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Abstract

We present precise anisotropic interpolation error estimates for smooth functions using
a new geometric parameter and derive inverse inequalities on anisotropic meshes. In our
theory, the interpolation error is bounded in terms of the diameter of a simplex and the
geometric parameter. Imposing additional assumptions makes it possible to obtain ani-
sotropic error estimates. This paper also includes corrections to an error in Theorem 2
of our previous paper, “General theory of interpolation error estimates on anisotropic
meshes” (Japan Journal of Industrial and Applied Mathematics, 38 (2021) 163-191).
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1 Introduction

Analyzing the errors of interpolations on d-simplices is an important subject
in numerical analysis. It is particularly crucial for finite element error analysis.
Let us briefly outline the problems considered in this paper using the Lagrange
interpolation operator.

Let d € {1,2,3}. Let T - pd and T, C R4 be a reference element and a sim-
plex, respectively, that are affine equivalent. Let us consider two Lagrange finite
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elements {?, P:= P, b5 }and {7, P := P*, X} with associated normed vector spaces
V(f") 1= C(f") and V(T,)) := C(T,) with k € N, where P" is the space of polynomials
with degree at mostm € N, := N U {0}. For » € V(T), we use the correspondences

(@ : Ty > R) > (@ := @pod : T > R),

where @ is an affine mapping. Let I; : V(/]\") — Pfand Ii V(T - P* be the cor-
0
responding Lagrange interpolation operators. Details can be found in Sect. 2.3.
We first consider the case in which d = 1. Let 2 :=(0,1) CR. For N € N, let
T, ={0=xy <x; <+ <xy <Xyy; = 1}beamesh of £ such as

N

Q= Ty, intTyNintT, = @ fori#j,
|

i

where Té i=[x;,x;1for 0 <i < N. We denote h; :=x;, | —x;for 0 <i < N.If we
set x; 1= ﬁ for j=0,1,...,N,N + 1, the mesh T, is said to be the uniform mesh.

If we set X =8 ) for j=1,...,N,N + 1 with a grading function g, the mesh

o
T, is said to be the graded mesh with respect to x = 0; see [5]. In particular, when
g(y) 1=y (¢ > 0), the mesh is called the radical mesh. To obtain the Lagrange
interpolation error estimates, we impose standard assumptions and specify that

¢,m € Nyand p,q € [1, oo] such that
O<m<£+1: WHPT) o wmi(T). (1)

Under these assumptions, the following holds for any ¢, € W/*'»(T;) with
& = @yod:

Ik e +C+1-m
- I, iy < ch:
l@o T6(PO|WM»OI(TU) =

1
! |(Po|wf+l~p(Té)- 2
The proof of this statement is standard; see [12]. When p = g, it is possible to obtain
optimal error estimates even if the scale is different for each element. When g > p,
the order of convergence of the interpolation operator may deteriorate.

We now consider the cases in which d = 2, 3. Let £ C R be a bounded polyhedral
domain. Let T, = {7|,} be a simplicial mesh of Q made up of closed d-simplices, such

as
e=J 7
T,ET,
with i 1= maxy oy hy, where hy = diam(TO_). For simplicity, we assume th/&\lt T,is
conformal. That is, T}, is a simplicial mesh of £ without hanging nodes. Let T C R¢
be the reference element defined in Sect. 2 and @ be the affine mapping defined in
Eq. (13). For any T, € T, it holds that 7, = @(T’). Under the standard assumptions
and Eq. (1), the following holds for any ¢, € W?*'*(T,) with ¢ = @,0®:
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1

k 1L O " HTO ) £+1
L —m
|y — ITO(p0|W’”"’(To) <c|Tyle » . hTo |(p0|W(+1,p(To), 3)
Ty

min

where |T},| is the measure of 7},, the parameters a,,,, and a,,;, are defined in Eq. (50),
and the parameter Hy is as proposed in a recent paper [16]; see Sect. 2.4 for a
definition. The proof of estimate (3) can be found in Sect. 5. Compared with the one-
dimensional case, the quantities @y, /ay;, and Hy, /hy, negatively affect the order of
convergence and do not appear in Eq.(2). The two quantities /@y, and Hy, /hy,
are considered in Sect. 7.1. As a mesh condition, the shape-regularity condition is
widely used and well known. This condition states that there exists a constant y > 0
such that

pr, 2 vhy, VT, € {T,}, VI, €T, 4)

where py. is the radius of the inscribed ball of 7;,. Under this condition, it holds that

11
k i RS B .
|(.00 - ITU(P()lwm.q(TO) < C|T0| q ﬁhT:' ml(p0|Wf+l,p(To), 5)

see Sect. 7.1.1. If condition (4) is violated (i.e., the simplex becomes too flat as

h, — 0), the quantity
(amax>m E hf+l—m
Xmin hTO To

may diverge even when p = q. The effect of the quantity |7}, | i on the interpolation
error estimates is considered in Sect. 7.2.

In some cases, it is not necessary for condition (4) to hold to obtain Eq. (5). The
shape-regularity condition can be relaxed to the maximum-angle condition, as stated
in Egs. (20) and (21), for both two-dimensional [4] and three-dimensional cases
[20]. Anisotropic interpolation theory has also been developed [1, 2, 8]. The idea
of Apel et al. is to construct a set of functionals satisfying conditions (54), (55), and
(56). The introduction of these functionals makes it possible to remove the quantity
Ao/ Amin- Under the conditions of the maximum angle and coordinate system,
anisotropic interpolation error estimates can then be deduced (e.g., see [1]).

In contrast, this paper proposes anisotropic interpolation error estimates using
the new parameter under conditions (54), (55), and (56) and Assumption 1; i.e.,
we derive the following anisotropic error estimate (Theorem B, in particular,
Corollary 1):

k
lpo = 17, @olwnacr,)

m
11 Hy,
<c|Tyle » < 7 0 > Z ,%"|07((p0°<DT0)|Wm.p(q>;0'(ro))v

To ) lyi=t-m

(6)
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where @7, is defined in Eq. (12), y 1= (7}, ...,7,) € N{ is a multi-index, and ¢
is specified in Definition 3. Theorem B applies to interpolations other than the
Lagrange interpolation, and the basis for the proof of Theorem B is the scaling
argument described in Sect. 3.

Because the new geometric parameter is used in the interpolation error analysis,
the coefficient ¢ used in the error estimation is independent of the geometry of the
simplices, and the error estimations obtained may therefore be applied to arbitrary
meshes, including very “flat” or anisotropic simplices. Furthermore, we are natu-
rally able to consider the following geometric condition as being sufficient to obtain
optimal order estimates (when p = g): there exists y, > 0 such that

HT
h—T" <y VT,e(T,}, VI,€eT,. 7
0

Condition (7) appears to be simpler than the maximum-angle condition. Further-
more, the quantity Hy, / hz, can be easily calculated in the numerical process of finite
element methods. Therefore, the new condition may be useful. A recent paper [18]
showed that the new condition is satisfied if and only if the maximum-angle condi-
tion holds. We expect the new mesh condition to become an alternative to the maxi-
mum-angle condition.

Furthermore, under Assumption 1, component-wise inverse inequalities can be
deduced as (see Sect. 7.3):

1

1
e
10" @yl acry < CENTN e » 7 @yl ey

In a previous paper [16], the present authors developed new interpolation error
estimations in a general framework and derived Raviart-Thomas interpolations on
d-simplices. However, the statement of Theorem 2 in [16] includes a mistake. That
is, under standard assumptions, the quantity a,,,, /., cannot be removed. We need
to modify the statement of this theorem to correct this error. The current paper pre-
sents Theorems A (see Sect. 5) and B (see Sect. 6), which replace Theorem 2 of
[16]. In Sect. 4, we explain the inaccuracies in the proof of Theorem 2 in [16] and
describe how the results can be recovered using our Theorems A and B. Further-
more, the Babuska and Aziz technique is generally not applicable on anisotropic
meshes in the proof of Theorem 3 in [16]. Details will be discussed in a coming
paper [14].

