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Abstract
We study blow-up solutions for a general scalar differential equation with a discrete 
delay. It is shown that the existence of blow-up solutions for a discrete delay differ-
ential equation (DDE) is proven by finding blow-up solutions to an associated auton-
omous ordinary differential equation (ODE). We give an example that the existence 
of blow-up solutions to an associated autonomous ODE does not necessarily imply 
the existence of blow-up solutions to DDEs. Nevertheless, for a class of discrete 
DDEs, we prove that the existence of blow-up solutions implies the existence of 
blow-up solutions to associated autonomous ODEs. For special cases, we study the 
asymptotic behavior and the blow-up rate of the blow-up solutions.
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1  Introduction

Finite-time blow-up of the solution, forming a finite-time singularity of the solu-
tion, has been actively investigated in the study of partial differential equations, in 
particular, for elliptic and parabolic partial differential equations, see e.g. [8, 16] and 
references therein. The blow-up phenomenon is also studied in Volterra type inte-
gral equations in many papers, see [5, 17] and references therein. Many papers have 
been devoted to the study of blow-up of ordinary differential equations (ODEs). For 
ODEs, the blow-up solutions and the asymptotic behavior of the solutions are inves-
tigated, see [2, 3, 9, 10, 15, 18] and references therein.

Continuation of solutions is a crucial property to investigate global existence 
solutions. For ODEs (and perturbed equations), continuation of solutions is studied 
in e.g. [4, 12]. For delay differential equations (DDEs), results concerning continu-
ation of solutions is given in Chapter 2.3 of [13]. For a DDE, behavior of a non-
continuable solution in which the maximal existence interval is finite is shown in 
Chapter 2.3 of [13], see also [14]. However, as far as the authors’ best knowledge, 
much elaboration has not been made to determine if a given DDE has a noncontinu-
able solution.

The paper [7] provides, for a class of DDEs, conditions for the existence of blow-
up solutions, of which the solution diverges and its existence interval is finite. The 
study is motivated by the estimation of the energy function for a delay reaction-
diffusion equation. In the paper [7] the authors pay attention mainly to DDEs of the 
following forms:

and

Assuming that ODE x�(t) = f (x(t)) blows up in a finite-time, the authors obtain an 
estimation for the initial functions so that the solutions of (1.1) and (1.2) blow up in 
finite time.

The blow-up phenomenon has been studied in some DDEs. The paper [1] studies 
blow-up and asymptotic behavior of solutions for a differential equation with dis-
tributed delay (Volterra integro-differential equation). In the paper [11], the authors 
study a logistic equation with a discrete delay and show the existence of blow-up 
solutions. In the paper [6] the authors show that the system of DDEs:

where 𝜏(> 0) is a time delay, has blow-up solutions, while the system (1.3)  with 
� = 0 has no blow-up solutions, that is, the delay induces blow-up of solutions. In 
these papers [11] and [6], we exploit the nature of differential equations with a dis-
crete delay (discrete DDEs), which can be solved, for a given initial function, by 
the method of steps. We thus analyze discrete DDEs for t ≤ � , where � is the delay 

(1.1)x�(t) = f (x(t)) + g(x(t − 1))

(1.2)x�(t) = f (x(t))g(x(t − 1)).

(1.3)
x�(t) = x(t) − y(t) − x(t − �)(x2(t) + y2(t)),

y�(t) = x(t) + y(t) − y(t − �)(x2(t) + y2(t)),
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of the equations and, in this interval, the equations can be seen as nonautonomous 
ODEs, of which we find solutions that blow up in finite time t ≤ �.

In this paper, we apply the idea used in [6, 11] for proving the existence of blow-
up solutions to a general scalar discrete DDEs. Our aim is to, in a general setting, 
formulate a sufficient condition for the scalar discrete DDE in which blow-up solu-
tions exist, associating the problem to the existence of blow-up solutions to an ODE 
with a parameter, where the ODE generates a solution of DDE through an initial 
function having a constant value for an interval. We also show an example that such 
an associated ODE does not necessarily yield blow-up solutions of a discrete DDE. 
If we restrict the class of DDEs, including (1.1) and (1.2), the existence of blow-up 
solutions to DDEs indeed implies the existence of blow-up solutions of the corre-
sponding ODEs. For those equations, we study the blow-up rate of the blow-up solu-
tions. As it is expected, the asymptotic behavior is determined by the “ODE part” in 
a sense.

