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Abstract
This study considers structural optimization under a reliability constraint, in which 
the input distribution is only partially known. Specifically, when it is only known 
that the expected value vector and the variance-covariance matrix of the input dis-
tribution belong to a given convex set, it is required that the failure probability of 
a structure should be no greater than a specified target value for any realization of 
the input distribution. We demonstrate that this distributionally-robust reliability 
constraint can be reduced equivalently to deterministic constraints. By using this 
reduction, we can handle a reliability-based design optimization problem under 
the distributionally-robust reliability constraint within the framework of determin-
istic optimization; in particular, nonlinear semidefinite programming. Two numeri-
cal examples are solved to demonstrate the relation between the optimal value and 
either the target reliability or the uncertainty magnitude.

Keywords Reliability-based design optimization · Uncertain input distribution · 
Worst-case reliability · Robust optimization · Semidefinite programming · Duality

Mathematics Subject Classification 90C30 · 90C17 · 90C22 · 90C15

1 Introduction

Reliability-based design optimization (RBDO) is a crucial tool for structural design 
in the presence of uncertainty [2, 44, 56, 60]. RBDO adopts a probabilistic model 
of uncertainty and evaluates the probability that a structural design satisfies (or, 
equivalently, fails to satisfy) the performance requirements. An underlying premise 
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is that complete knowledge on the statistical information of the uncertain parameters 
is available. However, it is often difficult to obtain statistical information with suffi-
cient accuracy in practice. This has incented recent intensive studies on RBDO with 
incomplete statistical information [12, 13, 19, 25, 26, 28, 29, 43, 47, 48, 57, 61, 62, 
64].

Another methodology that deals with uncertainty in structural design is robust 
design optimization [8, 24, 36]. Although several different concepts exist in robust 
design optimization, in this work we focus attention on the worst-case optimization 
methodology, which is known as robust optimization in the mathematical optimiza-
tion community [6]. This methodology adopts a possibilistic model of uncertainty; 
that is, the set of possible values that the uncertain parameters can take is specified. 
We refer to this set as an uncertainty set. Subsequently, the objective value in the 
worst case is optimized, under the condition that the constraints are satisfied in the 
worst cases.

This study deals with RBDO when the input distribution is only partially known. 
In particular, we assume that the true expected value vector and the true variance-
covariance matrix are unknown (i.e., the true values of the first two moments of the 
input distribution are unknown), but they are known to belong to a given closed 
convex set. For example, suppose that the input distribution is a normal distribu-
tion, and we only know that each component of the expected value vector and the 
variance-covariance matrix belongs to a given closed interval. Then, for each pos-
sible realization of a pair of the expected value vector and the variance-covariance 
matrix, a single corresponding normal distribution exists. The set of all such normal 
distributions is considered as an uncertainty set of the input distribution.1 As another 
example, suppose that the distribution type of the input distribution is also unknown. 
In this case, the uncertainty set is the set of all probability distributions, the expected 
value vector and the variance-covariance matrix of which belong to a given set.2 
Among the probability distributions belonging to a specified uncertainty set defined 
as above, the worst-case distribution is that with which the failure probability takes 
the maximum value. Our methodology requires a structure to satisfy the reliabil-
ity constraint that is evaluated with the worst-case distribution. In other words, for 
any probability distribution belonging to the uncertainty set, the failure probability 
should be no greater than a specified target value. Thus, the methodology guarantees 
robustness of the structural reliability against uncertainty in the input distribution.3 
The major contribution of this study is the demonstration, under several assump-
tions, that this structural requirement is equivalently converted into a form of con-
straints that can be handled in conventional deterministic optimization. As a result, a 
design optimization problem under this structural requirement can be solved using a 
deterministic nonlinear optimization approach.

1 This uncertainty set is discussed in Sect. 3.
2 This uncertainty set is discussed in Sect. 4.1.
3 More precisely, the uncertainty discussed here means the uncertainty in the expected value vector and 
the variance-covariance matrix of the input distribution.
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RBDO methods with uncertainty in the input distribution have received consider-
able attention in recent years, because the number of available samples of random 
variables is often insufficient in practice. For example, Gunawan and Papalambros 
[19] and Youn and Wang [61] proposed Bayesian approaches to compute the con-
fidence that a structural design satisfies a target reliability constraint when both a 
finite number of samples and probability distributions of uncertain parameters are 
available. Noh et al. [47, 48] proposed Bayesian methods to adjust an input distri-
bution model to limited data with a given confidence level. Zaman et al. [63] and 
Zaman and Mahadevan [62] used a family of Johnson distributions to represent the 
uncertainty when the intervals of the input variables were provided as input infor-
mation, Cho et  al. [12] and Moon et  al. [43] assumed that the input distribution 
types and parameters follow probability distributions. Therefore, the failure prob-
ability is a random variable, and the confidence level of a reliability constraint, i.e., 
the probability that the failure probability is no greater than a target value, is spec-
ified. To reduce the computational cost of this method, Jung et  al. [29] proposed 
the so-called reliability measure approach, which was inspired by the performance 
measure approach [39, 41]. Subsequently, to the reduce computational cost further, 
Wang et al. [57] proposed the use of the second-order reliability method for com-
puting the failure probability. Ito et al. [25] assumed that each of random variable 
follows a normal distribution with the mean and variance modeled as random vari-
ables, and demonstrated that RBDO with a confidence level can be converted into 
a conventional form of RBDO by altering the target reliability index value. Zhang 
et al. [64] proposed the use of the distributional probability box (the distributional 
p-box) [52] for RBDO with limited data of uncertain variables.4 Kanno [34, 35] and 
Jekel and Haftka [27] proposed RBDO methods using order statistics. The methods 
in [27, 34, 35], which were based on the order statistics, did not make any assump-
tions regarding the statistical information of the uncertain parameters, and used ran-
dom samples of the uncertain parameters directly to guarantee the confidence of the 
target reliability.

As per the above review, the majority of existing studies on RBDO with uncer-
tainty in the input distribution [12, 25, 29, 43, 57] have considered probabilistic 
models of the input distribution parameters and/or distribution types. Accordingly, 
the confidence level evaluates the satisfaction of the structural reliability. In contrast, 
in this paper we consider a possibilistic model of the input distribution parameters. 
Hence, what this approach guarantees is a level of robustness [4] of the satisfaction 
of structural the reliability. In general, a possibilistic model may be less information-
sensitive, and hence, useful when reliable statistical information of the input distri-
bution parameters is unavailable.

From another perspective, with reference to Schöbi and Sudret [52], the uncer-
tainty model presented in this paper can be viewed as follows: Uncertainty in a 
structural system is often divided into aleatory uncertainty and epistemic uncertainty 

4 The distributional p-box specifies the distribution type, and the upper and lower bounds of the value 
of the (cumulative) distribution function at each value of a random variable. In contrast, in this study, we 
specify the sets of realizations of the expected value vector and variance-covariance matrix.
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[49]. Aleatory uncertainty, namely natural variability, is reflected by an (uncertain) 
input distribution. Epistemic uncertainty, namely state-of-knowledge uncertainty, is 
reflected by uncertainty in the input distribution moments. Thus, in our model, the 
aleatory uncertainty is probabilistic, whereas the epistemic uncertainty is possibilis-
tic. That is, the state-of-knowledge uncertainty is represented as an uncertainty set 
of the input distribution moments.