When there is no ambiguity, we use the notation and definitions given in [16].
Throughout this paper, ¢ denotes a constant independent of / (defined later), unless
specified otherwise. These values may change in each context. R, is the set of posi-
tive real numbers.
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2 Strategy for constructing anisotropic interpolation theory

In standard interpolation theory, one introduces an affine mapping that connects the
reference element to the mesh element. However, on anisotropic meshes, the inter-
polation errors may be overestimated. Therefore, our strategy is to divide the trans-
formation into three affine mappings.

2.1 Standard positions of simplices

We recall [16, Section 3]. Let us first define a diagonal matrix A@ g

AD = diag(ay, ..., a,), o €R, Vi ®)

2.1.1 Two-dimensional case

Let 7 C R be the reference triangle with vertices % :=(0,007, %, :=(1,0)7, and
% 1= (0, )7
Let @ be the family of triangles

T = A0

with vertices ¥, := (0,0)7, %, := (a;,0)7, and %; := (0, a,)".
We next define the regular matrices A € R?>*? by

~ 1
A= <0 i) ©)

with parameters

ForT € T, let T? be the family of triangles
T = A(T)

with vertices x; := (0,0)7, x, := (;,0)7, x3 := (a5, ayt)T. We then have that
o, =|x; —x,| >0and @, = |x; —x3| > 0.

2.1.2 Three-dimensional case

Let f’l and ?2 be reference tetrahedra with the following vertices:

(i) ?1 has the vertices %, :=(0,0,0)7, %, :=(1,0,0)7, %, :=(0,1,0)7,

'%4 = (09 0’ 1)T;
(i) 7, has the vertices & :=(0,0,0)7, %, :=(1,0,0)", & :=(1,1,0)7,
%, 1= (0,0, 7.
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Letz0,i= 1,2, be the family of triangles
T,=A0T), i=1,2,
with vertices

() % :=(0,0,0)7,%, :=(a,,0,0)7, % :=(0,,,0)7, and %, := (0,0, a3)”;
(i) ¥ :=(0,0,0)7,%, :=(a,,0,0), % := (&}, 2, 0)7, and X, := (0,0, )"

We next define the regular matrices A,,A, € R¥3 by

- 1 Sl S21 - 1 _sl S21
A =10 1 spl, A, :=|0 1 Ry (10)
0 0 t2 0 0 t2

with parameters

{s2+tf=1, 51>0, >0, a5 <0ay/2,

sé1+s§2+t§=1, th, >0, a8, <a;/2.

For Ti € 553), i=1,2,1let ‘153), i = 1,2, be the family of tetrahedra
T,=A(T), i=1,2,
with vertices
x; = (0,0,0)7, x, 1= (;,0,0)7, x; 1= (38,1, A58, a38,)7,
X3 1= (a8, apty,0)7  for case (i),
Xy 1= (a; — aysy, a1y, 0)T for case (ii).
We then have ) = |x; —x,| > 0, a3 = |x; —x4] > 0, and

o = |x; —x3] >0 for case (i),
27\ Iy —x30 >0 for case (ii).

In the following, we impose conditions for 7 € T in the two-dimensional case and
Te ‘5(13) U 1(23) =: ¥ in the three-dimensional case.

Condition 1 (Case in which d = 2) Let T € ® with the vertices x; (i = 1,...,3)
introduced in Sect. 2.1.1. We assume that x,x; is the longest edge of T; i.e.,
hp = |x, — x3|. Recall that a; = |x; — x,| and a, = |x; — x3|. We then assume that
a, < a;. Note that a; = O(hy).

Condition 2 (Case in which d = 3) Let T € ® with the vertices x; (i = 1,...,4)
introduced in Sect. 2.1.2. Let L; (1 < i < 6) be the edges of 7. We denote by L,
the edge of T that has the minimum length; i.e., |L;,| = min; ;¢ |L;|. We set
@, = |L,;,| and assume that

‘min
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the end points of L;, are either {x;,x3} or {x,,x3}.

Among the four edges that share an end point with L
L(min)

‘max

: min» WE take the longest edge
. Let x; and x, be the end points of edge Lf;“;: ) Thus, we have that

a; = [LMV| = |x; — x|
Consider cutting R? with the plane that contains the midpoint of edge Lfﬂ: ) and is

perpendicular to the vector x; — x,. We then have two cases:
(Type 1) x5 and x4 belong to the same half-space;

(Type ii) x5 and x4 belong to different half-spaces.

In each respective case, we set

(Type i) x; and x5 as the end points of L;,,
(Type ii)x, and x; as the end points of L

that is, a, = [x; — x3];
min> that is, @, = |x; — x3].

Finally, we set a3 = |x; — x,|. Note that we implicitly assume that x; and x, belong
to the same half-space. In addition, note that a; = O(hy).

Remark 1 Let T, be a conformal mesh. We assume that any simplex 7, € T, is trans-
formed into T; € T such that Condition 1 is satisfied (in the two-dimensional
case) or T; € %53), i = 1,2, such that Condition 2 is satisfied (in the three-dimen-
sional case) through appropriate rotation, translation, and mirror imaging. Note
that none of the lengths of the edges of a simplex or the measure of the simplex is
changed by the transformation.

Assumption 1 In anisotropic interpolation error analysis, we may impose the fol-
lowing geometric conditions for the simplex 7:

1. Ifd = 2, there are no additional conditions;

2. If d =3, there exists a positive constant M, independent of %, such that
[$sy0] <M OZJ Note that if 5,, # 0, this condition means that the order with respect
3

to hy of a5 coincides with the order of a,, whereas if 5,, = 0, the order of a; may
be different from that of a,.

2.2 Affine mappings
In our strategy, we adopt the following affine mappings.

Definition 1 (Affine mappings) Let T, T c R?be the simplices defined in Sects. 2.1.1
and 2.1.2. That is,
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T=&T), T=&T) with ¥:=®®) :=AD% x:=®F :=Ax
We then define an affine mapping @; : T - Tas
@, =P T >T, x =D} :=Ak, Ay 1=AAD. (11)
Furthermore, let @, be an affine mapping defined as
&p :To3x—Apx+by €T, (12)

where by € R¢ and Az, € O(d) is a rotation and mirror imaging matrix. We then

define an affine mapping @ : T T, as
@ =@y o T > T, X0 1= ®R) = (@ 0®p)®) = Ak + by, (13)

where A 1= Ap A

2.3 Finite element generation

We follow the procedure described in [12, Section 1.4.1 and 1.2.1]; see also [16,
Section 3.5].

For the reference element 7 deﬁned in Sects. 2.1.1 and 2.1.2, let {T P Z} be a
fixed reference finite element, where P is a vector space of functions p : T — R" for
some positive integer n (typically n = 1 or n = d) and S is a set of ng linear forms
{7 ,)2,10} such that

P Bﬁ — ()?1([3), ,)?no(ﬁ))T e R™

is bijective; i.e., 3 is a basis for L’(ﬁ;R). Further, we denote by {él, ,9,10} in P the
local (R"-valued) shape functions such that

20y =6, 1<ij<n,

Let V(f") be a normed vector space of functions ¢ : T — R” such that P C V(?) and
the linear forms { 7, ..., )?no} can be extended to V(T)'. The local interpolation oper-
ator /5 is then defined by

ny
L:VD)2 ¢ Z 206, € P. (14)
i=1
It is obvious that
20) = 2@ Yoevd), i=1,..,n (15)
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~

Lp=p VpeP. (16)

Let @ be the affine mapping defined in Eq. (13). For T;) = (D(?), we first define a
Banach space V(7|;) of R"-valued functions that is the counterpart of V(T') and define
a linear bijection mapping by
w = yoygoyy 1 V(T)) 3 ¢ = ¢ 1= y(@) = pod € V(T)
with the three linear bijection mappings
v 2 V(T 3 @y = @ 1= yr(@y) 1= @yo®p € V(T),
v i V()3 9 = & 1= wi(p) := god € V(T),

vt V(D)2 o= ¢ 1= wp(@) := pod € V().