The paper is organized as follows. In Sect. 2, as a preliminary, we collect results 
concerning the blow-up of autonomous and nonautonomous ODEs. In Sect. 3, we 
study blow-up of a general scalar DDE, relating the problem to blow-up of an ODE, 
given by the DDE with an initial function that is constant for an interval. We also 
propose a condition that blow-up of DDE implies blow-up of a corresponding ODE 
for some parameter. In Sect. 4, we revisit equations (1.1) and (1.2) and draw a con-
nection to ODEs. In Sect. 5, we introduce a case study using a simple example. In 
Sect. 6, we discuss our results obtained in this paper.

2 � Blow‑up results for ODEs

We here first revisit the following ODE:

where f is a continuous function from ℝ to ℝ . By the Peano’s existence theorem, Eq. 
(2.1) has a local solution satisfying the initial condition

Definition 2.1  We say that a solution x to Eq. (2.1) blows up in a finite time if the 
maximal existence time is finite, i.e., there exists T ∈ (0,∞) such that

where T is called blow-up time.

For the sake of simplicity, if it is necessary, we consider Eq. (2.1) satisfying 
f (x) > 0 for large x and solutions that blows up to +∞ . Similarly, one can consider 

(2.1)x�(t) = f (x(t)),

(2.2)x(0) = x0 ∈ ℝ.

lim
t→T−

|x(t)| = ∞,
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the case that the solution blows up to −∞ . Let us introduce the following elementary 
result.

Proposition 2.1  There exists � ∈ ℝ such that the solution of Eq. (2.1) with the initial 
condition (2.2) satisfying x0 > 𝛿 monotonically increases and blows up in a finite 
time, if and only if, there exists � ∈ ℝ such that

Remark 2.1  We here present Definition  2.1 and Proposition  2.1 for Eq. (2.1) to 
discuss a blow-up phenomenon in DDEs below in Sects. 3 and 4, see also Defini-
tion 3.1 and results in Sect. 3.

Next, we state necessary conditions concerning the nonlinear function f(x) for the 
existence of blow-up solutions to (2.1).

Lemma 2.1  Let us assume that Eq. (2.1) has blow-up solutions. Then

and there exists � ∈ ℝ such that

Proof  Let us suppose that lim supx→∞ f (x) < ∞ . Let lim supx→∞ f (x) = L . Then for 
any 𝜀 > 0 there exists M such that x > M implies f (x) < L + 𝜀 . Then for x > M , one 
has x� < L + 𝜀 . This leads to a contradiction that the solution blows up in a finite 
time, thus lim supx→∞ f (x) = ∞ holds. We easily obtain other conditions from Prop-
osition 2.1.	�  ◻

Consider the following perturbed ODEs

where c ∈ ℝ is a constant.

Lemma 2.2  Let us suppose that, there exists c ∈ ℝ such that Eq. (2.5) has blow-up 
solutions. If lim infx→∞ f (x) > 0 , then Eq. (2.1) also has blow-up solutions.

Proof  Applying Proposition 2.1 to (2.5), there exists � such that

We then show that (2.1) also has blow-up solutions. Let us suppose that c ≤ 0 . 
From the comparison principle, it is easy to see that the solutions of (2.1) satisfying 
the initial condition x(0) = x0 > 𝛿 also blow up in finite time. Let us suppose that 

(2.3)f (x) > 0, and ∫
∞

x

d𝜉

f (𝜉)
< ∞ for ∀x > 𝛿.

0 ≤ lim inf
x→∞

f (x) ≤ lim sup
x→∞

f (x) = ∞,

(2.4)f (x) > 0 for ∀x > 𝛿.

(2.5)x�(t) = f (x(t)) + c,

f (x) + c > 0, and ∫
∞

x

d𝜉

f (𝜉) + c
< ∞ for ∀x > 𝛿.
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c > 0 . Let d =
1

2
lim infx→∞ f (x) > 0 . Then there exists M′ such that x > M′ implies 

f (x) > d > 0 . Thus

We then have the following estimates:

Hence, by Proposition 2.1, the solutions of Eq. (2.1) through the initial condition 
x(0) = x0 > M� blow-up in finite time. 	�  ◻

3 � Blow‑up solutions for a DDE

Let F be a continuous function from ℝ2 to ℝ . Let us consider the following DDE:

where � ≥ 0 . For 𝜏 > 0 , without loss of generality, redefining the time scale and the 
function F, for our purpose, it is sufficient to consider Eq. (3.1) with � = 1 , i.e.,

We consider Eq. (3.2) with the following initial condition:

where � ∶ [−1, 0] → ℝ is a continuous function.

