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Abstract
Discrete Fenchel duality is one of the central issues in discrete convex analysis. 
The Fenchel-type min–max theorem for a pair of integer-valued M ♮-convex func-
tions generalizes the min–max formulas for polymatroid intersection and valuated 
matroid intersection. In this paper we establish a Fenchel-type min–max formula for 
a pair of integer-valued integrally convex and separable convex functions. Integrally 
convex functions constitute a fundamental function class in discrete convex analy-
sis, including both M ♮-convex functions and L ♮-convex functions, whereas separable 
convex functions are characterized as those functions which are both M ♮-convex and 
L ♮-convex. The theorem is proved by revealing a kind of box integrality of subgra-
dients of an integer-valued integrally convex function. The proof is based on the 
Fourier–Motzkin elimination.
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1  Introduction

Discrete Fenchel duality is one of the central issues in discrete convex analysis [7, 
16, 17, 19, 20]. In this paper we establish a Fenchel-type min–max formula for a 
pair of integer-valued integrally convex and separable convex functions.

Integrally convex functions, due to Favati–Tardella [3], constitute a fundamental 
function class in discrete convex analysis, and almost all kinds of discrete convex 
functions are known to be integrally convex. Indeed, separable convex, L-convex, L ♮
-convex, M-convex, M ♮-convex, L ♮

2
-convex, and M ♮

2
-convex functions are known to 

be integrally convex [17]. Multimodular functions [10] are also integrally convex, as 
pointed out in [18]. Moreover, BS-convex and UJ-convex functions [8] are integrally 
convex. Discrete midpoint convex functions [15] and directed discrete midpoint con-
vex functions [29] are also integrally convex.

The concept of integral convexity is used in formulating discrete fixed point theo-
rems and found applications in economics and game theory [12, 20, 30]. A prox-
imity theorem for integrally convex functions is established in [14] together with 
a proximity-scaling algorithm for minimization. Fundamental operations for inte-
grally convex functions such as projection and convolution are investigated in [13, 
21, 22]. Integer-valued integrally convex functions enjoy integral biconjugacy [24]. 
Section 2 of this paper describes the definition and technical properties of integrally 
convex functions that we need in this paper.

The discrete Fenchel-type min–max theorem is formulated in terms of conjugate 
functions. For an integer-valued function f ∶ ℤ

n
→ ℤ ∪ {+∞} with dom f ≠ � , we 

define f ∙ ∶ ℤ
n
→ ℤ ∪ {+∞} by

called the integral conjugate of f. Here, ⟨p, x⟩ = ∑n

i=1
pixi is the inner prod-

uct of p = (p1, p2,… , pn) and x = (x1, x2,… , xn) , and for a function 
h ∶ ℤ

n
→ ℝ ∪ {−∞,+∞} in general, dom h = {x ∈ ℤ

n ∣ −∞ < h(x) < +∞} 
is called the effective domain of h. Note that f ∙(p) may be +∞ and hence using 
“ sup ” (supremum) in (1.1) would be formally more precise but we choose to use 
“ max ” (maximum). The concave version of the conjugate function can also be 
defined for an integer-valued function g ∶ ℤ

n
→ ℤ ∪ {−∞} . Namely, we define 

g◦ ∶ ℤ
n
→ ℤ ∪ {−∞} by

and call this function g◦ the integral concave conjugate of g, while f ∙ is called the 
integral convex conjugate of f to distinguish between convex and concave versions. 
We have g◦(p) = −f ∙(−p) if g(x) = −f (x).

The discrete Fenchel-type duality theorem asserts the min–max formula

for a pair of functions f ∶ ℤ
n
→ ℤ ∪ {+∞} and g ∶ ℤ

n
→ ℤ ∪ {−∞} . It is supposed 

that f and g are equipped with certain discrete convexity and concavity and some 
additional regularity conditions are assumed. Such a theorem can be traced back 

(1.1)f ∙(p) = max{⟨p, x⟩ − f (x) ∣ x ∈ ℤ
n} (p ∈ ℤ

n),

(1.2)g◦(p) = min{⟨p, x⟩ − g(x) ∣ x ∈ ℤ
n} (p ∈ ℤ

n),

(1.3)min{f (x) − g(x) ∣ x ∈ ℤ
n} = max{g◦(p) − f ∙(p) ∣ p ∈ ℤ

n}
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to the Fenchel-type duality theorem for submodular set functions by Fujishige [6] 
(see [7, Theorem 6.3]). The Fenchel-type min–max theorem for a pair of M ♮-convex 
functions by Murota [16] (see [17, Theorem 8.21]) generalizes the min–max formu-
las for polymatroid intersection, valuated matroid intersection, and the Fenchel-type 
duality theorem for submodular set functions (see [17, Section  8.23]). As is well 
known, the existence of such min–max formula guarantees the existence of a certifi-
cate of optimality for the problem of minimizing f (x) − g(x) over x ∈ ℤ

n.
The main result of this paper (Theorem 1.1 below) is the Fenchel-type min–max 

formula (1.3) where f is an integer-valued integrally convex function and g is an 
integer-valued separable concave function. A function � ∶ ℤ

n
→ ℤ ∪ {−∞} in 

x = (x1, x2,… , xn) ∈ ℤ
n is called separable concave if it can be represented as

with univariate discrete concave functions �i ∶ ℤ → ℤ ∪ {−∞} , which means, by 
definition, that dom�i is an interval of integers and

The integral concave conjugate of � is given by

where

Theorem  1.1  (Main result) For an integer-valued integrally convex function 
f ∶ ℤ

n
→ ℤ ∪ {+∞} with dom f ≠ � and an integer-valued separable concave func-

tion � ∶ ℤ
n
→ ℤ ∪ {−∞} with dom� ≠ � , we have

where the minimum or the maximum is assumed to be finite.

For example, suppose that f(x) represents a certain loss function in an integer 
vector x and we want to minimize the loss f(x) with an additional term for regu-
larization such as the �1-norm ‖x‖1 and the squared �2-norm ‖x‖2

2
 . Then our prob-

lem is to minimize f (x) + C‖x‖1 or f (x) + C‖x‖2
2
 with C > 0 , which is in the form 

of minimizing f (x) − � (x) over x ∈ ℤ
n with a separable concave function � (x) . 

If the loss function f(x) can be chosen to be an integer-valued integrally convex 
function, which does not seem to be so restrictive, we may apply Theorem 1.1. 
Note that Theorem 1.1 implies the existence of a certificate of optimality for the 
problem of minimizing f (x) − � (x) over x ∈ ℤ

n ; see Sect. 3.1 for detail.
We prove Theorem 1.1 by revealing a kind of box integrality of subgradients 

of an integer-valued integrally convex function. Let f ∶ ℤ
n
→ ℤ ∪ {+∞} be an 

integer-valued function. The subdifferential of f at x ∈ dom f  is defined as

(1.4)� (x) = �1(x1) + �2(x2) +⋯ + �n(xn)

(1.5)�i(k − 1) + �i(k + 1) ≤ 2�i(k) (k ∈ ℤ).

(1.6)� ◦(p) = �◦

1
(p1) + �◦

2
(p2) +⋯ + �◦

n
(pn)

(1.7)�◦

i
(𝓁) = min{k𝓁 − �i(k) ∣ k ∈ ℤ} (𝓁 ∈ ℤ).

(1.8)min{f (x) − � (x) ∣ x ∈ ℤ
n} = max{� ◦(p) − f ∙(p) ∣ p ∈ ℤ

n},
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and an element p of �f (x) is called a subgradient of f at x. An integer vector p 
belonging to �f (x) is called an integral subgradient, and the condition

is sometimes referred to as the integral subdifferentiability of f at x. It has been 
shown by Murota–Tamura [24] that (1.10) holds for any integer-valued integrally 
convex function f and x ∈ dom f .

Our proof of Theorem 1.1 is based on a strengthening of integral subdifferentiability 
(1.10) with an additional box condition. For two integer vectors � ∈ (ℤ ∪ {−∞})n and 
� ∈ (ℤ ∪ {+∞})n with � ≤ � , we define notation

which represents the set of real vectors between � and � . An integral box will mean 
a set B of real vectors represented as

for some � ∈ (ℤ ∪ {−∞})n and � ∈ (ℤ ∪ {+∞})n with � ≤ �.
Our main technical result is the following, with which our main result (Theorem 1.1) 

is proved in Sect. 3.3.3.

Theorem 1.2  (Main technical result) Let f ∶ ℤ
n
→ ℤ ∪ {+∞} be an integer-valued 

integrally convex function, x ∈ dom f  , and B be an integral box. If �f (x) ∩ B is non-
empty, then �f (x) ∩ B is a polyhedron containing an integer vector. If, in addition, 
�f (x) ∩ B is bounded, then �f (x) ∩ B has an integral vertex.

The content of the above theorem may be expressed succinctly as:

This paper is organized as follows. Section 2 is a review of relevant results on inte-
grally convex functions. Section 3 presents the Fenchel-type min–max formula for 
a pair of integer-valued integrally convex and separable convex functions (Theo-
rem 1.1) with its implications and significances in discrete convex analysis as well 
as the derivation of the theorem from Theorem 1.2. Section 4 establishes the main 
technical result (Theorem 1.2) by means of the Fourier–Motzkin elimination.

2 � Integrally convex functions

In this section we summarize fundamental facts about integrally convex functions.
For x ∈ ℝ

n the integral neighborhood of x is defined as

(1.9)�f (x) = {p ∈ ℝ
n ∣ f (y) − f (x) ≥ ⟨p, y − x⟩ for all y ∈ ℤ

n}

(1.10)�f (x) ∩ ℤ
n ≠ �

[�, �]
ℝ
= {p ∈ ℝ

n ∣ � ≤ p ≤ �},

B = [�, �]
ℝ
= {p ∈ ℝ

n ∣ � ≤ p ≤ �}

(1.11)�f (x) ∩ B ≠ � ⟹ �f (x) ∩ B ∩ ℤ
n ≠ �.