~

The triple {7“, I~’, > }is defined as

7= o)
P={yZ'(p):p € P};
2= {{)?i}lgisnn§ 7= 1iwz(P),VpEP, 7, € 2}

The triples {7, P, 2} and {7, Py, 2,} are similarly defined. These triples are finite
elements and the local shape functions are éi = w‘l(éi), 0, = u/% l(éi), and

T
00, :=w;'(0)) for 1 <i<ny, and the associated local interpolation operators are
respectively defined by
~ "o ~ ~
L V(D) 24 I;p 1= ), 7(»)F, €P, (17)
i=1
o
I : VD)2 ¢ Lp i= Y x(@)6; € P, (18)
i=1
gy
Iy - V(Ty) 2 @y — Iy, @ = X0.:(9)0; € Py (19)

i=1

Proposition 1 The diagrams

V(Ty) —22m V(1) 2 v (T) 22 v (T)

ITO\L IT\L IT\L ilf

Py P P P
P s Yy

commute.
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Proof See, for example [12, Proposition 1.62]. O

2.4 New parameters
In a previous paper [16], we proposed two geometric parameters,

Definition 2 The parameter H; is defined as

d
_ Hi=1 aih

H. .= s

and the parameter Hy, is defined as

h2 h?
T, T,
Hy i= —% min|L| ifd=2, H; :=—> min |LIIL| ifd=3
0 |T | 1<i<3 0 |T | 1<i,j<6,i#j

where L, denotes the edges of the simplex 7, C R,
The following lemma shows the equivalence between Hy and Hy,.

Lemma 1 It holds that

1
EHTO < Hy <2Hq,.

Furthermore, in the two-dimensional case, HT0 is equivalent to the circumradius R,
of Ty.

Proof The proof can be found in [16, Lemma 3]. O

Remark 2 We set

H(h) := max Hy,

T,€eT,

As we stated in the Introduction, if the maximum-angle condition is violated, the
parameter H(h) may diverge as & — 0 on anisotropic meshes. Therefore, imposing
the maximum-angle condition for mesh partitions guarantees the convergence of
finite element methods [3]. Reference [4] studied cases in which the finite element
solution may not converge to the exact solution.

We now state the following theorem concerning the new condition.

Theorem 1 Condition (7) holds if and only if there exist 0 < y,,y, < @ such that
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d=2: O, <1 VI,e{T,}, VI, €T, (20)
where 07, .., is the maximum angle of T, and
d=3: eTo,max < V25 WTO,max < V2 V-I]—h € {-I]—h}’ VTO € —I]—h’ (21)

where Op .., is the maximum angle of all triangular faces of the tetrahedron T,
and Yy, . is the maximum dihedral angle of Ty. Conditions (20) and (21) together
constitute the maximum-angle condition.

Proof In the case of d = 2, we use the previous result presented in [19]; i.e., there
exists a constant y; > 0 such that

R
h_z <y; VI,e{T,}, VI, €T,
Ty

if and only if condition (20) is satisfied. Combining this result with H; being
equivalent to the circumradius R, of T;), we have the desired conclusion. In the case
of d = 3, the proof can be found in a recent paper [18]. O

Lemma 2 It holds that

. ~ ~ max{a,,...,o,}
ADI < h. AD|, IAD) |, = ! al
A, < by, AL IA) T, min{ay, o] (22a)
- V2 i - un _ Aoy =2
A, <4 V2 =2 @A, < 1
2 ifd =3, Zams _ 2Hr e 3
37 3 hy
(22b)
A7l =1, A7, = 1. (22¢)
Furthermore, we have
| det(Ap)| = | det@)]| detAD)| = dI|T], | det(Ag,)] = 1. (23)

Proof The proof of (22b) can be found in [16, (4.4), (4.5), (4.6), and (4.7)]. The ine-
quality (22a) is easily proved. Because AT0 € 0O(d), one easily finds that A;ﬂl € 0(d)

and recovers Eq. (22¢). The proof of equality (23) is standard. O

For matrix A € R, we denote by [A]; the (i, j)-component of A. We set
Al = max, ;4 |[Aly| Furthermore, we use the inequality

”A“max S ”AHZ (24)

max
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3 Scaling argument

This section gives estimates related to a scaling argument corresponding to [12,
Lemma 1.101]. The estimates play major roles in our analysis. Furthermore, we use the
following inequality (see [12, Exercise 1.20]). Let0 < r < sanda; > 0,i=1,2,...,n
(n € N), be real numbers. Then, we have that

n 1/s n 1/r
(Za?) < <Za> . (25)
i=1 i=1

Lemma 3 Let s > 0 and 1 < p < co. There exist positive constants ¢, and ¢, such
that, for all T, € T, and @, € W (1)),

cil@olwseryy < N@lwsrry < 2l @olwsncr,) (26)

with @ = ®ooPr,.

Proof The following inequalities can be found in [12, Lemma 1.101]. There exists a
positive constant ¢ such that, for all T;) € T, and ¢, € W*P(T}),

-1
|§0|Ww(T) < CllAT[)”Zl det(ATO)l ’ |(00|Ws»p(T0)a (27)

1
|¢O|W»“~l’(T0) < c||A;01 ”§| det(AT0)|” |(P|Ww(T) (28)

with ¢ = ®ooPr, Using Eqgs. (27) and (28) together with Egs. (22c) and (23) yields
Eq. (26). O

Lemma 4 Let m € Ny and p € [0,00). Let f :=(f),....Py) € Ng be a multi-index
with || = m. Then, for any $ € W’”’”(/T\') with = (fooé;_l and @ = (2)05_1, it holds
that

(T
|Bl=m

1/p
Lo~ _ .
|@lynoiry < CY*l det(Ap)]|7 |IA 1||2<Z @’y pl” )> . Q9

where CfA is a constant that is independent of T and T. When p = o0, for any
& € W (T) with @ = Gpo® and ¢ = po®~", it holds that
SA,c0 | 5~ - N
|@lneiry < Y IATIG s (“ ﬁ”aﬂ(P”Lw(ﬂ)’ (30)
SA,00
C

where is a constant that is independent of T and T.
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Proof Let p € [1, ). Because the space C’"(/Y\") is dense in the space W”"P(?), we
show that Eq. (29) holds for ¢ € C"(T) with @ = @po®~! and ¢ = @po®~!. From
& = aj‘lfcj, we have that, for any multi-index g,

e a il = a3 . 31)

’p= a,

Through a change of variable, we obtain

- P _ BoP — 2@ By 1138 6117
L. |ﬂ§| 10731 . = | det(A >|m§| @Y1l o
=m =m

From the standard estimate in [12, Lemma 1.101], we have

|@lwmocry < C31 det@)] 7 1A~ 1313y - (33)

Inequality (29) follows from Egs. (32) and (33) with Eq. (23).

We consider the case in which p = co. A function ¢ € Wm’”(f") belongs to the
space Wm’/’(?) for any p € [1, ). Therefore, it holds that @ € W’"”’(T) for any
p € [1, o) and, from Eq. (25), we obtain

”ay(p”[])(f“) <o Wlrle(T)

1/p
~ 1
— [N -p BoP
= | det(A >|w( 2, @’y qouwﬂ)
1B1=17

L _ R (34)

< <sup|det(A<d>>|ﬂ> DI T e
I<p 18I=I1

A~ 1 _ N
< C<slupldet(A<‘”)IP> Y a1l ey <
=4 11=ly|

for the multi-index y € N¢ with |y| < m. This implies that the function 0”@ is in

the space L*® (T) for each |y| < m. Therefore, we have that ¢ € W’”’°°(7“). Taking the
limit p — oo in Eq. (34) and using lim,,_,, || - Il ;7 = Il - [l (3, We have

(7] P ¢ max (a‘ﬂllaﬁ(?’“m(?))' (35)
From the standard estimate in [12, Lemma 1.101], we have

|@lyneecry < A 121 ey (36)

Inequality (30) follows from Eqgs. (35) and (36). O
We now introduce the following new notation.

Definition 3 We define a parameter J¢/,i = 1, ...,d, as
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H i=ay, G i=a ifd=2,

For a multi-index f = (,,...,f,;) € N9, we use the notation
A=A A A = A A
: ‘1 d’ : 1 d -

B B P P
a, and o =a a,™.

We also define of := alﬂ‘ .