Definition 3.1  We say that a solution x to DDE (3.2) blows up in finite time if the 
maximal existence time is finite, i.e., there exists T∈ (0,∞) such that

Here T is called blow-up time.

Remark 3.1  The author in [14] shows an example of DDE, in which a blow-up solu-
tion satisfy lim supt→T− |x(t)| = ∞ for some T but limt→T− |x(t)|≠∞.

We remark that if F does not depend on the first argument, then Eq. (3.2) does 
not admit any blow-up solutions. We thus assume that F does depend on both 
arguments.

For t ∈ [0, 1] the solution of Eq. (3.2) with the initial condition (3.3) satisfies 
the following nonautonomous ODE:

x > M�
⟹

d

d + c
<

f (x)

f (x) + c
< 1.

d

d + c ∫
∞

M�

dx

f (x)
< ∫

∞

M�

f (x)

f (x) + c

1

f (x)
dx < ∞.

(3.1)x�(t) = F(x(t), x(t − �)),

(3.2)x�(t) = F(x(t), x(t − 1)).

(3.3)x(�) = �(�), � ∈ [−1, 0],

lim sup
t→T−

|x(t)| = ∞.
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with the initial condition x(0) = �(0) . By the method of steps, one can successively 
solve Eq. (3.2), as far as the solution exists.

From the time-translation invariance, we have the following result.

Proposition 3.1  Equation (3.2) has a blow-up solution if and only if Eq. (3.2) has a 
blow-up solution that blows up in finite time 0 < t ≤ 1.

Proof  If there is a noncontinuable solution x ∶ [−1, T) → ℝ to Eq. (3.2), where 
T > 1 is the maximal existence time, Eq. (3.2) has a blow-up solution x̃ with blow-up 
time T̃ ∈ (0, 1] , where x̃(t) = x(t − T̃ + T) . The converse is trivial. Thus we obtain 
the conclusion. 	�  ◻

Therefore, from Proposition  3.1, to prove the existence of blow-up solutions 
for DDE (3.2), we would like to find an initial function � such that the solution 
with the initial function � blows up in t ∈ (0, 1] . We mean that by saying that a 
DDE has blow-up solutions, there exist initial functions such that the solutions 
with the initial functions blow up in finite time.

As a candidate, we consider an initial function which takes a constant value 
for an interval. This leads Eq. (3.4) to an autonomous ODE (temporarily), in 
which we investigate if the solution of DDE (3.2) blows up in a finite time. Con-
sequently, it is shown that the existence of blow-up solutions for Eq. (3.2) can be 
studied by the following ODE:

with a parameter a ∈ ℝ.
A similar result is Proposition 9 in Ezzinbi and Jazar [7]. Here we do not pay 

much attention to the estimation of the initial function � that generates blow-up 
solutions to (3.2). To characterize the existence of blow-up solutions for (3.2), we 
do not explicitly impose conditions (e.g. the monotonicity condition and the posi-
tivity condition) for the function F(x, y) as in Proposition 9 in [7].

Theorem 3.1  If there exists a ∈ ℝ such that ODE (3.5) has a blow-up solution, then 
DDE (3.2) has blow-up solutions.

Proof  Suppose that a solution of ODE (3.5) for some a with the initial condition 
x(0) = b ∈ ℝ blows up in a finite time. Without loss of generality, we also assume 
that the solution blows up to +∞ , i.e., limt→T− x(t) = ∞ , where T is the blow-up time 
given as

(3.4)x�(t) = F(x(t),�(t − 1))

(3.5)x�(t) = F(x(t), a)

T(b) ∶= ∫
∞

b

1

F(x, a)
dx < ∞.
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Since limb→∞ T(b) = 0 , for any 𝜀 > 0 , there exists � such that T(b) < 𝜀 for b > 𝛿 . We 
now fix 0 < 𝜀 < 1 . For � , there exists � such that T(b) < 𝜀 for b > 𝛿 . Then, for Eq. 
(3.2), we consider an initial function � satisfying (3.6a) and (3.6b)

