinetic energies � per unit vol-

ume for 0.015 ≤ � ≤ 0.06 are shown in Fig. 18a. We plot longer time integrations 
until t = 200 for the cases of � = 0.015 and 0.06 in Fig. 18b. In all cases, the kinetic 
energy converges fairly well to a constant value, and we see that the convections are 
found to converge to the traveling waves.

Therefore, the asymptotic states with the viscous coupling and thermal coupling 
symmetries are found to coexist for � = 0.015 and 0.02.

However, as discussed at the end of Sect. 3.6, the function spaces of viscous cou-
pling and thermal coupling have a nontrivial intersection. Now, we define subspaces 
of these spaces that are orthogonal to each other, to confirm that the attracting set 
(which may be attractors) of the viscous coupling solutions contain a subset that is 
not in the attracting set of the thermal coupling solutions, and vice versa.

For a convection [� ,�,�]T , we define �vis , �vis and �vis by

Similarly, we define �therm , �therm and �therm by

Then, (�vis,�vis,�vis) and (�therm,�therm,�therm) respectively belong to the viscous 
coupling and thermal coupling spaces, and they are both orthogonal to the intersec-
tion of the two spaces.

�(t) ≡ 1

2Lx �
Lx

0 �
1

−1

1

2
|u(x, z, t)|2 dzdx.

⎡⎢⎢⎣
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�vis

�vis

⎤⎥⎥⎦
= (Pvis −PvisPtherm)

⎡⎢⎢⎣

�

�

�

⎤⎥⎥⎦
.

⎡⎢⎢⎣

�therm

�therm

�therm

⎤⎥⎥⎦
= (Ptherm −PvisPtherm)

⎡⎢⎢⎣

�

�

�

⎤⎥⎥⎦
.

(b)(a)

Fig. 18  Time series of the kinetic energy � per volume for the case of thermal coupling for a 
� = 0.015, 0.02, 0.03, 0.04, 0.05 and 0.06 until t = 100 , and b � = 0.015 and 0.06 until t = 200
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Now, we define two kinds of kinetic energy as

where

Then �therm = 0 holds if the convection pattern has the symmetry of the viscous cou-
pling, and �vis = 0 holds when the convection pattern has the symmetry of the ther-
mal coupling.

The time series of the kinetic energy �vis and �therm for � = 0.02 under two differ-
ent initial conditions are shown in Fig. 19, where a corresponds to the flow shown in 
Fig. 16, and  b is a case with an initial condition different from that of a. In the case 
of a, 𝜖therm ≫ 𝜖vis ≈ 0 holds and so the asymptotic state is thermal coupling and has 
a non-viscous coupling component, which is consistent with Fig.  16. Conversely, 
𝜖vis ≫ 𝜖therm ≈ 0 holds in the case of  b and so the asymptotic state is viscous cou-
pling and has a non-thermal coupling component. Therefore, an asymptotic state 
with either symmetry can be realized depending on the initial conditions. In other 
words, attractors with viscous coupling and thermal coupling convection patterns 
coexist at � = 0.02.

In summary, the attractors behave as follows: 

(a) For sufficiently small � , 0 < 𝛿 ≲ 0.02 , attractors exist with both viscous coupling 
and thermal coupling convection patterns.

(b) For a larger � , 0.03 ≲ 𝛿 ≲ 0.06 , only attractors with the thermal coupling convec-
tion pattern exist.

�vis(t) ≡ 1

2Lx �
Lx

0 �
1

−1

1

2
|uvis(x, z, t)|2 dzdx,

�therm(t) ≡ 1

2Lx �
Lx

0 �
1

−1

1

2
|utherm(x, z, t)|2 dzdx,

uvis =

(
�z�vis

−�x�vis

)
, utherm =

(
�z�therm

−�x�therm

)
.

(b)(a)

Fig. 19  Time series of the kinetic energy �vis and �therm for � = 0.02 . a, b are two realizations under dif-
ferent initial conditions: a corresponds to the case shown in Fig. 16, and b is a case with an initial condi-
tion different from that of a 
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(c) For a sufficiently large � , 0.07 ≲ 𝛿 , all the fluid motion decays to the quiescent 
state.

Therefore, the change of convection patterns observed in numerical simulations in 
Sect. 2.3 may correspond to the disappearance of the attractor of viscous coupling in 
the model system.