Definition 4 We define vectors r,, € Re n=1,...,d,as follows. Ifd = 2,
ri= (10", =0T,
and if d = 3,

rl = (17090)T9 r3 = (s219s22’ tz)Ts

ry 1= (sy, 1,007 for case (i),
ry 1= (=s.,1,0)"  for case (ii).

Furthermore, we define a directional derivative as

d
or,0

d
.
= A Ve = YA, —5 i€{1:d),
Jjo=1 dxjo

where AT0 € 0O(d) is the orthogonal matrix defined in Eq. (12). For a multi-index
B =(B,-...B,;) € NI we use the notation

P o!h
@ O ar Oy
Note 1 Recall that
Is| <1, a, <o ifd =2,

[s;] <1, [|sy|l <L ay<ay3<a ifd=3.

When d = 3, if Assumption 1 is imposed, there exists a positive constant M, inde-
pendent of /i, such that |s,,| <M ”;—" Thus, if d = 2, we have
3

oAy <, oAl <, j=1,2,
and if d = 3, for A € {ZI,ZZ} and j = 1,2,3, we have
o |[Aly| <, oAyl <, al[Al] < max{1, M}, j=1,2,3.

Note 2 We use the following calculations in Lemma 5. For any multi-indices f and
y, we have
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[B1+17]
Bty _ d
(35( =

R - 9R00RT" - 031

d

Z al[A] iy o 2 al[A (1)1 Z (Xd[A] 94 Z

(Xd[A] (d)d
(1) D=1 (d> 1

= [
ﬁl ﬁc{
. J . J
v v
ptimes f times
d d
Z (ll[A] (1)1 . Z (XI[A (1 . Z (Xd[A] (d)d . Z ad[A]j(yi],)d
1 1 (d
A= =1 =1
- - - >
v v
y,times 7 times
0P P o ora
0x.1) ++ 0X.) 0X.@) +* OX @ OX1) +=+ OX1) 0X @ ++ 0X @
i iy iy iy J J Ji Jrg
. W} L \G J . J
V" v hd
B, times B, times 7 times

7 times

Let ¢ € C°(T) with = ¢pod~'and ¢ = po®~!. Then, forl <i<d

a@ d (P a; ”A”maxZ(l) =1 0)6(1) or,
= S |[A]<1>| FTo < 1
X; X (1) d
i (1) i
1 C K
zi(ll)=1 t%f(l” oxqy |’
1
and forl <1i,j <d,
% e
— | = Z o A]m (Al ——
axia : 1 /axU)axU)
j A Dy
L
P’y
e or.
maxz:(1> V=1 ax(l)ax(l) ’
)
a; A _—
Z(” ] l) | Z(” l Vi 0x<1)0x<1)
<3
e d d @
< ca;||A W | ——— T
> Cq,” ”max zj(]l):l zi(ll):l g%j(ln 0xi(1)0xj(1) or,
1 1
¢ X, T, A A | 57— |.
=1 4j"= Ji ax(,)ax(,)

L

Lemma 5 Suppose that Assumption 1 is imposed. Let m € Ny, £ €N, with

£>m and p€[0,00] Let B:=(p,....8) €N and y :=(y),....7) €Nd
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be multi-indices with |p| =m and |y| = ¢ —m. Then, for any @ € Wf’f’(?) with
@ = @o® and ¢ = pod®~, it holds that

1~
||aﬂay(2’||y(?) < C§A| det(Az)| » ||A||§naﬂ Z 0@ yymo 1y (37)
lel=ly|
where CiA is a constant that is independent of T and T. Here, for p = o and any

1
positive real x, x » = 1.

Proof Let € = (gy,...,€,) € Nd and 6 =(6y,...,6,) € Nd be multi-indies with
le| = |y| and 6] = |ﬂ| Let p € [1, ). Because the space c (T) is dense in the
space W’ P(T) we show that Eq. (37) holds for ¢ € C* (T) with @ = (po(D and
@ = God. Through a simple calculation, we obtain

£ A
0947 ] = A
N By st ~Va
0x]' -+ 0% /0% -+ 0%
d d d
< oA, X D Z Z Z Z Z Z
i(ll)=1 i;}l): -1 (d)_lj(l)_l J(I)_l J(d)_l ](yd)
—— ;_v__/%,_z —_——
ptimes P times ¥ times Yqtimes
Ty - Ty - Hoay - Fa
A Jey 7\ Teg
- -~ 7 o 7
v times 7 times
aﬂl aﬂd on ovd
()xi}) axi;ll) dxi(lm axi;i) ()xj(ln axj(y? (3xj(ld> 0xj<y§>
. J/ . ' \\ ~- J/ . ~ J
B times p times 7itimes 74times
Y 5
<ca AP N Aol
[81=I18I le|=lr|
Using Eq. (24), we then have that
/|aﬂay¢|degc||X||;1”aﬂp > fﬂﬁa&af(pv’dx
T I51=151 le|=17| T
= c| det(Ap)[ T AL, e YN %p/|0568¢|pdx.

[81=I81 lel=lIr|

Therefore, using (25), we obtain
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1o~
10°07 @3, < cl det(Ap)| 7 All7a" D A1 @lymor,

lel=ly|
which recovers Eq. (37).
We consider the case in which p = co. A function ¢ € W%*®(T) belongs to the
space WP(T) for any p € [1, o). Therefore, it holds that ¢ € W*(T) for any
p € [1, o), and thus,

_l ~
10707 @l 3y < el det@p)| AT D 210 @lymocry
lel=lr|
~ (33)
<cllAllya’ Y. A0 plymer, < .

lel=lrl

This implies that the function 09”¢ is in the space L”(f"). Inequality (37)
for p = o is obtained by taking the limit p — oo in Eq. (38) on the basis that

liInp—»oo Il - ”Lp('f) = ”Loo(f‘)' a

Remark 3 In inequality (37), it is possible to obtain the estimates in 7, by specifi-
cally determining the matrix Ar,.
LetZ =2,m =1, and p = g = 2. Recall that

@; Toxmx¥ 1=A;x+by €T,

For ¢ € C*(T) with ¢, = gootb;ol and1 < i,j < d, we have

2
P 09,
(x)‘ = Z [ATO]i(l])i[ATo]j(]”j 05, @)}

0x;0x;
[t | (1) (1) , F
i =1 l(ll) J(ll)

Letd = 2. We define the matrix A, as

cosZ —sinZ
A, 1= sin’—% cos 2 -
2 2
Because ||AT0||max = 1, we have
g 0’9,
axax | = 50 5,0 O
L Xir19%41

where the indices i, i+ 1 and j, j+ 1 must be evaluated modulo 2. Because
|det(ATO)| = 1, it holds that

02(P 02(ﬂ0
0X;0X; = [0x© 0x@
%% || 12(1) axl‘,.+laxj‘+1 LA(Ty)

@ Springer



492 H. Ishizaka et al.

We then have

< i% d%,
= j 0 s
j+1 HI(TU)

where the indices j, j + 1 must be evaluated modulo 2.
We define the matrix A7, as

cosZ —sinZ

A, = 4 4
Ty - sin 2 cosZ |-
4 4

We then have

()2(p

1
6xi6xj ‘ 7

2
> @},
(0) (0)
A=1 dx(])d D
I

which leads to

2
2 2

P ﬂ < clgol?
= © 5, = TP E Ty
ox; ax LX(T) i =1 axu)a I ’
L i LX(T,)
Using (25), we than have that
2 2
Z o Z (P0|H’(TO) = ChT0|(P0|H’(TO)
=1 ilaay =1

In this case, anisotropic interpolation error estimates cannot be obtained.