 The solution of Eq. (3.2) with the initial condition (3.3) satisfying (3.6) solves Eq. 
(3.5) with the initial condition x(0) = b and thus blows up at t = 𝜀 < 1 . It is also 
easy to see that the solutions of DDE (3.2) with the initial condition (3.3) satisfying 
(3.6a) and 𝜑(0) > b blow up in finite time t < 𝜀 < 1 . Therefore there exists a family 
of blow-up solutions. Hence we obtain the conclusion. 	�  ◻

In [6], to study the blow-up of a system of DDEs, we consider a system of 
ODEs that is obtained replacing the delay term with a constant parameter, due 
to the initial function which takes constant for an interval. This idea is behind in 
Theorem 3.1. Theorem 3.1 offers a sufficient condition for the existence of blow-
up solutions of DDE (3.2): by studying ODE (3.5), one may find blow-up solu-
tions of DDE (3.2).

There is, however, a DDE in which this technique can not yield the blow-up 
solutions.

Example 3.1  Consider DDE (3.2) and ODE (3.5) with

One can see that ODE (3.5) does not admit any blow-up solutions for every a. How-
ever, DDE (3.2) is shown to have blow-up solutions. For DDE (3.2), consider the 
initial functions � satisfying

From an elementary calculation, one can see that, for x0 > 1 , the solution of DDE 
(3.2) is x(t) = 1∕(x−1

0
− t) and hence blows up as t → x−1

0
− . Therefore, the converse 

of Theorem 3.1 is not necessarily true.
We also note that for (3.1) with (3.7), every solution is bounded for � = 0 , and the 

blow-up solutions appear for 𝜏 > 0 . Thus this is also an example of “delay-induced 
blow-up” phenomenon.

If we restrict the class of functions F(x, y), the converse of Theorem 3.1 is true: 
for a class of equations, the existence of blow-up solutions of DDE (3.2) is deter-
mined by ODE (3.5). We now propose to assume the following condition for the 
function F:

(3.6a)�(�) = a, −1 ≤ � ≤ −1 + �,

(3.6b)𝜑(0) = b > 𝛿.

(3.7)F(x, y) = x2 sin (xy).

𝜑(0) = x0 > 0,

𝜑(𝜃) =
𝜋

2

(
x−1
0

− 1 − 𝜃
)
, 𝜃 ∈

[
−1, x0

−1 − 1
]
.
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(H) For any closed bounded interval I ⊂ ℝ there exist ai ∈ ℝ (i ∈ {1, 2}) such 
that

The condition (H) is used to estimate the solution of DDE (3.2) using the solution of 
ODE (3.5).

Theorem  3.2  Suppose that (H) holds. If DDE (3.2) has a blow-up solution, then 
there exists a ∈ ℝ such that ODE (3.5) has blow-up solutions.

Proof  Suppose that for every a ∈ ℝ , any solutions of ODE (3.5) do not blow up in 
finite time. The blow-up solution of DDE (3.2) satisfies Eq. (3.4), as far as the solu-
tion exists. Since � is a continuous function defined in the closed interval [−1, 0] , 
from the condition (H), there exist constants a1, a2 (which can be chosen uniformly 
with respect to t) such that

for any t (up to the maximal existence time). Therefore, one obtains the following 
estimates:

From the comparison principle, it is easy to obtain the contradiction. Hence we 
obtain the conclusion. 	�  ◻

4 � Special classes of DDEs

Let f and g be continuous functions ℝ → ℝ . Since continuous function g on 
a closed bounded interval has a maximum and a minimum, if F(x, y) is given as 
F(x, y) = f (x) + g(y) or F(x, y) = f (x)g(y) , then the condition (H) is automatically 
satisfied. Thus, from Theorems  3.1 and  3.2, we have the following direct conse-
quences for Eqs. (1.1) and (1.2).

Corollary 4.1  The following statements are true. 

1.	 DDE (1.1) has blow-up solutions if and only if there exists a ∈ ℝ such that the 
following ODE 

 has blow-up solutions.
2.	 DDE (1.2) has blow-up solutions if and only if there exists a ∈ ℝ such that the 

following ODE 

(x, y) ∈ ℝ × I ⟹ F(x, a1) ≤ F(x, y) ≤ F(x, a2).