(2.1)N(x) = {z ∈ ℤ
n ∣ |xi − zi| < 1 (i = 1, 2,… , n)}.
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It is noted that strict inequality “ < ” is used in this definition and hence N(x) admits 
an alternative expression

where, for t ∈ ℝ in general, ⌊t⌋ denotes the largest integer not larger than t (rounding-
down to the nearest integer) and ⌈t⌉ is the smallest integer not smaller than t (round-
ing-up to the nearest integer). For a set S ⊆ ℤ

n and x ∈ ℝ
n we call the convex hull 

of S ∩ N(x) the local convex hull of S at x. A nonempty set S ⊆ ℤ
n is said to be inte-

grally convex if the union of the local convex hulls S ∩ N(x) over x ∈ ℝ
n is convex 

[17]. This is equivalent to saying that, for any x ∈ ℝ
n , x ∈ S implies x ∈ S ∩ N(x) . 

An integrally convex set S is “hole-free” in the sense that S = S ∩ ℤ
n.

It is recognized only recently [22] that the concept of integrally convex sets is 
closely related (or essentially equivalent) to the concept of box-integer polyhedra. 
Recall from [28, Section 5.15] that a polyhedron P ⊆ ℝ

n is called box-integer if 
P ∩ {x ∈ ℝ

n ∣ a ≤ x ≤ b} is an integer polyhedron for each choice of integer vec-
tors a and b. It is easy to see that if a set S ⊆ ℤ

n is integrally convex, then its 
convex hull S is a box-integer polyhedron, and conversely, if P is a box-integer 
polyhedron, then S = P ∩ ℤ

n is an integrally convex set.
For a function f ∶ ℤ

n
→ ℝ ∪ {+∞} with dom f ≠ � , the convex envelope of f 

means the (point-wise) largest convex function g ∶ ℝ
n
→ ℝ ∪ {+∞} that satisfies 

g(x) ≤ f (x) for all x ∈ ℤ
n . The convex envelope of f is denoted by f  . If f (x) = f (x) 

for all x ∈ ℤ
n , we call f convex extensible and refer to f  also as the convex exten-

sion of f.
Let f ∶ ℤ

n
→ ℝ ∪ {+∞} be a function with dom f ≠ � . The local convex exten-

sion f̃ ∶ ℝ
n
→ ℝ ∪ {+∞} of f is defined as the union of all convex envelopes of f 

on N(x). That is,

where �(x) denotes the set of coefficients for convex combinations indexed by N(x):

If f̃  is convex on ℝn , then f is said to be integrally convex [3]. In this case we have 
f̃ (x) = f (x) for all x ∈ ℝ

n . The effective domain of an integrally convex function is 
an integrally convex set. A set S ⊆ ℤ

n is integrally convex if and only if its indicator 
function �S ∶ ℤ

n
→ {0,+∞} defined by

is integrally convex.

(2.2)N(x) = {z ∈ ℤ
n ∣ ⌊xi⌋ ≤ zi ≤ ⌈xi⌉ (i = 1, 2,… , n)},

(2.3)f̃ (x) = min

{ ∑
y∈N(x)

𝜆yf (y) ∣
∑

y∈N(x)

𝜆yy = x, (𝜆y) ∈ 𝛬(x)

}
(x ∈ ℝ

n),

(2.4)�(x) =

{
(�y ∣ y ∈ N(x)) ∣

∑
y∈N(x)

�y = 1, �y ≥ 0 for all y ∈ N(x)

}
.

�S(x) =

{
0 (x ∈ S),

+∞ (x ∉ S)
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Integral convexity of a function can be characterized as follows. The condition 
(c) below is a local condition under the assumption that the effective domain is an 
integrally convex set.

Theorem 2.1  ([3, 14, 15]) Let f ∶ ℤ
n
→ ℝ ∪ {+∞} be a function with dom f ≠ � . 

Then the following properties are equivalent, where f̃  is the local convex extension 
of f defined by (2.3).

(a) f is integrally convex.

(b) For every x, y ∈ ℤ
n with ‖x − y‖∞ ≥ 2 we have

(c) The effective domain dom f  is an integrally convex set, and (2.5) holds for 
every x, y ∈ ℤ

n with ‖x − y‖∞ = 2.

Remark 2.1  The concept of integrally convex functions is introduced in [3] for func-
tions defined on integer intervals (discrete rectangles). The extension to functions 
with general integrally convex effective domains is straightforward, which is found 
in [17]. Theorem 2.1 originates in [3, Proposition 3.3], which shows the equivalence 
of (a) and (c) when the effective domain is an integer interval (box), while the equiv-
alence of (a) and (c) for a general integral convex effective domain is proved in [14, 
Appendix A]. The equivalence of (a) and (b) in Theorem 2.1 is shown in [15, Theo-
rem A.1]. 	�  ◻

Example 2.1  A function � ∶ ℤ
n
→ ℝ ∪ {+∞} in x = (x1, x2,… , xn) ∈ ℤ

n is called 
separable convex if it can be represented as

with univariate discrete convex functions �i ∶ ℤ → ℝ ∪ {+∞} , which means, by 
definition, that dom�i is an interval of integers and

A separable convex function is integrally convex. 	�  ◻

Example 2.2  A symmetric matrix Q = (qij) that satisfies the condition

is called a diagonally dominant matrix (with nonnegative diagonals). If Q is diago-
nally dominant in the sense of (2.8), then f (x) = x⊤Qx is integrally convex [3, Prop-
osition 4.5]. The converse is also true if n ≤ 2 [3, Remark 4.3]. 	�  ◻

(2.5)f̃

(
x + y

2

)
≤

1

2
(f (x) + f (y)).

(2.6)�(x) = �1(x1) + �2(x2) +⋯ + �n(xn)

(2.7)�i(k − 1) + �i(k + 1) ≥ 2�i(k) (k ∈ ℤ).

(2.8)qii ≥
∑
j≠i

|qij| (i = 1,… , n)



605

1 3

Fenchel duality for integrally convex and separable convex functions

Example 2.3  A function f ∶ ℤ
n
→ ℝ ∪ {+∞} is called 2-separable convex if it can 

be expressed as the sum of univariate convex, diff-convex, and sum-convex func-
tions, i.e., if

where �i,�ij,�ij ∶ ℤ → ℝ ∪ {+∞} (i, j = 1,… , n; i ≠ j) are univariate convex func-
tions. A 2-separable convex function is known [29] to be integrally convex. A quad-
ratic function f (x) = x⊤Qx with Q satisfying (2.8) is an example of a 2-separable 
convex function. 	� ◻

A minimizer of an integrally convex function can be characterized by a local min-
imality condition as follows.

Theorem  2.2  ([3, Proposition 3.1]; see also [17, Theorem  3.21]) Let 
f ∶ ℤ

n
→ ℝ ∪ {+∞} be an integrally convex function and x∗ ∈ dom f  . Then x∗ is a 

minimizer of f if and only if f (x∗) ≤ f (x∗ + d) for all d ∈ {−1, 0,+1}n.

We need the following fact for the proof of Theorem 1.1. Recall that the convex 
envelope of a function f is denoted by f  , which coincides with f̃  in (2.3) if f is inte-
grally convex. It is noted that the statement cannot be extended to a pair of general 
integrally convex functions.

Proposition 2.1  (1) Let f ∶ ℤ
n
→ ℝ ∪ {+∞} be an integrally convex function, and 

� ∶ ℤ
n
→ ℝ ∪ {+∞} a separable convex function. Then f +� = f +�.

(2) Let S ⊆ ℤ
n be an integrally convex set and D = {x ∈ ℤ

n ∣ � ≤ x ≤ �} for 
some � ∈ (ℤ ∪ {−∞})n and � ∈ (ℤ ∪ {+∞})n with � ≤ � . Then S ∩ D = S ∩ D.

Proof  (1) Fix x ∈ ℝ
n . Since f is integrally convex, we have 

f (x) =
∑
{�yf (y) ∣ y ∈ N(x)} for some � ∈ �(x) (cf., (2.4) for notation). By sepa-

rable convexity, we have �(x) =
∑

y∈N(x) �y�(y) with the same coefficient � . This 
implies

while the reverse inequality f (x) +�(x) ≤ (f +�)(x) is obvious from the definition 
of convex envelopes.

(2) This follows from (1) with f = �S and � = �D . Note that f +� = �S∩D , 
f = �

S
 , � = �

D
 , etc. 	�  ◻

The integral conjugate f ∙ of a function f ∶ ℤ
n
→ ℤ ∪ {+∞} is also an integer-

valued function defined on ℤn . So we can apply the transformation (1.1) to f ∙ to 
obtain f ∙∙ = (f ∙)∙ , which is called the integral biconjugate of f. Although the integral 

(2.9)f (x1,… , xn) =

n∑
i=1

�i(xi) +
∑
i≠j

�ij(xi − xj) +
∑
i≠j

�ij(xi + xj),

f (x) +�(x) =
∑

y∈N(x)

�y(f (y) +�(y)) ≥ (f +�)(x),
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conjugate f ∙ of an integer-valued integrally convex function f is not necessarily inte-
grally convex ([23, Example 4.15], [24, Remark 2.3]), it is known [24] that the inte-
gral biconjugate f ∙∙ coincides with f itself.

Theorem  2.3  ([24]) For every integer-valued integrally convex function 
f ∶ ℤ

n
→ ℤ ∪ {+∞} with dom f ≠ � , we have f ∙∙(x) = f (x) for all x ∈ ℤ

n.

The reader is referred to [13, 14, 24] for recent developments in the theory of 
integral convexity, and to [17, Section 3.4] for basic facts about integral convexity.

3 � Discrete Fenchel duality theorem

3.1 � Main theorem and its implications

In this section we address the main result of this paper, which has already been pre-
sented in Introduction as Theorem 1.1, where the proof will be given in Sect. 3.3. 
Recall the notations

as well as the expressions of � in (1.4) and � ◦ in (1.6).