Note 3 We use the following calculations in Lemma 6. For any multi-indices f and
v, we have
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sy oIBI+r1
%= N A
ox 10 da 7’1 e OR Vd
d
= al[A]i(lnl[ATo]i(]U'”i(]l) Z a A] 1)1[AT ]; tOl) (1)
A0 0Dy 0Dy
l ’I ﬁl ﬁl
- v
hd
ptimes
d d
Y @Al Ay Yoo D) @ [Al o Az, oo
@ 0Dy fD 0D _ d ¢ M
l oL 1 ﬁd’ ﬂd
. ~
i
P times
d d
Z ay[Alw, [Ag oo - Z @ [Aljw, [Ag, Jonw -
K (0,1 1 0,1
oy 002
. J
v
) times
d d
Al [Ar Joww - Z Al [A7 100
2, Al Ay oo Gl Al Az oo o
@ 0d)_ @ 0d)_
1Y = vadra =
- 7
v
7 times
aﬂl aﬂd o ovd
) © 50 © 5.0 © 50 ©)
0x (01> "ax(ol) a (0 a - 0x [0d) ax([)]) e 0X (0.1) ax(()d) "ax(om
tp) sy 1 In Ji Jrq
. ~ J/ . ~ AN ~ / - ~ /
ptimes B, times ¥, times 7 times

Let € C(T) with @ = pod~, ¢ = pod~' and ¢, = pod-!. Then, forl <i <d,
0 Ty

d
00 d9,
== Z Z (x[A]m AT](onu)a ©
i A0 00— .1
1 l ll
0Q,
= Z Z [AT <01)<1>(r)<1> (0) =q; W
(1) -1 (01) <0n ri
d a(p
0
SauAumnATOMMZ > o |
= 0021 jon

1

and forl <i,j <d,
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N d d
az(p ~ ~
—(=| Y D aqldlolAl,
axidxj (1) (1) (0,1) «0,1) ! h it
iy =iy =1
2 2
0“py 979,
[AT ] 01 (”[AT ] v —o——a | = o.a

J © 5.0
' ox o0 axj(() 1
1

20
’ arl?")arj.o)

< ;0 Z |[A]]<1) | 2 [AT ] (on(n (0)0 (0)

=1 D=1 7OV
d 2
0~ g
<aa”A”mdx”ATo”mdx Z (0) ©0)
JOD=1 r; ox o
d
%,
2 2 0
LN E D Y o e
((]'”J(O’l):l a (01)0 ](01)
1 1

If Assumption 1 is not imposed, the estimates corresponding to Lemma 5 are as
follows.

Lemma 6 Let meN, €N, with ¢>m, and p€0,0]. Let
pi=0,....0 € Ng andy :=(yy,...,74) € Ng be multi-indices with || = m and

Y| =¢—m. Then, for any € WD) with §=pod~', ¢=pod~, and
@y = (p0¢>;01, it holds that

1~
1070 @Il 3, < C1 detA)| P IANGQ? Y af10% @olwmery (30
lel=ly|

where CfA is a constant that is independent of T, and T. Here, for p = oo and any
° 1

positive real x, x » = 1.

Proof We follow the proof of Lemma 5. Let p € [1, c0). Because the space Cf(f‘) is
dense in the space W/?(T), we show that Eq. (39) holds for ¢ € C%(T) with
@ = @o®~!, o = po®~!, and ¢, = (pocb;ol. Forl <i,k <d,

“lgzlix Z z a6|aéai<o>(»00|~

|aﬂ+y S
161=181 lel=171

max

Using Egs. (22c) and (24), we obtain Eq. (39) for p €[1, 0] by an argument
analogous to that used for Lemma 5. O
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4 Remarks on anisotropic interpolation analysis

We use the following Bramble—Hilbert-type lemma on anisotropic meshes
proposed in [1, Lemma 2.1].

Lemma 7 Let D C R? with d € {2,3} be a connected open set that is star-shaped
with respect to a ball B. Let y be a multi-index with m := |y| and @ € L'(D) be a
function with 0" ¢ € We=mp(D), where £ € N, m € Ny, 0 <m <, and p €1, ].
Then, it holds that

llo" (¢ — Q(f)(P)”Wﬂm,p(D) < CBHlay§0|wffm.n(D), (40)

where CPH depends only on d, ¢, diamD, and diamB, and Q9 @ is defined as

— )0
Qo)) = ) / 1@ o m =L ay e P, (41)

|6|<¢—17 B 6!
where n € Cy(B) is a given function with fB ndx = 1.
As explained in the Introduction, there exist some mistakes in the proof of
Theorem 2 of [16], and the statement is not valid in its original form. To clarify
the following description, we explain the errors in the proof. Let T C R? be the

reference element defined in Sect. 2.1.1. Wesetk=m =1, =2, and p = 2. For
@ € HX(T), we set @ := pod~ ' and ¢ := @od~!. Inequality (29) yields

2 2
Lo~_ — ” ~
l@ = Ir@| gy < | det(A7)|2[|A 1”2(2 @; 2||afc,.((P - I?(P)”Iz‘z(?)) . (42

i=1

The coefficient ai‘2 appears on the right-hand side of Eq. (42). In [16, Theorem 2],
we wrongly claimed that ai‘z could be canceled out. In fact, a further assumption is
required for this. Using Eq. (41) and the triangle inequality, we have

10, = DI, 5, < 2005 (@ = QPP o + 20105 QD0 ~ LI, 5

We use inequality (40) to obtain the target inequality [16, Theorem 2]. To this end,
we have to show that

105, (Q®% — L)l 27, < €llds (@ — QD) 3. (43)
However, this is unlikely to hold because Eqs. (14) and (16) yield

10;, QP = )| o3, = 1195, QP @) = Ld) 25
< C”Q(2)¢ - (:\0”].]2("[\') < clfblHZ(f*)-

Using the classical scaling argument (see [12, Lemma 1.101]), we have
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L~
|¢|H2(?) < Cl det(AT)| 2 ”A”2|§0|H2(T)’

which does not include the quantity a;. Therefore, the quantity al.‘l in Eq. (42)
remains. Thus, the proof of [16, Theorem 2] is incorrect.

To overcome this problem, we use some results from previous studies [1, 2]. That
is, we assume that there exists a linear functional .%#; such that

Z, € H' T,
F10 (@ - 1) =0 i=12 Vpeld) : o,peH D)
heP, F0;N=0 i=12 = 04=0.

Because the polynomial spaces are finite-dimensional, all norms are equivalent; i.e.,
because |.%; (65Ci(ﬁ - I@))| (i = 1,2) is a norm on PP, we have that, fori = 1,2,

o, (7 = ;@) 27y < ¢l F1 (05, (F — 1;@)| = c|.F1(0; (7 — @)
< cllog, (= &)l pn -
Setting 77 := 0® @, we obtain Eq. (43). Using inequality (40) yields

A AND12 ~12
()A — 1% . < ()ﬁ A~
” xi((p IT(p)“LZ(T) > CI J\i(lel(T)’

and so inequality (42) together with Eq. (25) can be written as

2

1~ _ A
o — IT¢|H1(T) < c|det(A;)|2]|A 1”2 Z a; lllaxxafcf@”Lz(?)‘ 44)
=1

Inequality (37) yields

P
A . (45)
ox HI(T)

n

2
NI
195,05, @l 2z < el det(Ap)| 2 Al Y 2,
n=1

Therefore, the quantity ozi_1 in Eq. (44) and the quantity «; in Eq. (45) cancel out.

5 Classical interpolation error estimates
The following embedding results hold.

Theorem Letd > 2,5 > 0,and p € [1,]. Let D C R4 be a bounded open subset of
R If D is a Lipschitz set, we have that
LYD) Vq € [p, ’i—‘jp] if sp < d,
WP (D) & 4 L1(D) Vgq e@, o0),if sp =d, (46)
L*D)nC*D) e=1- ip if sp > d.
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Furthermore,
W (D) & L®*(D)n (D) (case s =dand p = 1). (47)

Proof See, for example, [12, Corollary B.43, Theorem B.40], [13, Theorem 2.31],
and the references therein. O

Remark 4 Lets > 0 and p € [1, co] be such that

s>g ifp>1, s>d ifp=1.
p

Then, it holds that Ws*(D) < C°(D).

Using the new geometric parameter Hr, it is possible to deduce the classical
interpolation error estimates; e.g., see [12, Theorem 1.103] and [13, Theorem 11.13].

Theorem A Let1 < p < oo and assume that there exists a nonnegative integer k such
that

Pk c P c WP (T c V(T).