F(x(t), a1) ≤ F(x(t),�(t − 1)) ≤ F(x(t), a2)

F(x(t), a1) ≤ x�(t) ≤ F(x(t), a2).

(4.1)x�(t) = f (x(t)) + g(a)
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 has blow-up solutions.

In the following, we impose further assumptions on the function f(x) to obtain the 
blow-up rate of the solution.

Theorem 4.1  Let us suppose that Eq. (1.1) has blow-up solutions. Let us assume that 
lim infx→∞ f (x) > 0 holds. Then the following statements are true. 

1.	 Equation (2.1) also has blow-up solutions.
2.	 If limx→∞ f (x) = ∞ then the blow-up solutions of (1.1) satisfies limt→T− x(t) = ∞ 

and 

where T is the blow-up time.
Proof  From Corollary 4.1, there exists a ∈ ℝ such that Eq. (4.1) has blow-up solu-
tions. Applying Lemma 2.2, one obtains the conclusion 1.

Since g(x(t − 1)), t < T  is bounded, from the assumption that limx→∞ f (x) = ∞ , 
it can be shown that x(t) monotonically increases, when t is sufficiently close to T. 
This implies limt→T− x(t) = ∞ . Then there exists T1 < T  such that

For t ∈
(
T1, T

)
 , from (1.1), one has

Integrating both sides of the above equation from t ∈
(
T1, T

)
 to T, we obtain

Since limx→∞ f (x) = ∞ , by the mean value theorem, one obtains

Therefore, we obtain the conclusion 2. 	�  ◻

For Eq. (1.2), we have the following result. We implicitly characterize the initial 
functions which yield the solutions blow up in finite time.

(4.2)x�(t) = g(a)f (x(t))

lim
t→T−

1

T − t ∫
∞

x(t)

dx

f (x)
= 1,

f (x(t)) > 0, f (x(t)) + g(x(t − 1)) > 0, t ∈
(
T1, T

)
.

x�(t) = f (x(t))

(
1 +

g(x(t − 1))

f (x(t))

)
.

∫
∞

x(t)

dx

f (x)
= ∫

T

t

1 +
g(x(s − 1))

f (x(s))
ds.

lim
t→T−

1

T − t ∫
T

t

1 +
g(x(s − 1))

f (x(s))
ds = 1.
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Theorem 4.2  Let us suppose that Eq. (1.2) has blow-up solutions. Then there exists 
a ∈ ℝ such that (4.2) has blow-up solutions. If g(a) > 0 , then the following state-
ments are true. 

1.	 Equation (2.1) also has blow-up solutions.
2.	 If the blow-up solution of (1.2) satisfies limt→T− x(t) = ∞ then 

 where T is the blow-up time.

Proof  Applying Proposition  2.1 to Eq. (4.2), we easily obtain the conclusion 1. 
From Corollary 4.1 and Proposition 2.1, without loss of generality, one can assume 
that there exists � such that (2.3) holds, i.e., f (x) > 0 for sufficiently large x.

From Eq. (1.2) we have

Dividing both sides of equation by T − t and taking the limit of both sides, we obtain 
(4.3). 	�  ◻

Remark 4.1  In Theorem 4.2 we study the case that the solution of (1.2) blows up to 
+∞ for the sake of a simple exposition. For Eq. (1.2), we can see that for the initial 
function if there is T ∈ (0, 1] such that

then the solution blows up in finite time 0 < t ≤ 1 , see also Sect. 5. In the case that 
the solution blows up to −∞ , a similar formula to (4.3) concerning the blow-up rate 
holds.

5 � Example

As a simple example, we consider the case F(x, y) = −x2y . For this case Eq. (3.2) is 
the following DDE:

and that the initial condition is given as in (3.3).
It is easy to see that the following ODE does not admit any blow-up solutions.

(4.3)lim
t→T−

1

T − t ∫
∞

x(t)

dx

f (x)
= g(x(T − 1)),

∫
∞

x(t)

dx

f (x)
= ∫

T

t

g(x(s − 1))ds.

∫
∞

�(0)

d�

f (�)
= ∫

T

0

g(�(s − 1))ds

(5.1)x�(t) = −x(t − 1)x2(t)
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One can see that limt→∞ x(t) = 0 for every solution of (5.2).
Applying Theorem 3.1, we see that Eq. (5.1) has blow-up solutions in finite time. 