Theorem 1.1  (Main result, again) For an integer-valued integrally convex function 
f ∶ ℤ

n
→ ℤ ∪ {+∞} with dom f ≠ � and an integer-valued separable concave func-

tion � ∶ ℤ
n
→ ℤ ∪ {−∞} with dom� ≠ � , we have

where the minimum or the maximum is assumed to be finite.

Remark 3.1  The assumption on the left-hand side of (3.3) being finite means that 
dom f ∩ dom� ≠ � and the set {f (x) − � (x) ∣ x ∈ ℤ

n} of function values is bounded 
from below. Since the function f (x) − � (x) is integer-valued, this assumption imme-
diately implies that there exists x that attains the minimum. It will be shown in 
Lemma 3.2 in Sect.  3.3.4 that, if the maximum on the right-hand side of (3.3) is 
finite, then the minimum on the left-hand side is also finite. 	�  ◻

Remark 3.2  When � is a linear function, say, � (x) = ⟨c, x⟩ with c ∈ ℤ
n , the formula 

(3.3) reduces to a triviality. Indeed, in this case we have � ◦(p) = 0 for p = c and 
� ◦(p) = −∞ for p ≠ c , and hence

(3.1)f ∙(p) = max{⟨p, x⟩ − f (x) ∣ x ∈ ℤ
n} (p ∈ ℤ

n),

(3.2)� ◦(p) = min{⟨p, x⟩ − � (x) ∣ x ∈ ℤ
n} (p ∈ ℤ

n),

(3.3)min{f (x) − � (x) ∣ x ∈ ℤ
n} = max{� ◦(p) − f ∙(p) ∣ p ∈ ℤ

n},

LHS of (3.3) = min{f (x) − ⟨c, x⟩ ∣ x ∈ ℤ
n} = −f ∙(c),

RHS of (3.3) = max{0 − f ∙(p) ∣ p = c} = −f ∙(c).
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The formula (3.3) is also a triviality when dom f ⊆ {0, 1}n . In this case, we may 
assume � (x) = ⟨c, x⟩ with dom� = ℤ

n , and the above argument applies. In this con-
nection it is recalled that every function f ∶ ℤ

n
→ ℤ ∪ {+∞} with dom f ⊆ {0, 1}n 

is integrally convex. 	�  ◻

Theorem  1.1 implies a min–max theorem for separable convex minimiza-
tion on a box-integer polyhedron (see Sect. 2 for the definition of a box-integer 
polyhedron).

Theorem 3.1  For a nonempty box-integer polyhedron P (⊆ ℝ
n) and an integer-val-

ued separable convex function � ∶ ℤ
n
→ ℤ ∪ {+∞} with dom� ≠ � , we have

where �(p) = min{⟨p, x⟩ ∣ x ∈ P} and the minimum or the maximum in (3.4) is 
assumed to be finite.

Proof  Denote the indicator function of P ∩ ℤ
n by � , which is an integer-valued 

integrally convex function because P is a box-integer polyhedron. With the use of 
� (x) = −�(x) we have

On the other hand, on noting

we obtain

Therefore, (3.4) is equivalent to

which is a special case of (3.3) in Theorem 1.1. 	�  ◻

Remark 3.3  Theorem  3.1 generalizes a recent result of Frank–Murota [5, Theo-
rem 3.4], which asserts the min–max formula (3.4) when P is a box-TDI polyhedron 
and the minimum is finite. Note that a box-TDI polyhedron is a special case of a 
box-integer polyhedron. See, e.g., [28] for the definition of a box-TDI polyhedron. 	
� ◻

Theorem 1.1 also implies a min–max theorem of Cunningham–Green-Krótki 
[2] obtained in a study of b-matching degree-sequence polyhedra and the box 

(3.4)min{�(x) ∣ x ∈ P ∩ ℤ
n} = max{�(p) −�∙(p) ∣ p ∈ ℤ

n},

LHS of (3.4) = min{�(x) ∣ x ∈ P ∩ ℤ
n} = min{�(x) − � (x) ∣ x ∈ ℤ

n}.

�(p) = min{⟨p, x⟩ ∣ x ∈ P} = −max{⟨−p, x⟩ ∣ x ∈ P ∩ ℤ
n} = −�∙(−p),

�∙(p) = max{⟨p, x⟩ −�(x)} = −min{⟨−p, x⟩ − � (x)} = −� ◦(−p),

RHS of (3.4) = max{�(p) −�∙(p) ∣ p ∈ ℤ
n}

= max{� ◦(−p) − �∙(−p) ∣ p ∈ ℤ
n}

= max{� ◦(p) − �∙(p) ∣ p ∈ ℤ
n}.

min{�(x) − � (x) ∣ x ∈ ℤ
n} = max{� ◦(p) − �∙(p) ∣ p ∈ ℤ

n},
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convolution theorem of bisubmodular functions by Fujishige–Patkar [9]. See [25, 
Section 3.4] for the detail.

Another Fenchel-type min–max formula can be obtained by combining our main 
result (Theorem  1.1) with the biconjugacy theorem (Theorem  2.3). Let G denote 
the set of integral conjugates of integer-valued integrally convex functions. By the 
biconjugacy theorem, we can alternatively say that G is the set of integer-valued 
functions g whose integral conjugate is an integer-valued integrally convex function. 
That is,

Theorem 3.2  For a function g ∶ ℤ
n
→ ℤ ∪ {+∞} in G with dom g ≠ � and an inte-

ger-valued separable concave function � ∶ ℤ
n
→ ℤ ∪ {−∞} with dom� ≠ � , we 

have

where the minimum or the maximum is assumed to be finite.

Proof  First note that the integral concave conjugate � ◦ of � is also an integer-valued 
separable concave function. By replacing (f ,� ) in (3.3) with (g∙,� ◦) we obtain

With the biconjugacy � ◦◦ = � and g∙∙ = g , where the former is well known and the 
latter is due to Theorem 2.3, we can rewrite this formula to

which is equivalent to (3.6). 	�  ◻

It is often possible [4, 5] to obtain an explicit form of the integral conjugate function 
of an integer-valued separable convex (or concave) function. For example, we have:

3.2 � Fenchel duality for other function classes

The discrete Fenchel-type duality theorem, in its general form, asserts the min–max 
formula

(3.5)
G = {g ∣ g = f ∙ for some integer-valued integrally convex f }

= {g ∣ g∙ is an integer-valued integrally convex function}.

(3.6)min{g(x) − � (x) ∣ x ∈ ℤ
n} = max{� ◦(p) − g∙(p) ∣ p ∈ ℤ

n},

min{g∙(x) − � ◦(x) ∣ x ∈ ℤ
n} = max{� ◦◦(p) − g∙∙(p) ∣ p ∈ ℤ

n}.

min{g∙(x) − � ◦(x) ∣ x ∈ ℤ
n} = max{� (p) − g(p) ∣ p ∈ ℤ

n},

(3.7)If �(x) = C‖x‖1, then �∙(p) =

�
0 (‖p‖∞ ≤ C),

+∞ ( otherwise),

(3.8)If �(x) = C‖x‖2
2
, then �∙(p) =

n�
i=1

�
pi + C

2C

� �
pi − C

�
pi + C

2C

��
.
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under the assumption that f and g are equipped with certain specified discrete con-
vexity and concavity. In this section we summarize our present knowledge by com-
piling the results of this paper and the known facts in discrete convex analysis [17].

To this end we introduce notations for classes of functions f ∶ ℤ
n
→ ℤ ∪ {+∞}:

We also use notation F∙ for the set of integral conjugates of functions in F  ; similarly 
for G∙ , L∙ , etc. Then we have

where the relations L∙ = M and M∙ = L are known as the discrete conjugacy theo-
rem [17, Theorem 8.12]. We have the following inclusion relations:

where L ∩M = S is stated in [17, Theorem 8.49].
By combining Theorems 1.1 and 3.2 and the known facts [17, Theorem 8.21] we 

obtain the following table to summarize our present knowledge about the min–max 
formula (3.9). For example, “Th.1.1” in the upper-right corner of the table indicates 
that (3.9) for (f, g) with f ∈ F  and −g ∈ S is established in Theorem 1.1 of this 
paper. An entry “Cor.” at (f, g) means that (3.9) holds for this (f, g), which is a corol-
lary of a result indicated in the same row or column (because of the inclusion rela-
tions (3.10)). An entry “CntEx” at (f, g) means that there is a counterexample that 
denies (3.9) for this (f, g).

The following two examples show that the min–max formula (3.9) is not neces-
sarily true for M ♮-convex f and L ♮-concave g. By the inclusion relations in (3.10), 
they also serve as counterexamples for all entries “CntEx” in (3.11). In the follow-
ing, f  denotes the convex envelope of f and g the concave envelope of g; we have 
f , g ∶ ℝ

2
→ ℝ (finite-valued).

(3.9)min{f (x) − g(x) ∣ x ∈ ℤ
n} = max{g◦(p) − f ∙(p) ∣ p ∈ ℤ

n}

F = {f ∣ f is an integer-valued integrally convex function},

G = {f ∣ f is the integral conjugate of an integer-valued

integrally convex function},

L = {f ∣ f is an integer-valued L♮-convex function},

M = {f ∣ f is an integer-valued M♮-convex function},

S = {f ∣ f is an integer-valued separable convex function}.

F
∙ = G, G

∙ = F, L
∙ = M, M

∙ = L, S
∙ = S,

(3.10)F ∩ G ⊇ L, F ∩ G ⊇ M, L ∩M = S,

(3.11)

f � − g F G L M S

F CntEx CntEx CntEx CntEx Th.1.1

G CntEx CntEx CntEx CntEx Th.3.2

L CntEx CntEx [17, Th.8.21] CntEx Cor.

M CntEx CntEx CntEx [17, Th.8.21] Cor.