We assume that only the design variables possess uncertainty, and that variation 
of a performance requirement can be approximated as a linear function of uncertain 
perturbations of the design variables. Furthermore, we do not consider an optimiza-
tion problem with variations in the structural topology. We consider two concrete 
convex sets for the uncertainty model of moments of the input distribution. We dem-
onstrate that the robust reliability constraint, i.e., the constraint that the structural 
reliability is no less than a specified value for any possible realizations of the input 
distribution moments, can be reduced to a system of nonlinear matrix inequalities. 
This reduction essentially follows the concept presented by El Ghaoui et al. [15] for 
computing the worst-case value-at-risk in financial engineering.5 Nonlinear matrix 
inequality constraints can be dealt with within the framework of nonlinear semidefi-
nite programming (nonlinear SDP) [59]. In this manner, an RBDO problem under 
uncertainty in the input distribution moments can be converted into a deterministic 
optimization problem. It is worth noting that several applications of linear and non-
linear SDPs, as well as eigenvalue optimization, exist for the robust design optimiza-
tion of structures [7, 21–23, 30, 33, 38, 54, 55].

The remainder of this paper is organized as follows: In Sect. 2, we consider the 
reliability constraint when the input distribution is precisely known, and describe 
several fundamental properties. Section  3 presents the main result; we consider 
uncertainty in the expected value vector and the variance-covariance matrix of the 
input distribution, and examine the constraint that, for all possible realizations of the 
input distribution, the failure probability is no greater than a specified value. Sev-
eral extensions of the obtained result are discussed in Sect. 4. Section 5 presents the 
results of the numerical experiments. The conclusions are summarized in Sect. 6.

In our notation, ⊤ denotes the transpose of a vector or matrix. All vec-
tors are column vectors. We use I to denote the identity matrix. For two matri-
ces X = (Xij) ∈ ℝ

m×n and Y = (Yij) ∈ ℝ
m×n , X ∙ Y  represents the inner prod-

uct of X and Y, which is defined by X ∙ Y = tr(X⊤Y) =
∑n

i=1

∑n

j=1
XijYij . For a 

vector x = (xi) ∈ ℝ
n , the notation ‖x‖1 , ‖x‖2 , and ‖x‖∞ designate its �1 -, �2 -, and 

 �∞-norms, respectively, i.e.,

‖x‖1 = �x1� + �x2� +⋯ + �xn�,
‖x‖2 =

√
x⊤x,

‖x‖∞ = max{�x1�, �x2�,… , �xn�}.

5 Diverse extensions of the methodology in El Ghaoui et al. [15] can be found in the literature on distri-
butionally robust optimization [14, 18, 58].
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For a matrix X = (Xij) ∈ ℝ
m×n , the matrix norms ‖X‖1,1 , ‖X‖F , and ‖X‖∞,∞ are 

defined by

Let Sn denote the set of n × n symmetric matrices. We write Z ⪰ 0 if Z ∈ S
n is 

positive semidefinite. Define Sn
+
 by Sn

+
= {Z ∈ S

n ∣ Z ⪰ 0} . For a positive definite 
matrix Z ∈ S

n , the notation Z1∕2 designates its symmetric square root, i.e., Z1∕2 ∈ S
n 

satisfying Z1∕2Z1∕2 = Z . We use Z−1∕2 to denote the inverse matrix of Z1∕2 . We use 
�(�,�) to denote the multivariate normal distribution with an expected value vector 
� and a variance-covariance matrix � . The expected value and variance of a random 
variable x ∈ ℝ are denoted by E[x] and Var[x] = E[(x − E[x])2] , respectively.

2  Reliability constraint with specified moments

In this section, we assume that the expected value vector and variance-covariance 
matrix of the probability distribution of the design variable vector are precisely known. 
We first recall the reliability constraint, and subsequently derive its alternative expres-
sion that will be used in Sect. 3 to address uncertainty in the probability distribution.

Let x ∈ ℝ
n denote a design variable vector, where n is the number of design vari-

ables. Assume that the performance requirement in a design optimization problem is 
expressed as

where g ∶ ℝ
n
→ ℝ is differentiable. For simplicity, suppose that the design optimi-

zation problem has only one constraint; the case in which more than one constraints 
exist is discussed in Sect. 4.

Assume that x is decomposed additively as

where � is a random vector and x̃ is a constant (i.e., non-random) vector. Therefore, 
in the design optimization problem considered in this study, the decision variable to 
be optimized is x̃ . We use � ∈ ℝ

n and � ∈ S
n to denote the expected value vector 

and variance-covariance matrix of � , respectively, i.e.,

It should be noted that � is positive definite. Throughout the paper, we assume 
that, among the parameters in a structural system, only � possesses uncertainty. 

‖X‖1,1 =
n�
i=1

n�
j=1

�Xij�,

‖X‖F =
√
X ∙ X,

‖X‖∞,∞ = max{�Xij� ∣ i = 1,… ,m, j = 1,… , n}.

(1)g(x) ≤ 0,

x = x̃ + � ,

� = E[�],

𝛴 = E
[
(� − E[�])(� − E[�])⊤

]
.
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Furthermore, we restrict our discussion to optimization without changes in the struc-
tural topology; i.e., we do not consider topology optimization.6

For simplicity and clarity of the discussion, we assume � ∼ �(�,�) in Sects. 2 
and  3. In fact, the results that are established in these sections can be extended to the 
case in which the probability distribution type is unknown; in this case we require 
that the reliability constraint should be satisfied for any probability distribution with 
moments belonging to a specified set. We defer this case until Sect. 4.

As x is a random vector, g(x) is a random variable. Therefore, constraint (1) 
should be considered in a probabilistic sense, which yields the reliability constraint

Here, the left side denotes the probability that g(x) = g(x̃ + �) is no greater than 0 
when � follows �(�,�) , and � ∈]0, 1[ on the right-hand side is the specified upper 
bound for the failure probability. Let glin(x) denote the first-order approximation of 
g(x) centered at x = x̃ , i.e.,

Throughout the paper, we consider an approximation of constraint (2)

i.e.,

Therefore, the corresponding RBDO problem has the following form: 

where f ∶ ℝ
n
→ ℝ is the objective function, X ⊆ ℝ

n is a given closed set, and the 
constraint x̃ ∈ X corresponds to, e.g., the side constraints on the design variables.

According to the basic property of the normal distribution, we can readily obtain 
the following reformulation of the reliability constraint.

Theorem 1 Define � by

(2)P
�(�,�){g(x) ≤ 0} ≥ 1 − �.

glin(x) = g(x̃) + ∇g(x̃)⊤� (≃ g(x)).

(3)P
�(�,�){g

lin(x) ≤ 0} ≥ 1 − �,

(4)P
�(�,𝛴){g(x̃) + ∇g(x̃)⊤� ≤ 0} ≥ 1 − 𝜖.

(5a)Minimize f (x̃)

(5b)subject to x̃ ∈ X,

(5c)P
�(�,𝛴){g(x̃) + ∇g(x̃)⊤� ≤ 0} ≥ 1 − 𝜖,

� = −�−1(�),

6 In topology optimization, it would be appropriate to consider the design variables of the removed 
structural elements as non-random variables. We do not discuss this issue in this paper.
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where � is the (cumulative) distribution function of the standard normal distribution 
�(0, 1) . Then, x̃ ∈ X satisfies (4) if and only if it satisfies

Proof As glin(x) follows the normal distribution, it is standardized by

By using this relation, we can eliminate glin(x) from (3) (i.e., (4)) as follows:

This inequality is equivalently rewritten by using the distribution function �:

Through direct calculations, we can observe that the expected value of glin(x) is

Moreover, the variance is

where the definition of the variance-covariance matrix of � is used for the final 
equality.   ◻

In Sect. 3, we deal with the case in which � and � are known imprecisely. For 
this purpose, we reformulate 𝜅‖𝛴1∕2∇g(x̃)‖2 in (6) into a form that is suitable for 
analysis. The following theorem is obtained in the same manner as in El Ghaoui 
et al. [15, Theorem 1].