Let ¢ (0 <?¢ <k) be such that W‘”“*”(/f’) C V(?) with the continuous embedding.
Furthermore, assume that ¢,m € NU {0}and p,q € [1, 0] suchthat0 <m < ¢ + 1
and

WP (T & wa(T). (48)
Then, for any @, € W+ (T,), it holds that
m H m
i fa T _
|(p0 - ITquOlW'Wi(TU) < Ci |TO| q p max _0 h?+l m|(Polwf+l.p(T0), (49)
min hTo 0

where Ci is a positive constant that is independent of hy and Hy, and the parameters
Cmax aNd a0 are defined as

Aax = max{a;,...,a;}, i, :=min{a,...,a,}. (50)

Proof Let & € W/+'(T). Because 0 < # <k, P c P* c P. Therefore, for any
A € P, we have Iz = 7. Using Eqs. (16) and (48), we obtain

|¢ - I?¢|Wm.q(f) < |¢ - ﬁlwm,q(f‘) + |If"(ﬁ - ¢)|Wm,q('f)

< C”(p - ﬁllwml,p(f-),

where we have used the stability of the interpolation operator I3; i.e.,
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|77 — <p)|wmm<2|x,(n ONON oy < cllii = Bl
i=1

Using the classic Bramble-Hilbert-type lemma (e.g., [7, Lemma 4.3.8]), we obtain

1@ = L@y S € nlenvf‘ 17 = @llyerrozy < 1@l yranogiy- 51)

Inequalities (26), (29), (25), and (51) yield

loo — I1,@0lwmacry) < cle = Ir@lymacr)

LaT
|B|=m @

1/q
Lom _ R
< cldet(Ap)|“ ||A 1||2< Y @0’ @ - Lol >
(52)
l ~ A
< cldetAp)[ A7 15 max{a; ", ... &) Y@ = L0l oy
< el det@p) [ IA 12013 oo

2 “'min
Using inequalities (25) and (39) together with Eq. (22c), we have

|¢|Wf+l,p(i")
< D DN oll,e

ly|=¢+1-m|p|=m
1o~
<clde@pl AN D D X aloo@olwmeny (53

[y|=t+1-m|Bl=m |e|=|y|

1~
< c| det(Ap)| 7 ||A]|2 max{a,, ... ,ad}lﬂlhg"l_ml(polWm,p(T[))

1
- C+1-
< cf det(Ap)| 7 |A]ly o) h " @olwerocry)-

2 “max

From Egs. (52) and (53) together with Eq. (23), we have the desired estimate (49).
O

6 Anisotropic interpolation error estimates
6.1 Main theorem

Theorem A can be applied to standard isotropic elements as well as some classes
of anisotropic elements. If we are concerned with anisotropic elements, it is
desirable to remove the quantity a,,,, /., from estimate (49). To this end, we
employ the approach described in [1] and consider the case of a finite element
with V(T) = C(T) and P := P]‘(T) (Theorem B). However, one needs stronger
assumptions to obtain the optimal estimate. When using finite elements that do
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not satisfy the assumptions of Theorem B (e.g., P'-bubble finite element), we
have to use Theorem A. In these cases, it may not be possible to obtain optimal
order estimates if the shape-regularity condition is violated.

Theorem B Let {?, }/5, f} be a finite element with the normed vector space
V(/Y\“) = C(/]\") and P 1= 77’((?) with k > 1. Let I : V(?) — P be a linear operator.
Fix¢ eN,meNy, and p,q € [1,00] such that0 <m<¢ <k+1,¢—-m>1, and
assume that the embeddings (46) and (47) with s := ¢ — m hold. Let f§ be a multi-
index with || = m. We set j := dim(0?P*). Assume that there exist linear function-
als #,,i=1,...,], such that

F, e WY, Yi=1,...j (54)
TP @-Lp)=0 Vi=1,..,j, Vopeld : d’pe W T), (55)

FeP, ZF@p=0 Vi=1,....,j = dj=0. (56)

For any ¢ € Wf”’(?) N C(f"), we set @, 1= @o®~\. If Assumption 1 is imposed, it
holds that
lpy — ITO(p0|WWi(T0)

o (H \" 57)
L O I

To ly|=t—m

where CITB is a positive constant that is independent of hy and Hy, . Furthermore, if
Assumption 1 is not imposed, it holds that

log — I7, @ | Wma(T,)

11 HT " (58)
<crmitH (1) 3 oo,

Ty ly|=¢—m

where CZTB is a positive constant that is independent of hy, and Hr,.

Proof The introduction of the functionals .%#; follows from [1]. In fact, under the
same assumptions as made in Theorem B, we have (see [1, Lemma 2.2])

10°(@ = )l a3y < CP1OP @lyyemnoiy (59)

where |8| = m, € C(T), and 3P p € We—"(T).
Inequalities (26), (29), (25), and (59) yield
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lpo — IT0§00|Wm.q(T0) <clp- ]T(p|W"’~fI(T)

1/q
Lo~ N A
< c|det(Ap)| ¥ ||A—1||’2"< > @ 0" @ - L) >

LoD
[B|=m
Lom _ R R (60)
<cldetAp| A7y Y @D (@ = ),
|Bl=m
Loy B )
<cldet@Ap)| A7 Y @) Dlyyemnogay;
|Bl=m
If Assumption 1 is imposed, then using inequalities (25) and (37) leads to
Z (a_ﬂ)laﬂ¢|wf—m,p(f)
|Bl=m
< Y D @M all,g,
[y|=t—m |Bl=m
. Ny | (61)
<cldet ) 7lANY Y Y @ Y A1l
[y|=t—m |Bl=m lel=lr1
L~ X
<cldetAp| A D) AN @l ymor)-
le|=t—m

From Egs. (60) and (61) together with Egs. (22) and (23), we have the desired
estimate (57) using T = cD;Ul(TO) and ¢ = @yo®y.

If Assumption 1 is not imposed, then an analogous argument using inequality
(39) instead of (37) yields estimate (58). O

Example 1 Specific finite elements satisfying conditions (54), (55), and (56) are
given in [2] and [1]; see also Sect. 6.2.

Remark 5 Finite elements that do not satisfy conditions (54), (55), and (56) can be
found in [2, Table 3]; e.g., the Plbubble finite element and the P Hermite finite
element. In these cases, Theorem A can be applied.

6.2 Examples satisfying conditions (54), (55), and (56) in Theorem B
Corollary 1 Let {?, P, f} be the Lagrange finite element with V(?) 1= C(f") and
P:= Pk(?) fork > 1.Let I : V(T) — P be the corresponding local Lagrange inter-

polation operator. Let m € Ny, £ €N, and p € R be such that 0 <m <€ <k+1
and
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d=2 - peER,0] ifm=0,¢=1,
T\ pell,o] iftm=0,f>20rm>1,-m>1,
pe@,oo] itm=0,=1,2,

d=3:3pe@ ol iftm>1,-m=1,
p €[1, ] ifm=0,>30orm>1,—-—m>2.

We set g € [1, o0] such that Wf_’"*l’(?) 3 Lq(/f). Then, for all p € Wf’l’(f") with
@y := Po®@~!, we recover Eq. (57) if Assumption 1 is imposed, and Eq. (58) holds.

Furthermore, for any o € C(?) with @, = @o®~, it holds that

loo — I, @oll (1) < cll@oll ooz

Proof The existence of functionals satisfying Egs. (54), (55), and (56) is shown in
the proof of [1, Lemma 2.4] for d = 2 and in the proof of [1, Lemma 2.6] for d = 3.
Inequality (59) then holds. This implies that estimates (57) and (58) hold. O

Setting V(T) :=C(T), we define the nodal Crouzeix—Raviart interpolation
operators as

d+1
[R5V 3 00 170 1= g )0, € P
i=1

Corollary 2 Let {f", 13, 3 } be the Crouzeix—Raviart finite element with V(?) = C(?)
and P := ”PI(T). Set I = IgR’S. Letm € Ny, Z € N, and p € R be such that

d=2": pER,0] fm=0,=1,
“7 \pellw]l ifm=0,/=20rm=1,¢=2,

3 . _ _
goy: Jre(de| ifm=0r=12
p E(2,] ifm=1,¢=2.