S Th.1.1 Th.3.2 Cor. Cor. Cor.
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Example 3.1  ([19, Example 5.6]) Let f , g ∶ ℤ
2
→ ℤ be defined as

We have

(cf., (3.18), (3.19)). The min–max identity fails because of the integrality gap in the 
minimization problem. Finally we add that the function

is an integrally convex function. 	�  ◻

Example 3.2  ([19, Example 5.7]) Let f , g ∶ ℤ
2
→ ℤ be defined as

We have

(cf., (3.18), (3.19)). The min–max identity fails because of the integral-
ity gap in the maximization problem. Finally we add that the function 
h(x1, x2) = max(0, x1 + x2) −min(x1, x2) = max(|x1|, |x2|) is integrally convex. 	�  ◻

3.3 � Proof of Theorem 1.1

The main theorem (Theorem  1.1) is proved in this section. The proof consists 
of four steps. In Steps 1 to 3, we prove the min–max formula (3.3) under the 
assumption that the minimum in (3.3) is finite, while Step 4 deals with the other 
case where the maximum in (3.3) is assumed to be finite.

3.3.1 � Step 1: weak duality

We start with the generic form of the Fenchel duality:

For any functions f ∶ ℤ
n
→ ℤ ∪ {+∞} and g ∶ ℤ

n
→ ℤ ∪ {−∞} and for any inte-

ger vectors x and p, we have the following obvious relations:

f (x1, x2) = |x1 + x2 − 1|, g(x1, x2) = 1 − |x1 − x2|.

(3.12)min{f − g} > min{f − g} = max{g
◦
− f

∙
} = max{g◦ − f ∙}

(0) (−1) (−1) (−1)

h(x1, x2) = f (x1, x2) − g(x1, x2) = |x1 + x2 − 1| − (1 − |x1 − x2|)

f (x1, x2) = max(0, x1 + x2), g(x1, x2) = min(x1, x2).

(3.13)min{f − g} = min{f − g} = max{g
◦
− f

∙
} > max{g◦ − f ∙}

(0) (0) (0) (−∞)

(3.14)min{f (x) − g(x) ∣ x ∈ ℤ
n} = max{g◦(p) − f ∙(p) ∣ p ∈ ℤ

n}.
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This implies “ min ≥ max ” in (3.14), that is,

This is called the weak duality, whereas (3.14) is the strong duality.
Since the functions f and g are integer-valued, the minimum on the left-hand side 

of (3.14) is either a (finite) integer or −∞ when dom f ∩ dom g ≠ � . Therefore, if the 
minimum is finite, then there exists a vector x∗ ∈ ℤ

n that attains the minimum.
To prove strong duality (3.14) from weak duality (3.16), it suffices to show the 

existence of an integer vector p∗ for which the inequality in (3.15) is an equal-
ity for x = x∗ . Thus the proof of (3.14) is reduced to showing the existence of 
p∗ ∈ ℤ

n satisfying

3.3.2 � Step 2: convex extension

We continue to work with the generic form (3.14) and consider the continuous 
relaxation of the dual (maximization) problem, in which the variable p may be a 
real vector.

To this end, we assume that f is extensible to a convex func-
tion f ∶ ℝ

n
→ ℝ ∪ {+∞} and g is extensible to a concave function 

g ∶ ℝ
n
→ ℝ ∪ {−∞} . For technical reasons, it is further assumed that f  and −g are 

locally polyhedral convex functions in the sense that they are polyhedral convex 
functions when restricted to any finite  integral box. (This technical condition is 
met when f is an integrally convex function and g is a separable concave function.)

The definitions of conjugate functions are adapted for real vectors p as

which are compatible with (3.1) and (3.2) for integer vectors p. Then we have:

(3.15)

f (x) − g(x) = (⟨p, x⟩ − g(x)) − (⟨p, x⟩ − f (x))

≥ min
y∈ℤn

(⟨p, y⟩ − g(y)) −max
y∈ℤn

(⟨p, y⟩ − f (y))

= g◦(p) − f ∙(p).

(3.16)min{f (x) − g(x) ∣ x ∈ ℤ
n} ≥ max{g◦(p) − f ∙(p) ∣ p ∈ ℤ

n}.

(3.17)x∗ ∈ argmax
y∈ℤn

(⟨p∗, y⟩ − f (y)) ∩ arg min
y∈ℤn

(⟨p∗, y⟩ − g(y)).

f ∙(p) = max{⟨p, x⟩ − f (x) ∣ x ∈ ℤ
n} (p ∈ ℝ

n),

g◦(p) = min{⟨p, x⟩ − g(x) ∣ x ∈ ℤ
n} (p ∈ ℝ

n),

(3.18)
min{f (x) − g(x) ∣ x ∈ ℤ

n} ≥ min{f (x) − g(x) ∣ x ∈ ℝ
n}

||

(3.19)max{g◦(p) − f ∙(p) ∣ p ∈ ℤ
n} ≤ max{g◦(p) − f ∙(p) ∣ p ∈ ℝ

n},
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where the vertical equality “ || ” connecting the right-hand sides of (3.18) and (3.19) 
is the Fenchel duality in convex analysis [1, 11, 26], which holds if f  and −g are 
locally polyhedral convex functions and the minimum is finite.

In general, we may have strict inequalities in (3.18) and (3.19), as is demonstrated 
by (3.12) in Example 3.1 and (3.13) in Example 3.2, respectively. The following lemma 
states that an equality does hold in (3.18) in the setting of Theorem 1.1.

Lemma 3.1  For an integer-valued integrally convex function f ∶ ℤ
n
→ ℤ ∪ {+∞} 

with dom f ≠ � and an integer-valued separable concave function 
� ∶ ℤ

n
→ ℤ ∪ {−∞} with dom� ≠ � , we have

and hence

where the minimum on the left-hand side is assumed to be finite.

Proof  Since f is integrally convex and � is separable concave, the difference f − � 
is convex extensible and its convex extension is equal to f − �  by Proposition 2.1, 
that is, f − � = f − �  . Therefore,

which shows (3.20). Then (3.21) follows from the equality “ || ” between the right-
hand sides of (3.18) and (3.19). 	�  ◻

Let x∗ ∈ ℤ
n be an optimal solution to the primal problem (i.e., a minimizer on the 

left-hand side of (3.21)). Let p̂ ∈ ℝ
n be an optimal solution to the dual problem (i.e., a 

maximizer on the right-hand side of (3.21)), which is guaranteed to exist by the Fenchel 
duality in convex analysis (for continuous variables). Then we have

As is well known, this condition can be expressed in terms of subdifferentials as fol-
lows. First we have

where the definition of �f (x) is given in (1.9). On setting �(x) ∶= −� (x) we simi-
larly have

(3.20)min{f (x) − � (x) ∣ x ∈ ℤ
n} = min{f (x) − � (x) ∣ x ∈ ℝ

n},

(3.21)min{f (x) − � (x) ∣ x ∈ ℤ
n} = max{� ◦(p) − f ∙(p) ∣ p ∈ ℝ

n},

min{f (x) − � (x) ∣ x ∈ ℤ
n} = min{(f − � )(x) ∣ x ∈ ℤ

n}

= min{(f − � )(x) ∣ x ∈ ℝ
n} = min{f (x) − � (x) ∣ x ∈ ℝ

n},

(3.22)x∗ ∈ argmax
y∈ℤn

(⟨p̂, y⟩ − f (y)) ∩ arg min
y∈ℤn

(⟨p̂, y⟩ − 𝛹 (y)).

x∗ ∈ argmax
y∈ℤn

(⟨p, y⟩ − f (y)) ⟺ p ∈ �f (x∗),

x∗ ∈ arg min
y∈ℤn

(⟨p, y⟩ − � (y)) ⟺ x∗ ∈ argmax
y∈ℤn

(⟨−p, y⟩ −�(y))

⟺ −p ∈ ��(x∗).
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Accordingly, (3.22) can be rewritten as

Since such p̂ exists, we have, in particular, that

3.3.3 � Step 3: dual integrality

By adding integrality requirement to (3.23), we obtain the condition

for an integral dual optimal solution p∗ . Note that this is equivalent to (or rewriting 
of) the optimality condition given in (3.17) (with g = � = −� ). Thus, our task of 
proving Theorem 1.1 is reduced to showing

Since � ( = −� ) is an integer-valued separable convex function defined on ℤn , the 
subdifferential ��(x∗) is an integral box. Hence we have

for some � ∈ (ℤ ∪ {−∞})n and � ∈ (ℤ ∪ {+∞})n.
Let B = −��(x∗) . Then (i) B is an integral box by (3.27) and (ii) �f (x∗) ∩ B ≠ � 

by (3.24). We want to show that these conditions imply �f (x∗) ∩ B ∩ ℤ
n ≠ � in 

(3.26). The main technical result (Theorem 1.2) states that this is indeed the case, 
completing the proof of Theorem 1.1. The proof of Theorem 1.2 is given in the next 
section.

3.3.4 � Step 4: finiteness assumption

It remains to show that the finiteness of the maximum in (3.3) implies the finiteness 
of the minimum in (3.3).

Lemma 3.2  For an integer-valued integrally convex function f ∶ ℤ
n
→ ℤ ∪ {+∞} 

and an integer-valued separable concave function � ∶ ℤ
n
→ ℤ ∪ {−∞} , if 

max{� ◦(p) − f ∙(p) ∣ p ∈ ℤ
n} is finite, then min{f (x) − � (x) ∣ x ∈ ℤ

n} is also finite.

Proof  Suppose that the maximum, max{� ◦ − f ∙} , is finite. Since � ◦(p) − f ∙(p) is 
integer-valued, there exists an integer vector p∗ that attains the maximum. By the 
weak duality (3.16), this implies that the minimum, min{f − �} , is finite or else 
+∞ . To prove by contradiction, suppose that the minimum is +∞ , which means 
dom f ∩ dom� = � . By Proposition 2.1 (2), we then have dom f ∩ dom� = � . By 

(3.23)p̂ ∈ 𝜕f (x∗) ∩ (−𝜕𝛷(x∗)).

(3.24)�f (x∗) ∩ (−��(x∗)) ≠ �.