Theorem 2 For 𝜅 > 0 , � ∈ S
n
+
 , and ∇g(x̃) ∈ ℝ

n , we obtain

(6)g(x̃) + ∇g(x̃)⊤� + 𝜅‖𝛴1∕2∇g(x̃)‖2 ≤ 0.

z =
glin(x) − E[glin(x)]√

Var[glin(x)]
∼ �(0, 1).

P
�(0,1)

�
z ≤ −

E[glin(x)]√
Var[glin(x)]

�
≥ 1 − �.

−
E[glin(x)]√
Var[glin(x)]

≥ �−1(1 − �) = −�−1(�).

E[glin(x)] = g(x̃) + ∇g(x̃)⊤�.

Var[glin(x)] = E
[
(glin(x) − E[glin(x)])2

]

= E
[(
(g(x̃) + ∇g(x̃)⊤�) − (g(x̃) + ∇g(x̃)⊤�)

)2]

= E
[(
∇g(x̃)⊤(� − �)

)2]

= E
[
∇g(x̃)⊤(� − �)(� − �)⊤∇g(x̃)

]

= ∇g(x̃)⊤E
[
(� − �)(� − �)⊤

]
∇g(x̃)

= ∇g(x̃)⊤𝛴∇g(x̃),
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Proof We first demonstrate that the left side of the equation can be reduced to

For this observation, we apply the Lagrange multiplier method to the equality con-
strained maximization problem on the right side of (7). That is, the Lagrangian 
L1 ∶ ℝ

n ×ℝ → ℝ is defined by

where � ∈ ℝ is the Lagrange multiplier. The stationarity condition of L1 is

By solving this stationarity condition, we can observe that

are optimal. Hence, the optimal value is

which is reduced to the left side of (7).
Subsequently, it can be observed that the right side of (7) is further reduced to

Here, the first equality follows from the fact that the maximization of a linear func-
tion in an ellipsoid results in an optimal solution that lies on the boundary of the 
ellipsoid, whereas the final equality follows from the fact that the positive semidefi-
nite constraint is equivalent to the nonnegative constraint on the Schur complement 
of � in the corresponding matrix, i.e., 𝜅2 − �⊤𝛴−1� ≥ 0 ; see [9, Appendix A.5.5]. It 
is worth noting that the final expression in (8) is an SDP problem.

𝜅‖𝛴1∕2∇g(x̃)‖2 = min
𝛬∈Sn, z∈ℝ

�
𝛴 ∙ 𝛬 + 𝜅2z

�����

�
𝛬 ∇g(x̃)∕2

∇g(x̃)⊤∕2 z

�
⪰ 0

�
.

(7)𝜅‖𝛴1∕2∇g(x̃)‖2 = max
�∈ℝn

{∇g(x̃)⊤� ∣ ‖𝛴−1∕2�‖2 = 𝜅}.

L1(� ;𝜇) = ∇g(x̃)⊤� +
𝜇

2
(𝜅2 − �⊤𝛴−1�),

𝜕L1

𝜕�
= ∇g(x̃) − 𝜇𝛴−1� = 0,

𝜕L1

𝜕𝜇
= 𝜅2 − �⊤𝛴−1� = 0.

� =
1

𝜇
𝛴∇g(x̃), 𝜇 =

‖𝛴1∕2∇g(x̃)‖2
𝜅

∇g(x̃)⊤� = ∇g(x̃)⊤
𝜅𝛴∇g(x̃)

‖𝛴1∕2∇g(x̃)‖2
,

(8)

max
�∈ℝn

{∇g(x̃)⊤� ∣ ‖𝛴−1∕2�‖2 = 𝜅}

= max
�∈ℝn

{∇g(x̃)⊤� ∣ ‖𝛴−1∕2�‖2 ≤ 𝜅}

= max
�∈ℝn

�
∇g(x̃)⊤�

�����

�
𝛴 �

�⊤ 𝜅2

�
⪰ 0

�
.
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Finally, we demonstrate that the right side of the proposition in this theorem 
corresponds to the dual problem of the SDP problem in (8). As this dual problem 
is strictly feasible, the proposition follows from the strong duality of the SDP [10, 
Sect.  11.3]. We can derive the dual problem of (8) as follows. The Lagrangian is 
defined by

where z ∈ ℝ , � ∈ ℝ
n , and � ∈ S

n are the Lagrange multipliers. Indeed, because the 
positive semidefinite cone satisfies [31, Fact 1.3.17]

we can confirm that the SDP problem in (8) is equivalent to

The dual problem is defined by

As (9) can be rewritten as

we obtain

Therefore, the dual problem in (11) corresponds to the right side of the proposition 
of the theorem.   ◻

(9)L2(� ;𝛬,�, z) =

⎧
⎪⎨⎪⎩

∇g(x̃)⊤� +

�
𝛬 �

�⊤ z

�
∙

�
𝛴 �

�⊤ 𝜅2

�
if

�
𝛬 �

�⊤ z

�
⪰ 0,

+∞ otherwise,

(10)inf
S∈Sn

{S ∙ T ∣ S ⪰ 0} =

{
0 if T ⪰ 0,

−∞ otherwise,

max
�

inf
�,�, z

L2(� ;�,�, z).

(11)min
�,�, z

sup
�

L2(� ;�,�, z).

L2(� ;𝛬,�, z) =

⎧⎪⎨⎪⎩

(∇g(x̃) + 2�)⊤� + 𝛴 ∙ 𝛬 + 𝜅2z if

�
𝛬 �

�⊤ z

�
⪰ 0,

+∞ otherwise,

sup
�

L2(� ;𝛬,�, z) =

⎧⎪⎨⎪⎩

𝛴 ∙ 𝛬 + 𝜅2z if

�
𝛬 �

�⊤ z

�
⪰ 0,∇g(x̃) + 2� = 0,

+∞ otherwise.
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3  Worst‑case reliability under uncertainty in moments

In this section, we consider the case in which the moments (in this study, the 
expected value vector and variance-covariance matrix) of the design variable vector 
are uncertain, or not perfectly known. Specifically, they are only known to belong 
to a given set, which is referred to as the uncertainty set. We require the structure 
to satisfy the reliability constraint for any moments in the uncertainty set. In other 
words, we require that the failure probability in the worst case is not larger than a 
specified value. We demonstrate that this requirement can be converted into a form 
of conventional constraints in deterministic optimization.

3.1  Convex uncertainty model of moments

Let U� ⊂ ℝ
n and U𝛴 ⊂ S

n
+
 denote the uncertainty sets, i.e., the sets of all possible 

realizations, of � and � , respectively. Namely, we only know that � and � satisfy

Assume that U� and U� are compact convex sets. For notational simplicity, we write 
(�,�) ∈ U if � ∈ U� and � ∈ U� hold.

Recall that we consider the reliability constraint in (4) with a linearly approxi-
mated constraint function. The robust counterpart of (4) against uncertainty in � and 
� is formulated as

Thus, we require that the reliability constraint should be satisfied for any normal 
distribution corresponding to possible realizations of � and � . This requirement is 
equivalently rewritten as

That is, the reliability constraint should be satisfied in the worst case.
With the aid of Theorems 1 and 2, the following theorem presents an equivalent 

reformulation of (13).

Theorem 3 x̃ ∈ X satisfies (13) if and only if there exists a pair of z ∈ ℝ and � ∈ S
n 

satisfying

� ∈ U�,

� ∈ U� .

(12)P
�(�,𝛴){g(x̃) + ∇g(x̃)⊤� ≤ 0} ≥ 1 − 𝜖, ∀(�,𝛴) ∈ U.

(13)min
(�,𝛴)∈U

{
P
�(�,𝛴){g(x̃) + ∇g(x̃)⊤� ≤ 0}

}
≥ 1 − 𝜖.