Set g €[1,00] such that WE=P(T) & LAT). Then, for all ¢ € WeP(T) with
@y := Po®@~!, we recover Eq. (57) if Assumption 1 is imposed, and Eq. (58) holds.
Furthermore, for any § € C(?) with @, = @o®~', it holds that
log — Ir, @oll (1) < cll@olloocr,y)-

Proof For k = 1, we only introduce functionals .%; satisfying Eqgs. (54)-(56) in The-
orem B for each # and m.

Let m = 0. From the Sobolev embedding theorem, we have W’ ’P(/Y\") cc® (?) with
l<p<oo,d<fporp=1,d< 7. Under this condition, we use
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F(@) 1= 0Gr), GEWPT), i=1,..,d+]1.

Let d=2 and m=1 (Z=2). We set f=(1,0). Then, we have that
j = dim(0?P") = 1. We consider a functional

1

2 A
F1(®) 1=/ PGy, 1/2)d%,, @ € W(T).
0

By an analogous argument, we can set a functional for the case f = (0, 1).

Letd =3 and m = 1 (£ = 2). We first consider Type (i) in Sect. 2.1.2. That is, the
reference element is 7' = conv{0,e,,e,,e;}. Here, ey, ..., e5 € R3 form the canonical
basis. We set f = (1, 0, 0) and consider the functional

1

%@w=/%®Juvwm,¢eWW%
0

We now consider Type (ii) in Sect. 2.1.2. That is, the reference element is
T= conv{0,e,e; +e,,e;}. We set f = (1,0, 0) and consider the functional

3 A
451((70)1=/ P(y,1/3,1/3)d%,, o € W(D).

3
By an analogous argument, we can set functionals for cases f = (0, 1,0), (0,0, 1).

Whenm = ¢ = 0and p = oo, we can easily check that

16 = ISl ey <l ey

ICR,S A
T
7 Concluding remarks

As our concluding remarks, we identify several topics related to the results described
in this paper.

7.1 Good elements or not ford = 2, 3?

In this subsection, we consider good elements on meshes. Here, we define “good
elements” on meshes as those for which there exists some y, > 0 satisfying Eq. (7).
We treat a “Right-angled triangle,” “Blade,” and “Dagger” for d = 2, and a “Spire,”
“Spear,” “Spindle,” “Spike,” “Splinter,” and “Sliver” for d = 3, as introduced in [9].
We present the quantities a,,,,, /i, and Hy, / hy, for these elements.

7.1.1 Isotropic mesh

We consider the following condition. There exists a constant y; > 0 such that, for
any T, € {T,} and any simplex 7;, € T,, we have
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|Tol > ,h,. (62)

Condition (62) is equivalent to the shape-regularity condition; see [6, Theorem 1].
If geometric condition (62) is satisfied, it holds that

d
a hT hT Cc
max<c_osc 0

hTﬂ Tl T a ITol ~ vy

If p =g in Theorem A, one can obtain the optimal order h?’l"”. In this case,
0
elements satisfying geometric condition (62) are “good.”

7.1.2 Anisotropic mesh: two-dimensional case

Let S, C R2be a triangle. Let 0 < s < 1, s € R, and €, 6,y € R. A dagger has one
short edge and a blade has no short edge.

Example 2 (Right-angled triangle) Let S, C R?> be the simplex with vertices
x, :=(0,0)7, x, :=(s5,0)7, and x; := (0,s°)" with 1 < ¢; see Fig. 1. Then, we have
that ¢, = s and a, = 5%; i.e.,

amax < sl—g

Xmin

s
>0 ass—0, — =2

hsn
In this case, the element S, is “good.”

Example 3 (Dagger) Let S, C R?> be the simplex with vertices x; :=(0,0)7,
X, :=(s5,0)7, and x; := (s°,5%)7 with 1 < & < §, see Fig. 2. Then, we have that

a; = /(s —5°)? + 5% and a, = V520 4 5% ie.,
Uax V(s — %)% + 5% -

= <cs fF > 00 ass—0,
®nin 1/ 526 4 g2€
Hg, B V(s = 59)2 + 526 /52 4 52 B
hS -

0

L 1+e
=S
2

In this case, the element S is “good.”

tFISJ Example 2: Right-angled Xy = (O,S&‘)T
riangle

x = (0,0)7 X = (s0)
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Fig.2 Examples 3 and 5: = (0 T
Dagger *3 (S 'S )
= (0.0)T X, = (s O)T
xl - ( ’ ) 2 ’
Fig.3 Example 4: Blade X3 = (S, se)T
— T
x; = (0,0)7 X, = (25,0)

Remark 6 In the above examples, a, & a,t = % holds. That is, the good element
S, C R? satisfies conditions such as a, ~ a,t = 4.

Example 4 (Blade) Let S, C R?> be the simplex with vertices x, := (0,0)7,
Xy i= (2s,0)7, and X3 1= (s,5°)" with 1 < &; see Fig. 3. Then, we have that

o = a, = V2 + 5% e,
T Hg, s

= e @ ass — 0.
hg, s

In this case, the element S is “not good.”

Example 5 (Dagger) Let S, C R? be the simplex with vertices x, := (0,0)7,
X, 1= (5,0)7, and x5 := (s°,5¢)T with 1 < § < ¢; see Fig. 2. Then, we have that

a; = \/(S — Sé)z + s2¢ and ay =YV 520 + SZE; i.e.,
Ao A /(S — 56)2 + s2¢ =5

= <cs - 00 ass—0,
Anin \/ 525 4 g2

Hg  \[(s— s9)2 + 52 1/520 + 52
0 S—¢
= <cs > 00 ass— 0.
1
hS _S1+£
0 2

In this case, the element S is “not good.”

7.1.3 Anisotropic mesh: three-dimensional case

Example 6 Let T, C R3be a tetrahedron. Let S, be the base of 7j; i.e., Sy = /\x;x,x5.
Recall that
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Fig.4 Example 6 x3 = (5°,0,59)7

x3=02s5s -/ 45% — 5% s7,0)7

x = (0,00

x, = (25,0,0)7

Hy, _ oy aa; a3 Hg,

hy, 1Tl Yooty tagt, ~ b, 2o (63)

If the triangle S is “not good,” such as in Examples 4 and 5, the quantity in Eq. (63)
may diverge. In the following, we consider the case in which the triangle S, is
66g00d',7

Assume that there exists a positive constant M such that =2 < M. For simplicity,
So

we set x; :=(0,0,0)7, x, :=(25,0,0)7, and x; := (25 — V452 — 52, 57,0)T with
1 < y; see Fig. 4. Then,

a =2s, a, =
and because «,,, = cs,
a cs -
<= <es'T >0 ass— 0.
Apmin a

If we set x, := (5,0, s6)T with 1 < ¢, the triangle Ax1x2x4 is the blade (Example 4).
Then,

;= V2 + s%.

Thus, we have

HTO s2x+y -

— <c <csTF-> 00 ass— 0.

hT S1+y+&
0

In this case, the element 7}, is “not good.”
If we set x, = (5°,0,5%)T with1 < § < € < 7, the triangle /\x,x,x, is the dagger
(Example 5). Then,
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ay; = V52 + 52,

Thus, we have

H; glHr+s
0 S5—¢
<c <csf > 00 ass— 0.
h sltr+e
TO

In this case, the element 7}, is “not good.”
If we set x, := (s°,0,s°)” with1 < € < § < y, the triangle /\x,x,x, is the dagger
(Example 3). Then,

ay; = Vs20 + 52,

Thus, we have

Hy,

s¢ 1+y+e
hy, sty

I4+y+e

In this case, the element 7 is “good” and a3 & a5, = % holds.

Example 7 In [9], the spire has a cycle of three daggers among its four triangles;
see Fig. 5. The splinter has four daggers; see Fig. 9. The spear and spike have two
daggers and two blades as triangles; see Figs. 6, 8. The spindle has four blades as
triangles; see Fig. 7.

Fig.5 Spire

Fig.6 Spear

Fig.7 Spindle

@ Springer



Interpolation error analysis on anisotropic meshes 507

Fig.8 Spike P —

Fig.9 Splinter

Remark 7 The above examples reveal that the good element 7, C R satisfies condi-
tions such as a, ~ a,t; = 4 and a3 & azt, = J4,.