(3.25)p∗ ∈ �f (x∗) ∩ (−��(x∗)) ∩ ℤ
n

(3.26)�f (x∗) ∩ (−��(x∗)) ∩ ℤ
n ≠ �.

(3.27)−��(x∗) = {p ∈ ℝ
n ∣ �j ≤ pj ≤ �j (j = 1, 2,… , n)}
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the separation theorem (in convex analysis), there exists a hyperplane separating 
dom f  and dom�  . Since dom f  and dom� are integrally convex sets, we can take an 
integer vector as the normal vector to define the separating hyperplane. That is, there 
exist q ∈ ℤ

n and C ∈ ℤ such that

Then we have

from which we obtain a contradiction

Therefore, min{f − �} must be finite. 	�  ◻

4 � Integral subgradients

4.1 � Results

In this section we are interested in integral subgradients of an integer-valued integrally 
convex function f ∶ ℤ

n
→ ℤ ∪ {+∞} . Recall the definition of the subdifferential

at x ∈ dom f  . An integer vector p belonging to �f (x) , if any, is called an integral sub-
gradient of f at x.

Integral subdifferentiability of integer-valued integrally convex functions is 
recently established by Murota–Tamura [24].

Theorem 4.1  ([24]) Let f ∶ ℤ
n
→ ℤ ∪ {+∞} be an integer-valued integrally convex 

function. For every x ∈ dom f  , we have �f (x) ∩ ℤ
n ≠ �.

The main technical result of the present paper (Theorem 1.2) is a strengthening of 
this theorem with an additional box condition. Recall that an integral box means a 
set B of real vectors represented as

⟨q, x⟩ ≤ C (x ∈ dom f ),

⟨q, x⟩ ≥ C + 1 (x ∈ dom� ).

� ◦(q + p∗) = min{⟨q + p∗, x⟩ − � (x) ∣ x ∈ ℤ
n}

= min{⟨q + p∗, x⟩ − � (x) ∣ x ∈ dom�}

≥ (C + 1) +min{⟨p∗, x⟩ − � (x) ∣ x ∈ dom�}

= (C + 1) + � ◦(p∗),

f ∙(q + p∗) = max{⟨q + p∗, x⟩ − f (x) ∣ x ∈ ℤ
n}

= max{⟨q + p∗, x⟩ − f (x) ∣ x ∈ dom f }

≤ C +max{⟨p∗, x⟩ − f (x) ∣ x ∈ dom f }

= C + f ∙(p∗),

𝛹 ◦(q + p∗) − f ∙(q + p∗) ≥ 𝛹 ◦(p∗) − f ∙(p∗) + 1 > 𝛹 ◦(p∗) − f ∙(p∗).

(4.1)�f (x) = {p ∈ ℝ
n ∣ f (y) − f (x) ≥ ⟨p, y − x⟩ for all y ∈ ℤ

n}
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with two integer vectors � ∈ (ℤ ∪ {−∞})n and � ∈ (ℤ ∪ {+∞})n satisfying � ≤ � . 
For convenience, we present the theorem again. The proof is given in Sects. 4.2–4.4.

Theorem 1.2  (Main technical result, again) Let f ∶ ℤ
n
→ ℤ ∪ {+∞} be an integer-

valued integrally convex function, x ∈ dom f  , and B be an integral box. If �f (x) ∩ B 
is nonempty, then �f (x) ∩ B is a polyhedron containing an integer vector. If, in addi-
tion, �f (x) ∩ B is bounded, then �f (x) ∩ B has an integral vertex.

As an immediate corollary, we can obtain the following statement.

Corollary 4.1  Let f ∶ ℤ
n
→ ℤ ∪ {+∞} be an integer-valued integrally convex func-

tion, x ∈ dom f  , and p ∈ �f (x) . Then there exists an integer vector q ∈ �f (x) satisfy-
ing ⌊pi⌋ ≤ qi ≤ ⌈pi⌉ (i = 1, 2,… , n).

Proof  Let B = [�, �]
ℝ
 be the integral box defined by �i = ⌊pi⌋ and �i = ⌈pi⌉ for 

i = 1, 2,… , n . Then p ∈ �f (x) ∩ B , which shows �f (x) ∩ B ≠ � . By Theorem  1.2, 
there exists q ∈ �f (x) ∩ B ∩ ℤ

n , which is an integer vector q in �f (x) satisfying 
⌊pi⌋ ≤ qi ≤ ⌈pi⌉ (i = 1, 2,… , n) . 	�  ◻

In the following we make supplementary remarks concerning the contents of 
Theorems 1.2 and 4.1.

Remark 4.1  Integral subdifferentiability is not guaranteed without the assumption of 
integral convexity. See [16, Example 1.1].	�   ◻

Remark 4.2  Theorem 4.1 states that �f (x) ∩ ℤ
n ≠ � , but it does not claim a stronger 

statement that �f (x) is an integer polyhedron. See [24, Remark 3.1]. 	�  ◻

Remark 4.3  It is pointed out in [24, Remark 4.1] that, if �f (x) is a bounded polyhe-
dron for an integer-valued integrally convex function f, then �f (x) has an integral 
vertex, although not every vertex of �f (x) is integral. A concrete example is given 
here.

Let D = {x ∈ {−1, 0,+1}3 ∣ |x1| + |x2| + |x3| ≤ 2} , which is an integrally convex 
set. Define f on D by f (�) = 0 and f (x) = 1 (x ∈ D⧵{�}) . This f is an integer-valued 
integrally convex function and �f (�) is a bounded polyhedron described by the fol-
lowing inequalities:

The polyhedron �f (�) has eight non-integral vertices (±1∕2,±1∕2,±1∕2) (with arbi-
trary combinations of double signs) and six integral vertices (±1, 0, 0) , (0,±1, 0) , 
and (0, 0,±1) . 	�  ◻

B = {p ∈ ℝ
n ∣ � ≤ p ≤ �}

p1 ± p2 ≤ 1, −p1 ± p2 ≤ 1, p1 ± p3 ≤ 1, −p1 ± p3 ≤ 1,

p2 ± p3 ≤ 1, −p2 ± p3 ≤ 1, ±p1 ≤ 1, ±p2 ≤ 1, ±p3 ≤ 1.
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It is in order here to briefly mention how Theorem 1.2 is proved in the remainder 
of this section. Let P ∶= �f (x) for notational simplicity, and for each � = 1, 2,… , n , 
let [P]� denote the projection of P to the space of (p� , p�+1,… , pn) . Since P is a 
polyhedron, each [P]� is also a polyhedron. In [24], a hierarchical system of inequal-
ities to describe [P]� for � = 1, 2,… , n (Theorem 4.2 in Sect. 4.2) was derived by 
means of the Fourier–Motzkin elimination and then Theorem 4.1 was proved as a 
fairly easy consequence of this description. We extend this approach to prove Theo-
rem 1.2. Namely, in Theorem 4.3 in Sect. 4.3, we derive a hierarchical system of ine-
qualities to describe the projection [P ∩ B]� of P ∩ B to the space of (p� , p�+1,… , pn) 
for � = 1, 2,… , n . Here again we rely on the Fourier–Motzkin elimination.

4.2 � Fourier–Motzkin elimination for the subdifferential @f(x)

In this section we briefly describe the approach of [24] to prove Theorem 4.1 (inte-
gral subdifferentiability) with the aid of the Fourier–Motzkin elimination. In so 
doing we intend to clarify the geometrical essence of the argument in [24] in a form 
convenient for the proof of Theorem 1.2 (integral subdifferentiability with a box). 
Recall our notation P for the subdifferential �f (x) (for a fixed x ∈ dom f  ) and [P]� for 
the projection of P to the space of (p� , p�+1,… , pn) , where � = 1, 2,… , n.

To obtain an expression of �f (x) , we can make use of Theorem 2.2 for the mini-
mality of an integrally convex function. Namely, in the definition of �f (x) in (4.1), it 
suffices to consider y = x + d with d ∈ {−1, 0,+1}n , and then

We represent the system of inequalities

for d with f (x + d) < +∞ in a matrix form as

Let I denote the row set of A and

We denote the ith row vector of A by ai for i ∈ I . The row set I is indexed by 
d ∈ {−1, 0,+1}n with f (x + d) < +∞ , and ai is equal to the corresponding d for 
i ∈ I ; we have aij = dj for j = 1, 2,… , n and

(4.2)
�f (x) ={p ∈ ℝ

n ∣

n∑
j=1

djpj ≤ f (x + d) − f (x)

for all d ∈ {−1, 0,+1}n}.

n∑
j=1

djpj ≤ f (x + d) − f (x)

(4.3)Ap ≤ b.

A = (aij ∣ i ∈ I, j ∈ {1, 2,… , n}).

bi = f (x + ai) − f (x).
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Note that aij ∈ {−1, 0,+1} and ai ∈ {−1, 0,+1}n for all i and j.
An inequality system to describe the projections [P]� for � = 1, 2,… , n can be 

obtained by applying the Fourier–Motzkin elimination procedure [27] to the system 
of inequalities (4.3), where the variable p1 is eliminated first, and then p2, p3,… , to 
finally obtain an inequality in pn only.

By virtue of the integral convexity of f, a drastic simplification occurs in this 
elimination process. The inequalities that are generated are actually redundant and 
need not be added to the current system of inequalities, which is a crucial observa-
tion made in [24]. It is shown in [24] that the Fourier–Motzkin elimination proce-
dure applied to (4.3) results in a system of inequalities that is equivalent to (4.4) 
below:

Here the index sets are defined as follows: Let Î0
0
= I and for j = 1, 2,… , n , define

where Î+
j
 and/or Î−

j
 may possibly be empty. This result can be rephrased in terms of 

projections as follows.

Theorem  4.2  ([24]) Let f ∶ ℤ
n
→ ℤ ∪ {+∞} be an integer-valued integrally con-

vex function and x ∈ dom f  . For each � = 1, 2,… , n , the projection of �f (x) to the 
space of (p� , p�+1,… , pn) is described by the last n − � + 1 inequalities in (4.4) for 
p� , p�+1,… , pn.