(14)g(x̃) +max{∇g(x̃)⊤� ∣ � ∈ U�} +max{𝛴 ∙ 𝛬 ∣ 𝛴 ∈ U𝛴} + 𝜅2z ≤ 0,

(15)
[

𝛬 ∇g(x̃)∕2

∇g(x̃)⊤∕2 z

]
⪰ 0.
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Proof It follows from Theorem 1 that (13) is equivalent to

Furthermore, application of Theorem 2 yields

In the above expression, we observe that U is compact and convex, and the feasible 
set for the minimization is convex. Moreover, the objective function is linear in � 
and � for fixed z and � , and it is linear in z and � for fixed � and � . Therefore, the 
minimax theorem [10, Theorem 8.8] asserts that (17) is equivalent to

This inequality holds if and only if there exists a feasible pair of z ∈ ℝ and � ∈ S
n 

satisfying

which concludes the proof.   ◻

The conclusion of Theorem 3 is quite abstract in the sense that the concrete forms 
of U� and U� are not specified. To use this result into design optimization in prac-
tice, max{∇g(x̃)⊤� ∣ � ∈ U�} and max{� ∙ � ∣ � ∈ U�} in (14) need to be reduced 
to tractable forms. A description of this process is provided in Sects. 3.2 and 3.3, 
where we consider two specific models of U� and U�.

3.2  Uncertainty model with �∞‑norm

Let �̃ ∈ ℝ
n and �̃� ∈ S

n denote the best estimates of � and � , respectively, where �̃� 
is positive definite. In this section, we specialize the results of Sect. 3.1 to the case in 
which the uncertainty sets are provided as follows:

In the above, z1 ∈ ℝ
m and Z2 ∈ S

k are unknown vector and matrix reflecting 
the uncertainty in � and � , respectively, A ∈ ℝ

n×m and B ∈ ℝ
n×k are constant 

(16)max
(�,𝛴)∈U

{g(x̃) + ∇g(x̃)⊤� + 𝜅‖𝛴1∕2∇g(x̃)‖} ≤ 0.

(17)

max
(�,𝛴)∈U

{
g(x̃) + ∇g(x̃)⊤�

+min
z,𝛬

{
𝛴 ∙ 𝛬 + 𝜅2z

|||||

[
𝛬 ∇g(x̃)∕2

∇g(x̃)⊤∕2 z

]
⪰ 0

}}
≤ 0.

g(x̃) +min
z,𝛬

max
(�,𝛴)∈U

{
∇g(x̃)⊤� + 𝛴 ∙ 𝛬 + 𝜅2z

|||||

[
𝛬 ∇g(x̃)∕2

∇g(x̃)⊤∕2 z

]
⪰ 0

}
≤ 0.

g(x̃) + max
(�,𝛴)∈U

{∇g(x̃)⊤� + 𝛴 ∙ 𝛬 + 𝜅2z} ≤ 0,

(18)U� = {�̃ + Az1 ∣ ‖z1‖∞ ≤ 𝛼, z1 ∈ ℝ
m},

(19)U𝛴 = {�̃� + BZ2B
⊤ ∣ ‖Z2‖∞,∞ ≤ 𝛽, Z2 ∈ S

k} ∩ S
n
+
.
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matrices, and � and � are nonnegative parameters representing the magnitudes of the 
uncertainties.

Example 1 A simple example of the uncertainty set in (18) is a box-constrained 
model. For example, if we set �̃ = 0 and A = I with m = n , (18) is reduced to

This means that the expected value vector � belongs to a hypercube that is centered 
at the origin, with edges that are parallel to the axes and with an edge length of 2� . 
In other words, each component �j of � can take any value in [−�, �] . Similarly, a 
simple example of the uncertainty set in (19) is that with B = I and k = n , i.e.,

This means that, roughly speaking, the variance-covariance matrix � has compo-
nent-wise uncertainty. More precisely, for each i, j = 1,… , n we have

and � should be positive semidefinite. It should be noted that, even if �̃� and � satisfy 
�̃� − 𝛽11

⊤
≻ 0 and �̃� + 𝛽11

⊤
≻ 0 (where 1 denotes an all-ones column vector), (20) 

does not necessarily imply 𝛴 ≻ 0 . Indeed, as for the example with n = 2 , consider

Then we have

and, for example, we observe that

satisfies (20); however, 𝛴 ⊁ 0 .   ◻

Two technical lemmas are required to derive the main result in this section stated 
in Theorem 4. Lemma 1 explicitly computes the value of max{∇g(x̃)⊤� ∣ � ∈ U�} 
in (14). Lemma 2 converts max{� ∙ � ∣ � ∈ U�} in (14) into a tractable form.

Lemma 1 For U� defined by (18), we obtain

Proof The substitution of (18) into the left side yields

U� = {z1 ∈ ℝ
n ∣ ‖z1‖∞ ≤ �}.

U𝛴 = {�̃� + Z2 ∣ ‖Z2‖∞,∞ ≤ 𝛽, Z⊤

2
= Z2} ∩ S

n
+
.

(20)�̃�ij − 𝛽 ≤ 𝛴ij ≤ �̃�ij + 𝛽, 𝛴ji = 𝛴ij,

�̃� =

[
3 2

2 3

]
, 𝛽 = 2.

�̃� − 𝛽11⊤ =

[
1 0

0 1

]
≻ 0, �̃� + 𝛽11⊤ =

[
5 4

4 5

]
≻ 0,

� =

[
2 3

3 2

]

max
�∈U�

{∇g(x̃)⊤�} = ∇g(x̃)⊤�̃ + 𝛼‖A⊤∇g(x̃)‖1.
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It is known that the dual norm of the �∞-norm is the �1-norm [9, Appendix A.1.6], 
i.e.,

Therefore, we obtain

which concludes the proof.   ◻

Lemma 2 For U� defined by (19), we obtain

Proof We demonstrate that the right side corresponds to the dual problem of the 
SDP problem on the left side. Therefore, this proposition follows from the strong 
duality of SDP [10, Sect. 11.3], because the dual problem is strictly feasible.

As preliminaries, for a convex cone defined by K = {(s, S) ∈ ℝ × S
k ∣ ‖S‖1,1 ≤ s} , 

it can be observed that its dual cone is expressed by [9, Example 2.25]

from which we obtain

Using definition (19) of U� , the left side of the proposition of this theorem can be 
reduced to

The Lagrangian of this optimization problem is defined by

max
�∈U�

{∇g(x̃)⊤�}

= ∇g(x̃)⊤�̃ +max
z1

{∇g(x̃)⊤Az1 ∣ ‖z1‖∞ ≤ 𝛼}

= ∇g(x̃)⊤�̃ + 𝛼max
z1

{(A⊤∇g(x̃))⊤z1 ∣ ‖z1‖∞ ≤ 1}.

max
t∈ℝn

{s⊤t ∣ ‖t‖∞ ≤ 1} = ‖s‖1.

max
z1

{(A⊤∇g(x̃))⊤z1 ∣ ‖z1‖∞ ≤ 1} = ‖A⊤∇g(x̃)‖1,

max
𝛴∈U𝛴

{𝛬 ∙ 𝛴} = min
𝛺∈Sk

+

{�̃� ∙ (𝛬 +𝛺) + 𝛽‖B⊤(𝛬 +𝛺)B‖1,1}.

{(t, T) ∈ ℝ × S
k ∣ st + S ∙ T ≥ 0 (∀(s, S) ∈ K)}

= {(t, T) ∈ ℝ × S
k ∣ ‖T‖∞,∞ ≤ t},

(21)inf
s∈ℝ, S∈Sk

{st + S ∙ T ∣ ‖S‖1,1 ≤ s} =

�
0 if ‖T‖∞,∞ ≤ t,

−∞ otherwise.