Example 8 Using an element T called a Sliver, we compare the three quantities T
0

H R . .
—hTO »and .= 2, where the parameter R; denotes the circumradius of T,
Ty Ty

Let T, C R? be the simplex with vertices x; := (s°2,0,0)7, x, := (=5%,0,0)7,
x3 1= (0,—s,5)7, and x, :=(0,s5,5) (e,,6, > 1), where s := % N € N; see
Fig. 10. Let L; (1 < i < 6) be the edges of Ty with &, = L) S L, < -+ < Lg = hy,.
Recall that a,,,, ~ hy and

max
Amax < CL6 HTO _ L1L2

— <c—, = T -

Ly hy | Tyl *°

QApmin

In Table 1, the angle between /AA\x,x,x; and /\x,x,x, tends to z as s — 0, and the
simplex T}, is “not good.” In Table 2, the angle between /\x;x;x, and /\x,x;x, tends

Fig. 10 Example 8: Sliver 4
: %y = (0,5, s1)T

."
X, = (=520,07
x3=(0,—s, sey’
J X = (220,007
S
Table 1 h3Tn/|T0|, Hy, [hy, and Ry /hy, (€, = 1.5, €, = 1.0)
N s Le/L, h;0/|To| Hy, [hy, Rs/hy,
32 3.1250e—02 1.4033 6.7882¢+01 3.4471e+01 5.0195¢—01
64 1.5625¢—02 1.4087 9.6000e+01 4.8375e+01 5.0098e—01
128 7.8125¢—03 1.4115 1.3576e+02 6.8147¢+01 5.0049¢—01
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Table 2 h3T0 /\Tol, Hy, /hy, and Ry /hy (e, = 1.0,8, = 1.5)

N s Le/L, 1. /1T, Hy, [hy, Ry/hy,

32 3.1250e—02 5.6569 6.7882¢+01 8.5513 5.0006e—01
64 1.5625¢—02 8.0000 9.6000¢+01 8.5184 5.0002e—01
128 7.8125¢—03 1.1314e+01 1.3576e+02 8.5018 5.0000e—01

Table3 /i3 /|Ty|, Hy, /hy,, and Ry /hy (¢, = 1.5,€, = 1.5)

N s Le/L, 1. /1T, Hy, [y, Ry/hy,
32 3.1250e—02 5.6569 3.8400e+02 3.4986e+01 1.4170
64 1.5625¢—02 8.0000 7.6800e+02 4.8744e+01 2.0010
128 7.8125¢-03 1.1314e+01 1.5360e-+03 6.8411e+01 2.8288

to 0 as s — 0, and the simplex 7 is “good.” In Table 3, from the numerical results,
the simplex 7}, is “not good.”

11
7.2 Effect of the quantity|T,|< » on the interpolation error estimates ford = 2, 3
1 1
We now consider the effect of the factor|T;| ¢ ».

7.2.1 Caseinwhichg > p

When g > p, the factor may affect the convergence order. In particular, the interpolation
error estimate may diverge on anisotropic mesh partitions.

Let T, C R? be the triangle with vertices x; := (0,0)7, x, := (5,0)7, x3 := (0,5)"
forO0<s < l,e > 1,s € R,and ¢ € R; see Fig. 1. Then,

[0

1
max — sl—s, T.| = —Sl+E.
®min | Ol

Let k=1, =2, m=1, ¢g=2, and p € (1,2). Then, W'(T,) & L*(T,) and
Theorem B lead to

o0
0x,

oy
0x,

—(14e)X2
(+5)2p s £

@0 = Ir, @0l ez, < s

WLr(T,) W (Ty)

When € = 1 (i.e., an isotropic element), we obtain

2p-1) 2([7 -1
I(pO - ITO(p0|H1(TO) S ChTOl |(P0|W2’T’(To)’ _— 0.
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However, when € > 1 (i.e., an anisotropic element), the estimate may diverge as
s — 0. Therefore, if g > p, the convergence order of the interpolation operator may
deteriorate.

7.2.2 Caseinwhichg < p

We consider Theorem B. Let I%O : C°(T,) - P* (k € N) be the local Lagrange

interpolation operator. Let @, € W*(T,) be such that # €N, 2<¢ <k+ 1.
Then, for any m € {0, ...,Z — 1} and g € [1, oo}, it holds that

. L Hy\"
|§00 - ITOQ)OlW'"‘[’(To) S C|T0| q h Z jidlay(qpoodjyvo)lwm.eo((p;ol (Tp):

T/ \=t-m

(64)

1
Therefore, the convergence order is improved by | T | .
We can perform some numerical tests to confirm this. Let k = 1 and

1
@olx,y,2) 1= x4 Zyz + 2%

I LetT,cC R3 be the simplex with vertices x; := (0,0, 07, X, :1=(s,0, 07,
X3 i= (0,55,0)7,and x; :=(0,0,5°)" (1 <6 <e¢),and0 < s < 1,5 € R; see

Fig. 11. Then, we have that a; = Vs + s%¢, a, = s°, and a3 := /5% + 529,

1.e.,
a HT
max SCSI_S, 0 <c
%min hTU

From Eq. (64) with m =1, £ =2, and ¢ = 2, because |T,| ~ s+, we
have the estimate

Fig. 11 Case in which g < p, %3 = (0,0,5%)7
Example (I)

x3 = (0,55,0)"

x = (0,0,0)"

X = (5,0,0)"
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Table 4 Error of the local

. . N s Err3O(H") r
lnterpolatlon Operator S
(6=30,6=20) 64 1.5625¢—02 2.4336¢—08
128 7.8125¢—03 1.5209¢—09 400
256 3.9062¢—03 9.5053¢—11 4.00

3+e+d

L
lpo — ITO(/’0|H1(T0) < ChTOZ

Computational results for e = 3.0 and § = 2.0 are presented in Table 4.

) LetT,cC R3 be the simplex with vertices x; := (0,0, 07, X, :=(s,0, 07,
Xy 1= (s/2,55,0)7, and x, :=(0,0,5)" (1 <e<6)and0<s < 1, s €R;
see Fig. 12. Then, we have thata; = s, a, = v/s?/4 + s?¢, and a; :=s;i.e.,

H
<c, ) < cs'e.

Uin— \/52/4 + 52 - hy,

From Eq. (64) withm = 1,7 =2, and g = 2, because |T;)| = s2*€ we have
the estimate

Xmax s

3t
L
|(p0 - ITU(polHl(TU) < ChTO 2,

Computational results for € = 3.0, 6.0 are presented in Table 5.

Fig. 12 Case in which g < p, x4y = (0,0,5)7
Example (II)

------------- Xy = (5/2,5¢,0)7
x = (0,0,0)" h

X, = (50,07
Table 5 Error of the local N s ErrO(H") r ErrSO(HY) r
interpolation operator s ;
(6 =30,6.0) 64  1.5625¢—=02  1.9934e—04 1.0206e—01

128 7.8125¢e—03  7.0477e—05 1.50  1.0206e—-01 0
256  3.9062e—03  2.4917e-05 150  1.0206e-01 0O
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7.3 Inverse inequalities

This section presents some limited results for the inverse inequalities. The results
are only stated; the proofs can be found in [15].

Lemma 8 Let P :=P* with k € N. If Assumption 1 is imposed, there exist posi-
tive constants Cfv’d, i=1,....d, independent of hy and T, such that, for all

@y € P = {@0®;'; &, € P},

Remark 8 1f Assumption 1 is not imposed, estimate (65) fori = 3 is

This may not be sharp. We leave further arguments for future work.

99, Wy i-2 1 .
—_— <CHT|e v — - L=1,....d.
<G T %”@h”mn ! (65)

0x;

Li(T)

9,
0x3

11 H.
< VAT L oyl 66
Li(T) 3 hT % o ( )

Theorem D Let P := P* with k € Ny. Let y =(yy,...,79) € Ng be a multi-index
such that 0 < |y| < k. If Assumption 1 is imposed, there exists a positive constant

CVC, independent of hy and T, such that, for all @, € P = {(Aﬂh°¢';l; o, € f’},

1 1
”ay(ph“Lq(T) < CIVC|T|" "fy”(ﬂh”U(T)- (67)
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