4.2.1 � Proof of Theorem 4.1 by Theorem 4.2

Since �f (x) is nonempty, there exists a real vector p satisfying all the inequali-
ties in (4.4). It is even true that, for any choice of (p� , p�+1,… , pn) satisfying the 
last n − � + 1 inequalities of (4.4), the ( � − 1)-st inequality of (4.4) prescribes a 

(4.4)

max
k∈Î−

1

{
n∑
j=2

akjpj − bk

}
≤ p1 ≤ min

i∈Î+
1

{
bi −

n∑
j=2

aijpj

}
,

max
k∈Î−

2

{
n∑
j=3

akjpj − bk

}
≤ p2 ≤ min

i∈Î+
2

{
bi −

n∑
j=3

aijpj

}
,

⋮

max
k∈Î−

n−1

{
aknpn − bk

}
≤ pn−1 ≤ min

i∈Î+
n−1

{
bi − ainpn

}
,

max
k∈Î−

n

{
−bk

}
≤ pn ≤ min

i∈Î+
n

{
bi
}
.

(4.5)

Î+
j
= {i ∈ Î0

j−1
∣ aij = +1},

Î−
j
= {i ∈ Î0

j−1
∣ aij = −1},

Î0
j
= {i ∈ Î0

j−1
∣ aij = 0},
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nonempty interval for a possible choice of p�−1 . As for integrality, the last ine-
quality in (4.4) shows that we can choose an integral pn ∈ ℤ , since bi ∈ ℤ for 
i ∈ Î−

n
∪ Î+

n
 . Then the next-to-last inequality shows that we can choose an integral 

pn−1 ∈ ℤ , since aknpn − bk ∈ ℤ for k ∈ Î−
n−1

 and bi − ainpn ∈ ℤ for i ∈ Î+
n−1

 . Con-
tinuing in this way we can see the existence of an integer vector p ∈ ℤ

n satisfying 
(4.4). This shows �f (x) ∩ ℤ

n ≠ � , which completes the proof of Theorem 4.1.

Remark 4.4  It follows immediately from Theorem 4.2 that P ∩ B ( = �f (x) ∩ [�, �]
ℝ
 ) 

is described by the following inequalities:

where the index sets Î+
j
 and Î−

j
 are defined in (4.5). It is certainly true that p belongs 

to P ∩ B if and only if p satisfies all inequalities in (4.6). But it is not true that the 
projection [P ∩ B]� of P ∩ B to the space of (p� , p�+1,… , pn) is described by the last 
n − � + 1 inequalities. (This is because [P ∩ B]� may differ from [P]� ∩ [B]� , with 
[B]� denoting the projection of B.) In particular, it may not be true that the last 
inequality

describes the projection of P ∩ B to the pn-axis, which is demonstrated by a simple 
example in Example 4.1 below. An important consequence of this phenomenon is 
that we are not allowed to prove Theorem 1.2 on the basis of (4.6) by extending the 
proof of Theorem 4.1 based on Theorem 4.2 (described above). This is the reason 
for our (rather long) proof of Theorem 1.2 given in Sects. 4.3 and 4.4. 	�  ◻

Example 4.1  Let f ∶ ℤ
2
→ ℤ ∪ {+∞} be a function defined on {−1, 0,+1}2 by

(4.6)

max

{
max
k∈Î−

1

{
n∑
j=2

akjpj − bk

}
, 𝛼1

}
≤ p1 ≤ min

{
min
i∈Î+

1

{
bi −

n∑
j=2

aijpj

}
, 𝛽1

}
,

max

{
max
k∈Î−

2

{
n∑
j=3

akjpj − bk

}
, 𝛼2

}
≤ p2 ≤ min

{
min
i∈Î+

2

{
bi −

n∑
j=3

aijpj

}
, 𝛽2

}
,

⋮

max

{
max
k∈Î−

n−1

{
aknpn − bk

}
, 𝛼n−1

}
≤ pn−1 ≤ min

{
min
i∈Î+

n−1

{
bi − ainpn

}
, 𝛽n−1

}
,

max

{
max
k∈Î−

n

{
−bk

}
, 𝛼n

}
≤ pn ≤ min

{
min
i∈Î+

n

{
bi
}
, 𝛽n

}
,

max

{
max
k∈Î−

n

{
−bk

}
, 𝛼n

}
≤ pn ≤ min

{
min
i∈Î+

n

{
bi
}
, 𝛽n

}
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which is integer-valued and integrally convex. The subdifferential P = �f (0, 0) is 
described by the following inequalities:

for which the Fourier–Motzkin elimination results in

Let B be an integral box described by

A system of inequalities describing P ∩ B is obtained by combining (4.8) and (4.9) 
as

which corresponds to (4.6). However, the last inequality −3 ≤ p2 ≤ 3 here does 
not describe the projection of P ∩ B to the p2-axis, which, actually, is the interval 
−2 ≤ p2 ≤ 2 as Fig. 1 shows. 	�  ◻

4.3 � Fourier–Motzkin elimination for @f(x) ∩ B

Recall notations P = �f (x) and

f (−1, 1) = 2, f (0, 1) = 3, f (1, 1) = 4,

f (−1, 0) = 2, f (0, 0) = 0, f (1, 0) = 4,

f (−1,−1) = 3, f (0,−1) = 3, f (1,−1) = 4,

(4.7)
p1 + p2 ≤ 4, p1 − p2 ≤ 4, −p1 + p2 ≤ 2, −p1 − p2 ≤ 3,

p1 ≤ 4, −p1 ≤ 2, p2 ≤ 3, −p2 ≤ 3,

(4.8)
max{p2 − 2,−p2 − 3,−2} ≤ p1 ≤ min{−p2 + 4, p2 + 4, 4}, −3 ≤ p2 ≤ 3.

(4.9)2 ≤ p1, −4 ≤ p2 ≤ 4.

max{p2 − 2,−p2 − 3,−2, 2} ≤ p1 ≤ min{−p2 + 4, p2 + 4, 4,+∞},

−3 = max{−3,−4} ≤ p2 ≤ min{3, 4} = 3,

Fig. 1   P ∩ B in Example 4.1
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where the possibility of �j = −∞ and/or �j = +∞ is allowed. In this section we are 
concerned with a system of inequalities that describe the projections [P ∩ B]� for 
� = 1, 2,… , n . The result is stated in Theorem 4.3, with which Theorem 1.2 (the 
main technical result of this paper) is proved.

Recall that P is described by the system of inequalities Ap ≤ b in (4.3). For each 
� = 1, 2,… , n , we look at those inequalities which contain the variable p� . Using 
the sets of indices defined as

the inequalities of Ap ≤ b are classified as

With the use of �j ≤ pj ≤ �j for j = 1, 2,… ,� − 1 , we can eliminate p1,… , p�−1 
from (4.12), (4.13), and (4.14), to obtain

while we have

(4.10)B = {p ∈ ℝ
n ∣ �j ≤ pj ≤ �j (j = 1, 2,… , n)},

(4.11)

I+
�
= {i ∈ I ∣ ai� = +1},

I−
�
= {i ∈ I ∣ ai� = −1},

I0
�
= {i ∈ I ∣ ai� = 0},

J+
�i
= {j ∣ 1 ≤ j ≤ � − 1, aij = +1} (i ∈ I),

J−
�i
= {j ∣ 1 ≤ j ≤ � − 1, aij = −1} (i ∈ I),

(4.12)
∑
j∈J+

�i

pj −
∑
j∈J−

�i

pj + p� +

n∑
j=�+1

aijpj ≤ bi (i ∈ I+
�
),

(4.13)
∑
j∈J+

�k

pj −
∑
j∈J−

�k

pj − p� +

n∑
j=�+1

akjpj ≤ bk (k ∈ I−
�
),

(4.14)
∑
j∈J+

�h

pj −
∑
j∈J−

�h

pj +

n∑
j=�+1

ahjpj ≤ bh (h ∈ I0
�
).

(4.15)
∑
j∈J+

�i

�j −
∑
j∈J−

�i

�j + p� +

n∑
j=�+1

aijpj ≤ bi (i ∈ I+
�
),

(4.16)
∑
j∈J+

�k

�j −
∑
j∈J−

�k

�j − p� +

n∑
j=�+1

akjpj ≤ bk (k ∈ I−
�
),

(4.17)
∑
j∈J+

�h

�j −
∑
j∈J−

�h

�j +

n∑
j=�+1

ahjpj ≤ bh (h ∈ I0
�
),
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from (4.10). It follows from (4.15), (4.16), (4.18), and (4.19) that the interval for p� 
is given by

Note that the inequality (4.20) is solved for p� with the upper and lower bounds 
depending on p�+1,… , pn and independent of p1,… , p�−1 . It is emphasized that, for 
each � , the single inequality (4.20) is equivalent to the set of inequalities consisting 
of (4.15), (4.16), (4.18), and (4.19).

We denote by IQ(�) the system of inequalities consisting of (4.15), (4.16), (4.17) for 
� , and (4.18) and (4.19) for �,� + 1,… , n , that is,

Note that IQ(�) is a system of inequalities in variables p� , p�+1,… , pn , and is free 
from p1,… , p�−1 . The number of inequalities in IQ(�) is equal to |I| + 2(n − � + 1) , 
and IQ(1) is nothing but the combined system Ap ≤ b, � ≤ x ≤ �.

It follows from the derivation above that, for � = 1, 2,… , n , each inequality in 
IQ(�) is valid for [P ∩ B]� , that is, every point in [P ∩ B]� satisfies IQ(�) . The fol-
lowing theorem states that the converse is also true, that is, IQ(�) gives a precise 
description of [P ∩ B]� . The proof of this theorem is given in Sect. 4.4.

Theorem 4.3  Let f ∶ ℤ
n
→ ℤ ∪ {+∞} be an integer-valued integrally convex func-

tion, x ∈ dom f  , and B be an integral box. For each � = 1, 2,… , n , the projection of 
�f (x) ∩ B to the space of (p� , p�+1,… , pn) is described by the system IQ(�).