(22)

max
𝛴∈U𝛴

{𝛬 ∙ 𝛴} = max
Z2∈S

k
{𝛬 ∙ (�̃� + BZ2B

⊤) ∣ ‖Z2‖∞,∞ ≤ 𝛽, �̃� + BZ2B
⊤ ⪰ 0}.
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where v ∈ ℝ , V ∈ S
k , and � ∈ S

n are the Lagrange multipliers. Indeed, by using 
(10) and (21), we can confirm that problem (22) is equivalent to

Accordingly, the dual problem is defined by

As (23) can be rewritten as

we obtain

Therefore, the dual problem in (24) is explicitly expressed as follows:

Constraint ‖B⊤(𝛬 +𝛺)B‖1,1 ≤ v becomes active at an optimal solution, which con-
cludes the proof.   ◻

We are now in position to state the main result of this section. We obtain the 
following fact using Theorem 3, Lemmas 1, and 2.

Theorem 4 Let U� and U� be the sets defined by (18) and (19), respectively. Then, 
x̃ ∈ X satisfies (13) if and only if there exists a pair of z ∈ ℝ and W ∈ S

n satisfying

(23)

L(Z2;v,V ,𝛺)

=

⎧
⎪⎨⎪⎩

𝛬 ∙ (�̃� + BZ2B
⊤) + (𝛽v + Z2 ∙ V)

+𝛺 ∙ (�̃� + BZ2B
⊤) if ‖V‖1,1 ≤ v,𝛺 ⪰ 0,

+∞ otherwise,

max
Z2

inf
v,V ,�

L(Z2;v,V ,�).

(24)min
v,V ,�

sup
Z2

L(Z2;v,V ,�).

L(Z2;v,V ,𝛺) =

⎧⎪⎨⎪⎩

Z2 ∙ (V + B⊤(𝛬 +𝛺)B)

+ �̃� ∙ (𝛬 +𝛺) + 𝛽v if ‖V‖1,1 ≤ v,𝛺 ⪰ 0,

+∞ otherwise,

sup
Z2

L(Z2;v,V ,𝛺)

=

�
�̃� ∙ (𝛬 +𝛺) + 𝛽v if ‖V‖1,1 ≤ v,𝛺 ⪰ 0,V = −B⊤(𝛬 +𝛺)B,

+∞ otherwise.

Minimize
v∈V ,𝛬∈Sk ,𝛺∈Sk

�̃� ∙ (𝛬 +𝛺) + 𝛽v

subject to ‖B⊤(𝛬 +𝛺)B‖1,1 ≤ v,

𝛺 ⪰ 0.

(25)g(x̃) + ∇g(x̃)⊤�̃ + 𝛼‖A⊤∇g(x̃)‖1 + �̃� ∙W + 𝛽‖B⊤WB‖1,1 + 𝜅2z ≤ 0,
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Proof It follows from Lemmas  1 and 2 that (14) and (15) in Theorem  3 can be 
equivalently rewritten as

We use W = � +� to observe that this is reduced to

which is straightforwardly equivalent to (25) and (26).   ◻

It should be emphasized that Theorem  4 converts the set of infinitely many 
reliability constraints in (12) into two deterministic constraints, i.e., (25) and 
(26). The latter constraints can be handled within the framework of conventional 
(deterministic) optimization.

Remark 1 For non-probabilistic modelings of uncertainty, it is commonly assumed 
that each uncertainty parameter can take any value belonging to a specified close 
interval. Such an uncertainty model is used in the worst-case structural analysis 
known as interval analysis [11, 20, 40, 42, 45], based on interval linear algebra [46], 
and worst-case robust optimization of structures [32, 37]. Constraint (12) that is 
considered in this study can be linked to the worst-case approaches as follows. Con-
sider an extreme case that the variances and covariances of �1,… , �n are sufficiently 
small, i.e., � satisfies 𝜖I ⪰ 𝛴 with sufficiently small 𝜖 > 0 . Then, roughly speaking, 
the reliability constraint in (4) can be approximated as

Moreover, we use � = 0 in (19), i.e., U𝛴 = {�̃�} and 𝛴 = �̃� . In accordance with the 
approximation in (27), the distributionally-robust reliability constraint in (12) can be 
approximated as

It follows from (18) that this constraint can be explicitly rewritten as

(26)
[

W ∇g(x̃)∕2

∇g(x̃)⊤∕2 z

]
⪰ 0.

g(x̃) + ∇g(x̃)⊤�̃ + 𝛼‖A⊤∇g(x̃)‖1 + �̃� ∙ (𝛬 +𝛺)

+ 𝛽‖B⊤(𝛬 +𝛺)B‖1,1 + 𝜅2z ≤ 0,

𝛺 ⪰ 0,�
𝛬 ∇g(x̃)∕2

∇g(x̃)⊤∕2 z

�
⪰ 0.

g(x̃) + ∇g(x̃)⊤�̃ + 𝛼‖A⊤∇g(x̃)‖1 + �̃� ∙W + 𝛽‖B⊤WB‖1,1 + 𝜅2z ≤ 0,

W − 𝛬 ⪰ 0,�
𝛬 ∇g(x̃)∕2

∇g(x̃)⊤∕2 z

�
⪰ 0,

(27)g(x̃) + ∇g(x̃)⊤� ≤ 0.

g(x̃) + ∇g(x̃)⊤� ≤ 0, ∀� ∈ U�.
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In this case, each component of z1 belongs to closed interval [−�, �] , and the con-
straint is imposed for all possible realizations of such z1 . Thus, we can observe that 
(28) has a form similar to that considered in the worst-case approaches with an 
interval uncertainty model. It should be noted that the latter approaches usually do 
not resort to linear approximation of the constraint function, unlike (28).   ◻

3.3  Uncertainty model with �
2
‑norm

In this section, we consider the uncertainty sets that are defined by

Example 2 As a simple example, we use �̃ = 0 and A = I with m = n to obtain

This means that the expected value vector � belongs to a hypersphere that is cen-
tered at the origin with radius � . Similarly, using B = I and k = n , we obtain

This means that the variance-covariance matrix � satisfies

and is symmetric positive semidefinite.   ◻

In a manner parallel to the proofs of Lemmas 1 and 2, we can obtain

In the above, the facts

and

(28)g(x̃) + ∇g(x̃)⊤�̃ + (A⊤∇g(x̃))⊤z1 ≤ 0, ∀‖z1‖∞ ≤ 𝛼.

U� = {�̃ + Az1 ∣ ‖z1‖2 ≤ 𝛼, z1 ∈ ℝ
m},

U𝛴 = {�̃� + BZ2B
⊤ ∣ ‖Z2‖F ≤ 𝛽, Z2 ∈ S

k} ∩ S
n
+
.

U� = {z1 ∈ ℝ
n ∣ ‖z1‖2 ≤ �}.

U𝛴 = {�̃� + Z2 ∣ ‖Z2‖F ≤ 𝛽, Z⊤

2
= Z2} ∩ S

n
+
.

n∑
i=1

n∑
j=1

(𝛴ij − �̃�ij)
2
≤ 𝛽2

max
�∈U�

{∇g(x̃)⊤�} = ∇g(x̃)⊤�̃ + 𝛼‖A⊤∇g(x̃)‖2,
max
𝛴∈U𝛴

{𝛬 ∙ 𝛴} = min
𝛺∈Sk

{�̃� ∙ (𝛬 +𝛺) + 𝛽‖B⊤(𝛬 +𝛺)B‖F ∣ 𝛺 ⪰ 0}.

max
t∈ℝn

{s⊤t ∣ ‖t‖2 ≤ 1} = ‖s‖2
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have been used.
Accordingly, analogous to Theorem 4, we can obtain the following conclusion: 

x̃ ∈ X satisfies (13) if and only if there exists a pair of z ∈ ℝ and W ∈ S
n satisfying

Remark 2 The definitions of uncertainty sets U� and U� that are adopted in this sec-
tion are motivated by the ellipsoidal uncertainty sets that are widely used in robust 
structural optimization [7, 36, 38, 54, 55] as well as the so-called convex model 
approach to uncertainty analysis [3, 5, 50].   ◻

3.4  Truss optimization under compliance constraint

In this section, we present the manner in which the results established in the preced-
ing sections can be employed for a specific RBDO problem. As a simple example, 
we consider a reliability constraint on the compliance under a static external load. 
We assume linear elasticity and small deformation.