The result shows “delay-induced blow-up” phenomenon ([6]). Furthermore, Theo-
rem 4.2 characterizes the initial conditions for the blow-up solutions.

Theorem 5.1  For the initial function in (3.3), there exists 0 < T ≤ 1 such that

if and only if the solution of Eq. (5.1) with the initial condition (3.3) blows up in a 
finite time 0 < T ≤ 1.

Proof  By Theorem 4.2, for the initial function in (3.3), if there exists T ≤ 1 such that

then the solution blows up, satisfying limt→T− x(t) = ∞ . Similarly, if there exists 
T ≤ 1 such that

then the solution blows up, satisfying limt→T− x(t) = −∞ . Since conditions (5.4) and 
(5.5) are reduced to (5.3), we obtain the conclusion. 	�  ◻

The solution can be explicitly computed, as long as the solution exists, as

Let �(0) ≠ 0 . If the solution exists for t ∈ [0, 1] then one has either x(t) > 0 or 
x(t) < 0 for t ∈ [0, 1] , i.e., the solution does not oscillate about 0. Theorem  5.1 
implies that if the initial function does not change the sign then the solution does not 
blow up. Therefore, if the solution exists for t ∈ [0, 1] , the solution exists for t ≥ 0 
and the solution does not blow up in a finite time. Consequently, the blow up time T 
should satisfy T ≤ 1 . One can also see that if the solution does not blow up in a finite 
time, then the solution tends to 0 as t → ∞.

(5.2)x�(t) = −x3(t).

(5.3)1 + �(0)∫
T

0

�(s − 1)ds = 0,

(5.4)∫
∞

𝜑(0)

dx

x2
= ∫

T

0

−𝜑(s − 1)ds, 𝜑(0) > 0,

(5.5)∫
−∞

𝜑(0)

dx

x2
= ∫

T

0

−𝜑(s − 1)ds, 𝜑(0) < 0,

x(t) =
�(0)

1 + �(0) ∫ t

0
�(s − 1)ds

.
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6 � Discussion

In this note, we analyze the blow-up of a general scalar differential equation with 
a discrete delay (discrete DDE). Except for some case studies, no systematic stud-
ies seem to be available for the blow-up phenomena in DDEs in the literature. Our 
attention is to understand if the delay induces the blow-up of the solutions and, if so, 
to clarify the mechanisms behind the phenomena.

Our aim in this paper is to formulate the conditions for the existence of blow-up 
solutions of DDE (3.2). The study is motivated by the paper [7]. The authors in 
[7] are interested in the relation of blow-up of DDEs and of corresponding ODEs. 
Under weaker conditions than in [7], we establish a link between DDE (3.2) and 
ODE with a parameter (3.5) with respect to the existence of blow-up solutions. 
Theorem 3.1 offers a sufficient condition for the existence of blow-up solutions to 
DDE (3.2). From Theorem 3.1, one can consider a nonlinear function F(x, y) such 
that delay induces the blow-up solutions to DDE (3.2), finding nonlinear functions 
F(x, y) such that ODE x�(t) = F(x, x) does not have any blow-up solutions, but ODE 
(3.5) has blow-up solutions for some a.

The example presented below Theorem  3.1 shows that ODE (3.5), which 
“freezes” the delay term, does not capture the blow-up solutions of a DDE. It is sug-
gested, in general, finding initial functions for DDE (3.2) that blow up solutions may 
not be a trivial problem, but see [7] for several criteria. We also clarify, in Theo-
rem 3.2, for a class of DDEs, where the nonlinear function F satisfies the condition 
(H), that the existence of blow-up solutions of DDE (3.2) implies the existence of 
blow-up solutions of ODE (3.5) for some a. Consequently, Theorem 3.2 shows that 
special cases (1.1) and (1.2) have clear connections to the corresponding ODEs (4.1) 
and (4.2), respectively. This aspect is analyzed in detail in Sect. 4.

In our analysis, discrete delay is crucial. The delay part can be considered as a 
nonautonomous perturbation. Thus the results are closely related to the studies of 
continuation of solutions to perturbed ODEs [4, 12]. The situation seems to change 
if we consider distributed delay differential equations.

It is conjectured that the behavior of the blow-up solutions of DDE (3.2) could be 
complicated, compared to the scalar autonomous ODE such as (2.1). However, this 
aspect is not analyzed in detail.
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