Proof of Theorem 1.2 by Theorem 4.3
Since �f (x) ∩ B is nonempty by assumption, there exists a real vector p satisfy-

ing the inequalities in (4.20) for � = 1, 2,… , n . It is even true that, for any choice 
of (p� , p�+1,… , pn) satisfying (4.20) for �,� + 1,… , n , the inequality of (4.20) for 
� − 1 prescribes a nonempty interval for a possible choice of p�−1 . Note that (4.17) 
for � is an inequality to be counted as (4.15) or (4.16) for some �� ≥ � + 1 or else a 
trivial inequality between two constants.

(4.18)p� ≤ �� ,

(4.19)−p� ≤ −��

(4.20)

max

⎧
⎪⎨⎪⎩
�� , max

k∈I−
�

⎧
⎪⎨⎪⎩
−bk +

n�
j=�+1

akjpj +
�
j∈J+

�k

�j −
�
j∈J−

�k

�j

⎫
⎪⎬⎪⎭

⎫
⎪⎬⎪⎭

≤ p� ≤ min

⎧
⎪⎨⎪⎩
�� , min

i∈I+
�

⎧
⎪⎨⎪⎩
bi −

n�
j=�+1

aijpj −
�
j∈J+

�i

�j +
�
j∈J−

�i

�j

⎫
⎪⎬⎪⎭

⎫
⎪⎬⎪⎭
.

(4.21)
IQ(�) = {(4.15), (4.16), (4.17) for �} ∪ {(4.18), (4.19) for �,� + 1,… , n}.
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As for integrality, the inequality of (4.20) for � = n , i.e.,

shows that we can choose an integral pn ∈ ℤ , since bi ∈ ℤ for all i, and 
�j ∈ ℤ ∪ {−∞} and �j ∈ ℤ ∪ {+∞} for all j. Then the inequality of (4.20) for 
� = n − 1 shows that we can choose an integral pn−1 ∈ ℤ , since its upper and lower 
bounds are both integers. Continuing in this way we can see the existence of an inte-
ger vector p ∈ ℤ

n satisfying (4.20) for all � . This shows �f (x) ∩ B ∩ ℤ
n ≠ � , which 

completes the proof of Theorem 1.2.

Example 4.2  We illustrate IQ(�) for the simple example in Example 4.1. By (4.9) 
we have (�1, �1) = (2,+∞) and (�2, �2) = (−4, 4) . The inequalities in (4.7) for 
P = �f (0, 0) can be expressed as Ap ≤ b with

where we assume that the row set of A is indexed by I = {r1, r2,… , r8} and the col-
umn set by {1, 2} . First, for � = 1 , we have I+

1
= {r1, r2, r5} , I−1 = {r3, r4, r6} , and 

I0
1
= {r7, r8} . Accordingly, (4.15) and (4.16) for � = 1 are given by

Then (4.20) for � = 1 is given by

The system IQ(1) consists of all the inequalities in (4.7) and (4.9).
Next, for � = 2 , we have I+

2
= {r1, r3, r7} , I−2 = {r2, r4, r8} , and I0

2
= {r5, r6} . 

Accordingly, (4.15) and (4.16) for � = 2 are given by

and (4.20) for � = 2 is given by

max{�n, max
k∈I−

n

{−bk +
∑
j∈J+

nk

�j −
∑
j∈J−

nk

�j} }

≤ pn ≤ min{�n, min
i∈I+

n

{bi −
∑
j∈J+

ni

�j +
∑
j∈J−

ni

�j} },

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 − 1

−1 1

−1 − 1

1 0

−1 0

0 1

0 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4

4

2

3

4

2

3

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.15)�=1 ∶ p1 + p2 ≤ 4, p1 − p2 ≤ 4, p1 ≤ 4,

(4.16)�=1 ∶ − p1 + p2 ≤ 2, −p1 − p2 ≤ 3, −p1 ≤ 2.

(4.20)�=1 ∶ max{�1,−2 + p2,−3 − p2,−2} ≤ p1 ≤ min{�1, 4 − p2, 4 + p2, 4}.

(4.15)�=2 ∶ �1 + p2 ≤ 4, −�1 + p2 ≤ 2, p2 ≤ 3,

(4.16)�=2 ∶ �1 − p2 ≤ 4, −�1 − p2 ≤ 3, −p2 ≤ 3,

(4.20)�=2 ∶ max{�2,−4 + �1,−3 − �1,−3} ≤ p2 ≤ min{�2, 4 − �1, 2 + �1, 3}.
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The system (4.17) for � = 2 consists of two trivial inequalities:

Then the system IQ(2) consists of (4.15)�=2 , (4.16)�=2 , (4.17)�=2 , and −4 ≤ p2 ≤ 4 
in (4.9); note that the other inequality 2 ≤ p1 in (4.9) is not a member of IQ(2).

Using (�1, �1) = (2,+∞) and (�2, �2) = (−4, 4) , we obtain

in agreement with Fig. 1. It is noted, however, that IQ(2) contains redundant ine-
qualities. 	�  ◻

4.4 � Proof of Theorem 4.3

In this section we give a proof of Theorem  4.3, which states that the projection 
[P ∩ B]� is described by IQ(�) for � = 1, 2,… , n , where P = �f (x) , B = [�, �]

ℝ
 , and

defined in (4.21) with

See (4.11) for the definitions of I+
�
 , I−

�
 , I0

�
 , J+

�i
 , and J−

�i
 . We already know that each 

member of IQ(�) is a valid inequality for [P ∩ B]� , and we need to prove that those 
inequalities are, in fact, sufficient for the description of [P ∩ B]�.

The subdifferential P = �f (x) is described by Ap ≤ b in (4.3) and the inte-
gral box B by � ≤ x ≤ � . Hence P ∩ B is described by the combined system 
Ap ≤ b, � ≤ x ≤ � . By applying the Fourier–Motzkin elimination procedure [27] 
to this combined system Ap ≤ b, � ≤ x ≤ � , we can obtain an inequality system to 
describe the projections [P ∩ B]� for � = 1, 2,… , n . In the Fourier–Motzkin elimi-
nation, the variable p1 is eliminated first, and then p2, p3,… , to finally obtain an 
inequality in pn only.

(4.17)�=2 ∶ 0 ≤ 2, 0 ≤ 2 +∞.

(4.20)�=1 ∶ max{2,−2 + p2,−3 − p2,−2} ≤ p1 ≤ min{4 − p2, 4 + p2, 4},

(4.20)�=2 ∶ − 2 ≤ p2 ≤ 2,

IQ(�) = {(4.15), (4.16), (4.17) for �} ∪ {(4.18), (4.19) for �,� + 1,… , n}

(4.15) ∶
∑
j∈J+

�i

�j −
∑
j∈J−

�i

�j +

n∑
j=�+1

aijpj + p� ≤ bi (i ∈ I+
�
),

(4.16) ∶
∑
j∈J+

�k

�j −
∑
j∈J−

�k

�j +

n∑
j=�+1

akjpj − p� ≤ bk (k ∈ I−
�
),

(4.17) ∶
∑
j∈J+

�h

�j −
∑
j∈J−

�h

�j +

n∑
j=�+1

ahjpj ≤ bh (h ∈ I0
�
),

(4.18) ∶ p� ≤ �� ,

(4.19) ∶ −p� ≤ −�� .
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It is worth while to reiterate here the technical subtlety explained in Remark 4.4 
concerning the relation between [P ∩ B]� and [P]� ∩ [B]� , where [P]� and [B]� 
denote the projections of P and B, respectively, to the space of (p� , p�+1,… , pn) . 
By Theorem  4.2, the projection [P]� is described by (4.4) for p� , p�+1,… , pn , 
while [B]� is described obviously by �j ≤ pj ≤ �j (j = �,� + 1,… , n) . If we had 
[P ∩ B]� = [P]� ∩ [B]� , we could describe [P ∩ B]� by (4.6). But this is not the case, 
as demonstrated by Example 4.1.

In the following we prove, by induction on � = 1, 2,… , n , that the projection 
[P ∩ B]� to the space of (p� , p�+1,… , pn) is described by the system IQ(�) . This 
statement is obviously true for � = 1 , since IQ(1) coincides with combined sys-
tem Ap ≤ b, � ≤ x ≤ � . Fix � with 1 ≤ � ≤ n − 1 , and assume that [P ∩ B]� is 
described by IQ(�).

In the following we shall prove that [P ∩ B]�+1 is described by IQ(� + 1) by 
applying the Fourier–Motzkin elimination procedure to IQ(�) to eliminate the 
variable p� . The procedure consists of the following four types of elimination 
operations.

–	 The addition of (4.18) and (4.19) results in an obvious inequality �� ≤ ��.
–	 The addition of (4.16) for k ∈ I−

�
 and (4.18) results in 

 According to the value of ak,�+1 ∈ {+1,−1, 0} , this inequality is contained in 
(4.15), (4.16), or (4.17) for � + 1 , and hence is contained in IQ(� + 1).

–	 The addition of (4.15) for i ∈ I+
�
 and (4.19) results in 

 which is, similarly, a member of IQ(� + 1).
–	 The addition of (4.15) for i ∈ I+

�
 and (4.16) for k ∈ I−

�
 results in 

 We prove later that this is a redundant inequality, implied by IQ(� + 1).
Thus, all the inequalities generated by the Fourier–Motzkin elimination procedure 
applied to eliminate the variable p� from IQ(�) are, in fact, implied by IQ(� + 1) . 
On the other hand, [P ∩ B]� is described by IQ(�) by the induction hypothesis, and 
each inequality of IQ(� + 1) is valid for [P ∩ B]�+1 . It then follows that [P ∩ B]�+1 is 
described by IQ(� + 1) , as desired.