For ease of comprehension, consider the design optimization of a truss. A truss 
is an assemblage of straight bars (referred to as members) connected by pin-joints 
(referred to as nodes) that do not transfer moment. In truss optimization, xj denotes 
the cross-sectional area of member j (j = 1,… , n) , where n denotes the number of 
members. We attempt to minimize the structural volume of the truss c⊤x under the 
compliance constraint, where x is a design variable to be optimized and cj denotes 
the undeformed length of member j. Figure 1 presents an example of a planar truss, 
where the bars and circles correspond to members and nodes, respectively. The loca-
tions of the bottom two nodes and the top left node are fixed. In this example, n = 3 , 
c1 = 1,m , c2 =

√
2m , and c3 = 1m . Let u ∈ ℝ

d denote the nodal displacement 

{(t, T) ∈ ℝ × S
k ∣ st + S ∙ T ≥ 0 (∀(s, S) ∶ ‖S‖F ≤ s)}

= {(t, T) ∈ ℝ × S
k ∣ ‖T‖F ≤ t}

g(x̃) + ∇g(x̃)⊤�̃ + 𝛼‖A⊤∇g(x̃)‖2 + �̃� ∙W + 𝛽‖B⊤WB‖F + 𝜅2z ≤ 0,�
W ∇g(x̃)∕2

∇g(x̃)⊤∕2 z

�
⪰ 0.

Fig. 1  Example of planar truss
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vector, where d is the number of degrees of freedom of the nodal displacements. In 
the example depicted in Fig. 1, we have d = 2.

Let p ∈ ℝ
d denote the static external load vector. For a truss design x , the com-

pliance of the truss is defined by

where K(x) ∈ S
d is the stiffness matrix of the truss. The compliance is a typical 

measure of the flexibility of structures: lower compliance indicates higher the struc-
tural stiffness. The first-order approximation of the compliance constraint is given 
by

where �̄� (> 0) is a specified upper bound for the compliance. Accordingly, the design 
optimization problem to be solved is formulated as follows: 

In the above, the specified lower bound for the member cross-sectional area, which 
is denoted by x̄j (j = 1,… , n) , is positive, because in this paper we restrict our dis-
cussion to optimization problems without variations in the structural topology.

Regarding the uncertainty sets of the moments, consider, for example, U� and U� 
studied in Sect. 3.3. For simplicity, use A = B = I to obtain

From the result in Sect. 3.3, we see that problem (29) can be equivalently rewritten 
as follows: 

𝜋(x) = sup
u∈ℝd

{2p⊤u − u⊤K(x)u},

𝜋(x̃) + ∇𝜋(x̃)⊤� ≤ �̄�,

(29a)Minimize
x̃

c
⊤
x̃

(29b)subject to x̃ ≥ x̄,

(29c)P
�(�,𝛴){𝜋(x̃) + ∇𝜋(x̃)⊤� ≤ �̄�} ≥ 1 − 𝜖, ∀(�,𝛴) ∈ U.

U� = {�̃ + z1 ∣ ‖z1‖2 ≤ 𝛼, z1 ∈ ℝ
n},

U𝛴 = {�̃� + Z2 ∣ ‖Z2‖F ≤ 𝛽, Z2 ∈ S
n} ∩ S

n
+
.

(30a)Minimize
x̃, z,W

c
⊤
x̃

(30b)subject to x̃ ≥ x̄,

(30c)𝜋(x̃) + ∇𝜋(x̃)⊤�̃ + 𝛼‖∇𝜋(x̃)‖2 + �̃� ∙W + 𝛽‖W‖F + 𝜅2z ≤ �̄�,

(30d)
[

W ∇𝜋(x̃)∕2

∇𝜋(x̃)⊤∕2 z

]
⪰ 0.
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In the above, x̃ ∈ ℝ
n , z ∈ ℝ , and W ∈ S

n are variables to be optimized. It should be 
noted that problem (30) is a nonlinear SDP problem.

The remainder of this section is devoted to presenting a method for solving prob-
lem (30) that will be used for the numerical experiments in Sect. 5.

The method sequentially solves SDP problems that approximate problem (30), 
in a manner similar to sequential SDP methods for nonlinear SDP problems [38, 
59]. Let x̃k denote the incumbent solution that is obtained at iteration k − 1 . Define 
hk ∈ ℝ

n by

At iteration k, we replace ∇𝜋(x̃) in (30c) and (30d) with hk . Moreover, to deal with 
𝜋(x̃) in (30c), we use the fact that s ∈ ℝ satisfies

if and only if

is satisfied [31, Sect.  3.1]. It is worth noting that, for trusses, K(x̃) is linear in x̃ . 
Therefore, (31) is a linear matrix inequality with respect to x̃ and s, and hence can be 
handled within the framework of (linear) SDP. In this manner, we obtain the follow-
ing subproblem that is solved at iteration k for updating x̃k to x̃k+1 : 

As this is a linear SDP problem, it can be solved efficiently with a primal-dual inte-
rior-point method [1].

4  Extensions

Several extensions of the results obtained in Sect. 3 are discussed in this section.

hk = ∇𝜋(x̃k).

�(x) ≤ s

(31)
[
K(x̃) p

p⊤ s

]
⪰ 0

(32a)Minimize
x̃, z,w, s

c
⊤
x̃

(32b)subject to x̃ ≥ x̄,

(32c)
[
k(x̃) p

p⊤ s

]
⪰ 0,

(32d)s + h⊤
k
�̃ + 𝛼‖hk‖2 + �̃� ∙ w + 𝛽‖w‖F + 𝜅2z ≤ �̄�,

(32e)
[

w hk∕2

h⊤
k
∕2 z

]
⪰ 0.
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4.1  Robustness against uncertainty in distribution type

An important extension is that the obtained results can be applied to the case in 
which the moments as well as the probability distribution type are unknown. In this 
case, we consider any combination of all types of probability distributions and all 
possible moments (expected value vectors and variance-covariance matrices) in the 
uncertainty set, and the failure probability is required to be no greater than a speci-
fied value. This robustness against uncertainty in the distribution type is important 
as the input distribution is not necessarily known to be a normal distribution in 
practice.

Recall that, in Sects. 2 and 3, we assumed that the design variables, x , follows a 
normal distribution. Then we consider the robust reliability constraint in (13). For 
the sake of clarity, we restate this problem setting in a slightly different manner. We 
have assumed that the random vector � can possibly follow any normal distribution 
satisfying � ∈ U� and � ∈ U� . We use P

�
 to denote the set of such normal distribu-

tions, i.e.,

In other words, P
�
 is the set of all possible realizations of the input distribution. We 

write p ∈ P
�
 if p is one of such realizations. With this new notation, (13) can be 

equivalently rewritten as

For U� and U� defined in Sect. 3.2, Theorem 4 demonstrates that (34) is equivalent 
to (25) and (26).

We are now in position to consider any type of probability distribution. Only 
what we assume is that the input distribution satisfies � ∈ U� and � ∈ U� , where, 
for a while, we consider U� and U� defined in Sect. 3.2. We use P to denote the set 
of such distributions, i.e.,

Then, instead of (34), we consider the following constraint:

That is, we require the reliability constraint to be satisfied for any input distribution 
p satisfying p ∈ P . A main assertion of this section is that by simply setting

instead of � = −�−1(�) , constraint (36) is equivalent to (25) and (26) in Theorem 4. 
We can show this fact in the following manner. Let P(�,�) denote the set of prob-
ability distributions, the expected value vector and the variance-covariance matrix 

(33)P
�
= {�(�,�) ∣ � ∈ U�, � ∈ U�}.