4  Discussion and conclusions

In this paper, we reported our study of the transient behavior of double diffusive 
convection where the upper and lower fluids are miscible with each other. Numerical 
experiments showed two patterns of convection, namely viscous coupling and ther-
mal coupling. Viscous coupling took place in the initial convection stage, and was 
replaced by thermal coupling as the width of the transitional layer increased. We 
introduced a model in which the width of the transitional layer between the upper 
and lower layers ( � ) is kept constant in the horizontal average, to describe a possible 
mechanism of the change in convection patterns. Both the linear stability of a sta-
tionary state of the model and nonlinear time periodic solutions implied that viscous 
coupling is preferred when the width of the transitional layer � is small, and thermal 
coupling is preferred when � is large. Furthermore the transition from viscous cou-
pling to thermal coupling was observed at � ≈ 0.02 in all cases.

First, we investigated the linear stability of a stationary state of the model. In our 
calculation, the critical Rayleigh number Rac varied from 2290 ( � = 0.01 ) to 3102 
( � = 0.06 ). The convection pattern of the critical mode was observed to be viscous 
coupling when � was small, and thermal coupling when � was large. The convection 
pattern of the most unstable mode at Ra = 3200 also changed from viscous coupling 
for small � to thermal coupling for large � . This property was also observed for dif-
ferent concentration contrasts between the two layers except when the concentration 
difference was very small.

Rasenat et al. [14] performed linear stability analysis of the steady state of a two-
layer thermal convection system of immiscible fluids (thus with an infinitesimal 
transitional layer), and showed that the viscous coupling mode is preferred when 
fluid properties in both layers are nearly equal. Le Bars and Davaille [9] experimen-
tally and analytically studied the cases of immiscible fluids with different density 
contrasts between the two layers. They studied the linear stability of the stationary 
state under the assumption of an infinitesimal transitional layer and found only the 
viscous coupling mode for the marginal mode.

In our linear stability analysis, which focused on density contrast B > 1 , the 
viscous coupling mode is preferred when the width of the transitional layer is 
small, while the thermal coupling mode is preferred in the large width case. The 
model proposed in this paper not only reproduces the emergence of the viscous 
coupling convection for small transitional layer widths, but also shows the transi-
tion from viscous coupling to thermal coupling convection when the transitional 
layer width increases. This implies that the width of the transitional layer cru-
cially affects the convection structure in two layer miscible fluids. Note that, to 
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our knowledge, the previous theoretical studies treated only the case of a transi-
tional layer with infinitesimal thickness (e.g. [9, 11]).

Oscillatory modes were found by Rasenat et al. [14], but they were not the crit-
ical modes. Nepomnyanshchy et al. [12] found oscillatory critical modes by intro-
ducing the thermo-capillary effect of the interface. In the present model study, 
oscillatory critical modes also arise when the transitional layer has a finite width. 
Eventually, numerical simulations of the original system of equations showed that 
the convection becomes oscillatory or time-dependent when the transitional layer 
width gradually increases.

In the linear stability analysis in the model system, we found that viscous 
coupling transitions to thermal coupling as the width of the transitional layer 
increases at various density contrasts between the two layers. In contrast, a transi-
tion from the thermal coupling state to the viscous coupling state was observed 
in a laboratory experiment [23]. This may be explained by the thickness of the 
transition layer around the interface between the upper and lower layers. It has 
been reported that the observed boundary layer around the interface is fairly thick 
in the thermal coupling state, while in the viscous coupling state, the boundary 
layer becomes thinner than that in the thermal coupling state. If we interpret the 
thickness of the boundary layer as the thickness of the transition layer of the hori-
zontally averaged density profile � , these characteristics are consistent with our 
linear stability analyses where viscous (thermal) coupling becomes dominant at 
small (large) �.

Next, in long time integrations of the model we found that in the case of the small 
width of the transitional layer the flow approaches a time periodic convection whose 
pattern is viscous coupling, while in the case of the large width it approaches the 
time periodic thermal coupling convection. These model results are consistent with 
the numerical observation in the original system where the viscous coupling con-
vection is realized when the width of the transitional layer is small, and the ther-
mal coupling convection emerges when the width becomes large. Furthermore, time 
periodic solutions whose convection patterns were viscous coupling and thermal 
coupling were found to coexist when the width of the transitional layer was neither 
very large nor zero.

We have proposed a model study for thermal convection of miscible fluids, where 
in reality the width of the transitional layer grows in time and the convection pattern 
drastically changes when the width reaches a certain value. The model system inher-
its most of the time-dependent properties of the original system, but discards the 
growth of the horizontally averaged width of the transitional layer between the mis-
cible fluids. This artificial model system permits us to perform a systematic analysis 
of the pattern transition of the convection. We expect similar modelling approaches 
to be useful for understanding non-steady pattern transitions in complex systems.
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We used the ISPACK library for spectral transform (http:// www. gfd- dennou. org/ arch/ ispack) , 
and its Fortran90 wrapper library, SPMODEL [20]. The products of the Dennou Ruby project (http:// 
www. gfd- dennou. org/ libra ry/ ruby) and gnuplot were used for visualization.
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