The rest of this section is devoted to the proof that the inequality (4.22) is implied 
by IQ(� + 1) . We may assume that �j and �j appearing in (4.22) are all finite-valued, 

∑
j∈J+

�k

�j −
∑
j∈J−

�k

�j − �� +

n∑
j=�+1

akjpj ≤ bk.

∑
j∈J+

�i

�j + �� −
∑
j∈J−

�i

�j +

n∑
j=�+1

aijpj ≤ bi,

(4.22)
∑
j∈J+

�i

�j +
∑
j∈J+

�k

�j −
∑
j∈J−

�i

�j −
∑
j∈J−

�k

�j +

n∑
j=�+1

(aij + akj)pj ≤ bi + bk.



625

1 3

Fenchel duality for integrally convex and separable convex functions

since otherwise this inequality is trivially true. It turns out to be convenient to intro-
duce a factor of 1/2 to (4.22), to obtain

In the following we aim at proving (4.23) in place of (4.22).
Consider an inequality

which is obtained from (4.23) by replacing �j and �j to pj . In this expression cancel-
lations of the form of +pj − pj occur for j ∈ (J+

�i
∩ J−

�k
) ∪ (J+

�k
∩ J−

�i
) . On omitting 

these cancelling terms we obtain

With the use of coefficients c = (c1, c2,… , cn) defined by

we can express (4.25) more compactly as

where cp =
∑n

j=1
cjpj . By the definition (4.26) we have

(4.23)
1

2

⎛
⎜⎜⎝
�
j∈J+

�i

�j +
�
j∈J+

�k

�j −
�
j∈J−

�i

�j −
�
j∈J−

�k

�j +

n�
j=�+1

(aij + akj)pj

⎞
⎟⎟⎠
≤

1

2
(bi + bk).

(4.24)
1

2

⎛
⎜⎜⎝
�
j∈J+

�i

pj +
�
j∈J+

�k

pj −
�
j∈J−

�i

pj −
�
j∈J−

�k

pj +

n�
j=�+1

(aij + akj)pj

⎞
⎟⎟⎠
≤

1

2
(bi + bk),

(4.25)

1

2

⎛⎜⎜⎝
�

j∈J+
�i
⧵J−

�k

pj +
�

j∈J+
�k
⧵J−

�i

pj −
�

j∈J−
�i
⧵J+

�k

pj −
�

j∈J−
�k
⧵J+

�i

pj +

n�
j=�+1

(aij + akj)pj

⎞⎟⎟⎠
≤

1

2
(bi + bk).

(4.26)cj =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

+1 (j ∈ J+
�i
∩ J+

�k
),

−1 (j ∈ J−
�i
∩ J−

�k
),

+1∕2 (j ∈ J+
�i
⧵(J+

�k
∪ J−

�k
) or j ∈ J+

�k
⧵(J+

�i
∪ J−

�i
)),

−1∕2 (j ∈ J−
�i
⧵(J+

�k
∪ J−

�k
) or j ∈ J−

�k
⧵(J+

�i
∪ J−

�i
)),

1

2
(aij + akj) (� + 1 ≤ j ≤ n),

0 ( otherwise),

(4.27)cp ≤
1

2
(bi + bk),

(4.28)cj ∈
{
−1,−

1

2
, 0,+

1

2
,+1

}
(j = 1,… , n),

(4.29)cj = 0 (j ∈ {�} ∪ (J+
�i
∩ J−

�k
) ∪ (J+

�k
∩ J−

�i
)).
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We observe that the inequality (4.24) is, in fact, derived from Ap ≤ b by adding 
(4.12) for i ∈ I+

�
 and (4.13) for k ∈ I−

�
 (and dividing by two). By the definition of 

Ap ≤ b in (4.3), we have

as well as c = (ai + ak)∕2 , where ai, ak ∈ {−1, 0,+1}n . Recall that I denotes the row 
set of the matrix A and ah = (ah1, ah2,… , ahn) is the hth row vector of A for h ∈ I.

The following lemma depends heavily on the integral convexity of f.

Lemma 4.1  There exist a subset I� (⊆ I) and positive weights �h indexed by h ∈ I� 
(for convex combination) such that

Proof  We have bi = f (x + ai) − f (x) , bk = f (x + ak) − f (x) , and c = (ai + ak)∕2 . By 
the integral convexity of f, there exist y(1), y(2),… , y(m) ∈ N(x + (ai + ak)∕2) such 
that

where 𝜆h > 0 for h = 1, 2,… ,m and 
∑m

h=1
�h = 1 . Let ah be the row vector of A that 

is equal to y(h) − x ∈ {−1, 0,+1}n , and I′ be the subset of I corresponding to y(h) − x 
for h = 1, 2,… ,m . Then (4.36) shows (4.31) and (4.32). The last three conditions 
(4.33), (4.34), and (4.35) hold, since ah belongs to N(c) for all h ∈ I� . 	�  ◻

Lemma 4.1 enables us to show that the inequality (4.25) (or (4.27)) can be derived 
from the inequalities corresponding to I′:

Indeed, by (4.30), (4.31), and (4.32), we obtain

bi = f (x + ai) − f (x), bk = f (x + ak) − f (x),

(4.30)
∑
h∈I�

𝜆h = 1, 𝜆h > 0 (h ∈ I�),

(4.31)
∑
h∈I�

�hah = c,

(4.32)
∑
h∈I�

�hbh ≤
1

2
(bi + bk),

(4.33)cj = 0 ⟹ ahj = 0 (h ∈ I�),

(4.34)cj > 0 ⟹ ahj ∈ {0,+1} (h ∈ I�),

(4.35)cj < 0 ⟹ ahj ∈ {−1, 0} (h ∈ I�).

(4.36)
m∑
h=1

�hy
(h) = x +

1

2
(ai + ak),

m∑
h=1

�hf (y
(h)) ≤

1

2
(f (x + ai) + f (x + ak)),

(4.37)ahp ≤ bh (h ∈ I�).
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In the following, we use a variant of this argument to show that another (related) 
inequality

can be derived from IQ(� + 1) . Note that (4.38) resembles (4.25). Indeed, (4.38) is 
obtained from (4.25) by replacing +pj to +�j and −pj to −�j.

Lemma 4.2  The inequality (4.38) is implied by IQ(� + 1).

Proof  Consider inequalities

These inequalities are contained in IQ(� + 1) , because each inequality in (4.39) is 
of the form of (4.15), (4.16) or (4.17) for � + 1 , depending on ah,�+1 ∈ {+1,−1, 0}.

Since ah� = 0 by (4.29) and (4.33), we have

for all h ∈ I� . Therefore, (4.39) may be rewritten as

It should be clear that these inequalities are contained in IQ(� + 1).
To show that the inequality (4.38) is derived from (4.40), we form a convex com-

bination of (4.40) using the weight (�h ∣ h ∈ I�) in Lemma 4.1. By the definition of cj 
in (4.26), we see that

On substituting

given in (4.31), we further obtain

cp =

(∑
h∈I�

�hah

)
p =

∑
h∈I�

�h(ahp) ≤
∑
h∈I�

�hbh ≤
1

2
(bi + bk).

(4.38)

1

2

⎛⎜⎜⎝
�

j∈J+
�i
⧵J−

�k

�j +
�

j∈J+
�k
⧵J−

�i

�j −
�

j∈J−
�i
⧵J+

�k

�j −
�

j∈J−
�k
⧵J+

�i

�j +

n�
j=�+1

(aij + akj)pj

⎞
⎟⎟⎠

≤
1

2
(bi + bk)

(4.39)
∑

j∈J+
�+1,h

�j −
∑

j∈J−
�+1,h

�j +
∑
j=�+1

ahjpj ≤ bh (h ∈ I�).

J+
�+1,h

= {j ∣ j < �, ahj = +1}, J−
�+1,h

= {j ∣ j < �, ahj = −1}

(4.40)
∑

j<�,ahj=+1

𝛼j −
∑

j<�,ahj=−1

𝛽j +
∑
j=�+1

ahjpj ≤ bh (h ∈ I�).

LHS of (4.38) =
∑

j<�,cj>0

cj𝛼j +
∑

j<�,cj<0

cj𝛽j +

n∑
j=�+1

cjpj.

cj =
∑
h∈I�

�hahj (j = 1,… , n)
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where (4.33), (4.34), and (4.35) are used for the last equality. On the other hand, the 
convex combination of (4.40) shows

where the second inequality is due to (4.32). By combining (4.41) and (4.42) we 
obtain (4.38). 	�  ◻

Finally, we observe that, while (4.38) is implied by IQ(� + 1) by Lemma 4.2, the 
inequality (4.23) in question is obtained as the sum of (4.38) and a trivial inequality

Therefore, (4.23) is implied by, or redundant to, IQ(� + 1) . This completes the proof 
of Theorem 4.3.
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(4.41)

LHS of (4.38)

=
�

j<�,cj>0

��
h∈I�

𝜆hahj

�
𝛼j +

�
j<�,cj<0

��
h∈I�

𝜆hahj

�
𝛽j

+

n�
j=�+1

��
h∈I�

𝜆hahj

�
pj

=
�
h∈I�

𝜆h

⎛⎜⎜⎝
�

j<�,cj>0

ahj𝛼j +
�

j<�,cj<0

ahj𝛽j +

n�
j=�+1

ahjpj

⎞⎟⎟⎠

=
�
h∈I�

𝜆h

⎛
⎜⎜⎝

�
j<�,ahj=+1

𝛼j −
�

j<�,ahj=−1

𝛽j +
�
j=�+1

ahjpj

⎞
⎟⎟⎠
,

(4.42)

�
h∈I�

𝜆h

⎛
⎜⎜⎝

�
j<�,ahj=+1

𝛼j −
�

j<�,ahj=−1

𝛽j +
�
j=�+1

ahjpj

⎞⎟⎟⎠
≤
�
h∈I�

𝜆hbh ≤
1

2
(bi + bk),

(4.43)
1

2

∑
j∈J+

�i
∩J−

�k

(�j − �j) +
1

2

∑
j∈J+

�k
∩J−

�i

(�j − �j) ≤ 0.
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