(34)sup
p∈P

�

{
Pp{g(x̃) + ∇g(x̃)⊤� ≤ 0}

}
≥ 1 − 𝜖.

(35)P = {p ∣ p is a distribution with � ∈ U� &� ∈ U�}.

(36)sup
p∈P

{
Pp{g(x̃) + ∇g(x̃)⊤� ≤ 0}

}
≥ 1 − 𝜖.

(37)� =

√
1 − �

�
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of which are � and � , respectively. Observe that, with P(�,�) , (36) can be equiva-
lently rewritten as

With relation to the inner supremum, consider the condition

El Ghaoui et al. [15, Theorem 1] proved that (39) holds if and only if (6) of Theo-
rem 1 holds with � defined by (37). Therefore, all of the subsequent results estab-
lished in Sects. 2 and 3 hold by simply replacing the value of � with that in (37). 
Thus, the robust reliability constraint with an unknown distribution type is also 
reduced to the form in (25) and (26) of Theorem 4.

The results in Sect. 3.3, which were established for the �2-norm uncertainty model, 
are also extended to the case of an unknown distribution type by replacing � with the 
value in (37).

4.2  Multiple constraints

In Sects. 2 and 3, we have restricted our discussion to the case in which the design opti-
mization problem has a single performance requirement, (1). In this section, we discuss 
the treatment of multiple constraints.

Suppose that the performance requirement is written as

The first-order approximation yields

where glin
i
(x) = gi(x̃) + ∇gi(x̃)

⊤� (i = 1,… ,m) . Suppose that we impose a distribu-
tionally-robust reliability constraint for each i = 1,… ,m independently, i.e.,

In the above, P is the set of possible realizations of the input distribution (i.e., P is 
either P

�
 in (33) or P in (35)). It is worth noting that in (40) the worst case distri-

butions are considered independently for each i = 1,… ,m . Constraint (40) can be 
straightforwardly handled in the same manner as in Sect. 3.

In contrast, suppose that we consider a single (i.e., common) worst-case distribution 
for all i = 1,… ,m . Then the distributionally-robust reliability constraint is written as

(38)sup
(�,𝛴)∈U

{
sup

p∈P(�,𝛴)

{
Pp{g(x̃) + ∇g(x̃)⊤� ≤ 0}

}}
≥ 1 − 𝜖.

(39)sup
p∈P(�,𝛴)

{
Pp{g(x̃) + ∇g(x̃)⊤� ≤ 0}

}
≥ 1 − 𝜖.

gi(x) ≤ 0, i = 1,… ,m.

glin
i
(x) ≤ 0, i = 1,… ,m,

(40)sup
p∈P

{
Pp{g

lin
i
(x) ≤ 0}

}
≥ 1 − �, i = 1,… ,m.

(41)sup
p∈P

{
Pp{g

lin
i
(x) ≤ 0 (i = 1,… ,m)}

}
≥ 1 − �.
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Treatment of this constraint remains to be studied as future work. It is worth noting 
that constraint (40) is conservative compared with constraint (41).

5  Numerical examples

In Sect. 3.4 we observed that the optimization problem of trusses under the compli-
ance constraint can be reduced to problem (30). In this section, we solve this optimi-
zation problem numerically.

The algorithm presented in Sect. 3.4 was implemented in Matlab ver. 9.8.0.7 The 
SDP problem in (32) was solved using CVX ver. 2.2 [16, 17] with SeDuMi ver. 1.3.4 
[51, 53]. The computation was carried out on a 2.6 GHz Intel Core i7-9750H pro-
cessor with 32 GB RAM.

5.1  Example (I): two‑bar truss

Consider the plane truss depicted in Fig. 2. The truss has n = 2 members and d = 2 
degrees of freedom of the nodal displacements. The elastic modulus of the members 
is 20GPa . A vertical external force of 100 kN is applied to the free node. The upper 
bound for the compliance is �̄� = 100 J.

We first consider the uncertainty model with the �∞-norm, which was stud-
ied in Sect. 3.2. In the uncertainty model in (18) and (19), we use A = B = I with 
m = k = n , as considered in Example 1. The best estimates, or nominal values, of � 
and � are set to

Fig. 2  Problem setting of exam-
ple (I): two-bar truss

Table 1  Optimal solutions 
for example (I) with � = 0.01 , 
� = 0.2 , and � = 0.01 (the 
probability distributions 
are assumed to be normal 
distributions)

x
1
  (mm2) x

2
  (mm2) Obj. val.  (mm3) 𝜋(x̃) (J)

Nominal optim. 1500.0 2121.3 4.5000 × 10
6 100.000

�∞-norm unc. 1558.0 2203.4 4.6741 × 10
6 96.274

�
2
-norm unc. 1552.0 2194.8 4.6559 × 10

6 96.651

7 The source code for solving the optimization problems presented in Sect.  5 is available on-line at 
https:// github. com/ ykann o22/ moment_ worst/.

https://github.com/ykanno22/moment_worst/
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The uncertainty magnitudes are � = 0.2 and � = 0.01 . The specified upper bound 
for the failure probability is � = 0.01 . The optimal solution obtained by the proposed 
method is indicated in the row “ �∞-norm unc.” of Table 1, where “obj. val.” means 
the objective value at the obtained solution. For comparison, the optimal solution 
of the nominal optimization problem (i.e., the conventional structural volume mini-
mization under the compliance constraint without considering uncertainty) is also 
listed.

The optimization result is verified as follows. We randomly generate � ∈ U� and 
� ∈ U� , and subsequently generate 106 samples drawn from � ∼ �(�,�) . Figure 3a 
and b depict the samples of x = x̃ + � that are generated in this manner. Figure 3c pre-
sents the values of the linearly approximated constraint function,

�̃ = 0, �̃� =

[
0.07 0.02

0.02 0.07

]
.

g(x̃) + ∇g(x̃)⊤� = 𝜋(x̃) + ∇𝜋(x̃)⊤� − �̄�,

(a) (b)

(c)

Fig. 3  Example of Monte Carlo simulation for a single sample of � and � (example (I) with the �∞-norm 
uncertainty model; the probability distributions are assumed to be normal distributions). a Samples of 
x
1
= x̃

1
+ 𝜁

1
 , b samples of x

2
= x̃

2
+ 𝜁

2
 , and c computed values of g(x̃) + ∇g(x̃)⊤�
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for these samples. Therefore, the ratio of the number of samples for which these 
function values are positive to the number of all samples (i.e., 106 ) should be no 
greater than � (= 0.01) . We computed this ratio for each of the 104 randomly gener-
ated samples of � ∈ U� and � ∈ U� , where the continuous uniform distribution is 
used to generate the samples of the components of � and � . Figure 4a presents a his-
togram of the values of this ratio computed in this manner, i.e., it shows the distribu-
tion of the failure probability estimated by the double-loop Monte Carlo simulation. 
It can be observed from Fig. 4a that, for each of the 104 probability distribution sam-
ples, the failure probability is no greater than � . Thus, it is verified that the obtained 
solution satisfies the distributionally-robust reliability constraint in (13). Indeed, 
among these samples of the failure probability, the maximum value is 0.009054 

(a) (b)

Fig. 4  Results of double-loop Monte Carlo simulation (example (I) with the �∞-norm uncertainty model; 
the probability distributions are assumed to be normal distributions). a Failure probability of linearly 
approximated constraint g(x̃) + ∇g(x̃)⊤� ≤ 0 , and b failure probability of constraint g(x̃ + �) ≤ 0 without 
approximation

(a) (b)

Fig. 5  Optimal value (example (I) with the �∞-norm uncertainty model; the probability distributions are 
assumed to be normal distributions) versus a failure probability, and b magnitude of uncertainty
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(< 𝜖) . For reference, Fig. 4b presents a histogram of the failure probabilities com-
puted for the constraint function values without applying the linear approximation, 
i.e., g(x) = 𝜋(x) − �̄� . It can be observed from Fig.  4b that the failure probability 
exceeds the target value � (= 0.01) only in rare cases. Figure 5a shows the variations 
in the optimal value with respect to the upper bound for the failure probability � , 
where � = 0.2 and � = 0.01 are fixed. As � decreases, the optimal value increases. 
In contrast, Fig. 5b shows the variations in the optimal value with respect to � and 
� , where � = 0.01 is fixed. Although only the values of � are provided in Fig. 5b, the 
values of � ∈ [0, 0.02] also vary in a manner proportional to � . The optimal value 
increases as the magnitude of the uncertainty increases.

Subsequently, we consider the uncertainty model with the �2-norm, which 
was studied in Sect. 3.3. The uncertainty set is defined with A, B, �̃ , �̃� , � , and � 
used above. The specified upper bound for the failure probability is � = 0.01 . The 
obtained optimal solution is indicated in the row “ �2-norm unc.” of Table 1. It can 
be observed that the objective value is small compared to the solution with the �∞

-norm uncertainty model. This is natural because, with the common values of � 
and � , the uncertainty set with the �2-norm is included in the uncertainty set with 

Fig. 6  Results of double-
loop Monte Carlo simula-
tion (example (I) with the �

2

-norm uncertainty model; the 
probability distributions are 
assumed to be normal distribu-
tions). Failure probability of 
linearly approximated constraint 
g(x̃) + ∇g(x̃)⊤� ≤ 0

(a) (b)

Fig. 7  Optimal value (example (I) with the �
2
-norm uncertainty model; the probability distributions are 

assumed to be normal distributions) versus a failure probability, and b magnitude of uncertainty
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the �∞-norm. The optimization result is verified in the same manner as above. 
Figure  6 presents 104 samples of the failure probability, each of which is com-
puted with 106 samples of � . Figure 7a and b depict the variations in the optimal 
value with respect to the failure probability, � , and the uncertainty magnitudes � 
and � , respectively. These variations exhibit trends that are similar to those with 
the �∞-norm uncertainty model in Fig. 5a and b.

Finally, as discussed in Sect. 4.1, we consider, not only the normal distributions, 
but all of the probability distributions with � and � belonging to the uncertainty set. 
That is, the set of possible realizations of probability distributions is given by (35). 
Figure 8 displays the variations in the optimal value with respect to the failure prob-
ability, � , and the uncertainty magnitudes � and � (in the same manner as above, the 
values of � ∈ [0, 0.02] are varied in a manner proportional to � ). As expected, com-
pared to the results for the normal distributions in Figs. 5 and 7, the optimal value in 
Fig. 8 is large. Moreover, as � decreases, the optimal value in Fig. 8a and c increases 
drastically compared to the cases in Figs. 5a and 7a.

(a) (b)

(c) (d)

Fig. 8  Optimal value (example (I); no restriction on distribution type is assumed) versus a failure proba-
bility (with the �∞-norm uncertainty model), b magnitude of uncertainty ( �∞-norm), c failure probability 
(with the �

2
-norm uncertainty model), and d magnitude of uncertainty ( �

2
-norm)
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5.2  Example (II): 29‑bar truss

Consider the plane truss depicted in Fig. 9, where n = 29 and d = 20 . The elastic mod-
ulus of the members is 20GPa . Vertical external forces of 100 kN are applied to two 
nodes, as illustrated in Fig. 9. The upper bound for the compliance is �̄� = 1000 J . The 
lower bounds for the member cross-sectional areas are x̄j = 200mm2 (j = 1,… , n).

For the uncertainty model, we consider both the model with the �2-norm, using 
A = B = I with m = k = n . The best estimates of � and � are

�̃ = 0, �̃� = 0.05I + 0.02(11⊤),

Fig. 9  Problem setting of exam-
ple (II): 29-bar truss

Table 2  Optimal solutions of 
example (II) with � = 0.01 , 
� = 0.2 , and � = 0.01 
(probability distributions 
are assumed to be normal 
distributions)

Obj. val.  (mm3) 𝜋(x̃) (J)

Nominal optim. 1.6616 × 10
7 1000.00

�∞-norm unc. 1.7918 × 10
7 917.66

�
2
-norm unc. 1.7475 × 10

7 944.21

(a) (b)

Fig. 10  Optimal value (example (II) with the �
2
-norm uncertainty model; the probability distributions 

are assumed to be normal distributions) versus a failure probability and b magnitude of uncertainty
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where 1 ∈ ℝ
n is an all-ones column vector. The uncertainty magnitudes are � = 0.2 

and � = 0.01 . The specified upper bound for the failure probability is � = 0.01.
The optimization results obtained by the proposed method are listed in Table 2. 

Figure 10a and b present the variations in the optimal value with respect to the 
failure probability and the uncertainty magnitude, respectively.

(a) (b)

Fig. 11  Optimal value (example (II) with the �
2
-norm uncertainty model; no restriction on the distribu-

tion type is assumed) versus a failure probability and b magnitude of uncertainty

(a)

(b) (c)

Fig. 12  Obtained designs of example (II). Optimal solutions a without considering uncertainty, b with 
the �∞-norm uncertainty model, and c with the �

2
-norm uncertainty model. In b and c, no restriction on 

distribution type is assumed, � = 0.005 , � = 0.2 , and � = 0.01
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As in Sect. 4.1, we require the reliability constraint to be satisfied for all the prob-
ability distributions satisfying � ∈ U� and � ∈ U� , i.e., for any probability distribu-
tion belonging to P in (35). For the �2-norm uncertainty, Fig. 11a and b depict the 
variations in the optimal value with respect to the failure probability and the uncer-
tainty magnitude, respectively. Figure 12 presents the optimal solutions of the opti-
mization problem without uncertainty, as well as the distributionally-robust RBDO 
problems with the two uncertainty models. The width of each member in these fig-
ures is proportional to its cross-sectional area.

6  Conclusions

This paper has dealt with the reliability-based design optimization (RBDO) of struc-
tures, in which the knowledge of the input distribution that is followed by the design 
variables is imprecise. Specifically, it is only known that the expected value vec-
tor and the variance-covariance matrix of the input distribution belong to a speci-
fied convex set, and their true values are not known. Then we attempted to opti-
mize a structure, under the constraint that, even for the worst-case input distribution, 
the failure probability of the structure is no greater than the specified value. This 
constraint, which we refer to as the distributionally-robust reliability constraint, is 
equivalent to infinitely many reliability constraints corresponding to all possible 
realizations of the input distribution. Provided that the change in a constraint func-
tion value is well approximated as a linear function of uncertain perturbations of the 
design variables, a tractable reformulation of the distributionally-robust reliability 
constraint has been presented.

The concept of distributionally-robust RBDO has been established and funda-
mental results have been provided. However, various aspects remain to be studied. 
For example, we have considered uncertainty only in the design variables. Other 
sources of uncertainty in structural optimization can be explored. Furthermore, as 
discussed in Sect. 4.2, multiple performance requirements in the form of (41) remain 
to be studied. Extensions to topology optimization are of great interest, as topology 
optimization has greater design flexibility than the size optimization handled in this 
paper. Moreover, we have relied on the assumption that the quantity of interest is 
approximated, with sufficient accuracy, as a linear function of the uncertainty per-
turbations of the design variables. Extensions to nonlinear cases can be attempted. 
Finally, the development of a more efficient algorithm for solving the optimization 
problem presented in this paper can be studied.
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